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Introduction:

Making sense of any complex system involves identifying constituent elements and understanding their individual functions and interactions. Neural circuits are no exception. While recent advances in connectomics [START_REF] White | The structure of the nervous system of the nematode Caenorhabditis elegans[END_REF][START_REF] Jarrell | The connectome of a decision-making neural network[END_REF][START_REF] Helmstaedter | Connectomic reconstruction of the inner plexiform layer in the mouse retina[END_REF][START_REF] Takemura | CC-BY-NC-ND 4.0 International license a certified by peer review) is the author/funder, who has granted bioRxiv a license to display the[END_REF][START_REF] Ohyama | A multilevel multimodal circuit enhances action selection in Drosophila[END_REF][START_REF] Berck | The wiring diagram of a glomerular olfactory system[END_REF][START_REF] Eichler | The complete connectome of a learning and memory centre in an insect brain[END_REF][START_REF] Hildebrand | Whole-brain serial-section electron microscopy in larval zebrafish[END_REF][START_REF] Eschbach | Multilevel feedback architecture for adaptive regulation of learning in the insect brain[END_REF] and live imaging techniques [START_REF] Ahrens | Whole-brain functional imaging at cellular resolution using light-sheet microscopy[END_REF]Prevedel et al., 2014;[START_REF] Chhetri | Whole-animal functional and developmental imaging with isotropic spatial resolution[END_REF][START_REF] Lemon | Whole-central nervous system functional imaging in larval Drosophila[END_REF][START_REF] Grimm | A general method to fine-tune fluorophores for live-cell and in vivo imaging[END_REF][START_REF] Vladimirov | Brain-wide circuit interrogation at the cellular level guided by online analysis of neuronal function[END_REF] offer unprecedented information about neural connectivity and activity, the task of identifying cell types has traditionally relied on painstaking morphological, functional, or single gene histochemical taxonomy. High-throughput single-cell RNA sequencing (scRNAseq) offers a new way forward by providing a molecular-level identity for each cell via its transcriptomic profile. Importantly, it is also scalable to populations of millions of cells without incurring exorbitant costs. These techniques have already revealed striking heterogeneity in cell populations that is lost in bulk samples. In the fruit fly, efforts are already well underway to produce connectomic [START_REF] Takemura | CC-BY-NC-ND 4.0 International license a certified by peer review) is the author/funder, who has granted bioRxiv a license to display the[END_REF][START_REF] Ohyama | A multilevel multimodal circuit enhances action selection in Drosophila[END_REF][START_REF] Berck | The wiring diagram of a glomerular olfactory system[END_REF][START_REF] Eichler | The complete connectome of a learning and memory centre in an insect brain[END_REF][START_REF] Eschbach | Multilevel feedback architecture for adaptive regulation of learning in the insect brain[END_REF], activity [START_REF] Chhetri | Whole-animal functional and developmental imaging with isotropic spatial resolution[END_REF][START_REF] Lemon | Whole-central nervous system functional imaging in larval Drosophila[END_REF][START_REF] Grimm | A general method to fine-tune fluorophores for live-cell and in vivo imaging[END_REF][START_REF] Vladimirov | Brain-wide circuit interrogation at the cellular level guided by online analysis of neuronal function[END_REF], and behavior atlases [START_REF] Vogelstein | Discovery of brainwide neural-behavioral maps via multiscale unsupervised structure learning[END_REF][START_REF] Robie | Mapping the neural substrates of behavior[END_REF] of the nervous system. Much work has separately revealed the role that genes [START_REF] Konopka | Clock mutants of Drosophila melanogaster[END_REF][START_REF] Sokolowski | Drosophila: genetics meets behaviour[END_REF]) and circuits (Garcia-Campmay et al., 2010[START_REF] Borst | Fly visual course control: behaviour, algorithms and circuits[END_REF] play in behavior; a major challenge is to combine genes, circuits, and behavior all at once. Single-cell analyses have been performed in parts of adult [START_REF] Croset | Cellular diversity in the Drosophila midbrain revealed by single-cell transcriptomics[END_REF][START_REF] Davie | A single-cell transcriptome atlas of the aging Drosophila brain[END_REF][START_REF] Konstantinides | Phenotypic convergence: distinct transcription factors regulate common terminal features[END_REF] Drosophila central brain and optic lobe. One study has investigated a small sample of the larval central brain (Alvalos et al., 2019). A comprehensive transcriptomic atlas of the complete central nervous system is the missing piece to the connectivity, activity, and behavior maps that would create the required resource necessary to understand the complex interplay between genes, circuits, and behavior.

To this end, we developed a protocol to capture, sequence, and transcriptionally classify the molecular cell types and cell states of the entire central nervous system of the Drosophila larva. We did this across 4 different life stages, providing a developmental profile of gene expression. Given that the Drosophila larva has a nervous system of approximately 10,000-15,000 neurons [START_REF] Hartenstein | Early neurogenesis in wild-type Drosophila melanogaster. Wilhelm Roux's[END_REF][START_REF] Hartenstein | The pattern of proliferation of the neuroblasts in the wild-type embryo of Drosophila melanogaster[END_REF][START_REF] Truman | Formation of the adult nervous system[END_REF][START_REF] Scott | A chemosensory gene family encoding candidate gustatory and olfactory receptors in Drosophila[END_REF], our atlas of 202,107 cells has up to 20X coverage of the entire nervous system and is the largest sequencing effort in Drosophila to date. All previously identified cell types were recognizable in our atlas, including motor neurons, Kenyon cells of the mushroom body, insulin-producing cells, brain dopaminergic and serotonergic cells, and all glial subtypes.

While scRNAseq provides nearly complete information about the transcriptional program being used by a cell at the time of collection, a drawback to the technique is a loss of spatial information. We therefore used a recently developed RNA fluorescent in situ hybridization (RNA-FISH) protocol to resolve the anatomical location of molecular cell types in the whole larval brain [START_REF] Long | Quantitative mRNA imaging throughout the entire Drosophila brain[END_REF]. We combined RNA-FISH with high-resolution Bessel beam structured illumination microscopy to detect and count individual mRNAs within newly identified cells. This technique provides ground truth for the absolute number of a particular RNA in a given molecular cell type at a particular time point. It also provides an opportunity to assess the quantitative capability of our scRNAseq approach.

Larval behavior after hatching is dominated by feeding; when a critical weight is achieved, this behavior switches to "wandering" in preparation for pupation (Bakker et al., 1953). Endocrine and neuroendocrine pathways responsible for this switch have been well characterized [START_REF] Truman | Hormonal control of insect ecdysis: endocrine cascades for coordinating behavior with physiology[END_REF], but the extent of molecular changes in defined cell types across the nervous system that respond to this neuroendocrine signaling are not known. To investigate such nervous system-wide changes during development, we sequenced the nervous system at four time points in development.

