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Abstract Observed across species, operant conditioning facilitates learned associations13

between behaviours and outcomes, biasing future action selection to maximise reward and avoid14

punishment. To elucidate the underlying neural mechanisms, we built a high-throughput tracker15

for Drosophila melanogaster larvae, combining real-time behaviour detection with closed-loop16

optogenetic and thermogenetic stimulation capabilities. We demonstrate operant conditioning in17

Drosophila larvae by inducing a bend direction preference through optogenetic activation of18

reward-encoding serotonergic neurons. Specifically, we establish that the ventral nerve cord is19

necessary for this memory formation. Our results extend the role of serotonergic neurons for20

learning in insects as well as the existence of learning circuits outside the mushroom body. This21

work supports future studies on the function of serotonin and the mechanisms underlying22

operant conditioning at both circuit and cellular levels.23

24

Introduction25

Animals must rapidly alter their behaviour in response to environmental changes. An important26

adaptation strategy is associative learning (Dickinson, 1981; Rescorla, 1988), in which an animal27

learns to predict an unconditioned stimulus (US) by the occurrence of a conditioned stimulus (CS).28

The US is often a punishing or rewarding event such as pain or the discovery of a new food source29

(Pavlov, 1927). The nature of the CS distinguishes two major associative learning types: classical30

conditioning (Pavlov, 1927) and operant conditioning (Skinner, 1938; Thorndike, 1911).31

In classical conditioning, the CS is an inherently neutral environmental stimulus such as a sound,32

odour, or visual cue. Pairing with an appetitive or aversive US leads to learned approach or avoid-33

ance of the CS in the future. Many vertebrates (Andreatta and Pauli, 2015; Brown et al., 1951;34

Jones et al., 2005; Braubach et al., 2009) and invertebrates (Takeda, 1961; Vinauger et al., 2014;35

Alexander et al., 1984;Wen et al., 1997; Scherer et al., 2003; Davis, 2005; Cognigni et al., 2018; Vogt36

et al., 2014) can make these associations. Across the animal kingdom, neural circuits have been37

identified as convergence sites for the external CS and the rewarding or punishing US (Heisenberg38

et al., 1985; Hawkins and Byrne, 2015; Owald and Waddell, 2015; Gründemann and Lüthi, 2015;39

Caroni, 2015; Tonegawa et al., 2015). In classical conditioning of both larval and adult Drosophila,40
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the mushroom body (MB) brain area serves this purpose (Cognigni et al., 2018; Heisenberg et al.,41

1985; Heisenberg, 2003; Rohwedder et al., 2016; Vogt et al., 2014; Saumweber et al., 2018; Owald42

and Waddell, 2015). In each larval brain hemisphere, the CS is encoded by a subset of the ap-43

proximately 110 Kenyon cells (KCs) (Aso et al., 2014a; Honegger et al., 2011; Berck et al., 2016; Lin44

et al., 2014; Owald and Waddell, 2015; Campbell et al., 2013; Turner et al., 2008; Eichler et al.,45

2017), which synapse onto 24 MB output neurons (MBONs) driving approach or avoidance (Aso46

et al., 2014b; Owald et al., 2015; Perisse et al., 2016; Séjourné et al., 2011; Saumweber et al., 2018;47

Shyu et al., 2017; Plaçais et al., 2013; Eichler et al., 2017). KC to MBON connection strength is48

modulated by dopaminergic and octopaminergic neurons, which represent the rewarding or pun-49

ishing US (Schwaerzel et al., 2003; Schroll et al., 2006; Honjo and Furukubo-Tokunaga, 2009; Vogt50

et al., 2014; Saumweber et al., 2018;Waddell, 2013). Activation of the MB-innervating PAM cluster51

dopaminergic neurons serves as both a necessary and sufficient reward signal in classical condi-52

tioning (Rohwedder et al., 2016; Liu et al., 2012; Vogt et al., 2014; Waddell, 2013; Cognigni et al.,53

2018).54

In operant conditioning, the CS is an animal’s own action (Skinner, 1938; Thorndike, 1911). Af-55

ter memory formation, the animal can predict the outcome of its behaviour and bias future action56

selection accordingly, usually to maximise reward and avoid punishment (Skinner, 1938). This be-57

havioural adaptation can facilitate novel action sequences (Topál et al., 2006; Nottebohm, 1991;58

Fee and Goldberg, 2011) and, in some cases, repetitive, high-frequency motor activity (Olds and59

Milner, 1954; Corbett and Wise, 1980; Jin and Costa, 2010; Lovell et al., 2015). Such observations60

have wider implications for understanding diseases including obsessive-compulsive disorder and61

addiction (Everitt et al., 2018; Balleine et al., 2015; Joel, 2006). Invertebrates are also capable of62

operant conditioning (Brembs, 2003;Hoyle, 1979; Abramson et al., 2016;Nuwal et al., 2012; Booker63

and Quinn, 1981). Despite countless operant conditioning experiments across species using var-64

ious CS–US combinations, the underlying neural mechanisms remain poorly understood. For an65

animal to associate an action with its outcome, behavioural information must converge with cir-66

cuits encoding positive or negative valence. Although vertebrate basal ganglia-like structures ex-67

emplify this (Fee and Goldberg, 2011; Redgrave et al., 2011; Balleine et al., 2009), some learned68

action-outcome associations do not require the brain (Booker and Quinn, 1981; Horridge, 1962;69

Grau et al., 1998). Operant conditioning may hence occur in more than one area of the central ner-70

vous system (CNS). It is also unclear to what extent learning at these sites is mediated by synaptic71

plasticity (Lovinger, 2010; Surmeier et al., 2007; Reynolds and Wickens, 2002; Joynes et al., 2004;72

Gómez-Pinilla et al., 2007) versus changes in the intrinsic excitability of individual neurons (Dong73

et al., 2006; Shen et al., 2005; Nargeot et al., 1997; Brembs et al., 2002; Nargeot et al., 2009). We74

aim to establish the Drosophila larva as a tractable model system for studying the neural circuit75

mechanisms underlying operant conditioning.76

Drosophila melanogaster larvae perform various different actions. Typically, when exploring an77

environment, a larva alternates between crawling via forward peristalsis (Heckscher et al., 2012)78

and bending its head once or more to the left or right (Gomez-Marin et al., 2011; Luo et al., 2010;79

Kane et al., 2013; Figure 1A). In the presence of nociceptive stimuli, larvae exhibit escape behaviour.80

While the most common response is an increase in bending away from undesirable conditions,81

including extreme temperature (Luo et al., 2010; Lahiri et al., 2011), light (Kane et al., 2013), or82

wind (Jovanic et al., 2019), larvae also retreat from aversive sources using backward peristalsis83

(Masson et al., 2020; Kernan et al., 1994; Heckscher et al., 2012; Vogelstein et al., 2014; Figure 1A).84

The fastest escape response is rolling, where the larvamoves laterally by curling into a C-shape and85

quickly turning around its own body axis (Robertson et al., 2013;Hwang et al., 2007;Ohyama et al.,86

2013; Figure 1A). In nature, rolling is only observed after exposure to a strong noxious stimulus,87

such as heat or a predator attack (Ohyama et al., 2015; Robertson et al., 2013; Tracey et al., 2003).88

Powerful genetic toolkits have advanced the observation and manipulation of larval behaviour89

at the cellular level, making Drosophila larvae particularly well-suited for studying the neural mech-90

anisms underlying learning. In Drosophila, individual neurons are uniquely identifiable, with mor-91
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phology and function preserved across animals (Skeath and Thor, 2003; Wong et al., 2002; Marin92

et al., 2002; Jefferis et al., 2007). Together with tissue-localised protein expression afforded by93

the GAL4-UAS binary expression system (Fischer et al., 1988; Brand and Perrimon, 1993), this has94

yielded neuron-specific GAL4 drivers (Jenett et al., 2012; Luan et al., 2006; Pfeiffer et al., 2010) that95

reproducibly target the same group of cells in each individual. Adding fluorescent markers helps96

pinpoint a neuron’s location and reveal its anatomical features (Lee and Luo, 1999), while producing97

light-sensitive channelrhodopsins and temperature-sensitive ion channels facilitates optogenetic98

(Zemelman et al., 2002; Lima and Miesenböck, 2005) or thermogenetic (Hamada et al., 2008; Ki-99

tamoto, 2001) modulation of neural activity. Furthermore, the larva’s compact CNS has made it100

feasible to manually reconstruct neurons and their synaptic partners from a larval electron mi-101

croscopy (EM) volume (Berck et al., 2016; Eichler et al., 2017; Fushiki et al., 2016; Ohyama et al.,102

2015; Schlegel et al., 2016; Larderet et al., 2017; Jovanic et al., 2016, 2019), giving rise to a full wiring103

diagram of the MB (Eichler et al., 2017; Eschbach et al., 2020a,b).104

There is overwhelming evidence that larvae are capable of classical conditioning. They can105

be trained to approach an odour paired with a gustatory reward (Schleyer et al., 2011; Hendel106

et al., 2005; Kudow et al., 2017; Niewalda et al., 2008), or avoid an odour paired with light (von107

Essen et al., 2011), electric shock (Aceves-Piña and Quinn, 1979; Tully et al., 1994), heat (Khurana108

et al., 2012), vibration (Eschbach et al., 2011), or the bitter compound quinine (Gerber and Hendel,109

2006; Apostolopoulou et al., 2014). Light can also be a CS: innate avoidance of light and prefer-110

ence for darkness (Sawin-McCormack et al., 1995) can be modulated when paired with reward or111

punishment (Gerber et al., 2004; von Essen et al., 2011). It has remained an open question, how-112

ever, whether Drosophila larvae can form action–outcome associations andwhere in the CNS these113

memories are formed.114

Conducting operant conditioning with larvae requires real-time behaviour detection such that115

reward or punishment can be administered with minimal delay (Figure 1B). Single-animal closed-116

loop trackers have recently been developed (Schulze et al., 2015; Tadres and Louis, 2020). However,117

the efficiency of training paradigms would improve with automated US delivery and simultane-118

ous conditioning of multiple animals. Therefore, we here introduce a high-throughput tracker for119

Drosophila larvae with real-time behaviour detection and closed-loop stimulation. Efficiency of the120

setup stems from the simultaneous, real-time, behaviour detection for up to 16 freely moving lar-121

vae, and targeted closed-loop optogenetic and thermogenetic stimulus delivery with full intensity122

control and minimal delay.123

Results124

High-throughput closed-loop tracker125

Hardware design126

Designing an automated operant conditioning protocol for the Drosophila larva was challenging127

due to the larva’s physical characteristics. We excluded partial immobilisation protocols similar128

to the ones used to condition adult Drosophila navigation through virtual environments (Nuwal129

et al., 2012; Wolf and Heisenberg, 1991; Wolf et al., 1998; Brembs, 2011). We instead built a high-130

throughput multi-larva tracker combining live computer vision behaviour detection with closed-131

loop control of US delivery in response to unrestricted larval behaviour.132

All hardware resided within an optically opaque enclosure to ensure experiments were per-133

formed without environmental light. Larvae moved freely on an agarose plate, backlit from be-134

low by an infrared LED and observed from above through a high-resolution camera (Figure 1C).135

A Camera Link communication protocol interfaced with a high-performance field-programmable136

gate array (FPGA), which itself interacted with the host computer. The FPGA and the host computer137

performed image processing, behaviour detection, and stimulus calculation (Figure 1D).138

Our operant conditioning paradigm targeted individual larvae performing specific behaviours.139

