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Introduction

Animals must rapidly alter their behaviour in response to environmental changes. An important adaptation strategy is associative learning [START_REF] Dickinson | Conditioning and Associative Learning[END_REF][START_REF] Rescorla | Behavioral Studies of Pavlovian Conditioning[END_REF], in which an animal learns to predict an unconditioned stimulus (US) by the occurrence of a conditioned stimulus (CS).

The US is often a punishing or rewarding event such as pain or the discovery of a new food source [START_REF] Pavlov | Conditioned reflexes: an investigation of the physiological activity of the cerebral cortex[END_REF]. The nature of the CS distinguishes two major associative learning types: classical conditioning [START_REF] Pavlov | Conditioned reflexes: an investigation of the physiological activity of the cerebral cortex[END_REF] and operant conditioning [START_REF] Skinner | The Behavior of Organisms: An Experimental Analysis[END_REF][START_REF]Animal intelligence; experimental studies[END_REF].

In classical conditioning, the CS is an inherently neutral environmental stimulus such as a sound, odour, or visual cue. Pairing with an appetitive or aversive US leads to learned approach or avoidance of the CS in the future. Many vertebrates [START_REF] Andreatta | Appetitive vs. Aversive conditioning in humans[END_REF][START_REF] Brown | Conditioned fear as revealed by magnitude of startle response to an auditory stimulus[END_REF][START_REF] Jones | Olfactory-Mediated Fear Conditioning in Mice: Simultaneous Measurements of Fear-Potentiated Startle and Freezing[END_REF][START_REF] Braubach | Olfactory conditioning in the zebrafish (Danio rerio)[END_REF] and invertebrates [START_REF] Takeda | Classical conditioned response in the honey bee[END_REF][START_REF] Vinauger | Olfactory learning and memory in the disease vector mosquito Aedes aegypti[END_REF][START_REF] Alexander | One-trial reward learning in the snail Lymnea stagnalis[END_REF][START_REF] Wen | Mutations that prevent associative learning in C. elegans[END_REF][START_REF] Scherer | Olfactory Learning in Individually Assayed Drosophila Larvae[END_REF]Davis, 2005;[START_REF] Cognigni | Do the right thing: neural network mechanisms of memory formation, expression and update in Drosophila[END_REF][START_REF] Vogt | Shared mushroom body circuits underlie visual and olfactory memories in Drosophila[END_REF] can make these associations. Across the animal kingdom, neural circuits have been identified as convergence sites for the external CS and the rewarding or punishing US [START_REF] Heisenberg | Drosophila Mushroom Body Mutants are Deficient in Olfactory Learning[END_REF][START_REF] Hawkins | Associative Learning in Invertebrates[END_REF]Owald and Waddell, 2015;[START_REF] Gründemann | Ensemble coding in amygdala circuits for associative learning[END_REF][START_REF] Caroni | Inhibitory microcircuit modules in hippocampal learning[END_REF][START_REF] Tonegawa | Memory engram storage and retrieval[END_REF]. In classical conditioning of both larval and adult Drosophila,
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Manuscript submitted to eLife the mushroom body (MB) brain area serves this purpose [START_REF] Cognigni | Do the right thing: neural network mechanisms of memory formation, expression and update in Drosophila[END_REF][START_REF] Heisenberg | Drosophila Mushroom Body Mutants are Deficient in Olfactory Learning[END_REF][START_REF] Heisenberg | Mushroom body memoir: from maps to models[END_REF][START_REF] Rohwedder | Four Individually Identified Paired Dopamine Neurons Signal Reward in Larval Drosophila[END_REF][START_REF] Vogt | Shared mushroom body circuits underlie visual and olfactory memories in Drosophila[END_REF][START_REF] Saumweber | Functional architecture of reward learning in mushroom body extrinsic neurons of larval Drosophila[END_REF]Owald and Waddell, 2015). In each larval brain hemisphere, the CS is encoded by a subset of the approximately 110 Kenyon cells (KCs) (Aso et al., 2014a;[START_REF] Honegger | Cellular-Resolution Population Imaging Reveals Robust Sparse Coding in the Drosophila Mushroom Body[END_REF][START_REF] Berck | The wiring diagram of a glomerular olfactory system[END_REF][START_REF] Lin | Neural correlates of water reward in thirsty Drosophila[END_REF]Owald and Waddell, 2015;[START_REF] Campbell | Imaging a Population Code for Odor Identity in the Drosophila Mushroom Body[END_REF][START_REF] Turner | Olfactory Representations by Drosophila Mushroom Body Neurons[END_REF][START_REF] Eichler | The complete connectome of a learning and memory centre in an insect brain[END_REF], which synapse onto 24 MB output neurons (MBONs) driving approach or avoidance (Aso et al., 2014b;Owald et al., 2015;[START_REF] Perisse | Aversive Learning and Appetitive Motivation Toggle Feed-Forward Inhibition in the Drosophila Mushroom Body[END_REF][START_REF] Séjourné | Mushroom body efferent neurons responsible for aversive olfactory memory retrieval in Drosophila[END_REF][START_REF] Saumweber | Functional architecture of reward learning in mushroom body extrinsic neurons of larval Drosophila[END_REF][START_REF] Shyu | Neural circuits for long-term water-reward memory processing in thirsty Drosophila[END_REF][START_REF] Plaçais | Two pairs of mushroom body efferent neurons are required for appetitive long-term memory retrieval in drosophila[END_REF][START_REF] Eichler | The complete connectome of a learning and memory centre in an insect brain[END_REF]. KC to MBON connection strength is modulated by dopaminergic and octopaminergic neurons, which represent the rewarding or punishing US [START_REF] Schwaerzel | Dopamine and Octopamine Differentiate between Aversive and Appetitive Olfactory Memories in Drosophila[END_REF][START_REF] Schroll | Light-Induced Activation of Distinct Modulatory Neurons Triggers Appetitive or Aversive Learning in Drosophila Larvae[END_REF][START_REF] Honjo | Distinctive Neuronal Networks and Biochemical Pathways for Appetitive and Aversive Memory in Drosophila Larvae[END_REF][START_REF] Vogt | Shared mushroom body circuits underlie visual and olfactory memories in Drosophila[END_REF][START_REF] Saumweber | Functional architecture of reward learning in mushroom body extrinsic neurons of larval Drosophila[END_REF][START_REF] Waddell | Reinforcement signalling in Drosophila; dopamine does it all after all[END_REF]. Activation of the MB-innervating PAM cluster dopaminergic neurons serves as both a necessary and sufficient reward signal in classical conditioning [START_REF] Rohwedder | Four Individually Identified Paired Dopamine Neurons Signal Reward in Larval Drosophila[END_REF][START_REF] Liu | A subset of dopamine neurons signals reward for odour memory in Drosophila[END_REF][START_REF] Vogt | Shared mushroom body circuits underlie visual and olfactory memories in Drosophila[END_REF][START_REF] Waddell | Reinforcement signalling in Drosophila; dopamine does it all after all[END_REF][START_REF] Cognigni | Do the right thing: neural network mechanisms of memory formation, expression and update in Drosophila[END_REF].