Previous sensory experience alters the behavioral state of an animal. Flies that are hungry form food-associated memories more easily (Krashes et al., 2009) and flies that are intoxicated court more frequently [START_REF] Lee | Recurring ethanol exposure induces disinhibited courtship in Drosophila[END_REF]. Male flies that lose fights are more likely to subsequently exhibit submissive behaviors and to lose second contests while male flies that win exhibit aggressive behavior and are more likely to win later fights [START_REF] Trannoy | Strategy changes in subsequent fights as consequences of winning and losing in fruit fly fights[END_REF]. Are internal states controlled transcriptionally at the level of identified cell types and circuits and, if so, how? It is an open question whether memory or internal state will affect gene expression globally or only in restricted cell populations.

In order to discover the nervous system-wide gene expression changes induced by previous experience, we examined gene expression profiles from the nervous systems of animals exposed to two experimental protocols. The first protocol involved presenting repeated pain and fear, by mimicking repeated wasp sting. Fictive stings were induced using optogenetic activation of a small population of well-described interneurons [START_REF] Ohyama | A multilevel multimodal circuit enhances action selection in Drosophila[END_REF]. Of note, no mechanical damage to the animal's surface occurred with this protocol. The second protocol involved repeated activation of higher-order central brain neurons involved in learning. Using behavioral assays before and after the stimulation, we showed that each of these protocols cause a long-lasting change in the animals' behavioral state. We then analyzed the effect of fictive sting and repeated activation of the learning center to search for changes in gene expression related to cell state during behavioral learning. We consider these "cell state" genes and find that both entire cell populations and individual neuron types can exhibit cell state changes.

Taken together, these results suggest the powerful role that transcriptomic atlases can play in probing the complex interplay between cell state, circuit function, and behavior.

Results

:

Polyseq software performs cell type discovery

A complete transcriptomic atlas of 202,107 single cells from the larval central nervous system was built (Figure 1; Table S1). Nervous systems were captured at four time points in development (1 hour, 24 hours, 48 hours, and 96 hours after larval hatching) and for three nervous system dissections (full CNS, brain only, and ventral nerve cord only). These developmental timepoints and anatomical regions were analyzed separately and in combination. Four non-neuronal and non-glial tissues, including ring gland cells, hemocytes, imaginal disc cells, and salivary gland cells, were also captured and analyzed as outgroups.

We developed polyseq (github.com/jwittenbach/polyseq), an open source Python package, to perform cell type analyses. polyseq performs functions of many popular R packages such as Seurat or Monocle [START_REF] Trapnell | The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells[END_REF][START_REF] Satija | Spatial reconstruction of single-cell gene expression data[END_REF]Qui et al., 2017;[START_REF] Cao | The single-cell transcriptional landscape of mammalian organogenesis[END_REF] with significantly improved runtime and the extensibility and modularity of Python. polyseq starts with a gene by cell matrix, which is then filtered for high quality cells, normalized, regressed, reduced, and clustered. Visualization can then be performed with tSNE or umap for the full dataset [START_REF] Maaten | Visualizing data using t-SNE[END_REF]McInnis et al., 2018). The software also includes inbuilt functionality for violin plots and heatmaps. The data remain in a form that is easy to integrate with the vast community of Python packages for further visualization and analysis (full details and analysis examples on github: github.com/jwittenbach/polyseq).

We first used polyseq to discover cell type clusters and confirmed that our findings were in agreement with current state of the art analysis methods (Figure 2). In two separate early third instar samples, we found the same cell types when analyzing the data in Seurat, Monocle, and polyseq (Figure 2A). In these samples, the cells separated into seven groups of developing neurons (which included subtypes of adult developing neurons, neuroblasts, and ganglion mother cells), four groups of glia, immune cells, and three groups of larval functional neurons (including distinct motor neuron and Kenyon cell groupings).

To correct for batch effects, both the align function used in the monocle R package [START_REF] Haghverdi | Batch effects in singlecell RNA-sequencing data are corrected by matching mutual nearest neighbors[END_REF] and our own linear regression method in polyseq were tested (Figure 2B,C). Both methods removed the visible batch effects in the umap plots (i.e., clusters that were made entirely of a single sample due to signal from separate batches collapsed into a single co-mingled population). As additional validation of cell type discovery, we used Garnett, a newly developed machine learning software package in R, to build a classifier based on cell type markers [START_REF] Pliner | Supervised classification enables rapid annotation of cell atlases. BioRxiv, 538652. . CC-BY-NC-ND 4.0 International license a certified by peer review) is the author/funder, who has granted bioRxiv[END_REF]. We found consistent results with our own annotation of known and newly discovered markers for larval functional neurons, neural stem cells, motor neurons, kenyon cells, and glia (Figure 2D,E). Using more specific markers for known cells which are small in overall number (such as insulin-producing cells, dopaminergic cells, octopaminergic cells, etc.) led to overfitting of the data. These known gene markers could be used to extract cells of interest without unsupervised methods.

Developmental profile of gene expression across four life stages

Given that the analysis in polyseq met the standards of current state of the art methods, we moved forward with an analysis of developmental timepoints. We built atlases of the entire nervous system at 1 hour, 24 hours, 48 hours, and 96 hours. Within these atlases, it was clear that during development, the cellular composition of the nervous system changes (Figure S1). At 1 hour, the nervous system is primarily larval functional neurons. As development proceeds, the absolute number of larval functional neurons remains relatively constant while the proportion of developing neurons greatly expands.

Having identified the main classes of cells, we investigated developmental trajectories of 12,448 neural progenitor cells (NPCs) (Figure 3). We extracted and combined NPCs cells from three stages of development (1 hour, 24 hours, and 48 hours) and performed an analysis in Monocle [START_REF] Trapnell | The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells[END_REF][START_REF] Qiu | Reversed graph embedding resolves complex single-cell trajectories[END_REF][START_REF] Cao | The single-cell transcriptional landscape of mammalian organogenesis[END_REF] (Figure 3). Garnett was used to predict cell types [START_REF] Pliner | Supervised classification enables rapid annotation of cell atlases. BioRxiv, 538652. . CC-BY-NC-ND 4.0 International license a certified by peer review) is the author/funder, who has granted bioRxiv[END_REF]. Known cell ages were used to anchor a psuedotime analysis, which aligned the data from early to late NPCs.

Gene expression in these populations revealed known markers (such as insensible (insb) in Ganglion Mother Cells) and unexpected markers, including long non-coding RNA (CR31386 in early NBs). IGF-II mRNA-binding protein (Imp) and Syncrip (Syp) form important gradients that mark NB age [START_REF] Liu | Opposing intrinsic temporal gradients guide neural stem cell production of varied neuronal fates[END_REF] 3D,E; Table S2). Early NPCs were characterized by the expression of genes important for genome organization, chromatin remodeling, and gene splicing. This allows for a future diversity of cell function and identity. Intermediate NPC gene modules were characterized by genes necessary to build neurons -these included expression of genes important for protein targeting and transport and neurotransmitter synthesis. Late NPCs were enriched for genes which are critical for newly differentiated neurons and circuit construction; significant GO terms included genes required for connecting circuits, such as axon guidance molecules and synapse organization genes, and genes important for circuit function, such as genes involved in memory storage.