Optogenetic stimulation was achieved by directing red light through two digital micromirror de-140
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Figure 1. High-throughput operant conditioning in Drosophila larvae. a. Behavioural repertoire of Drosophila larvae. Schematics show thefour most prominent actions displayed by Drosophila larvae (crawl, left and right bend, back-up and roll). The larval contour is displayed as ablack outline with a green dot marking the head. b. In fully automated operant conditioning, an action of interest was reinforced by couplingreal-time behaviour detection with optogenetic activation of reward circuits. c. High-throughput tracker schematic showing the relativepositions of the agarose plate, backlight, camera, digital micromirror devices (DMDs), and galvanometers. IR: infrared. d. Block diagram ofhardware components. AO: analogue output, FPGA: field-programmable gate array. e. Data flow between software elements.
Figure 1–Figure supplement 1. Contour calculation on field-programmable gate array (FPGA).
Figure 1–Figure supplement 2. Detecting head and tail.
Figure 1–Figure supplement 3. Calculating a smooth spine and landmark points.
Figure 1–Figure supplement 4. Calculating direction vectors.
Figure 1–Figure supplement 5. Features describing body shape.
Figure 1–Figure supplement 6. Velocity features.
Figure 1–Figure supplement 7. Temporal smoothing of features.
Figure 1–Figure supplement 8. Differentiation by convolution.
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vices (DMDs) which were programmed to project small 1 cm2 squares at the location of individual141

larvae. Both DMDs, which were positioned to project over the entire plate area, were operated142

simultaneously (Figure 1C).143

Thermogenetic stimulation of individual larvae was achieved by directing a 1490nm infrared144

(IR) laser beam through a two-axis scanning galvanometer mirror positioning system (Figure 1C), a145

technique previously used to stimulate single adult flies (Bath et al., 2014;Wuet al., 2014). Because146

the 1490nm wavelength is well-absorbed by water (Curcio and Petty, 1951), larvae exposed to the147

IR beam were rapidly heated. We took advantage of the galvanometer’s high scanning velocity to148

rapidly cycle the beam between four larvae (Figure 1D).149

Software architecture150

Several computer vision algorithms exist for real-time tracking of freely behaving animals. Stowers151

et al. (2017) and Krynitsky et al. (2020) developed software for tracking mice, and Mischiati et al.152

(2015) developed high-speed tracking of single dragonflies in three-dimensional space. There are153

numerous tracking frameworks for adult Drosophila, some requiring the flies to move within a two-154

dimensional plane (Straw and Dickinson, 2009;Donelson et al., 2012) while others detect the three-155

dimensional position of single (Fry et al., 2008) or multiple (Grover et al., 2008; Straw et al., 2011)156

flies. The Multi-Worm Tracker (MWT) software developed by Swierczek et al. (2011) is suitable for157

simultaneously tracking a large number of Caenorhabditis elegans and has been adapted to analyse158

Drosophila larvae reactions in response to various stimuli (Ohyama et al., 2013; Vogelstein et al.,159

2014; Jovanic et al., 2019;Masson et al., 2020).160

Operant conditioning requires live behaviour detection to trigger delivery of reward or punish-161

ment. Numerous algorithms have been developed to analyse offline behavioural recordings of an-162

imals such as C. elegans (Huang et al., 2006; Stephens et al., 2008; Gupta and Gomez-Marin, 2019),163

zebrafish larvae (Mirat et al., 2013; Reddy et al., 2020), adult Drosophila (Katsov and Clandinin,164

2008; Branson et al., 2009; Dankert et al., 2009; Robie et al., 2017; Berman et al., 2014; Klibaite165

et al., 2017), bees (Veeraraghavan et al., 2008), and mice (Mathis et al., 2018; Luxem et al., 2020;166

van Dam et al., 2020). The Drosophila larva has also attracted attention due to analytical challenges167

surrounding its deformable body and limited set of distinguishing features (Luo et al., 2010;Gomez-168

Marin et al., 2011; Gershow et al., 2012; Denisov et al., 2013; Vogelstein et al., 2014;Ohyama et al.,169

2013, 2015; Masson et al., 2020). Most of these approaches are not ideal to run in real time or re-170

quire a mix of past and future information to provide reliable behaviour detection (Gomez-Marin171

et al., 2011; Masson et al., 2020). More generally, machine learning based methods have gained172

momentum in providing both supervised and unsupervised approaches to behaviour analysis. It173

is worth noting a recent trend in developing unsupervised learning methods (e. g. Graving and174

Couzin, 2020; Luxem et al., 2020).175

While real-time behaviour detection of casts and runs has been developed for a single animal176

(Schulze et al., 2015), our study of operant conditioning in freely behaving Drosophila larvae re-177

quired efficient, real-time behaviour detection of multiple animals. We built a system to simul-178

taneously track up to 16 larvae in real time, using LabVIEW for the user interface and algorithm179

implementation (Figure 1E). Instrumental to this software architecture was the fast image pro-180

cessing speed afforded by FPGA-based parallelisation (Soares dos Santos and Ferreira, 2014; Li181

et al., 2011; Zhang et al., 2017). Neuroscientists have adapted FPGA’s real-time analysis capabili-182

ties (Shirvaikar and Bushnaq, 2009; Uzun et al., 2005; Chiuchisan, 2013; Yasukawa et al., 2016) to183

track rats (Chen et al., 2005), zebrafish larvae (Cong et al., 2017), and fluorescently labelled neu-184

rons in freely behaving Drosophila larvae (Karagyozov et al., 2018). In our system, the FPGA and185

host computer worked together to read the raw camera images, detect eligible objects, and extract186

and process object features (i. e. contour, head and tail position, and body axis) (Figure 1E). Larval187

body shape, velocity, and direction of motion facilitated robust behaviour detection which, in turn,188

drove closed-loop optogenetic and thermogenetic stimulation. All relevant experiment parame-189

ters and time-series data were output for offline analysis through a custom MATLAB framework190

5 of 36

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 14, 2021. ; https://doi.org/10.1101/2021.06.14.448341doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.14.448341
http://creativecommons.org/licenses/by/4.0/


Manuscript submitted to eLife

(see Materials and methods).191

Optogenetic and thermogenetic stimulation efficiency verified by behavioural readout192

We conducted proof-of-principle experiments to ensure that our set-up could be successfully used193

for optogenetic stimulation (Figure 2A). Ohyama et al. (2015) have identified two GAL4 lines ex-194

pressed in neurons whose activation triggers strong rolling behaviour. 69F06-Gal4 drives expres-195

sion in command neurons for rolling, whereas 72F11-Gal4 drives expression in the Basin neurons,196

which integrate mechanosensory and nociceptive stimuli. Klapoetke et al. (2014) have developed197

the red-shifted channelrhodopsin CsChrimson, which can be expressed under GAL4 control. We198

tested whether 69F06-Gal4 x UAS-CsChrimson and 72F11-Gal4 x UAS-CsChrimson larvae rolled upon199

exposure to red light (Figure 2B, see also Materials and methods). In each stimulation cycle, we200

observed above-threshold rolls in over 40% of 69F06-Gal4 x UAS-CsChrimson larvae and over 70%201

of 72F11-Gal4 x UAS-CsChrimson larvae. This behaviour significantly contrasted with that of attP2 x202

UAS-CsChrimson control larvae (Figure 2C), suggesting that the DMDs could be used for optogenetic203

stimulation without activating the animals’ photoreceptors.204

We also verified the efficacy of the galvanometer set-up for thermogenetic stimulation (Fig-205

ure 2D). We tested whether 69F06-Gal4 x UAS-dTrpA1 and 72F11-Gal4 x UAS-dTrpA1 larvae rolled206

upon exposure to the IR laser (Figure 2E, see also Materials and methods). In each stimulation207

cycle, we observed above-threshold rolls in over 70% of 69F06-Gal4 x UAS-dTrpA1 larvae and over208

35% of 72F11-Gal4 x UAS-dTrpA1 larvae; a significant contrast to the attP2 x UAS-dTrpA1 control lar-209

vae whose roll rate was close to zero. We concluded that these heating conditions were effective210

for targeted Trp channel activation without larvae perceiving strong pain (Figure 2F).211

Operant conditioning of larval bend direction212

We chose optogenetic activation of reward circuits as a US for automated operant conditioning.213

The main challenge was determining which neurons could convey a sufficient reinforcement sig-214

nal, especially as the capacity for Drosophila larvae to exhibit operant learning was not yet demon-215

strated. Across the animal kingdom, it has been observed that biogenic amine neurotransmitters216

can provide such a signal (Giurfa, 2006;Hawkins and Byrne, 2015;Meneses and Liy-Salmeron, 2012;217

Fee and Goldberg, 2011). It is also conceivable that the Drosophila PAM cluster dopaminergic neu-218

rons that can signal reward in classical conditioning (Rohwedder et al., 2016; Liu et al., 2012; Vogt219

et al., 2014; Cognigni et al., 2018; Waddell, 2013) may perform similarly in operant conditioning.220

We therefore aimed to induce operant conditioning by stimulating a broad set of dopaminergic221

and serotonergic neurons. If valence signalling relevant for operant conditioning is mediated by222

one of these two neurotransmitters, activation of this large set of neurons paired with behaviour223

should be sufficient to induce learning.224

We expressed UAS-CsChrimson under the control of the Ddc-Gal4 driver, which covers a large225

set of dopaminergic and serotonergic neurons in the CNS (Li et al., 2000; Sitaraman et al., 2008;226

Lundell and Hirsh, 1994), including the PAM cluster (Liu et al., 2012; Aso et al., 2012). Although the227

function of most Ddc neurons is unknown, their collective activation can substitute for an olfactory228

conditioning reward in adult flies (Liu et al., 2012; Shyu et al., 2017; Aso et al., 2012). The goal229

of our paradigm was to establish a learned direction preference for bending, conditioning Ddc-230

Gal4 x UAS-CsChrimson larvae to bend more often to one side than the other. Although stimulation231

side was randomized across trials, we describe (for simplicity) the experiment procedure where232

this predefined side was the left. Each experiment began with a one-minute test period where233

no light was presented. What followed were four training sessions, each three-minutes long, in234

which larvae received optogenetic stimulation when bending to the left. Between training sessions,235

larvae experienced three minutes without stimulation. Larvae were periodically brushed back to236

the centre of the agarose plate to mitigate the experimental side effects of reaching the plate’s237

edge (see Materials and methods for more details). Following the fourth training session was a238

one-minute test period without stimulation (Figure 3A).239

6 of 36

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 14, 2021. ; https://doi.org/10.1101/2021.06.14.448341doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.14.448341
http://creativecommons.org/licenses/by/4.0/


Manuscript submitted to eLife

Figure 2. Optogenetic and thermogenetic stimulation with the high-throughput tracker. a. Hardwaredesign schematic for optogenetic stimulation. Although the high-throughput tracker included two digitalmicromirror devices (DMDs), only one is shown for simplicity. b. Proof-of-principal experiment protocol foroptogenetic stimulation. c. The fraction of larvae for which a roll was detected in each stimulation cycle.
69F06-Gal4 x UAS-CsChrimson and 72F11-Gal4 x UAS-CsChrimson larvae (CsChrimson expressed in neuronstriggering roll behaviour; experiment groups) were compared to attP2 x UAS-CsChrimson larvae (no
CsChrimson expression; control group). Fisher’s exact test was used to calculate statistical differencesbetween the experiment and control groups (*** p < 0.001). d. Hardware design schematic for thermogeneticstimulation. Although the high-throughput tracker included four two-axis galvanometers, only one is shownfor simplicity. IR: infrared. e. Proof-of-principal experiment protocol for thermogenetic stimulation. f. Thefraction of larvae for which a roll was detected in each stimulation cycle. 69F06-Gal4 x UAS-dTrpA1 and
72F11-Gal4 x UAS-dTrpA1 larvae (dTrpA1 expressed in neurons triggering roll behaviour; experiment groups)were compared to attP2 x UAS-dTrpA1 larvae (no dTrpA1 expression; control group). Fisher’s exact test wasused to calculate statistical differences between the experiment and control groups (*** p < 0.001).