In operant conditioning, the CS is an animal's own action [START_REF] Skinner | The Behavior of Organisms: An Experimental Analysis[END_REF][START_REF]Animal intelligence; experimental studies[END_REF]. After memory formation, the animal can predict the outcome of its behaviour and bias future action selection accordingly, usually to maximise reward and avoid punishment [START_REF] Skinner | The Behavior of Organisms: An Experimental Analysis[END_REF]. This behavioural adaptation can facilitate novel action sequences [START_REF] Topál | Reproducing human actions and action sequences: "Do as I do!" in a dog[END_REF][START_REF] Nottebohm | Reassessing the mechanisms and origins of vocal learning in birds[END_REF][START_REF] Fee | A hypothesis for basal ganglia-dependent reinforcement learning in the songbird[END_REF] and, in some cases, repetitive, high-frequency motor activity [START_REF] Olds | Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain[END_REF][START_REF] Corbett | Intracranial self-stimulation in relation to the ascending dopaminergic systems of the midbrain: A moveable electrode mapping study[END_REF][START_REF] Jin | Start/stop signals emerge in nigrostriatal circuits during sequence learning[END_REF][START_REF] Lovell | Stimulation of the dopaminergic midbrain as a behavioral reward in instrumentally conditioned monkeys[END_REF]. Such observations have wider implications for understanding diseases including obsessive-compulsive disorder and addiction [START_REF] Everitt | Addictive behaviour in experimental animals: prospects for translation[END_REF][START_REF] Balleine | Thalamocortical integration of instrumental learning and performance and their disintegration in addiction[END_REF][START_REF] Joel | The signal attenuation rat model of obsessive-compulsive disorder: a review[END_REF]. Invertebrates are also capable of operant conditioning [START_REF] Braubach | Olfactory conditioning in the zebrafish (Danio rerio)[END_REF][START_REF] Hoyle | Mechanisms of simple motor learning[END_REF][START_REF] Abramson | Operant Conditioning in Honey Bees (Apis mellifera L.): The Cap Pushing Response[END_REF][START_REF] Nuwal | Avoidance of Heat and Attraction to Optogenetically Induced Sugar Sensation as Operant Behavior in Adult Drosophila[END_REF][START_REF] Booker | Conditioning of leg position in normal and mutant Drosophila[END_REF]. Despite countless operant conditioning experiments across species using various CS-US combinations, the underlying neural mechanisms remain poorly understood. For an animal to associate an action with its outcome, behavioural information must converge with circuits encoding positive or negative valence. Although vertebrate basal ganglia-like structures exemplify this [START_REF] Fee | A hypothesis for basal ganglia-dependent reinforcement learning in the songbird[END_REF][START_REF] Redgrave | Functional properties of the basal ganglia's re-entrant loop architecture: selection and reinforcement[END_REF][START_REF] Balleine | The integrative function of the basal ganglia in instrumental conditioning[END_REF], some learned action-outcome associations do not require the brain [START_REF] Booker | Conditioning of leg position in normal and mutant Drosophila[END_REF][START_REF] Horridge | Learning of leg position by the ventral nerve cord in headless insects[END_REF][START_REF] Grau | Instrumental learning within the spinal cord: I. Behavioral properties[END_REF]. Operant conditioning may hence occur in more than one area of the central nervous system (CNS). It is also unclear to what extent learning at these sites is mediated by synaptic plasticity [START_REF] Lovinger | Neurotransmitter roles in synaptic modulation, plasticity and learning in the dorsal striatum[END_REF][START_REF] Surmeier | D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons[END_REF][START_REF] Reynolds | Dopamine-dependent plasticity of corticostriatal synapses[END_REF][START_REF] Joynes | Instrumental learning within the spinal cord: VI: The NMDA receptor antagonist, AP5, disrupts the acquisition and maintenance of an acquired flexion response[END_REF][START_REF] Gómez-Pinilla | BDNF and learning: Evidence that instrumental training promotes learning within the spinal cord by up-regulating BDNF expression[END_REF] versus changes in the intrinsic excitability of individual neurons [START_REF] Dong | CREB modulates excitability of nucleus accumbens neurons[END_REF][START_REF] Shen | Cholinergic Suppression of KCNQ Channel Currents Enhances Excitability of Striatal Medium Spiny Neurons[END_REF][START_REF] Nargeot | Contingent-Dependent Enhancement of Rhythmic Motor Patterns: An In Vitro Analog of Operant Conditioning[END_REF][START_REF] Brembs | Operant Reward Learning in Aplysia: Neuronal Correlates and Mechanisms[END_REF][START_REF] Nargeot | Cellular and Network Mechanisms of Operant Learning-Induced Compulsive Behavior in Aplysia[END_REF]. We aim to establish the Drosophila larva as a tractable model system for studying the neural circuit mechanisms underlying operant conditioning.