Complete transcriptomic atlas of the larval central nervous system

Next we built an atlas of all cells captured at all stages (Figure 4). Transcriptomic cell types split into seventy clusters (Table S1). These seventy cell types could be grouped into many recognizable groups of cells, including: (1) adult developing brain neurons,

(2) adult developing VNC neurons, (3) larval functional brain neurons, (4) larval functional VNC neurons, (5) motor neurons, (6) kenyon cells, (7) brain neuroblasts, (8) VNC neuroblasts, (9) brain ganglion mother cells, (10) VNC ganglion mother cells, (11) glia, (12) hemocytes, (13) imaginal disc cells, (14) salivary gland cells, and (15) ring gland cells.

Larvae spend much of their life feeding and growing. From initial hatching to pupation, larvae grow significantly in length and mass [START_REF] Truman | Hormonal control of insect ecdysis: endocrine cascades for coordinating behavior with physiology[END_REF]. During this growth period, the larval nervous system grows and adds developing adult neurons which remain quiescent during larval life but grow and elaborate their axonal and dendritic arbors during pupation into adult functional neurons [START_REF] Li | A GAL4 driver resource for developmental and behavioral studies on the larval CNS of Drosophila[END_REF]. In the atlas, we can identify adult developing neurons through high expression neuronal markers (nSyb, elav) and a lack of synaptic and neurotransmitter genes (e.g., VChAT, VGlut). Recent work in the first instar brain showed that adult developing neurons (or undifferentiated neurons) express headcase (hdc) and unkempt (unk) [START_REF] Avalos | Single cell transcriptome atlas of the Drosophila larval brain[END_REF]. We see this expression continues in adult developing neurons at 24 and 48 hours. Furthermore, we find this group is marked by many more genes, including the actin-binding protein singed (sn), the zinc finger transcription factor jim, and the transcriptional repressor pleiohomeotic (pho).

Larval functional neurons participate in neural circuits which control sensation and behavior. At larval hatching, embryonic neurons are born, and all the neurons necessary for larval life are functional [START_REF] Truman | Spatial and temporal patterns of neurogenesis in the central nervous system of Drosophila melanogaster[END_REF]. These neurons will continue to grow and some populations, such as the Kenyon cells of the mushroom body, will add more neurons throughout development. Identifiable cells at the top level include motor neurons, Kenyon cells, excitatory and inhibitory interneurons, monoaminergic neurons, and neuropeptidergic neurons. A unifying feature of these cells includes expression of classical Drosophila neuronal markers (nSyb, elav), however, we also find many other genes that mark the larval functional neuron group robustly. These markers include the transmembrane receptor protein tyrosine kinase activator jelly belly (jeb), the protein tyrosine phosphatase IA-2, the ligand gated chloride channel Resistant to dieldrin (Rdl), and one of the beta subunits of sodiumpotassium pump (nirvana3; nrv3).

Monoaminergic neurons play a key role in learning in the fly [START_REF] Schwaerzel | Dopamine and octopamine differentiate between aversive and appetitive olfactory memories in Drosophila[END_REF][START_REF] Selcho | The role of dopamine in Drosophila larval classical olfactory conditioning[END_REF]. A single top-level cluster was identified with the expression of key monoaminergic synthetic enzymes (Trh, ple) and transporters (DAT, SerT).

Subclustering of this top-level cluster revealed three strong groups, corresponding to serotonergic, dopaminergic, and octopaminergic clusters, identifying previously undescribed markers of these populations of cells which separate one monoamine type from another (Figure S7).

JhI-21, a solute carrier 7-family amino acid transporter, is an example of a novel marker found here in 5-HT neurons. This gene encodes for a protein necessary for protein nutrition signaling, which was recently described [START_REF] Ro | Serotonin signaling mediates protein valuation and aging[END_REF][START_REF] Ziegler | The amino acid transporter JhI-21 coevolves with glutamate receptors, impacts NMJ physiology, and influences locomotor activity in Drosophila larvae[END_REF][START_REF] Ziegler | JhI-21 plays a role in Drosophila insulin-like peptide release from larval IPCs via leucine transport[END_REF]. However, these reports describe the importance of the JhI-21 protein peripherally, with no mechanism for the transmitting of nutritional information to the nervous system. Here we see that JhI-21 is expressed in the serotonin neuron itself, suggesting that serotonin neurons act directly as sensors for the amino acid nutritional state.

Neural progenitor cells include neuroblasts (NBs), intermediate neural progenitors, and ganglion mother cells (GMCs) [START_REF] Doe | Temporal patterning in the Drosophila CNS[END_REF]. NBs divide asymmetrically in three ways to produce progeny: type 0 NBs divide into one self-renewing NB and one neuron; type 1 NBs divide into one NB and one GMC; type 2 NBs divide into one neuroblast and one intermediate neural progenitor which then itself divides into a GMC [START_REF] Doe | Temporal patterning in the Drosophila CNS[END_REF]. Each GMC then divides terminally to form two neurons or one neuron and one glial cell.

Precisely timed patterns of temporal transcription factors guide this development. We are able to investigate these patterns over space and time by collecting the brain and VNC separately and collecting multiple stages of larval development (Figure 3). The mushroom body continues to grow and develop during larval life. We were able to identify mushroom body neuroblasts in our dataset, which were found in brain NB clusters and characterized by high expression of the late neuroblast marker Syp, genes for cell cycling, including pendulin (Pen) and cyclin E (CycE), and by the long noncoding RNA pncr002:3R (Figure 4).

Five glial subtypes were recognizable in our atlas, including midline/cortex, astrocytelike, chiasm, peripheral/surface, and longitudinal body glia (Figure 4) [START_REF] Freeman | Drosophila central nervous system glia[END_REF].

These glia were identified based on the expression of well-characterized markers, such as wrapper and slit (sli) expression in midline/cortex glia, alrm expression in astrocytelike glia, hoe1 expression in chiasm glia, swim in surface glia, and vir-1 in longitudinal body glia. In addition, we find CG5955, which codes for an L-threonine 3-dehydrogenase, is highly expressed and found specifically in all glia other than longitudinal body glia.

Hemocytes, imaginal disc, salivary gland, and ring gland cells were also captured and sequenced. Hemocytes form the immune system in Drosophila. Hemocytes expressed serpent (srp), the canonical marker of embryonic hemocytes [START_REF] Fossett | Functional conservation of hematopoietic factors in Drosophila and vertebrates[END_REF]. Hemocytes also had a very high expression of neuropeptide-like precursor 2 (Nplp2).