7 of 36

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 14, 2021. ; https://doi.org/10.1101/2021.06.14.448341doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.14.448341
http://creativecommons.org/licenses/by/4.0/


Manuscript submitted to eLife

Figure 3. Operant conditioning of bend direction in Drosophila larvae requires the ventral nerve cord. a. Experiment protocol using thehigh-throughput closed-loop tracker. Behaviours are depicted as larval contours (black) with head (green). During training, the larva received anoptogenetic stimulus (red light bulb) whenever it bent to one predefined side (here depicted as the left for simplicity), and light was switched offduring all other behaviours (grey light bulb). b,d,e. Larval bend rate shown as the number of bends per minute, grouped by bend direction. Thebend rate to the stimulated side (depicted as a left bend with a red light bulb for simplicity) is shown in red and the bend rate to theunstimulated side (depicted as a right bend with a grey light bulb for simplicity) is shown in grey. For larvae that received random, uncorrelatedstimulation during 50% of bends, the bend rates to the left and right are shown in black. Statistical differences within groups were tested with atwo-sided Wilcoxon signed-rank test; statistical differences between two groups were tested with a two-sided Mann-Whitney U test.
c,f. Probability that a given bend was directed towards the stimulated side or, in the case of the uncorrelated training group, towards the left.Grey line indicates equal probability of 0.5 for bends to either side. Statistics calculated from a two-sided Wilcoxon signed-rank test. b–f. Gal4expression depicted as color-coded CNS. All data is shown as (mean ± s. e.m.). n. s. p ≥ 0.05 (not significant), * p < 0.05, ** p < 0.01, *** p < 0.001.
b. Bend rate for Ddc-Gal4 x UAS-CsChrimson larvae. Data is shown from the test period before the first training session and the test period afterthe fourth training session. c. Data from same experiments as in b. d. Same data as in b, but bend rate for uncorrelated training group wascalculated without stratification by bend direction. e. Bend rate for Ddc-Gal4 x UAS-CsChrimson; tsh-LexA, LexAop-Gal80 and 58E02-Gal4 x
UAS-CsChrimson larvae. The effector, UAS-CsChrimson, is omitted from the figure for visual clarity. Data is shown from the test periodimmediately following the fourth training session. f. Data from same experiments as in e.
Figure 3–Figure supplement 1. Ddc-Gal4 expression pattern without and with tsh-Gal80 restriction.
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For each larva, two measures served as a read-out for bend direction preference: i) the bend240

rate, measured as the number of bends per minute performed towards a given side, and ii) the241

probability that a given bend was directed towards the stimulated side, obtained by normalising242

the bend rate with the total number of bends performed by the larva in that minute. Individual243

larva variation in bend rate yielded different results for these measures at the population level. In244

the one-minute test prior to the first training session, we observed no significant difference in larval245

bend rate to either side and the likelihood of these naïve animals choosing one side over the other246

was not significantly different from chance. In the one-minute test following the fourth training247

session, larvae showed a preference for bends towards the side paired with red light stimulation248

during training, and the probability of these larvae bending towards this previously stimulated side249

was significantly greater than 50% (Figure 3B).250

The light-dependent activation of neurons using CsChrimson requires a cofactor, retinal, which251

we supplemented in the food during development (Klapoetke et al., 2014; see Materials andmeth-252

ods). A control group of larvae raised on food without retinal showed no significant difference253

in absolute bend rate (Figure 3B) or bend direction probability (Figure 3C) throughout the exper-254

iment. This suggested that the US, which triggered a learned direction preference for bends in255

larvae raised on retinal, was indeed the collective activation of all Ddc neurons and not the red256

light itself. Notably, when directly comparing larvae raised with retinal to this control group raised257

without, the two groups showed no significant difference in the bend rate towards the stimulated258

side. Instead, the bend rate towards the unstimulated side was significantly reduced in larvae that259

received paired training compared to this control (Figure 3B). This raised the question whether260

larvae were learning to prefer the side paired with the rewarding US, or rather to avoid the side261

without the stimulus.262

To confirm that the bend preference we observed after training was attributable to pairing263

light with bends solely in one direction, we conducted another control experiment in which lar-264

vae received random, uncorrelated stimulation during 50% of bends regardless of direction. After265

training, larvae showed neither a difference in absolute left and right bend rates, nor a significant266

probability of choosing one side over the other (Figure 3B, Figure 3C). These bend rates aver-267

aged together were indistinguishable from those of pair-trained larvae as they bent to the previ-268

ously stimulated side. However, larvae which received uncorrelated training showed a significantly269

higher bend rate overall compared to pair-trained larvae bending to the previously unstimulated270

side (Figure 3D).271

The mushroom body is not sufficient to mediate operant conditioning in larvae272

Our experiments showed that activation of Ddc neurons is a sufficient US for operant conditioning.273

While we did not identify which individual neurons mediate the observed effect, we hypothesised274

that not allDdc neurons are involved. Somepriorwork in adult flies suggests that theMB is involved275

in operant conditioning (Sun et al., 2020), while other studies in the adult suggest that operant con-276

ditioning does not require the MB (Booker and Quinn, 1981;Wolf et al., 1998; Colomb and Brembs,277

2010, 2016) and may instead involve motor neuron plasticity (Colomb and Brembs, 2016). The ex-278

tent to which the MB is dispensable in larval operant conditioning is unknown. We investigated279

whether smaller subsets of Ddc neurons in the brain and subesophageal zone (SEZ) could support280

memory formation in our bend direction paradigm.281

GAL80 under control of the tsh promoter suppresses GAL4 expression in the ventral nerve cord282

(VNC), but not in the brain or SEZ (Clyne and Miesenböck, 2008; Figure 3–Figure Supplement 1).283

When trained under our operant conditioning protocol (Figure 3A), Ddc-Gal4 x UAS-CsChrimson; tsh-284

LexA, LexAop-Gal80 larvae were equally likely to bend towards the side where they had previously285

received the optogenetic stimulus as they were to bend towards the unstimulated side (Figure 3E,286

Figure 3F). Activating these neurons was thus an insufficient rewarding US in this paradigm. The287

loss of the operant conditioning effect we observed with Ddc-Gal4 x UAS-CsChrimson larvae high-288

lighted the necessity of dopaminergic or serotonergic neurons in the VNC for the formation of a289

9 of 36

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 14, 2021. ; https://doi.org/10.1101/2021.06.14.448341doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.14.448341
http://creativecommons.org/licenses/by/4.0/


Manuscript submitted to eLife

bend direction preference. Their sufficiency was inconclusive, however, since perhaps two ormore290

distinct groups of Ddc neurons needed collective activation in order to form a memory.291

We then assessed whether exclusively activating the PAM cluster dopaminergic neurons inner-292

vating the MB could induce operant conditioning, as is the case for classical conditioning. 58E02-293

Gal4 drives expression in themajority of these neurons (Rohwedder et al., 2016). 58E02-Gal4 x UAS-294

CsChrimson larvae did not develop any direction preference for bends following training (Figure 3E,295

Figure 3F). It is unsurprising that activation of these neurons alone could not act as a rewarding296

US in this paradigm, given our finding that Ddc neurons in the brain and SEZ are insufficient. It is297

remarkable, however, because it suggests that the neural circuits signalling reward in operant con-298

ditioning differ from those of classical conditioning. Although it remains to be seen whether these299

PAM cluster neurons contribute tomemory formation by interacting with otherDdc neurons, these300

results further supported the idea that operant conditioning in Drosophila may not be mediated301

by the MB.302

Serotonergic neurons in brain and SEZ are a sufficient reward signal in classical303

conditioning304

Pairing an action with activation of numerous dopaminergic and serotonergic neurons across the305

CNS was sufficient to induce operant conditioning of bend direction preference. Furthermore, our306

results indicated that the VNC subset of these neurons was essential for memory formation in the307

paradigm. It was an open question, however, whether this learning was mediated by dopamine,308

serotonin, or both. Dopamine and serotonin receptors are necessary for different classical con-309

ditioning tasks in honeybees, suggesting that the two neurotransmitters may carry out separate310

functions (Wright et al., 2010). We conducted a high-throughput classical conditioning screen of311

sparser dopaminergic and serotonergic driver lines to identify US candidates for comparison with312

our operant conditioning paradigm.313

We expressed CsChrimson under the control of different GAL4 driver lines and tested whether314

pairing optogenetic activation of these neurons (US) with odour presentation (CS) could induce315

olfactory memory. Conditioning was performed using a similar procedure to those described in316

Gerber and Hendel (2006), Saumweber et al. (2011) and Eschbach et al. (2020b). In the paired317

group, larvae were exposed to alternating three-minute presentations of ethyl acetate with red318

light and air with no light. To ensure that any observed effects were a result of learning rather319

than innate odour preference or avoidance, an unpaired group was trained simultaneously with320

reciprocal stimulus presentation (odour/dark, air/light). Following training, larvae in both groups321

were tested on their preference for the odour in the absence of light (Figure 4A). All learning scores322

were compared to a negative control containing no GAL4 driver, w1118 x UAS-CsChrimson, which323

did not exhibit a learning phenotype (Figure 4B). Consistent with prior study results (Rohwedder324

et al., 2016; Eichler et al., 2017; Almeida-Carvalho et al., 2017), 58E02-Gal4 x UAS-CsChrimson larvae325

showed appetitive olfactory learningwith a significantly higher performance index thanw1118 x UAS-326

CsChrimson larvae and so were used as a positive control (Figure 4B). Ddc-Gal4 x UAS-CsChrimson327

larvae exhibited appetitivememory comparable to 58E02-Gal4(p = 0.1304, two-sidedMann-Whitney328

U test); an unsurprising result since the Ddc-Gal4 expression pattern includes the PAM cluster neu-329

rons. Consistent with previous studies in the larva (Schroll et al., 2006) and adult (Aso et al., 2012;330

Claridge-Chang et al., 2009; Liu et al., 2012), TH-Gal4 x UAS-CsChrimson larvae exhibited significant331

aversive olfactory learning. TH-Gal4 covers most dopaminergic neurons, excluding the PAM clus-332

ter (Rohwedder et al., 2016). The effect we observed may be mediated by punishment-signalling333

dopaminergic neurons that project to the MB vertical lobes (Eschbach et al., 2020b; Selcho et al.,334