Drosophila melanogaster larvae perform various different actions. Typically, when exploring an environment, a larva alternates between crawling via forward peristalsis [START_REF] Heckscher | Characterization of Drosophila Larval Crawling at the Level of Organism, Segment, and Somatic Body Wall Musculature[END_REF] and bending its head once or more to the left or right [START_REF] Gomez-Marin | Active sampling and decision making in Drosophila chemotaxis[END_REF][START_REF] Luo | Navigational Decision Making in Drosophila Thermotaxis[END_REF][START_REF] Kane | Sensorimotor structure of Drosophila larva phototaxis[END_REF]Figure 1A). In the presence of nociceptive stimuli, larvae exhibit escape behaviour.

While the most common response is an increase in bending away from undesirable conditions, including extreme temperature [START_REF] Luo | Navigational Decision Making in Drosophila Thermotaxis[END_REF][START_REF] Lahiri | Two Alternating Motor Programs Drive Navigation in Drosophila Larva[END_REF], light [START_REF] Kane | Sensorimotor structure of Drosophila larva phototaxis[END_REF], or wind [START_REF] Jovanic | Neural Substrates of Drosophila Larval Anemotaxis Article Neural Substrates of Drosophila Larval Anemotaxis[END_REF], larvae also retreat from aversive sources using backward peristalsis [START_REF] Masson | Identifying neural substrates of competitive interactions and sequence transitions during mechanosensory responses in Drosophila[END_REF][START_REF] Kernan | Genetic dissection of mechanosensory transduction: Mechanoreceptiondefective mutations of drosophila[END_REF][START_REF] Heckscher | Characterization of Drosophila Larval Crawling at the Level of Organism, Segment, and Somatic Body Wall Musculature[END_REF][START_REF] Vogelstein | Discovery of Brainwide Neural-Behavioral Maps via Multiscale Unsupervised Structure Learning[END_REF]; Figure 1A).