Imaginal discs are embryonic tissues that become adult tissues, such as wings and legs, after metamorphosis. We dissected these cells and sequenced them separately.

We found high and specific expression of many uncharacterized genes, including CG43679, CG14850, CG44956, and CG31698, among others (Table S1).

Unlike the imaginal disc, which had few genes in common with neurons, salivary gland cells, surprisingly, formed a homogenous group characterized by expression of many genes shared with neurons, such as the nucleo-cytoplasmic shuttling protein hephaestus (heph), the RNA-binding protein Syncrip (Syp), the cadherin molecule Shotgun (shg), and the cell adhesion molecule Fasciclin 3 (Fas3). Given the secretory nature of the salivary gland, it would be interesting to further investigate the evolutionary and developmental relationship between the salivary gland and neurons, especially given that in other animals, such as molluscs, salivary gland cells are secretory and have action potentials (Kater et al., 1978a,b).

The ring gland is critical for transitions in development. The ring gland was characterized by expression of the well-described Halloween genes, including members of the cytochrome P450 family required for ecdysteroid biosynthesis, including phantom (phm), spook (spo), spookier (spok), disembodied (dib), shadow (sad) and shade (shd) [START_REF] Gilbert | Halloween genes encode P450 enzymes that mediate steroid hormone biosynthesis in Drosophila melanogaster[END_REF]. The ring gland also has a high expression of the NADP/NADPH phosphatase curled (cu).

Validating transcriptomic predictions

Here, we used Insulin-producing cells (IPCs) as illustrative examples to validate scRNAseq data. IPCs consist of just fourteen neurons in the larval brain (Figure 5A) [START_REF] Schlegel | Synaptic transmission parallels neuromodulation in a central food-intake circuit[END_REF]. These cells participate in circuits which monitor the nutritional status of the larva and function as the larval equivalent of the mammalian pancreas. If IPCs are ablated, larvae and adults are smaller and have a diabetic phenotype, including increased hemolymph trehalose and glucose levels [START_REF] Rulifson | Ablation of insulin-producing neurons in flies: growth and diabetic phenotypes[END_REF]. IPCs secrete insulin-like peptides which regulate hemolymph sugar levels. Graph-based clustering revealed a cluster defined by the strong expression of insulin-like peptide 2 (Ilp2) and insulin-like peptide 5 (Ilp5) expression, which are canonical markers of IPCs (Figure 5B). By subsetting the data to look only at 96 cells in the putative IPCs cluster, the neurotransmitters and receptors expressed by these could be analyzed (Figure 5C).

Previous reports show IPCs are regulated by canonical neurotransmitters. This includes modulation by serotonin through the 5-HT1A receptor and octopamine through the Octbeta1 receptor [START_REF] Luo | Insulin-producing cells in the brain of adult Drosophila are regulated by the serotonin 5-HT 1A receptor[END_REF] and by the neuropeptide allatostatin A [START_REF] Hentze | The neuropeptide allatostatin A regulates metabolism and feeding decisions in Drosophila[END_REF]. We confirmed this known expression of 5-HT1A and Octbeta1 receptor. In our atlas, we also see the strong expression of additional (previously unknown for these cells) receptors for dopamine (Dop2R), glutamate (GluClalpha), and Allatostatin C Receptor 2(AstC-R2) in IPCs (Figure 5C).

To validate the specificity of our scRNAseq approach for identifying AstC-R2 in ICP cells, we probed AstC-R2 mRNA in a HaloTag reporter line for the ICPs. The overlap between the neurons containing the HaloTag and FISH signals confirmed the sequencing result (Figure 5D). The colocalization of AstC-R2 with 14 IPCs suggests that all ICPs are regulated by AstC through AstC-R2. The discovery of regulation by AstC-R2 updates our model of the regulation of IPCs by adding an additional population of cells that are modulating IPC activity.

Correlating smRNA-FISH and scRNAseq

In order to determine whether scRNAseq could quantitatively capture the dynamics of expression in a single cell , we compared scRNSeq expression to ground truth expression levels determined using single-molecule RNA-FISH (smRNA-FISH) [START_REF] Femino | Visualization of single RNA transcripts in situ[END_REF]. To make analyses more prisise and localized, we compared the RNA levels in a very small population of cells discovered in our atlas that express vesicular glutamate transporter (VGlut) and the neuropeptide Allatostatin C (AstC). We quantified the relative expression of these mRNAs using smFISH and compared the result with scRNAseq (Figure 6).

We used smFISH to probe VGlut and AstC mRNAs simultaneously and obtain quantitative expression levels. We detected 5 groups of cells that contain AstC FISH signals, which was consistent with previous reports of AstC localization [START_REF] Williamson | Molecular cloning, genomic organization, and expression of a B-type (crickettype) allatostatin preprohormone from Drosophila melanogaster[END_REF]. We observed 5 pairs of cells that contained both VGlut and AstC. Among the 5 pairs, 1 pair belonged to previously reported SLP1 AstC cells (Figure 6A). We quantified the VGlut and AstC mRNAs in these cells using a Bessel beam selective plane illumination microscope (BB-SIM) [START_REF] Long | Quantitative mRNA imaging throughout the entire Drosophila brain[END_REF]. Although quantification of VGlut and AstC mRNAs within individual cell bodies could not be obtained due to the difficulty of segmenting overlapping cell bodies, we were able to obtain an average quantification of VGlut and AstC mRNAs within these 5 pair of cells (Figure 6B). The similarity we obtained for the VGlut and AstC expression ratio between single-molecule FISH and scRNAseq suggested that the relative quantification from scRNAseq was compatible with single-molecule FISH (Figure 6C).

Optogenetic sting alters expression globally

To investigate if a change in internal state would alter nervous-system-wide gene expression, we examined gene expression profiles from animals exposed to repeated fictive sting. An optogenetic sting was induced by activation of the basin interneurons.

The basins are first order interneurons that receive input from nociceptive (pain) and mechanosensory (vibration) sensory neurons [START_REF] Ohyama | A multilevel multimodal circuit enhances action selection in Drosophila[END_REF]. Such optogenetic activation of the brain evokes a rolling escape response [START_REF] Ohyama | A multilevel multimodal circuit enhances action selection in Drosophila[END_REF], which mimics the natural response to wasp sting or nociceptor activation [START_REF] Hwang | Nociceptive neurons protect Drosophila larvae from parasitoid wasps[END_REF].

Of note, no mechanical damage was induced in our protocol.

The basin interneurons were activated for 15 seconds, with a 45 second rest period for a total of 120 activation periods (Figure 7A). Supervised machine learning was used to automatically detect behavior [START_REF] Jovanic | Mapping neurons and brain regions underlying sensorimotor decisions and sequences[END_REF]. A rolling escape response was observed at the start of the experiment; by the final activation stimulus, backing up and turning were the predominate responses (Figure 7B).