2009). Isolating the locus of this effect may prove challenging, given the dearth of larval driver lines335

targeting dopaminergic neurons without MB innervation.336

Serotonergic signalling is required for associative learning in both larval (Huser et al., 2017) and337

adult (Johnson et al., 2011; Sitaraman et al., 2012) Drosophila. We tested Trh-Gal4 and Tph-Gal4,338

two driver lines that target the majority of serotonergic neurons and no dopaminergic neurons339
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Figure 4. Different serotonergic neurons mediate classical and operant conditioning. All fly lines contained the UAS-CsChrimson effector,which is omitted from the figure for visual clarity. Gal4 expression depicted as color-coded CNS. a. Olfactory conditioning experiment protocol.During training, larvae in the paired group received three minutes of optogenetic red light stimulation (solid red circles) paired with the odour(white cloud) followed by three minutes of darkness (solid white circles) paired with air (no cloud). The unpaired group received reciprocalstimulus presentation (dark paired with odour, light paired with air). This procedure was repeated three times. In half of the experiments, theorder of training trials was reversed, starting with air presentation instead of odour presentation. Both groups were then tested for learnedodour preference in the dark with odour presented on one side of the plate and no odour on the other (PI = performance index).
b. Performance indices following olfactory conditioning, plotted as raw data points and mean. w1118 x UAS-CsChrimson was the negative control(grey, n = 8), 58E02-Gal4 x UAS-CsChrimson was the positive control (blue, n = 8). Statistical comparisons to w1118 x UAS-CsChrimson werecalculated using a two-sided Mann-Whitney U test with Bonferroni correction; n. s. p ≥ 0.05∕7 (not significant), ** p < 0.01∕7. Statisticalcomparisons to Tph-Gal4 x UAS-CsChrimson were calculated using a two-sided Mann-Whitney U test with Bonferroni correction; n. s. p ≥ 0.05∕2(not significant), *** p < 0.001∕2. c,d. All data is shown as (mean ± s. e.m.), n. s. p ≥ 0.05 (not significant), * p < 0.05. c. Experiments followed theprotocol depicted in Figure 3A. Data is shown from the test period immediately following the fourth training session. Larval bend rate shown asthe number of bends per minute, grouped by bend direction. The bend rate to the stimulated side (depicted as a left bend with a red light bulbfor simplicity) is shown in red and the bend rate to the unstimulated side (depicted as a right bend with a grey light bulb for simplicity) is shownin grey. Statistical differences within a group were tested with a two-sided Wilcoxon signed-rank test. d. Probability that a given bend is directedtowards the stimulated side. Grey line indicates equal probability of 0.5 for bends to either side. Statistics were based on a two-sided Wilcoxonsigned-rank test.
Figure 4–Figure supplement 1. Tph-Gal4 expression pattern without and with tsh-Gal80 restriction.
Figure 4–Figure supplement 2. SS01989 exclusively drives expression in the CSD neuron.
Figure 4–Figure supplement 3. Paired and unpaired group data for olfactory conditioning experiments.
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across the CNS of third-instar larvae (Huser et al., 2012). Consistent with previous reports (Gan-340

guly et al., 2020), larvae expressing CsChrimson under either driver line formed strong appetitive341

olfactorymemory, highlighting the sufficiency of serotonin as a US in associative learning. Tph-Gal4342

targets fewer serotonergic neurons than Trh-Gal4, making it valuable for narrowing down which343

serotonergic neurons serve as a relevant reward signal. We eliminated all Tph-Gal4 expression in344

the VNC using tsh-Gal80 (Figure 4–Figure Supplement 1). Activating the remaining Tph neurons in345

the brain and SEZ was sufficient to induce strong appetitive memory (Figure 4B). This result was346

notable and raised further questions: are serotonergic neurons in the brain and SEZ indirectly347

connected to MB-innervating dopaminergic neurons or do alternative learning circuits exist that348

altogether bypass the MB?349

The contralaterally projecting serotonin-immunoreactive deutocerebral (CSD) neuron (Roy et al.,350

2007) is one previously described serotonergic brain neuronwithin the Tph-Gal4 expression pattern351

(Huser et al., 2012) that innervates the antennal lobe and only has a few indirect connections to352

theMB (Berck et al., 2016). Combining anatomical features from existing EM reconstruction (Berck353

et al., 2016) with available lineage information facilitated identification of a split-GAL4 line (SS01989)354

that drives expression exclusively in the CSD neuron (Figure 4–Figure Supplement 2). Pairing acti-355

vation of SS01989with ethyl acetate was insufficient for inducing olfactorymemory (Figure 4B), sug-356

gesting that the classical conditioning phenotype we observed under Tph-Gal4 x UAS-CsChrimson;357

tsh-LexA, LexAop-Gal80 was mediated by at least one other group of serotonergic neurons in the358

brain or SEZ.359

Serotonergic neurons in VNC are necessary for operant conditioning of bend direc-360

tion361

Given their strong associative learning phenotypes, we used the TH-Gal4 and Tph-Gal4 drivers362

to investigate whether operant conditioning of bend direction could be induced exclusively by363

dopaminergic or serotonergic neurons, respectively. Under our high-throughput training proto-364

col (Figure 3A), TH-Gal4 x UAS-CsChrimson larvae showed no difference in bend rate between the365

previously stimulated and unstimulated sides in the one-minute test period (Figure 4C). Further-366

more, the probability that any given bend was directed towards the previously stimulated side was367

not significantly different from chance (Figure 4D). Activating these dopaminergic neurons was an368

insufficient substitute for reward or punishment in operant conditioning.369

Paired activation of Tph-Gal4 neurons during bends to one side resulted in a significantly higher370

bend rate to the stimulated side relative to the unstimulated side during the test period (Figure 4C).371

The probability of bending in the previously stimulated direction was also significantly elevated372

(Figure 4D). In this way, activation of Tph-positive serotonergic neurons paired with bends to one373

side was sufficient for the formation of a learned direction preference. Combining this result with374

the knowledge that operant conditioning was impaired following restriction of Ddc-Gal4 x UAS-375

CsChrimson expression to the brain and SEZ suggests that the serotonergic neurons of the VNC376

were necessary for memory formation in this paradigm. Because Tph-Gal4 is a broad driver line, it377

is possible that its expression pattern contains brain or SEZ neurons outside of those in Ddc-Gal4.378

The existence of these neurons could have potentially induced learning through an alternatemech-379

anism independent from that which drove memory formation following Ddc neuron activation.380

To assess whether the VNC serotonergic neurons were necessary for the observed operant381

conditioning effect, we used tsh-Gal80 to restrict the Tph-Gal4 expression pattern to the brain and382

SEZ. Paired optogenetic activation of Tph-Gal4 x UAS-CsChrimson; tsh-LexA, LexAop-Gal80 with larval383

bends to one side was insufficient for operant conditioning (Figure 4C, Figure 4D). The Tph-Gal4384

expression pattern contains two neurons per VNC hemisegment (with the exception of a single385

neuron in each A8 abdominal hemisegment), all of which are serotonergic (Huser et al., 2012).386

While there are few serotonergic VNC candidates, we could not conclude from our data whether387

the operant conditioning effect relied solely on these neurons or whether synergistic activity from388

both the VNC and the brain or the SEZ was needed. Testing these hypotheses remains challenging389
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since, to our knowledge, no sparse driver lines exist to exclusively target VNC serotonergic neurons.390

Under a classical conditioning paradigm, we have confirmed that there exist learning pathways391

inDrosophila that rely on serotonergic neurons. Wehave also shown that serotonergic neurons can392

serve as a sufficient US for operant conditioning. Notably, different circuit mechanisms underlie393

classical and operant conditioning mediated by serotonergic neurons: activation of the brain and394

SEZ is sufficient for classical conditioning, whereas the VNC is necessary for operant conditioning.395

Discussion396

Due to available genetic tools and the emerging connectome, the Drosophila larva is a uniquely397

advantageous model organism for neuroscience. We have uncovered a previously unknown neu-398

ronal mechanism of operant conditioning in the Drosophila larva. Serotonergic signalling can be399

employed as a reinforcing US in both classical and operant associative learning, but we are mind-400

ful that a single neural mechanism for learning may not exist. Distinct types of learning may share401

neurotransmitters or circuit components, but there may remain fundamental differences in con-402

nectivity and function. The experimental system we built was instrumental in investigating the403

neural circuits of operant conditioning, as it combined FPGA-based real-time tracking of multiple404

larvae with robust online behaviour detection and closed-loop stimulus presentation. This system405

could facilitate further research in taxis (Luo et al., 2010; Gomez-Marin et al., 2011; Kane et al.,406

2013; Jovanic et al., 2019), decision-making (Krajbich, 2019; DasGupta et al., 2014), and spatial nav-407

igation and memory (Neuser et al., 2008; Haberkern et al., 2019). While further work is necessary,408

our bend direction paradigm provides a strong foundation for continued study of the circuit and409

cellular mechanisms underlying operant conditioning.410

High-throughput operant conditioning in Drosophila larvae411

We have shown that Drosophila larvae are capable of operant conditioning and that optogenetic412

activation of Ddc neurons serves as a rewarding US during this learning process. With training,413

larvae formed an association between the presence or absence of this US and the direction inwhich414

they were bending. During testing, in the absence of any stimulation, larvae showed a significant415

learned preference for bending towards the previously stimulated side. This learned modification416

of future behaviour was only observed when the CS and USwere paired during training; a hallmark417

of operant conditioning. Because Ddc-Gal4 drives expression in dopaminergic and serotonergic418

neurons (Li et al., 2000; Sitaraman et al., 2008), we concluded that one or both neurotransmitters419

are involved in memory formation under these experiment conditions.420

Strong parallels exist between our operant learning paradigm and those employed for condi-421

tioning direction preference in adult Drosophila. Consider the work of Nuwal et al. (2012), in which422

tethered flies walked on a rotating ball and were rewarded with optogenetic activation of sugar-423

sensing neurons upon turns to one direction. As a consequence of this pairing, the flies learned424

to increase the number of turns to this side. Notably, the nature of the US remains an important425

difference between these paradigms. Our initial attempts to operantly condition larvae using ac-426

tivation of sugar-sensing neurons as a rewarding US were unsuccessful. These neurons, defined427

by two different Gr43a-Gal4 drivers, were also insufficient for memory formation when activated428

with a paired odour in an olfactory conditioning screen. This was surprising, considering extensive429

evidence that natural sugar can serve as a rewarding US for classical conditioning in larvae (Apos-430

tolopoulou et al., 2013; Schleyer et al., 2015;Weiglein et al., 2019; Honjo and Furukubo-Tokunaga,431

2005; Neuser et al., 2005; Rohwedder et al., 2012; Scherer et al., 2003; Schipanski et al., 2008).432

One possible explanation for these discrepancies is that multiple groups of sensory neurons must433

be co-activated in order to relay a meaningful reward signal. Alternatively, it may be necessary to434

adjust the temporal pattern or intensity of optogenetic stimulation.435

It remains to be seen whether operant learning can occur by pairing roll or back-up behaviour436

with reward or punishment. Conditioning these actions is challenging given their infrequency in437

naïve, freely behaving animals. Rolls only occur in response to noxious stimuli (Ohyama et al., 2013,438
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2015; Robertson et al., 2013; Tracey et al., 2003). Back-ups also occur at very low rates (Masson439

et al., 2020). Consequently, the amount of US which larvae would receive during paired training440

would be very small, making observable memory formation more difficult. Our high-throughput441

tracker could potentially address this challenge with probabilistic, thermogenetic activation of roll442

or back-up command neurons (Ohyama et al., 2015; Carreira-Rosario et al., 2018) and optogenetic443

reward when performing the desired action.444

Neural circuits of operant conditioning445

From the available data, it cannot be concluded that the brain and SEZ are dispensable for op-446

erant conditioning in Drosophila larvae. Examples from both vertebrates (Grau et al., 1998) and447

invertebrates (Horridge, 1962; Booker and Quinn, 1981) show the spinal cord or VNC as sufficient448

for learning, suggesting that conserved mechanisms exist for brain-independent operant condi-449

tioning across species. This does not, however, exclude the possibility that there exist alternative450

learning pathways using the brain. In mammals (Redgrave et al., 2011; Balleine et al., 2009) and451

birds (Fee and Goldberg, 2011), brain correlates of operant conditioning have been identified. It is452

unclear where such pathways would be located in the insect brain. Both our larval experiments453

and previous adult fly studies (Colomb and Brembs, 2016; Wolf et al., 1998; Colomb and Brembs,454