The fastest escape response is rolling, where the larva moves laterally by curling into a C-shape and quickly turning around its own body axis [START_REF] Robertson | Larval Defense against Attack from Parasitoid Wasps Requires Nociceptive Neurons[END_REF][START_REF] Hwang | Nociceptive Neurons Protect Drosophila Larvae from Parasitoid Wasps[END_REF][START_REF] Ohyama | High-Throughput Analysis of Stimulus-Evoked Behaviors in Drosophila Larva Reveals Multiple Modality-Specific Escape Strategies[END_REF]; Figure 1A). In nature, rolling is only observed after exposure to a strong noxious stimulus, such as heat or a predator attack [START_REF] Ohyama | A multilevel multimodal circuit enhances action selection in Drosophila[END_REF][START_REF] Robertson | Larval Defense against Attack from Parasitoid Wasps Requires Nociceptive Neurons[END_REF][START_REF] Tracey | painless, a Drosophila Gene Essential for Nociception[END_REF].

Powerful genetic toolkits have advanced the observation and manipulation of larval behaviour at the cellular level, making Drosophila larvae particularly well-suited for studying the neural mechanisms underlying learning. In Drosophila, individual neurons are uniquely identifiable, with mor-2 of 36 Manuscript submitted to eLife phology and function preserved across animals [START_REF] Skeath | Genetic control of Drosophila nerve cord development[END_REF][START_REF] Wong | Spatial representation of the glomerular map in the Drosophila protocerebrum[END_REF][START_REF] Marin | Representation of the Glomerular Olfactory Map in the Drosophila Brain[END_REF][START_REF] Jefferis | Comprehensive Maps of Drosophila Higher Olfactory Centers: Spatially Segregated Fruit and Pheromone Representation[END_REF]. Together with tissue-localised protein expression afforded by the GAL4-UAS binary expression system [START_REF] Fischer | GAL4 activates transcription in Drosophila[END_REF][START_REF] Brand | Targeted gene expression as a means of altering cell fates and generating dominant phenotypes[END_REF], this has yielded neuron-specific GAL4 drivers [START_REF] Jenett | A GAL4-Driver Line Resource for Drosophila Neurobiology[END_REF][START_REF] Luan | Refined Spatial Manipulation of Neuronal Function by Combinatorial Restriction of Transgene Expression[END_REF][START_REF] Pfeiffer | Refinement of Tools for Targeted Gene Expression in Drosophila[END_REF] that reproducibly target the same group of cells in each individual. Adding fluorescent markers helps pinpoint a neuron's location and reveal its anatomical features [START_REF] Lee | Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis[END_REF], while producing light-sensitive channelrhodopsins and temperature-sensitive ion channels facilitates optogenetic [START_REF] Zemelman | Selective photostimulation of genetically chARGed neurons[END_REF][START_REF] Lima | Remote control of behavior through genetically targeted photostimulation of neurons[END_REF] or thermogenetic [START_REF] Hamada | An internal thermal sensor controlling temperature preference in Drosophila[END_REF][START_REF] Kitamoto | Conditional modification of behavior in Drosophila by targeted expression of a temperaturesensitive shibire allele in defined neurons[END_REF]) modulation of neural activity. Furthermore, the larva's compact CNS has made it feasible to manually reconstruct neurons and their synaptic partners from a larval electron microscopy (EM) volume [START_REF] Berck | The wiring diagram of a glomerular olfactory system[END_REF][START_REF] Eichler | The complete connectome of a learning and memory centre in an insect brain[END_REF][START_REF] Fushiki | A circuit mechanism for the propagation of waves of muscle contraction in Drosophila[END_REF][START_REF] Ohyama | A multilevel multimodal circuit enhances action selection in Drosophila[END_REF][START_REF] Schlegel | Synaptic transmission parallels neuromodulation in a central food-intake circuit[END_REF][START_REF] Larderet | Organization of the Drosophila larval visual circuit[END_REF][START_REF] Jovanic | Competitive Disinhibition Mediates Behavioral Choice and Sequences in Drosophila[END_REF][START_REF] Jovanic | Neural Substrates of Drosophila Larval Anemotaxis Article Neural Substrates of Drosophila Larval Anemotaxis[END_REF], giving rise to a full wiring diagram of the MB [START_REF] Eichler | The complete connectome of a learning and memory centre in an insect brain[END_REF]Eschbach et al., 

2020a,b).