Control animals of the same age were collected from the same food plate as experimental animals and placed on an agar plate in the dark for two hours.

Immediately following the sting protocol, 2-4 animals from each group underwent the scRNAseq protocol. We were primarily interested in searching for cell state genes which could drive cell state clustering (Figure 7D). If cells from experimental animals and controls are analyzed together, will cells cluster together based on cell type (independent of treatment group) or cell state (dependent on treatment group)? If cell type clustering is observed, it suggests that any changes in cell state induced by our protocol are minor compared to cell type-specific features. But if cell state clustering is observed, it is evidence that experience driven changes are at least of comparable importance to cell type in determining genetic cell state.

The optogenetic sting protocol led to cell state clustering. Transcriptomic data from cells isolated from activated and control brains were normalized and analyzed in the same mathematical space, but the clustering that was observed was based on cell state (i.e., clustering was driven by whether the cells came from a "stung" animal or an "unstung" control). Cell state genes that differed between the stung and unstung controls were discovered (Figure 7F).

Cell state genes were most evident in larval functional and developing neurons, including motor neurons, cholinergic, and neuropeptidergic cells. Genes that were upregulated in motor neurons following the sting protocol included non-coding RNA (CR40469), carbohydrate metabolic enzymes (lactate dehydrogenase, ImpL3), and the ethanol-induced apoptosis effector, Drat.

In addition to cell state genes within the nervous system, a large group of immune cells was sequenced in the sting state, with particularly high expression of neuropeptide-like precursor 2 (NPLP2), a gene which has been observed in phagocytic immune cells [START_REF] Fontana | Transcriptome analysis of Drosophila CNS midline cells reveals diverse peptidergic properties and a role for castor in neuronal differentiation[END_REF]. RNA-FISH in sting and control conditions revealed this transcript is not higher in the neurons but suggested that the lymph gland is being activated and ramping up cell numbers in the sting condition (Figure S8). Strong evolutionary selection pressure exists on the larva to survive predation by parasitic wasps [START_REF] Kraaijeveld | CC-BY-NC-ND 4.0 International license a certified by peer review) is the author/funder, who has granted bioRxiv a license[END_REF]. Larvae can survive by using their immune system to encapsulate and prevent the hatching of internalized parasitic wasp eggs. Previous work has investigated the role of signaling detected by mechanical damage of the sting and the presence of the foreign body (wasp egg) inside the larva [START_REF] Sorrentino | Cellular immune response to parasite infection in the Drosophila lymph gland is developmentally regulated[END_REF]. Our transcriptomic data suggest the immune system may also respond to a currently unknown signal generated directly by the nervous system.

Learning center overactivation alters expression locally

In a second behavior protocol, we activated all higher-order central brain neurons involved in learning and memory, called Kenyon cells (KCs). Similar to the fictive sting, we observed a change in behavioral response at the start and end of the training. At the start of training, animals hunch and arrest movement at the onset of activation and crawl forward at the offset of activation (Figure 7C). At the end of the training, animals continue to hunch and stop at the onset, but a larger fraction (~80%) perform a small motion before turning rather than crawling forward to offset. Also, this protocol not only altered animals response to the optogenetic activation of KCs but also drastically altered behavior after activation. Animals greatly increased the probability of stopping and reduced the probability of crawling.

To discover potential molecular changes that could drive these behavioral changes, we analyzed the transcriptomes of animals exposed to these optogenetic training protocols and compared them to controls. Unlike the global changes in gene expression following an optogenetic sting, we detected changes in the transcriptomic state of many fewer cell types following repeated activation of the higher-order brain neurons involved in learning and memory (Figure 7G-I). We discovered a number of interesting candidate genes that were upregulated in an activity-dependent way in Kenyon cells and dopaminergic neurons, which are key cell populations in the learning and memory center (Figure 7;Table S3,S4).

Cell state genes with differential expression between KC activated brains and controls separated local groups of cells within clusters. Changes were observed in KCs and dopaminergic neurons (DANs) (Figure 7H,I). Cell state genes were not limited to previously described activity-related genes. They included long non-coding RNA (noe, CR40469), chromatin remodeling (His2AV, mamo), axon guidance (trn, DIP1, fas, dpr14, fz2), and receptor genes (Dop2R).

Discussion:

This work makes several contributions to the field. First, we present the first full transcriptomic atlas of the entire central nervous system at the single-cell resolution.

Second, we use super-resolution microscopy to compare single-molecule RNA-FISH with scRNAseq in the Drosophila larva. By combining these two techniques -the first providing information about the complete collection of RNA present in a cell and the second providing full anatomical, subcellular, and absolute quantification of a chosen RNA(s) -we provide a resource for the field of Drosophila neurobiology and provide an example of complementary methods for building and validating single-cell molecular atlases. Third, we provide an experimental paradigm for discovering a molecular signature of internal state and use this paradigm to uncover drastic gene-expression changes that accompany a state of stress evoked by repeated "optogenetic" predator attack. Our atlas is therefore a powerful resource for developmental biology, neuroscience, and evolutionary biology.

Separating cell type from cell state is a key challenge for transcriptomic cell atlases. In order to understand the changes in a specific cell type between health and disease, for example, it will be necessary to be able to find the same cell type among differing conditions. Here we show that such a distinction can be discovered in cases where molecular cell state is significantly altered. Furthermore, we show that even in a nervous system with drastically different (and unnatural) activity patterns in a sizable population of highly interconnected neurons (here 200 of 10,000 or 2% of the nervous system), limited changes may be observed across the entire nervous system but changes can be observed in specific cell types. We foresee such techniques being useful to investigate a wide range of internal state and cell state changes, from sleep to parasitism to circadian rhythms.

Single-cell transcriptomic atlases are the missing piece required for the combined analysis of genes, circuits, and behavior. Our work here shows that transcriptomic atlases can be reliably built for multiple developmental stages of the Drosophila larva.