2010; Booker andQuinn, 1981) support the idea that operant conditioning can occur independently455

of the MB, such that other learning centres might exist. To determine whether larval operant con-456

ditioning can be fully mediated by the VNC or whether the brain or SEZ are necessary, new driver457

lines must be created. A collection of sparse split-GAL4 lines, each specific to a distinct group of458

serotonergic neurons, could help identify theminimum subset of neurons necessary for conveying459

a US in our bend direction paradigm.460

Even if the learning signal for operant conditioning can be mapped to a few serotonergic neu-461

rons, there remain several open questions regarding the neuronal mechanisms underlying this462

learning. Locally, neurons could drive synaptic plasticity or modulate the intrinsic excitability of463

their postsynaptic partners. Alternatively, the learning signal could propagate further downstream,464

yielding learning correlates elsewhere in the network. Furthermore, memory formation requires465

integrating the US with information about the occurrence of the reinforced action. Motor feedback466

(e. g. efference copy,Webb, 2004; Fee, 2014) or proprioceptive input could be used to transmit this467

movement signal to higher-level circuits for convergence with the valence-encoding US. However,468

if memory formation occurred at a lower level, the action-specific signal and associated valence469

could be locally integrated inside the motor or premotor neuron without the need for feedback470

loops.471

Lorenzetti et al. (2008) proposed intracellularmechanisms formodulating the intrinsic excitabil-472

ity of the Aplysia premotor neuron B51 during operant conditioning, mediated by the highly con-473

served protein kinase C (PKC) gene. PKC signalling is also essential for operant conditioning in Lym-474

naea (Rosenegger and Lukowiak, 2010) and adult Drosophila (Brembs and Plendl, 2008; Colomb475

and Brembs, 2016). If the Drosophila larva showed evidence of PKC-induced motor neuron plas-476

ticity, EM reconstruction of the pathways between the serotonergic neurons of the VNC and the477

PKC-positive motor neurons could further elucidate the mechanisms of memory formation and478

retrieval. A similar investigation of the Drosophila gene FoxP may also be informative, as its muta-479

tion in the adult results in impaired operant self-learning (Mendoza et al., 2014). The vertebrate480

homologue FOXP2 is associated with deficits in human speech acquisition (Lai et al., 2001), song481

learning in birds (Haesler et al., 2007), and motor learning in mice (Groszer et al., 2008).482

Serotonin as a learning signal483

A limited set of studies have shown that serotonergic signalling is sufficient to induce learning (Liu484

et al., 2014; Hawkins and Byrne, 2015; Ganguly et al., 2020). Previous Drosophila studies highlight485

other roles of serotonin in associative learning (Yu et al., 2005; Keene et al., 2004, 2006; Lee et al.,486

2011; Huser et al., 2017). Sitaraman et al. (2012) have shown that synaptic transmission from sero-487
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tonergic neurons is essential for appetitive olfactory conditioning in the adult. Aversive olfactory488

memory formation is impaired in flies fed with a tryptophan hydroxylase inhibitor which blocks489

serotonin biosynthesis (Lee et al., 2011). Furthermore, serotonin receptor signalling is required490

for memory formation in classical conditioning tasks (Johnson et al., 2011). In larvae, aversive ol-491

factory conditioning is impaired by either ablation of serotonergic neurons during development or492

mutations in a serotonin receptor gene (Huser et al., 2017).493

Our work suggests a novel role of serotonin as a reward signal for learning in Drosophila larvae.494

In our olfactory classical conditioning screen, optogenetic stimulation of serotonergic neurons in495

the brain and SEZ was sufficient to induce strong appetitive learning. Conversely, operant con-496

ditioning necessitated serotonergic neuron activity in the VNC. Since it remains unclear to what497

extent serotonergic neurons in the brain and SEZ are also involved in the operant conditioning498

effect we observed, it is possible that some neurons mediate both forms of associative learning.499

Further investigation is necessary to better understand the function of serotonin in memory500

formation. It is possible that even a single instance of learning leads to a variety of changes across501

the nervous system. In the case of operant conditioning, higher brain centres, motor command502

neurons, premotor circuits andmotor neurons would all qualify as potential learning sites. In addi-503

tion to thoroughly analysing the expression patterns of driver lines used in our classical condition-504

ing screen, developing new, sparse driver lines targeting serotonergic neurons would be valuable505

for identifying the minimal subset of neurons which provide the serotonergic learning signal. The506

larval connectome could be used to subsequently trace the paths from these neurons to the MB.507

One could then test whether learning as induced by the serotonergic US remains intact when these508

connections are silenced. The expression pattern of serotonin receptors could also provide clues509

about how the serotonergic signal triggers learning. One should certainly consider the possibil-510

ity that learning is not induced by serotonin itself, but by other neurotransmitters coexpressed by511

serotonergic neurons. This could be assessed by suppressing serotonin biosynthesis in the desired512

neuronal subset.513

Materials and methods514

High-throughput closed-loop tracker515

Hardware set-up516

A high-resolution camera (3072 x 3200 pixels) (#TEL-G3-CM10-M5105, Teledyne DALSA, Ontario,517

Canada) positioned above a 23 cm x 23 cm 4% agarose plate captured 8-bit greyscale images at518

20Hz. The agarose plate was illuminated from below by a 30 cm x 30 cm 850nm LED backlight519

(#SOBL-300x300-850, Smart Vision Lights, Norton Shores, Michigan) equipped with intensity con-520

trol (#IVP-C1, Smart Vision Lights, Norton Shores, Michigan). An 800nm longpass filter (#LP800-521

40.5, Midwest Optical Systems, Palatine, Illinois) mounted on the camera blocked all visible wave-522

lengths, including those used for optogenetics. When the agarose plate comprised most of the523

camera image, each pixel corresponded to a 72.92µm diameter section of the plate.524

Each camera image was processed in parallel on both the host computer (#T7920, running525

Windows 10, Dell Technologies Inc, Round Rock, Texas) and an FPGA device (#PCIe-1473R-LX110,526

National Instruments, Austin, Texas). LabVIEW 2017 (National Instruments, Austin, Texas) software527

extracted larval contours and interfaced with C++ software that performed real-time behaviour de-528

tection. The LabVIEW software controlled closed-loop optogenetic and thermogenetic stimulation529

in response to these detected behaviours.530

Multi-animal detection and tracking531

Raw camera images were read by the FPGA at 20Hz and then sent to the host computer. The Lab-532

VIEW process on the host computer then filtered out non-larval objects by combining background533

subtraction and binary thresholding. The remaining objects were each enclosed in a rectangular534

box ofminimal size, with edges parallel to the camera image axes. We defined the following criteria535

to detect third-instar larvae within these boxes:536
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• Pixel intensity range (default 25–170): the minimum and maximum brightness values for537

pixels selected by binary thresholding (between 0 and 255 for an 8-bit image).538

• Box side length (pixels) (default 6–100): the range of eligible values for width and height of539

each box.540

• Box width + height (pixels) (default 12–200): the range of eligible values for the sum of each541

box’s width and height.542

• Box area (pixels) (default 300–900): the range of eligible values for the area of each box.543

To track larvae over time, the host computer assigned a numerical identifier to each eligible object.544

We used distance-based tracking with a hard threshold of 40 pixels to maintain larval ID based545

on centroid position. Although identity was lost when larvae touched or reached the plate’s edge,546

new IDs were generated when larvaematched detection criteria. For each of the largest 16 objects,547

the host computer sent a binary pixel pattern and location (defined as the centre of the box) to the548

FPGA. Since the host computer required more than 50ms of run time for object detection, this549

process was not executed in every frame. On average, the FPGA received updated objects and550

their locations every three frames.551

The FPGA extracted object contours in three steps. Within a 2 cm2 region of interest around the552

object’s centre, the FPGA first applied a user-defined binary threshold, then applied both vertical553

and a horizontal convolution with a 2 x 1 XOR kernel, and finally generated edge pixels by com-554

bining the results of the two convolutions using an OR operation. Contours were extracted from555

edge images using the Moore boundary tracing algorithm (Gonzalez and Woods, 2018) with three556

added error capture procedures. First, if the algorithm yielded a contour that ended prematurely557

or contained small loops, the construction process could be reversed by up to 16 contour points to558

find an alternative contour. Second, 10,000 FPGA clock cycles (≈ 100us) was themaximum allotted559

execution time, with each pixel comparison occurring within one clock cycle. In the rare event that560

this window was exceeded, the algorithm returned the already constructed contour points. Third,561

a contour containing fewer than 63 points was rejected and the FPGA returned the last valid con-562

tour detected for a given larva ID. The algorithm stopped when none of the remaining neighbours563

were edge pixels (Figure 1–Figure Supplement 1).564

Contour processing and landmark detection565

An undesired result of the FPGA contouring algorithm was the variable number of contour points566

across larvae and frames. We aimed to detect behaviour based on a smooth contour with a fixed567

number of 100 contour points. This contour regularization was achieved inside the Behaviour Pro-568

gramme using Fourier decomposition and reconstruction as inMasson et al. (2020).569

The initial detection of head and tail was implemented on FPGA. The larva’s head and tail were570

defined as the contour points with the sharpest and second-sharpest curvature, respectively (Fig-571

ure 1–Figure Supplement 2). While correct in most cases, this calculation sometimes led to flipped572

detection of the two body ends. The Behaviour Programme flagged and corrected these false de-573

tection events at run time by calculating the distance head and tail traveled between frames and574

tracking the number of correct versus flipped detection events. The vote system correction com-575

monly failed when the larvamade large angle bends. The resulting contour was nearly-circular and576

exhibited similar curvature across all points. The solution required resetting the vote tallies when577

detecting these ball events (Figure 1–Figure Supplement 2).578

We defined the larval spine as 11 points running along the central body axis from head to tail579

(Figure 1–Figure Supplement 3; Swierczek et al., 2011). In addition to head and tail, the Behaviour580

Programme calculated three equally distributed landmark points along the spine (neck_top, neck,581

and neck_down). A fourth landmark, the centroid, defined the larva’s location. The six landmarks582

were collectively used to extract features for training behaviour classifiers (Figure 1–Figure Supple-583

ment 3).584

The Behaviour Programme transformed the raw contour and spine from camera coordinates585
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(in pixels) to world coordinates (in mm). If stable larval detection criteria were met, all spine points586

were temporally smoothed using exponential smoothing (Figure 1–Figure Supplement 3).587

Feature extraction588

We developed a machine learning approach to address the high deformability of the larva shape,589

ensure live execution, reduce overfitting, and limit the volume of data tagging. What follows is a590

brief summary of larval features describing motion direction, body shape, and velocity that were591

calculated from the contour and spine data inside the Behaviour Programme. Features were de-592

signed as inMasson et al. (2020), with notable modifications required to run the inference live:593