There is overwhelming evidence that larvae are capable of classical conditioning. They can be trained to approach an odour paired with a gustatory reward [START_REF] Schleyer | A behaviorbased circuit model of how outcome expectations organize learned behavior in larval Drosophila[END_REF][START_REF] Hendel | The carrot, not the stick: Appetitive rather than aversive gustatory stimuli support associative olfactory learning in individually assayed Drosophila larvae[END_REF][START_REF] Kudow | Preference for and learning of amino acids in larval Drosophila[END_REF][START_REF] Niewalda | Salt Processing in Larval Drosophila: Choice, Feeding, and Learning Shift from Appetitive to Aversive in a Concentration-Dependent Way[END_REF], or avoid an odour paired with light [START_REF] Von Essen | Capacity of Visual Classical Conditioning in Drosophila Larvae[END_REF], electric shock [START_REF] Aceves-Piña | Learning in Normal and Mutant Drosophila Larvae[END_REF][START_REF] Tully | Memory through Metamorphosis[END_REF], heat [START_REF] Khurana | Olfactory Conditioning in the Third Instar Larvae of Drosophila melanogaster Using Heat Shock Reinforcement[END_REF], vibration [START_REF] Eschbach | Associative learning between odorants and mechanosensory punishment in larval Drosophila[END_REF], or the bitter compound quinine [START_REF] Gerber | Outcome expectations drive learned behaviour in larval Drosophila[END_REF][START_REF] Apostolopoulou | The neuronal and molecular basis of quinine-dependent bitter taste signaling in Drosophila larvae[END_REF]. Light can also be a CS: innate avoidance of light and preference for darkness [START_REF] Sawin-Mccormack | Characterization and Genetic Analysis of Drosophila Melanogaster Photobehavior During Larval Development[END_REF] can be modulated when paired with reward or punishment [START_REF] Gerber | Visual learning in individually assayed Drosophila larvae[END_REF][START_REF] Von Essen | Capacity of Visual Classical Conditioning in Drosophila Larvae[END_REF]. It has remained an open question, however, whether Drosophila larvae can form action-outcome associations and where in the CNS these memories are formed.

Conducting operant conditioning with larvae requires real-time behaviour detection such that reward or punishment can be administered with minimal delay (Figure 1B). Single-animal closedloop trackers have recently been developed [START_REF] Schulze | Dynamical feature extraction at the sensory periphery guides chemotaxis[END_REF][START_REF] Tadres | PiVR: An affordable and versatile closed-loop platform to study unrestrained sensorimotor behavior[END_REF]. However, the efficiency of training paradigms would improve with automated US delivery and simultaneous conditioning of multiple animals. Therefore, we here introduce a high-throughput tracker for Drosophila larvae with real-time behaviour detection and closed-loop stimulation. Efficiency of the setup stems from the simultaneous, real-time, behaviour detection for up to 16 freely moving larvae, and targeted closed-loop optogenetic and thermogenetic stimulus delivery with full intensity control and minimal delay.

Results

High-throughput closed-loop tracker

Hardware design

Designing an automated operant conditioning protocol for the Drosophila larva was challenging due to the larva's physical characteristics. We excluded partial immobilisation protocols similar to the ones used to condition adult Drosophila navigation through virtual environments [START_REF] Nuwal | Avoidance of Heat and Attraction to Optogenetically Induced Sugar Sensation as Operant Behavior in Adult Drosophila[END_REF][START_REF] Wolf | Basic organization of operant behavior as revealed in Drosophila flight orientation[END_REF][START_REF] Wolf | Drosophila mushroom bodies are dispensable for visual, tactile, and motor learning[END_REF][START_REF] Brembs | Spontaneous decisions and operant conditioning in fruit flies[END_REF]. We instead built a highthroughput multi-larva tracker combining live computer vision behaviour detection with closedloop control of US delivery in response to unrestricted larval behaviour.

All hardware resided within an optically opaque enclosure to ensure experiments were performed without environmental light. Larvae moved freely on an agarose plate, backlit from below by an infrared LED and observed from above through a high-resolution camera (Figure 1C).

A Camera Link communication protocol interfaced with a high-performance field-programmable gate array (FPGA), which itself interacted with the host computer. The FPGA and the host computer performed image processing, behaviour detection, and stimulus calculation (Figure 1D).

Our operant conditioning paradigm targeted individual larvae performing specific behaviours.