Furthermore, we show that optogenetic manipulations of internal state can alter gene expression in a context-dependent manner. By adding a transcriptomic atlas to the existing atlases of neuron connectivity, neuron activity, and behavior, we have set the stage for a more complete understanding of the principles that underlie the complex interplay of genes, circuits, and behavior. order to develop a central nervous system-wide transcriptomic atlas of the Drosophila nervous system with single-cell resolution, we developed a protocol to digest the entire nervous system into single cells, collected the cells using a microfluidic device (10x Chromium machine, 10x Genomics, Pleasanton, CA), and sequenced the mRNA from each cell. After barcoding and sequencing, a cell by gene matrix is generated. This cell by gene matrix was then analyzed with polyseq, a custom python package. In total, 202,107 neurons and glia were sequenced. The anatomical location of newly defined molecular cell types were validated and identified using RNA-FISH with confocal imaging. To push the technique forward, RNA-FISH combined with Bessel beam selective plane illumination microscope (BB-SIM) was used to obtain the absolute quantification and subcellular location of transcripts in these new cell types. Optogenetic manipulations were performed to alter the internal state of the animal, either with two hours of fictive wasp sting or two hours of overactivation of 10% of brain neurons, and scRNAseq was used once more to search for a change in molecular cell state between conditions.
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The copyright holder for this preprint (which was not this version posted January 16, 2020. which is observable as cell state changes in gene expression. A. High-throughput behavior assays were performed using previously described equipment (Ohyama et al., 2013). Fifteen seconds of optogenetic activation were delivered every 60 seconds over a two-hour period. Larval behavior was recorded and supervised machine learning techniques were used to classify behavior as one of six behaviors. B. For the optogenetic sting protocol, animals first respond to basin activation by performing an escape response, including a fast turning response and rolling as previously described [START_REF] Hwang | Nociceptive neurons protect Drosophila larvae from parasitoid wasps[END_REF]Ohyama et al., 2013;[START_REF] Ohyama | A multilevel multimodal circuit enhances action selection in Drosophila[END_REF]. Over the course of the experiment, a switch in behavior is observed from rolling to backing up. C. Kenyon cell activation led to a hunch followed by freezing. At the start of training, animals crawled forward to offset. After training, the hunch and freezing response remained at the onset, but the offset response switched to a turn rather than a forward crawl. D. Transcriptomic atlases were produced from animals that underwent each behavior protocol and matched controls. We were primarily interested in whether cell state or cell type clustering would be observed after altering internal state (sting) or overactivating the memory center (KC activation). Cell type clustering would result in cells from activated animals and controls mixing in the same clusters while cell state clustering would lead to separation of cells from activated and control animals. E,F. The optogenetic sting protocol led to cell state clustering. All cell classes were identifiable for both conditions. A large immune cell population was specific to the sting condition, suggesting an immune response to a fictive wasp sting (Figure S8). F. Cell state genes were discovered with upregulated and downregulated expression that separated all cell populations. G-I. KC activation led to cell type clustering and local cell state changes.

Even though a larger total number of cells were activated (~200 KCs versus 64 basins), a less dramatic switch was observed in behavior and in the transcriptome. There were differentially expressed genes in two key populations of cells in the learning and memory center: KCs and dopaminergic neurons.

METHODS: CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Marta Zlatic (zlaticm@janelia.hhmi.org).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Fly stocks

Drosophila larvae were grown on standard fly food at 25°C and kept in 12-hour day/night light and dark cycle. Vials were timed by collecting eggs on a new food plate over the course of one hour.

Please see Key Resources Table for

Drosophila lines used in this study.

METHOD DETAILS

Single cell isolation

Drosophila larvae were dissected at 1 hour, 24 hours, 48 hours, or 96 hours after larval hatching (ALH). All dissections were performed in a cold adult hemolymph solution (AHS) with no calcium or magnesium at pH 7.4. Quality of single cell isolation was investigated by visual inspection with compound and confocal microscopy. Samples were placed on ice during waiting periods. Samples were isolated and run on the 10x Chromium Single Cell 3' immediately after cell dissociation.

First, the complete central nervous system (CNS) was dissected from every animal. The dissected nervous systems were kept in cold AHS on ice. For those samples where the brain and the ventral nerve cord (VNC) were sequenced separately, the separation of the brain from the VNC was performed using fine-tipped forceps and MicroTools (Cat #: 50-905-3315, Electron Microscopy Sciences). The time from digestion (the part of the protocol most likely to induce cell stress) to on the 10x Genomic instrument was never longer than 30 minutes.

After separation of the brain from the VNC, the desired tissue was placed in 18 L of AHS on ice. Once all samples were prepared, 2 L of 10x neutral protease (Cat #: LS02100, Worthington Biochemical Corp, Lakewood, NJ, USA) was added to a final volume of 20 L. The intact brain tissue was digested for 5 minutes. The tissue was then transferred to a fresh drop of 20 L of AHS.

Each sample was triturated with a clean, thinly pulled glass electrode until no tissue was visible under a dissection scope. All debris (pieces of nerve and undigested neuropile) was removed. Samples with fluorescent markers were observed under a fluorescence microscope to approximate cell density. The samples were then loaded onto the 10x Chromium chip.

10X Genomics

Single cell capture and library construction was performed using the 10x Chromium machine and the Chromium Single Cell 3' v2 Library and Gel Bead Kit (10x Genomics, Pleasanton, CA). Manufacturer's recommendations were followed for cell collection and library construction. Libraries were sequenced with an Illumina HiSeq following manufacturer's instructions.

mRNA in situ hybridization

FISH probes were designed based on transcript sequences using the online Stellaris Designer and purchased from Biosearch Technologies. Probe sequences for AstC and vGlut were previously reported [START_REF] Long | Quantitative mRNA imaging throughout the entire Drosophila brain[END_REF]Diaz et al., 2019), and probe sequences for AstC-R2, Hug, NPNL2 are in Table S5. Each probe is 18-22nt long with a 3' end amine-modified nucleotide that allows directly couple to an NHS-ester dye according to the manufacturer's instructions (Life Technologies). Dye-labeled probes were separated from the excess free dyes using the Qiagen Nucleotide Removal Columns. FISH protocol was described previously [START_REF] Long | Quantitative mRNA imaging throughout the entire Drosophila brain[END_REF]Diaz et al., 2019).

The brains of 3rd instar larvae were dissected in 1xPBS and fixed in 2% paraformaldehyde diluted PBS at room temperature for 55 min. Brain tissues were washed in 0.5% PBT, dehydrated, and stored in 100% ethanol at 4°C. After exposure to 5% acetic acid at 4 °C for 5 minutes, the tissues were fixed in 2% paraformaldehyde in 1xPBS for 55 min at 25 °C. The tissues were then washed in 1× PBS with 1% of NaBH4 at 4 °C for 30 min. Following a 2 hour incubation in prehybridization buffer (15% formamide, 2× SSC, 0.1% Triton X-100) at 50 °C, the brains were introduced to hybridization buffer (10% formamide, 2× SSC, 5× Denhardt's solution, 1 mg/ml yeast tRNA, 100 g/ml, salmon sperm DNA, 0.1% SDS) containing FISH probes at 50 °C for 10 h and then at 37 °C for an additional 10 h. After a series of wash steps, the brains were dehydrated and cleared in xylenes.