1. Motion Direction (Figure 1–Figure Supplement 4)594

• direction_vector: normalised vector describing the main body axis595

• direction_head_vector: normalised vector describing the head axis596

• direction_tail_vector: normalised vector describing the tail axis597

2. Body Shape (Figure 1–Figure Supplement 5)598

• skeleton_length: summed distances between consecutive spine points599

• perimeter: summed distances between neighbouring contour points600

• larva_arc_ratio: ratio of contour perimeter to convex hull perimeter (larva_arc_ratio ≥601

1 and was close to 1 when larva was in either straight or ball-like shape)602

• larva_area_ratio: ratio of the areas enclosed by the contour and its convex hull (0 ≤603

larva_area_ratio ≤ 1 and was close to 1 when the larva was in either straight, heavily604

curved, or ball-like shape)605

• eig_reduced: eig_reduced = |�1−�2|
�1+�2

where �1, �2 were the eigenvalues of the structure606

tensor of the larval contour with respect to the neck (0 ≤ eig_reduced ≤ 1 and eig_-607

reduced decreased as the bend amplitude of the larva increased)608

• s: normalised angle along the body (−0.5 ≤ s ≤ 1, was close to 1 when larva was straight,609

and decreased with increasing bend amplitude)610

• asymmetry: sine of the angle between direction_vector and direction_head_vector611

(asymmetry > 0 when larva bent left and asymmetry < 0 when larva bent right)612

• angle_upper_lower: absolute angle between direction_vector and direction_head_-613

vector (despite similarity to asymmetry, this develops different dynamics following tem-614

poral smoothing, which are valuable for stable left and right bend detection)615

3. Velocity (Figure 1–Figure Supplement 6)616

• Velocity of all six landmark points (head_speed, neck_top_speed, neck_speed, neck_down_-617

speed, tail_speed, and v_centroid) in mm/s over interval dt = 0.2 s (four frames)618

• v_norm: arithmetic mean of neck_top_speed, neck_speed, and neck_down_speed, passed619

through a hyperbolic tangent activation function to suppress excessively large values620

• speed_reduced: relative contribution of neck_top_speed to v_norm, passed through a621

hyperbolic tangent activation function to suppress excessively large values (speed_re-622

duced increasedwhen the anterior larval bodymoved quickly compared to the posterior,623

e. g. when a bend was initiated)624

• damped_distance: distance (mm) travelled by neck, giving greater weight to recent over625

past events626

• crab_speed: lateral velocity (mm/s), defined as the component of neck_speed orthogonal627

to direction_vector_filtered628

• parallel_speed: forward velocity (mm/s), defined as the component of neck_speed_-629

filtered parallel to direction_vector_filtered630

• parallel_speed_tail_raw: tail’s forward velocity (mm/s), defined as the component of631

tail_speed_filtered parallel to direction_tail_vector_filtered632
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• parallel_speed_tail: similar to parallel_speed_tail_raw, with the difference that tail_-633

speed_filtered was normalised prior to calculating the dot product (i. e. a measure of634

tail movement direction which took values between -1 (backward) and +1 (forward))635

To extract features in real time and address various sources of noise, we implemented expo-
nential smoothing defined as follows for a given feature f (Figure 1–Figure Supplement 7):

f_filteredt = (1 − �) ⋅ f_filteredt−Δt + � ⋅ ft

where t is unitless, but derived from the experiment time in seconds, � = Δt
�
with Δt = 0.05 s and636

� = 0.25 s. Features that had the potential to exhibit large value deviations (e. g. v_norm) were637

instead bounded using a hyperbolic tangent function. Additionally, some features were exponen-638

tially smoothed over a longer time window (where �long = Δt
�long

with Δt = 0.05 s and �long = 5 s)639

(Figure 1–Figure Supplement 7).640

Convolution was used to approximate a smoothed squared derivative for each feature (Fig-
ure 1–Figure Supplement 8); useful for integrating information over time without needing to fur-
ther expand the feature space. The underlying mathematical concepts were motivated byMasson
et al. (2012). For a given feature f at time t, f_convolved_squared was calculated as follows:

f1t = (1 − �Δt) ⋅ f1t−Δt +
1
2
Δt ⋅ (ft−Δt + ft)

f2t = �Δt ⋅ f1t−Δt + (1 − �Δt) ⋅ f2t−nΔt

f_convolved_squaredt = k ⋅ (f1t − f2t)2,

where Δt = 0.05 s, � = 1
�
, � = 0.25 s, and n = 5 s. k values were empirically chosen for each feature.641

Behaviour classifiers642

Behaviour classifiers were developed using a user interface similar to JAABA (Kabra et al., 2013).643

The underlying algorithms combined trained neural networks and empirically determined linear644

thresholds. We developed aMATLAB (MathWorks, Natick, Massachusetts) user interface with func-645

tions for data visualisation, manual annotation, and machine learning using the Neural Network646

Toolbox, the Deep Learning Toolbox, and the Statistics and Machine Learning Toolbox. Here we647

briefly describe the behaviour classifiers and provide performance results based on manual vali-648

dation (Table 1).649

The bend classifier was based on predefined thresholds for temporally smoothed body shape650

features and was itself exponentially smoothed over time. Independent left and right classifiers651

were used to initially detect bend direction. To detect left and right bends, these classifiers were652

combined with the smoothed bend classifier using an AND conjunction. The raw time series of left653

and right bends was further smoothed post-acquisition using a customMATLAB script: two bends654

to the same side separated by less than 200ms were combined into a single long bend, and short655

bends of less than 200ms were removed from analysis.656

To improve left and right detection performance, we developed a classifier for circular larval657

contours. This ball classifier used a feed-forward neural network with a single fully connected658

hidden layer whose inputs were normalised values of eig_reduced, larva_arc_ratio, and larva_-659

area_ratio. The hidden layer consisted of five neurons with a hyperbolic tangent activation func-660

tion. The output layer contained a single neuron and used a sigmoid activation function. The661

neural network was trained in MATLAB on a manually annotated data set for 500 epochs using a662

cross-entropy loss function and scaled conjugate gradient backpropagation. If a ballwas detected663

within the previous 1.5 s, left and right classifiers were overwritten to match the last detected664

bend direction prior to the beginning of the ball.665

The back classifier detected individual backwardperistalticwaves basedon thresholds for smoothed666

tail velocity features combined with no ball detection within the previous 1.5 s.667

Two different classifiers were used to detect crawling. forward detected longer forward crawl668

periods based on thresholds for smoothed tail velocity features combined with no ball detection669
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Table 1. Manual quantification of behaviour detection performance.

back (268 events from 24 larvae in 60 minutes of video data)
Precision 86.5%
Recall 88.4%

bend (714 events from 24 larvae in 60 minutes of video data)
Precision 95.6%
Recall 96.4%
Accuracy of left and right detection (true-positive bends) 97.3%

forward (425 events from 24 larvae in 60 minutes of video data)
Precision 97.8%
Recall 94.1%

forward_peristaltic (2954 events from 24 larvae in 60 minutes of video data)
Precision 99.5%
Recall 93.6%
Events which are falsely combined with another event 10.7%
Events which are detected as more than one event 1.2%

roll (240 events from 24 larvae in 60 minutes of video data)
Precision (rolls and roll-like events) 96.6%
Recall (rolls) 86.7%
Recall (roll-like events) 25.8%

within the previous 1.5 s. forward_peristalticdetected individual forward peristaltic waves based670

on the forward classifier and a threshold on forward tail velocity.671

The roll classifier was based on thresholds for body shape and velocity combined with no ball672

detection and was exponentially smoothed over time. If a roll was detected within the previous673

1.5 s, forward, forward_peristaltic, and back classifier values were reset to reduce false-positive674

detection for these classifiers. Unusual behaviour patterns such as rapid bending or twitching675

could be observed in addition to true larval rolling. These behaviours were considered "roll-like"676

events during manual validation of the roll classifier’s performance.677

Optogenetic stimulation678

Optogenetic stimulation was achieved using two digital micromirror devices DMDs to project light679

patterns onto larvae on the agarose plate. During the hardware design process, two different DMD680

models were tested. One contained an integrated 613nm LED (#CEL-5500-LED, Digital Light Inno-681

vations, Austin, Texas) and the other (#CEL-5500-FIBER, Digital Light Innovations, Austin, Texas)682

received input from an external 625nm LED (#BLS-GCS-0625-38-A0710, Mightex Systems, Ontario,683

Canada) controlled by a BioLED light source control module (#BLS-13000-1, Mightex Systems, On-684

tario, Canada) and fed through an optic fibre (#LLG-05-59-420-2000-1, Mightex Systems, Ontario,685

Canada). Both DMDs operated like a 768 x 1024 pixel monochrome red light projector with nu-686

merous rotatable micromirrors used to modulate the intensity of individual pixels. Although both687

achieved similar light intensities, each DMD on its own was insufficient for optogenetic stimulation688

of larvae. We installed both devices on the system such that their projections each covered the689

entire agarose plate. In this way, the summed light intensities of the two DMDs could be achieved690

at all locations. Accurately aiming light at crawling larvae required spatial calibration of each DMD.691

Calibration was performed by projecting square spots at fixed DMD pixel locations and linearly692

fitting the corresponding camera coordinates.693
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We determined that DMD illumination using the default light output was not uniform at plate694

level, which could have resulted in variable optogenetic stimulation depending on larval location.695

The maximum achievable light intensity at the plate’s edge was approximately 40% of the peak696

value at its centre. We therefore normalised the pixel intensity of the DMD image to the highest697

intensity uniformly achievable at all plate locations. A look-up table containing the normalisation698

factor for each DMD pixel was then calculated using bi-linear interpolation with approximately699

100 light intensity values measured across the plate. To accommodate for possible differences in700

non-uniformity between the two DMDs, this intensity calibration was performed for both DMDs701

simultaneously following spatial calibration. When fully calibrated, the system could achieve a702

uniform light intensity of 285µW/cm2.703

A user-defined Behaviour Programme protocol operated on the behaviour detection output704

and sent 8-bit optogenetic stimulation instructions to the LabVIEW application. Because the Lab-705

VIEW application updated DMD projections at 20Hz, the delay between behaviour detection and706

closed-loop optogenetic stimulation of individual larvae did not exceed 50ms. Furthermore, if two707

ormore larvae were close enough such that their corresponding stimulation areas overlapped, the708

light intensity in the overlapping region was set to the smallest of those values to avoid undesired709

stimulation.710

Thermogenetic stimulation711

Thermogenetic stimulation was achieved by heating up larvae with a custom IR laser set-up. A712