Optogenetic stimulation was achieved by directing red light through two digital micromirror de-3 of 36 4 of 36 vices (DMDs) which were programmed to project small 1 cm 2 squares at the location of individual larvae. Both DMDs, which were positioned to project over the entire plate area, were operated simultaneously (Figure 1C). Thermogenetic stimulation of individual larvae was achieved by directing a 1490 nm infrared (IR) laser beam through a two-axis scanning galvanometer mirror positioning system (Figure 1C), a technique previously used to stimulate single adult flies [START_REF] Bath | FlyMAD: rapid thermogenetic control of neuronal activity in freely walking Drosophila[END_REF][START_REF] Wu | Optogenetic control of selective neural activity in multiple freely moving Drosophila adults[END_REF]. Because the 1490 nm wavelength is well-absorbed by water [START_REF] Curcio | The near infrared absorption spectrum of liquid water[END_REF], larvae exposed to the IR beam were rapidly heated. We took advantage of the galvanometer's high scanning velocity to rapidly cycle the beam between four larvae (Figure 1D). (2015) developed high-speed tracking of single dragonflies in three-dimensional space. There are numerous tracking frameworks for adult Drosophila, some requiring the flies to move within a twodimensional plane [START_REF] Straw | Motmot, an open-source toolkit for realtime video acquisition and analysis[END_REF][START_REF] Donelson | High-Resolution Positional Tracking for Long-Term Analysis of Drosophila Sleep and Locomotion Using the "Tracker" Program[END_REF] while others detect the threedimensional position of single [START_REF] Fry | TrackFly: Virtual reality for a behavioral system analysis in free-flying fruit flies[END_REF] or multiple [START_REF] Grover | O fly, where art thou[END_REF][START_REF] Straw | Dimensional Tracking of Multiple Flying Animals[END_REF] flies. The Multi-Worm Tracker (MWT) software developed by Swierczek et al. (2011) is suitable for simultaneously tracking a large number of Caenorhabditis elegans and has been adapted to analyse Drosophila larvae reactions in response to various stimuli [START_REF] Ohyama | High-Throughput Analysis of Stimulus-Evoked Behaviors in Drosophila Larva Reveals Multiple Modality-Specific Escape Strategies[END_REF][START_REF] Vogelstein | Discovery of Brainwide Neural-Behavioral Maps via Multiscale Unsupervised Structure Learning[END_REF][START_REF] Jovanic | Neural Substrates of Drosophila Larval Anemotaxis Article Neural Substrates of Drosophila Larval Anemotaxis[END_REF][START_REF] Masson | Identifying neural substrates of competitive interactions and sequence transitions during mechanosensory responses in Drosophila[END_REF].

Software architecture

Operant conditioning requires live behaviour detection to trigger delivery of reward or punishment. Numerous algorithms have been developed to analyse offline behavioural recordings of animals such as C. elegans [START_REF] Huang | Machine vision based detection of omega bends and reversals in C. elegans[END_REF][START_REF] Stephens | Dimensionality and Dynamics in the Behavior of C. elegans[END_REF][START_REF] Gupta | A context-free grammar for Caenorhabditis elegans behavior[END_REF], zebrafish larvae [START_REF] Mirat | ZebraZoom: an automated program for high-throughput behavioral analysis and categorization[END_REF][START_REF] Reddy | A lexical approach for identifying behavioral action sequences[END_REF], adult Drosophila [START_REF] Katsov | Motion Processing Streams in Drosophila Are Behaviorally Specialized[END_REF][START_REF] Branson | High-throughput ethomics in large groups of Drosophila[END_REF][START_REF] Dankert | Automated monitoring and analysis of social behavior in Drosophila[END_REF][START_REF] Robie | Mapping the Neural Substrates of Behavior[END_REF][START_REF] Berman | Mapping the stereotyped behaviour of freely moving fruit flies[END_REF][START_REF] Klibaite | An unsupervised method for quantifying the behavior of paired animals[END_REF], bees [START_REF] Veeraraghavan | Shape-and-Behavior Encoded Tracking of Bee Dances[END_REF], and mice [START_REF] Mathis | DeepLabCut: markerless pose estimation of user-defined body parts with deep learning[END_REF][START_REF] Luxem | Identifying behavioral structure from deep variational embeddings of animal motion[END_REF][START_REF] Van Dam | Deep learning improves automated rodent behavior recognition within a specific experimental setup[END_REF]. The Drosophila larva has also attracted attention due to analytical challenges surrounding its deformable body and limited set of distinguishing features [START_REF] Luo | Navigational Decision Making in Drosophila Thermotaxis[END_REF][START_REF] Gomez-Marin | Active sampling and decision making in Drosophila chemotaxis[END_REF][START_REF] Gershow | Controlling airborne cues to study small animal navigation[END_REF][START_REF] Denisov | Model-based Detection and Analysis of Animal Behaviors using Signals Extracted by Automated Tracking[END_REF][START_REF] Vogelstein | Discovery of Brainwide Neural-Behavioral Maps via Multiscale Unsupervised Structure Learning[END_REF][START_REF] Ohyama | High-Throughput Analysis of Stimulus-Evoked Behaviors in Drosophila Larva Reveals Multiple Modality-Specific Escape Strategies[END_REF][START_REF] Ohyama | A multilevel multimodal circuit enhances action selection in Drosophila[END_REF][START_REF] Masson | Identifying neural substrates of competitive interactions and sequence transitions during mechanosensory responses in Drosophila[END_REF]. Most of these approaches are not ideal to run in real time or require a mix of past and future information to provide reliable behaviour detection [START_REF] Gomez-Marin | Active sampling and decision making in Drosophila chemotaxis[END_REF][START_REF] Masson | Identifying neural substrates of competitive interactions and sequence transitions during mechanosensory responses in Drosophila[END_REF]. More generally, machine learning based methods have gained momentum in providing both supervised and unsupervised approaches to behaviour analysis. It is worth noting a recent trend in developing unsupervised learning methods (e. g. [START_REF] Graving | VAE-SNE: a deep generative model for simultaneous dimensionality reduction and clustering[END_REF][START_REF] Luxem | Identifying behavioral structure from deep variational embeddings of animal motion[END_REF].