Confocal and BB-SIM Imaging

For confocal imaging, the tissues were mounted in DPX. Image Z-stacks were collected using an LSM880 confocal microscope fitted with an LD LCI Plan-Apochromat 25x/0.8 oil or Plan-Apochromat 63x/1.4 oil objective after the tissue cured for 24 hours. For single-molecule imaging, we use a previous described Bessel beam selective plane illumination microscope (BB-SIM). Detail construction of microscope and the imaging procedure is described previously [START_REF] Long | Quantitative mRNA imaging throughout the entire Drosophila brain[END_REF]. Briefly, this BB-SIM is engineered to image in medium matched to the measured refractive index (RI) of xylene-cleared Drosophila tissue with axial resolution of 0.3 µm and lateral resolution of 0.2 µm. For BB-SIM imaging, the tissues were mounted on a 1.5x3mm poly-lysine coated coverslip attached to a 30mm glass rod. The imaging process requires the objectives and tissues immersed in the imaging medium consist with 90% 1,2-dichlorobenzene, 10% 1,2,4trichlorobenzene with refractive index = 1.5525. Two orthogonally mounted excitation objectives are used to form Bessel beams, which are stepped to create an illumination sheet periodically striped along x or y, while a third objective (optical axis along the z direction) detects fluorescence. To employ structured illumination analysis, we collect multiple images with the illumination stripe pattern shifted to tile the plane in x, and repeat the process orthogonally to tile the plane in y. The sample is then moved in z, and the imaging repeated, and so on to image the 3D volume.

High-throughput Automated Optogenetic Behavior Experiments

For the sting mimic experiments, 72F11-GAL4 males were crossed to UAS-CsChrimson virgins (stock information in Key Resources Table ). For Kenyon cell overactivation, 201Y-GAL4 males were crossed to UAS-CsChrimson virgins. Larvae were grown in the dark at 25°C. They were raised on standard fly food containing trans-retinal (SIGMA R2500) at a final concentration of 500 µM. Activation was performed in a highthroughput optogenetic behavior rig described previously (Ohyama et al., 2013). About 40 animals were placed in a 25 x 25 cm 2 dish covered with clear 4% agar.

Neurons were activated using a red LED at 325 µW/cm 2 illuminated from below the agar dish for 15 seconds with with a 45 second rest period for a total of 120 activation periods (Figure 7A). Supervised machine learning was used to automatically detect behavior [START_REF] Jovanic | Mapping neurons and brain regions underlying sensorimotor decisions and sequences[END_REF]. Control animals of the same age were collected from the same food plate as experimental animals and placed on an agar plate in the dark for two hours. Immediately following the sting protocol, 2-4 animals from each group were dissected and cells were collected using the 10X Genomics protocol described above.

QUANTIFICATION AND STATISTICAL ANALYSIS scRNA-seq analysis

Bioinformatic analysis was performed using Cell Ranger software (Version 1.3.1, 10x Genomics, Pleasanton, CA, USA), the Seurat R package [START_REF] Satija | Spatial reconstruction of single-cell gene expression data[END_REF] and custom software in R and Python, including the polyseq Python package developed here. Software to train classifiers using neural networks was built with TensorFlow. The polyseq package as well as jupyter notebooks containing code used for analysis in the study are available on GitHub (https://github.com/jwittenbach/polyseq).

Briefly, Cell Ranger was used to perform demultiplexing, alignment, filtering, and counting of barcodes and UMIs, with the output being a cell-by-genes matrix of counts.

To further ensure that only high-quality cells were retained, any cell that registered counts in a unique number of genes below a baseline threshold was removed. To reduce the dimensionality of the data for computational tractability, any gene that was not expressed in a baseline number of cells was also dropped.

To account for the fact that raw counts tended to span many orders of magnitude (799 10 0 -10 5 ), counts were transformed via log(counts + 1). To control for cell size and sequencing depth, the sum of the (log-transformed) counts within each cell used as a regressor for a linear regression model to predict the (log-transformed) counts for each gene (one linear regression model per gene, with each cell being a sample). "Gene expression levels" were then quantified as the z-scored residuals from the fitted models (i.e. standard deviations above/below the predicted log-transformed counts for a particular gene across all cells).

Next, to further reduce the dimensionality of the data in preparation for downstream clustering and embedding operations (both of which have computational costs that scale poorly with the dimensionality of the feature space), principal component analysis was performed with cells as samples and gene expression levels as features. The top K principal components (PCs) were retained as features for downstream analyses. For the lager cell atlas dataset, K was chosen to retain a desired percentage of the total variance. For the smaller cell state datasets, K was chosen automatically via a shuffle test -on each shuffle, gene expression levels for each gene were randomly permuted across all cells and the percent variance explained by the top PC was recorded; the 95 th percentile of this value across all shuffles was then used as a threshold to determine the cutoff point for keeping PCs with respect to percent variance explained by a particular PC.

Based on these top PCs, cells were clustered using the Louvain-Jaccard graph-based clustering approach. Briefly, the k-nearest neighbor graph between cells was is computed. Edge weights are then determined using the Jaccard index, which measures the fraction of shared neighbors between any two nodes. Finally, the Louvain community detection algorithm is applied to this graph to partition the nodes into clusters; this algorithm seeks to optimize weight of connections with each cluster relative to those between clusters.

In order to visualize the results of the analysis, the PC features were also used to perform a nonlinear embedding into two dimensions. This was performed via either the t-SNE or the UMAP algorithm.

Once cluster identities were determined, the original gene expression level data was to determine important genes for defining each cluster. For each cluster, gene expression levels were used as features, and a binary indicator of whether or not a cell came from the cluster in question was used as a target. This data was then used to fit a linear classifier (viz, a support vector classifier) to separate in-cluster cells from the rest of the population. The unit normal vector from the linear classifier was then extracted and the components used to rank order genes in terms of importance for defining that cluster. This same technique was also used to find important genes for groups defined by methods other than clustering.

Imaging analysis

To quantify the number of vGlut and AstC mRNAs in cells contain both vGlut and AstC, we first manually segmented cells from BB-SIM z-stacks that have both vGlut and AstC FISH signals using the Fiji plugin TrakEM2 [START_REF] Schindelin | Fiji: an open-source platform for biological-image analysis[END_REF]Meissner et al., 2019). After identifying the individual fluorescent spots in segmented cells used a previously described Matlab algorithm [START_REF] Lionnet | A transgenic mouse for in vivo detection of endogenous labeled mRNA[END_REF], we calculate the number of mRNAs per cell. Reconstructed images were generated using Matlab code that draws spots centered on each of the detected spots positions [START_REF] Lionnet | A transgenic mouse for in vivo detection of endogenous labeled mRNA[END_REF] another were then computed and violin plots were generated. Known markers were the top genes for each subcluster and gave them recognizable identity -for example, tryptophan hydroxylase (Trh), which is used to synthesize serotonin from tryptophan, and serotonin transporter (SerT) were the top genes for the first subcluster, which could then be appropriately labeled containing serotonergic cells. In addition to known gene markers, new makers were also discovered for each group of cells. 