1490nm laser diode beam (#2CM-101, SemiNex, Peabody, Massachusetts) was fed into a two-713

axis galvanometer system (#GVSM002, Thorlabs, Newton, New Jersey), both controlled by an ana-714

logue output device (#PCIe-6738, National Instruments, Austin, Texas). Two mirrors inside the715

galvanometer were rotated around orthogonal axes to target the beam spot to any user-defined716

location on the agarose plate. The beam spot measured approximately 5mm in diameter, de-717

pending on the beam’s angle of incidence to the plate. Mirror positions were controlled by two718

integrated motors that received voltage inputs. Each voltage pair clearly defined the laser beam’s719

position.720

Spatially calibrating the galvanometer was necessary to obtain a map between larval locations721

in world coordinates and the mirror motor input voltages. A visible aiming beam was scanned722

across the agarose plate using a fixed set of voltage pair inputs to the galvanometer. With the723

optical filter removed from the camera, the aiming beam’s location in camera coordinates was au-724

tomatically extracted from the image using binary thresholding. Two voltage-to-camera look-up725

tables were generated through bi-linear interpolation of these measured coordinates. For accu-726

rately targeted thermogenetic stimulation, the location of the larval centroid was first converted727

to camera coordinates using the existing world-to-camera transform and was then mapped to a728

pair of galvanometer input voltages using the look-up tables.729

Laser intensity calibration was also necessary to ensure that all larvae received the same stimu-730

lation regardless of their position on the agarose plate. A larva’s location changed the laser beam’s731

angle of incidence, causing the illuminated spot at plate level to take an elliptical shapewith variable732

size. Although laser beam power was constant, the changing spot area generated inconsistencies733

in the amount of IR light covering each larva. Calibration was used to normalise the desired laser734

intensity to achieve constant power per unit area. A visible aiming beam was scanned across the735

plate and the camera image automatically measured the beam’s spot size at various locations. Bi-736

linear interpolation was then used to generate a pixel-wise look-up table containing the necessary737

scaling factors for the laser power. At the location where the laser spot area was smallest, the738

maximum power was reduced to 67.3%. We also accounted for a nonlinear relationship between739

the laser source input voltage and the laser’s total power output by generating a voltage-to-power740

map from manual measurements. With these transformations, the system could calculate the741

laser source input voltage necessary to produce uniform, 5.26W stimulation at any location.742

A user-defined Behaviour Programme protocol operated on the 20Hz behaviour detection out-743
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put and sent thermogenetic stimulation instructions to the LabVIEW application which controlled744

the galvanometer and laser. Four centroid locations were specified on every frame, enabling a745

single galvanometer to cycle the laser beam between four individual larvae at 20Hz. Within the746

available 50ms time window, each larva was heated for 11ms. Switching off the laser input for747

1.5ms between larvae accounted for small time fluctuations surrounding each new galvanometer748

position update and helped avoid undesired stimulation of other plate areas (Figure 2D). If fewer749

than four objects were detected in a given frame, the remaining galvanometer target locations750

were set to the plate’s centre and the corresponding laser intensity was set to zero. This temporal751

pattern of galvanometer position updates yielded no more than 100ms delay between behaviour752

detection and closed-loop thermogenetic stimulation.753

Three parameters influenced larval temperature increase following thermogenetic stimulation754

with the IR beam: i) the laser power, ii) the total duration of the stimulus, and iii) the order in which755

the galvanometer cycles between locations in its 80Hz movement. Preliminary experiments sug-756

gested that these parameters could be adjusted to simultaneously stimulate eight or twelve larvae757

using a single galvanometer. This could potentially eliminate the need to install three additional758

laser sources to target all 16 larvae.759

Software availability760

All software code is available upon request.761

Fly strains and larval rearing762

We used the following fly strains: 58E02-Gal4 (Bloomington stock 41347), 69F06-Gal4 (Bloomington763

stock 39497), 72F11-Gal4 (Bloomington stock 39786), attP2 (Pfeiffer et al., 2008), Ddc-Gal4 (Li et al.,764

2000), SS01989 (own stock), TH-Gal4 (Friggi-Grelin et al., 2003), Tph-Gal4 (Park et al., 2006), Trh-Gal4765

(Alekseyenko et al., 2010), UAS-CsChrimson (Bloomington stock 55134), UAS-CsChrimson; tsh-LexA,766

LexAop-Gal80 (Dr Stefan Pulver, Dr Yoshinori Aso),UAS-dTrpA1 (Dr Paul Garrity), UAS-GFP (Nern et al.,767

2015), and w1118 (Hazelrigg et al., 1984).768

Fly stocks were maintained in vials filled with standard cornmeal food (Wirtz and Semey, 1982;769

49.2ml of molasses, 19.9 g of yeast, 82.2 g of cornmeal, 7.4 g of agarose, 9.8ml of 20% Tegosept770

solution in 95% ethanol and 5.2ml of propionic acid in 1 litre of water). For proof-of-principle771

and operant and classical learning experiments, eggs were collected overnight for approximately772

12–18 hours on standard cornmeal food plates with additional dry yeast to increase laying. These773

experiments were performed using foraging-stage third-instar larvae (72–96 hours after egg laying)774

reared at 25°C and 65% humidity (Ohyama et al., 2013, 2015; Jovanic et al., 2016, 2019; Eschbach775

et al., 2020b). Specifically for optogenetics experiments, larvae were raised in the dark and a 1:200776

retinal solution (diluting 1 g of powdered all-trans-retinal (#R240000, Toronto Research Chemicals,777

Ontario, Canada) in 35.2ml of 95% ethanol) was added to the food unless indicated otherwise.778

For immunohistochemistry, eggs were collected during daytime for approximately four hours on779

standard cornmeal food plates with added yeast. Dissections were performed using wandering-780

stage third-instar larvae (118–122 hours after egg laying).781

Immunohistochemistry and confocal imaging782

All dissections, immunohistochemical stainings, and confocal imaging were done using a proce-783

dure adapted from Jenett et al. (2012) and Li et al. (2014). Larval CNSs were dissected in cold 1x784

phosphate buffer saline (PBS, Corning Cellgro, #21-040) and transferred to tubes filled with cold785

4% paraformaldehyde (Electron Microscopy Sciences, #15713-S) in 1x PBS. Tubes were incubated786

for one hour at room temperature. The tissue was then washed four times in 1x PBS with 1%787

Triton X-100 (#X100, Sigma Aldrich St. Louis, Missouri) (PBT) and incubated in 1:20 donkey serum788

(#017-000-121, Jackson Immuno Research, West Grove, Pennsylvania) in PBT for two hours at room789

temperature.790
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The tissue was then incubated in the primary antibody solution, first for four hours at room791

temperature and then for two nights at 4°C. This solution contained mouse anti-Neuroglian (1:50,792

#BP104 anti-Neuroglian, Developmental Studies Hybridoma Bank, Iowa City, Iowa), rabbit anti-793

green fluorescent protein (GFP) (1:500, #A11122, Life Technologies, Waltham, Massachusetts) and794

rat anti-N-Cadherin (1:50, #DN-Ex #8, Developmental Studies Hybridoma Bank, Iowa City, Iowa) in795

PBT. This solution was then removed and the tissue washed four times in PBT. The tissue was then796

incubated in the secondary antibody solution, first for four hours at room temperature and then797

for two nights at 4°C. This solution contained Alexa Fluor 568 donkey anti-mouse (1:500, #A10037,798

Invitrogen, Waltham, Massachusetts), FITC donkey anti-rabbit (1:500, #711-095-152, Jackson Im-799

muno Research West Grove, Pennsylvania) and Alexa Fluor 647 donkey anti-rat (1:500, #712-605-800

153, Jackson Immuno Research West Grove, Pennsylvania) in PBT. After removal of the secondary801

solution, the tissue was washed in PBT four times and mounted on a coverslip coated with poly-L-802

lysine (#P1524-25MG, Sigma Aldrich, St. Louis, Missouri).803

The coverslip with the CNSs was dehydrated by moving it through a series of jars containing804

ethanol at increasing concentrations (30%, 50%, 75%, 95%, 100%, 100%, 100%) for ten minutes805

each. The tissue was then cleared by soaking the coverslip with xylene (#X5-500, Fisher Scientific,806

Waltham, Massachusetts) three times for five minutes each. Finally, the coverslips were mounted807

in dibutyl phthalate in xylene (DPX, #13512, Electron Microscopy Sciences, Hatfield, Pennsylvania)808

with the tissue facing down on a microscope slide with spacers. The DPX was allowed to dry for at809

least two nights prior to confocal imaging with an LSM 710 microscope (Zeiss).810

Details on the confocal imaging settings are provided in the respective figure captions. Confocal811

images were analysed using Fiji (ImageJ). Neurons were counted by specifying regions of interest812

around the cell bodies using raw image stacks.813

Verification of optogenetic and thermogenetic stimulation efficiency814

Weassessed themulti-larva tracker’s optogenetic and thermogenetic stimulation efficiency through815

open-loop experiments. The behavioural readout was rolling upon exposure to stimulation. All lar-816

val handling and experiments were performed in the dark to avoid unintended optogenetic stimu-817

lation. The one-minute experiment protocol began with a 15 s initialisation period in which larvae818

acclimated to the agarose plate and the roll behaviour classifier stabilised. In three subsequent819

15 s stimulation cycles, larvae received 5 s of open-loop stimulation followed by 10 s without stim-820

ulation (Figure 2B, Figure 2E). Optogenetics were performed with the maximum available red light821

intensity of 285µW/cm2. Thermogenetics were performed with 40% of the maximum available822

laser intensity.823

We analysed both optogenetic and thermogenetic experiment data using identical assessment824

and exclusion criteria. For each larva, the criterion for a single roll was detection of the behaviour825

for at least 300ms during a given 15 s stimulation cycle. This threshold ensured true rolls were826

counted, as opposed to rapid larval bends characteristic of aversion to light.827

High-throughput operant conditioning828

Experiment procedures829

We performed high-throughput operant conditioning using our multi-larva closed-loop tracker. All830

larval handling and experiments were performed in the dark to avoid unintended optogenetic831

stimulation. We used water to wash approximately 10–12 larvae out of their food. Using a brush,832

we immediately placed these larvae into the centre of the agarose plate in such away that theywere833

not touching each other. We placed the agarose plate inside the tracker on top of the backlight and834

then shut the tracker door. Larvae were given at least 30 s to accustom to their new environment835

before we started the experiment.836

The experiment protocol began and ended with a one-minute test period without optogenetic837

stimulation. Between these test periods were four, three-minute training sessions during which838

larvae received red light stimulation of 285µW/cm2 for the entire duration of the detected bend.839
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Which side received stimulation was randomized across trials such that approximately 50% of lar-840

vae were trained to develop a right bend preference and 50% a left bend preference. No stimulus841

was triggered when the larva was bending right or when its body was straight. The test periods842

were each separated by three-minute periods without stimulation. After the first minute of this843

period, a brush was used to gently move all larvae back to the centre of the plate and larvae were844

given time to recover before the beginning of the next training session. This recentring addresses845

problems encountered when performing prolonged experiments with freely behaving larvae on a846

small agarose plate. The longer larvae are left undisturbed, the more likely they are to touch the847

plate’s edge, causing tracking disruption and temporary loss of valid objects. This shrinks sample848

size and reduces training efficiency by decreasing the proportion of animals which are receiving849

the stimulus.850

Control experiments were designed so that valid objects received optogenetic stimulation un-851

correlated with behaviour. These control experiments were split into 60 s time bins, during which852

each valid object was randomly assigned a stimulus train from this same time bin, pulled from a853

prior experiment where stimulation correlated with behaviour.854

Data analysis855

Data analysis was conducted using custom MATLAB software. To ensure high quality data, it was856

necessary to remove invalid objects from the data set prior to behavioural analysis. These included857

corrupted objects (e.g. scratches on the plate or residual food) that the softwaremistook for larvae.858

They also included larvae that lost their object identity and were consequently detected for only859

part of the experiment (e.g. after temporarily reaching the plate’s edge or touching other larvae).860

After equally splitting each experiment into 60 s time bins, we retained objects for analysis that861

fulfilled strict criteria: i) the objectmust have been detected in every frame of the bin; ii) the object’s862

initial detection must have occurred at least 20 s prior to the start of the bin; iii) at no point during863

the bin did the smoothed velocity of the larval centroid exceed 1.5mm/s; and iv) the mean of the864

smoothed centroid velocity across the object’s detection period in the bin was at least 0.5mm/s.865

To quantify the accuracy of this method, we manually reviewed 350 videos of objects flagged as866

valid for a given 60 s bin. In this group, we observed no severely corrupted objects. In one case867