While real-time behaviour detection of casts and runs has been developed for a single animal [START_REF] Schulze | Dynamical feature extraction at the sensory periphery guides chemotaxis[END_REF], our study of operant conditioning in freely behaving Drosophila larvae required efficient, real-time behaviour detection of multiple animals. We built a system to simultaneously track up to 16 larvae in real time, using LabVIEW for the user interface and algorithm implementation (Figure 1E). Instrumental to this software architecture was the fast image processing speed afforded by FPGA-based parallelisation (Soares dos [START_REF] Soares Dos Santos | Novel intelligent real-time position tracking system using FPGA and fuzzy logic[END_REF][START_REF] Li | Fast double-parallel image processing based on FPGA[END_REF][START_REF] Zhang | FPGA Implementation of the Coupled Filtering Method and the Affine Warping Method[END_REF]. Neuroscientists have adapted FPGA's real-time analysis capabilities [START_REF] Shirvaikar | A comparison between DSP and FPGA platforms for real-time imaging applications[END_REF][START_REF] Uzun | FPGA implementations of fast Fourier transforms for real-time signal and image processing[END_REF][START_REF] Chiuchisan | A new FPGA-based real-time configurable system for medical image processing[END_REF][START_REF] Yasukawa | Real-time object tracking based on scale-invariant features employing bio-inspired hardware[END_REF] to track rats [START_REF] Chen | The Implementation of a Stand-alone Video Tracking and Analysis System for Animal Behavior Measurement in Morris Water Maze[END_REF], zebrafish larvae [START_REF] Cong | Rapid whole brain imaging of neural activity in freely behaving larval zebrafish (Danio rerio)[END_REF], and fluorescently labelled neurons in freely behaving Drosophila larvae [START_REF] Karagyozov | Recording Neural Activity in Unrestrained Animals with Three-Dimensional Tracking Two-Photon Microscopy[END_REF]). In our system, the FPGA and host computer worked together to read the raw camera images, detect eligible objects, and extract and process object features (i. e. contour, head and tail position, and body axis) (Figure 1E). Larval body shape, velocity, and direction of motion facilitated robust behaviour detection which, in turn, drove closed-loop optogenetic and thermogenetic stimulation. All relevant experiment parameters and time-series data were output for offline analysis through a custom MATLAB framework 5 of 36 Manuscript submitted to eLife (see Materials and methods).

Optogenetic and thermogenetic stimulation efficiency verified by behavioural readout

We conducted proof-of-principle experiments to ensure that our set-up could be successfully used for optogenetic stimulation (Figure 2A). [START_REF] Ohyama | A multilevel multimodal circuit enhances action selection in Drosophila[END_REF] have identified two GAL4 lines expressed in neurons whose activation triggers strong rolling behaviour. 69F06-Gal4 drives expression in command neurons for rolling, whereas 72F11-Gal4 drives expression in the Basin neurons, which integrate mechanosensory and nociceptive stimuli. Klapoetke et al. (2014) have developed the red-shifted channelrhodopsin CsChrimson, which can be expressed under GAL4 control. We tested whether 69F06-Gal4 x UAS-CsChrimson and 72F11-Gal4 x UAS-CsChrimson larvae rolled upon exposure to red light (Figure 2B, see also Materials and methods). In each stimulation cycle, we observed above-threshold rolls in over 40% of 69F06-Gal4 x UAS-CsChrimson larvae and over 70% of 72F11-Gal4 x UAS-CsChrimson larvae. This behaviour significantly contrasted with that of attP2 x UAS-CsChrimson control larvae (Figure 2C), suggesting that the DMDs could be used for optogenetic stimulation without activating the animals' photoreceptors.