Figure 1 .

 1 Figure 1. Schematic of full nervous system scRNA-seq collection and analysis. In

Figure 2 .

 2 Figure 2. Polyseq python package performs cell type discovery and batch correction. A. The same dataset was analyzed in polyseq and Seurat. A confusion

Figure 3 .

 3 Figure 3. Neural progenitor cell (NPC) atlas reveals gene modules across developmental time. A. A full atlas of first (1H), second (24H), and third (48H) instar larval cells was built, and all NPCs were extracted. These NPCs were then analyzed with Monocle and split into five clusters. B. A pseudotime analysis was performed using known developmental times and separated the data into early, intermediate, and late NPCs. A group of cycling neuroblasts was found to the right of the main NPC dataset in UMAP space. C. Markers for each NPC cluster were extracted and revealed the change in gene expression over developmental time. D. Gene modules were computed and characterized early, intermediate, and late NPCs. As the gene modules represented more developed cells, they were enriched for GO terms (E) which characterized more developed cells (TableS2).

Figure 4 .

 4 Figure 4. Single-cell transcriptomic atlas of the larval central nervous system. A. t-SNE visualization of high-quality cells colored by cell class. Cells broke into 70 clusters (Figure S4; TableS1) and were post-hoc identified as adult developing neurons, larval

Figure 5 .

 5 Figure 5. Transcriptomic Atlas predicts previously unknown neuropeptide phenotype for insulin-producing cells and is verified by RNA-FISH. A. Anatomy of insulin-producing cells (IPCs). The IPCs are a group of 7 bilaterally symmetrical neurons which receive input through their dendrites (purple) about the nutritional state of the animal and release insulin-like peptides (ILP2, ILP3, ILP5) through their axons (green), which synapse on the ring gland, to control carbohydrate balance. They are analogous to the vertebrate pancreatic beta islet cells. B,C. The RNAseq atlas built in this study discovered the IPCs as a separate cluster (cluster 27 in C) with expression in the IPCs of receptors for octopamine, serotonin, and allatostatin A, which matched

Figure 6 .Figure 7 .

 67 Figure 6. Correlation between single-molecule FISH and scRNAseq. A. Identifying cells that have coexpression of AstC (green) and vGlut (magenta) in the whole brain B. Maximum-intensity projections of BB-SIM stack of the AstC and vGlut mRNA FISH channels, bar 10µm. Dashed lines outline 2 cells that co-express AstC and vGlut mRNAs are shown on the right panels, bar 1µm. Lower panels show individual FISH channel and the reconstructions obtained using the spot-counting algorithm. C. Comparison of the quantification of AstC and vGlut mRNAs between smFISH and scRNAseq.

Fig S2 .

 S2 Fig S2. Machine learning separates brain and VNC neurons.We dissected the brain from the nerve cord and sequenced the RNA from each population separately. This provided ground truth labels which we could then feed into (B) a neural network to train a classifier to predict spatial origin from the brain of the

Figure S3 .

 S3 Figure S3. Runtime for a typical pipeline to analyze single cell data in Seurat (R) versus polyseq (python). Equivalent analysis pipelines were built in Seurat and polyseq to analyze single cell RNAseq data for datasets of 1,000 cells and 75,000 cells on a single laptop running Mac OS with 16GB RAM and a 2.6 GHz Intel Core i7. Polyseq outperformed Seurat for

Figure S6 .

 S6 Figure S6. Complete nervous system atlas from an individual animal.A. t-SNE of the complete single nervous system with cell clusters colored by gene expression of the top genes in each cluster. For each cluster in A there is a combination of genes which separate the clusters into recognizable molecular cell types and cell classes. B. Lines can be drawn in the t-SNE space that separates each of the cell classes we define here (adult developing neurons, functional larval neurons, neural stem cells, and glia). C. Violin plot of characteristic genes which separate each of the 8 top level clusters.

Figure S8 :

 S8 Figure S8: NPLP2 expression is increased in the proventriculus and the brain after fictive sting. An RNA-FISH probe was designed for NPLP2 and pale (ple) to investigate the strong increased signal of NPLP2 following the fictive sting. In the brain lobes, the size of the NPLP2-positive cells is much larger. In the proventriculus, where immune cells emerge, there appear to be more NPLP2 positive cells emerging in the case after fictive sting, suggesting an immune reaction releated to the activation of neurons alone.

  

  . Imp levels decrease with age while Syp increases with age -young NBs have high levels of Imp and low levels of Syp, intermediate NBs have intermediate levels of Imp and Syp, and older NBs have Imp and high Syp. These waves are evident in our data and provide an opportunity to investigate further temporal gene expression gradients.

	. CC-BY-NC-ND 4.0 International license a certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under The copyright holder for this preprint (which was not this version posted January 16, 2020. ; https://doi.org/10.1101/785931 doi: bioRxiv preprint
	low Gene modules were discovered, which characterized populations of early, intermediate,
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  . which lay dormant until adult life. At 48 hours ALH the functional larval and developing adult populations are still identifiable.
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DATA AND CODE AVAILABILITY

All code and documentation for polyseq is open source and freely available on github (https://github.com/jwittenbach/polyseq). Jupyter notebooks used for analysis are available upon request. The scRNA-seq data has been deposited in GEO and is accessible under the accession code GEO: GSE135810.

recognizable, including cholinergic neurons, motor neurons, astrocyte-like glia, and neuroblasts. At 24 hours ALH multiple main groups of neurons are recognizable with markers consistent with an increase in neuroblasts and ganglion mother cells (GMCs).

In addition, there are large groups of neurons, here labeled "developing adult neurons" which have neuron markers but few or no genes expressed for synaptic transmitters and receptors. This is consistent with the large burst of neurons born at this point in 0 8 which define each cluster, along with the mean expression within the cluster, the expression outside the cluster, and the p-value can be found in Table S1.
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The top genes for the 70 cell type clusters are provided with the mean expression inside the cluster, mean expression outside the cluster, and p-value. These clusters correspond to Figure 4 and Supplementary Figure S4.

Table S2. Gene modules that characterize neural precursor cells over development. Differential gene expression was used to compute gene modules in the

Monocle3 R package. The modules characterize early, intermediate, and late neural precursor cell populations (Figure 3). Table S3. Fictive sting full nervous system atlas.

The top genes for the 14 cell type clusters obtained from animals that were fictively stung and controls. Tables include the top genes for each cluster, the mean expression inside the cluster, the mean expression outside the cluster, and the p-value. These clusters correspond to Figure 7E-F. Table S4. KC overactivation full nervous system atlas.

The top genes for the 14 cell type clusters obtained from animals that had KCs repeatedly activated and controls. Tables include the top genes for each cluster, the mean expression inside the cluster, the mean expression outside the cluster, and the pvalue. These clusters correspond to Figure 7G-I.