(0.3%), a larva briefly touched another larva. In another case (0.3%), head and tail of a larva were868

falsely detected the majority of the time, leading to flipped detection of left and right bends.869

Whenanalysing valid bin data for operant conditioning of benddirectionpreference, we counted,870

for each larva, the numbers of left and right bends initiated within the bin. This was defined as the871

bend rate towards the respective direction. The probability of the larva bending towards the side872

paired with the optogenetic stimulus was defined as the ratio of the number of bends towards this873

side to the total number of bends initiated in the bin. We pooled together all larval data within874

each bin because bends to the left and right were each paired with the optogenetic stimulus for875

approximately half of the larvae. Mean and standard error were calculated for bend rate to the876

stimulated side, bend rate to the unstimulated side, and probability of bending towards the stim-877

ulated side. For the control condition in which larvae received random stimulation during 50% of878

bends regardless of direction, we calculated mean and standard error for bend rates to the left879

and right and the probability for bending towards the left. Bend rates to either side were com-880

pared to each other using a two-sided Wilcoxon signed-rank test. The probability for bending to881

a given side was compared to chance level (0.5) using a two-sided Wilcoxon signed-rank test. The882

behaviour characteristics of experimental animals were compared to the control group using a883

two-sided Mann-Whitney U test.884

Classical conditioning885

Experiment procedures886

CsChrimson (Klapoetke et al., 2014) was expressed under the control of driver lines targeting can-887

didate valence-conveying neurons. These driver lines were classified based on expression pattern888
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and previous functional data and are known to drive expression in larvae. Optogenetic activation889

of neurons (US) was paired with odour presentation (CS) to induce olfactory memory (Figure 4A).890

For each driver line, data was acquired from at least two separate crosses.891

Classical conditioning followed a procedure similar to those described in Gerber and Hendel892

(2006), Saumweber et al. (2011) and Eschbach et al. (2020b). Approximately 40 third-instar larvae893

were transferred onto a 4% agarose petri dish. Larvae were presented with an odour (1:104 ethyl894

acetate in ddH2O) pipetted onto two pieces of filter paper attached to the lid of the dish. This en-895

closed dish was exposed to red light (630nm, 350µW/cm2) for three minutes. Larvae were then896

transferred to a new agarose-filled petri dish with no odour on its lid (“air”) and placed in the dark897

for threeminutes. This training procedure was repeated three times, with alternating presentation898

of odour/light and air/dark (paired group). An unpaired group receiving reciprocal stimulus presen-899

tation (odour/dark, air/light) was trained simultaneously. This ensured that any observed effects900

were attributable to learning rather than innate odour preference or avoidance. The training trial901

order was reversed in half of the experiments, starting with air instead of odour presentation.902

After training, larvae of both paired and unpaired groups were immediately transferred to a903

1 cm middle zone in the centre of fresh agarose-filled petri dishes. A lid was placed on each dish,904

with odour presented on one side (odour side) but not the other (air side). After a three-minute905

test period in the dark, the number of larvae on the odour side, the air side, and in themiddle zone906

were manually counted and entered into an Excel spreadsheet (Microsoft Corporation, Remond,907

Washington).908

Data analysis909

All data was manually entered into MATLAB and analysed using custom software. For each experi-
ment, a performance index (PI) was calculated as follows:

Prefpaired = #(larvae on odour side) − #(larvae on air side)
#(larvae on plate) (paired dish)

Prefunpaired = #(larvae on odour side) − #(larvae on air side)
#(larvae on plate) (unpaired dish)

PI = Prefpaired − Prefunpaired
2

(combined)
PIs take values between -1 and +1, where a positive PI reflects appetitive learning and a neg-910

ative PI reflects aversive learning. Mean and standard error were calculated for each condition.911

Statistical differences between two groups were tested using a two-sided Mann-Whitney U test912

with Bonferroni correction. Significance compared to zero was tested with a two-sided Wilcoxon913

signed-rank test with Bonferroni correction.914
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Figure 1–Figure supplement 1. Contour calculation onfield-programmable gate array (FPGA).
A simplified example is shown using a 10 x 10 pixel box containing a small object. a. The object
(black) was detected against the background (white) using binary thresholding. Edge pixels were
detected by combining the results of vertical and horizontal image convolution with a 2 x 1 XOR
kernel using an OR operator. b. The contour points were reconstructed in an iterative process,
starting with the edge pixel closest to the centre of the box. The next contour point was defined as
the first neighbouring pixel that was found to be an edge pixel. Neighbouring pixels were assessed
clockwise from the pixel directly above the contour point. The process endedwhen no eligible edge
pixels could be found.

1480

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 14, 2021. ; https://doi.org/10.1101/2021.06.14.448341doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.14.448341
http://creativecommons.org/licenses/by/4.0/


Manuscript submitted to eLife

Figure 1–Figure supplement 2. Detecting head and tail. The larval contour (black outline) and
head and tail (green) are shown. a. Initial detection of head and tail. The head was the contour
point with the sharpest curvature. The tail was the contour point with the next-sharpest curvature
which did not lie in close proximity to the head. b. The initial detection of head and tail was incorrect
in some cases. False detection could be corrected by swapping head and tail, thereby minimising
the distances fromhead and tail in the current frame (solid contour) to head and tail in the previous
frame (transparent contour). c. The correction described in b failed if larvae curled up such that
the contour appeared circular ("ball"). To eliminate this source of false head and tail detection,
these events were detected using a ball classifier.
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Figure 1–Figure supplement 3. Calculating a smooth spine and landmark points. The larval
contour is shown (black outline). The spine S was comprised of eleven points (black), including
head and tail (green). a. The raw spine points were obtained by finding the centres between
equally spaced contour points on either half of the contour as defined by head and tail. The first
spine point was the head, the last spine point was the tail. b. The smooth spine was obtained by
exponentially smoothing the raw spine. c. Four additional landmark points, neck_top, neck, and
neck_down (blue), and the contour centroid (grey), were calculated.
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Figure 1–Figure supplement 4. Calculating direction vectors. Three direction vectors were
calculated based on head, tail, and the landmark points. a. direction_vectorwas the normalised
vector from neck_down to neck. b. direction_head_vector was the normalised vector from neck_-
top to head. c. direction_tail_vector was the normalised vector from tail to neck_down.

1483

Figure 1–Figure supplement 5. Features describing body shape. a. Outline of a larva with con-
tour C (black) and its convex hull H (blue). b. Shown here are the eigenvectors (blue) of the larval
contour (black) structure tensor with respect to neck and their corresponding eigenvalues �1 and
�2. c. #i was defined as the angle between direction_vector (blue) and the vector a⃗i that passedthrough spine points S i and S i+1 (black). d. #head was defined as the angle between direction_vec-
tor and direction_head_vector. head and tail are shown in green.
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Figure 1–Figure supplement 6. Velocity features. The larval contour is shown in black while
head and tail are shown in green. a. crab_speed (blue) was defined as the component of neck_-
speed (grey) that was orthogonal to direction_vector_filtered (black). b. parallel_speed (blue)
was defined as the component of neck_speed_filtered (grey) that was parallel to direction_vec-
tor_filtered (black). c. parallel_speed_tail_raw (blue) was defined as the component of tail_-
speed_filtered (grey) that was parallel to direction_tail_vector_filtered (black). d. #tail wasdefined as the angle between tail_speed_filtered (grey) and direction_tail_vector_filtered
(black).
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Figure 1–Figure supplement 7. Temporal smoothing of features. a-b. Example graphs of raw
(dark blue) and filtered (mid blue) asymmetry (a) and eig_reduced (b) values over time. c–d. Example
graphs of raw (dark blue), filtered (mid blue), and long-time filtered (light blue) v_norm values over
a short (c) and a long (d) period of time.
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Figure 1–Figure supplement 8. Differentiation by convolution. Example graphs of raw (dark
blue) and convolved squared (green) asymmetry (a), eig_reduced (b) and v_norm (c) values over time.
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Figure 3–Figure supplement 1. Ddc-Gal4 expression pattern without and with tsh-Gal80 re-
striction. Maximum intensity projections of confocal images obtained after immunohistochemical
staining. a, e; green in d and h. Targeting a green fluorescent protein (GFP) antibody to themVenus
tag of CsChrimson. b, f; red in d and h. Staining against BP104. c, g; blue in d and h. Staining against
N-cadherin. a–d. Ddc-Gal4 x UAS-CsChrimson larvae. Manually counting the cell bodies in the im-
age stacks revealedmore than 200 GFP-positive neurons located in the brain, subesophageal zone
(SEZ), and ventral nerve cord (VNC), including the PAM cluster dopaminergic neurons innervating
the mushroom body (n = 2). This confirmed that Ddc-Gal4 drives broad expression across the cen-
tral nervous system (CNS) (Lundell and Hirsh, 1994; Li et al., 2000). e–h. Ddc-Gal4 x UAS-CsChrimson;
tsh-LexA, LexAop-Gal80 larvae. As expected, no GFP-positive neurons were found in the VNC (n = 6).
Ddc-Gal4 brain and SEZ expression remained largely unaffected by GAL80, as the GFP-positive neu-
rons in both areas that could be consistently identified in Ddc-Gal4 x UAS-CsChrimson larvae (n = 3)
were also present in Ddc-Gal4 x UAS-CsChrimson; tsh-LexA, LexAop-Gal80 larvae (n = 3). a–h. Plan-
Apochromat 20x objective, resolution: 592 x 800 pixels, scale bar: 100µm. Images courtesy of the
HHMI Janelia FlyLight team.
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Figure 4–Figure supplement 1. Tph-Gal4 expression pattern without and with tsh-Gal80 re-
striction. Maximum intensity projections of confocal images obtained after immunohistochem-
istry. a–d. Tph-Gal4 x UAS-CsChrimson larvae, e–h. Tph-Gal4 x UAS-CsChrimson; tsh-LexA, LexAop-
Gal80 larvae. a, e; green in d and h. Staining against green fluorescent protein (GFP) antibody
targeting themVenus tag of CsChrimson. b, f; red in d and h. Staining against BP104. c, g; blue in d
and h. Staining against N-cadherin. a–h. Plan-Apochromat 20x objective, resolution: 592 x 800 pix-
els, scale bar: 100µm. Image courtesy of the HHMI Janelia FlyLight team.
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Figure 4–Figure supplement 2. SS01989 exclusively drives expression in the CSD neuron.
a. Confocal image of a third-instar SS01989 x UAS-GFP larva CNS, derived from maximum inten-
sity projections, obtained after immunohistochemical staining against GFP. C-Apochromat 40x
objective, resolution: 975 x 651 pixels, scale bar: 100µm. Image courtesy of the HHMI Janelia
FlyLight team. b. Electron microscopy reconstruction of the contralaterally projecting serotonin-
immunoreactive deutocerebral (CSD) neuron from the central nervous systemof a first-instar larva
(Berck et al., 2016), scale bar: 50µm.
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Figure 4–Figure supplement 3. Paired and unpaired group data for olfactory conditioning
experiments. The data shown here underlies the performance indices depicted in Figure 4B.
Gal4 expression depicted as color-coded central nervous system. Preference scores for paired
(light/odour, dark/air) and unpaired (dark/odour, light/air) groups are shown in red and grey, re-
spectively.

1491

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 14, 2021. ; https://doi.org/10.1101/2021.06.14.448341doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.14.448341
http://creativecommons.org/licenses/by/4.0/