We also verified the efficacy of the galvanometer set-up for thermogenetic stimulation (Fig- ure 2D). We tested whether 69F06-Gal4 x UAS-dTrpA1 and 72F11-Gal4 x UAS-dTrpA1 larvae rolled upon exposure to the IR laser (Figure 2E, see also Materials and methods). In each stimulation cycle, we observed above-threshold rolls in over 70% of 69F06-Gal4 x UAS-dTrpA1 larvae and over 35% of 72F11-Gal4 x UAS-dTrpA1 larvae; a significant contrast to the attP2 x UAS-dTrpA1 control larvae whose roll rate was close to zero. We concluded that these heating conditions were effective for targeted Trp channel activation without larvae perceiving strong pain (Figure 2F).

Operant conditioning of larval bend direction

We chose optogenetic activation of reward circuits as a US for automated operant conditioning.

The main challenge was determining which neurons could convey a sufficient reinforcement signal, especially as the capacity for Drosophila larvae to exhibit operant learning was not yet demonstrated. Across the animal kingdom, it has been observed that biogenic amine neurotransmitters can provide such a signal [START_REF] Giurfa | Associative Learning: The Instructive Function of Biogenic Amines[END_REF][START_REF] Hawkins | Associative Learning in Invertebrates[END_REF][START_REF] Meneses | Serotonin and emotion, learning and memory[END_REF][START_REF] Fee | A hypothesis for basal ganglia-dependent reinforcement learning in the songbird[END_REF]. It is also conceivable that the Drosophila PAM cluster dopaminergic neurons that can signal reward in classical conditioning [START_REF] Rohwedder | Four Individually Identified Paired Dopamine Neurons Signal Reward in Larval Drosophila[END_REF][START_REF] Liu | A subset of dopamine neurons signals reward for odour memory in Drosophila[END_REF][START_REF] Vogt | Shared mushroom body circuits underlie visual and olfactory memories in Drosophila[END_REF][START_REF] Cognigni | Do the right thing: neural network mechanisms of memory formation, expression and update in Drosophila[END_REF][START_REF] Waddell | Reinforcement signalling in Drosophila; dopamine does it all after all[END_REF] may perform similarly in operant conditioning.

We therefore aimed to induce operant conditioning by stimulating a broad set of dopaminergic and serotonergic neurons. If valence signalling relevant for operant conditioning is mediated by one of these two neurotransmitters, activation of this large set of neurons paired with behaviour should be sufficient to induce learning.

We expressed UAS-CsChrimson under the control of the Ddc-Gal4 driver, which covers a large set of dopaminergic and serotonergic neurons in the CNS [START_REF] Li | Ectopic G-protein expression in dopamine and serotonin neurons blocks cocaine sensitization in Drosophila melanogaster[END_REF][START_REF] Sitaraman | Serotonin is necessary for place memory in Drosophila[END_REF][START_REF] Lundell | Temporal and Spatial Development of Serotonin and Dopamine Neurons in the Drosophila CNS[END_REF], including the PAM cluster [START_REF] Liu | A subset of dopamine neurons signals reward for odour memory in Drosophila[END_REF][START_REF] Aso | Three Dopamine pathways induce aversive odor memories with different stability[END_REF]. Although the function of most Ddc neurons is unknown, their collective activation can substitute for an olfactory conditioning reward in adult flies [START_REF] Liu | A subset of dopamine neurons signals reward for odour memory in Drosophila[END_REF][START_REF] Shyu | Neural circuits for long-term water-reward memory processing in thirsty Drosophila[END_REF][START_REF] Aso | Three Dopamine pathways induce aversive odor memories with different stability[END_REF]. The goal of our paradigm was to establish a learned direction preference for bending, conditioning Ddc-Gal4 x UAS-CsChrimson larvae to bend more often to one side than the other. Although stimulation side was randomized across trials, we describe (for simplicity) the experiment procedure where this predefined side was the left. Each experiment began with a one-minute test period where no light was presented. What followed were four training sessions, each three-minutes long, in which larvae received optogenetic stimulation when bending to the left. Between training sessions, larvae experienced three minutes without stimulation. Larvae were periodically brushed back to the centre of the agarose plate to mitigate the experimental side effects of reaching the plate's edge (see Materials and methods for more details). Following the fourth training session was a one-minute test period without stimulation (Figure 3A). Fisher's exact test was used to calculate statistical differences between the experiment and control groups (*** < 0.001). d. Hardware design schematic for thermogenetic stimulation. Although the high-throughput tracker included four two-axis galvanometers, only one is shown for simplicity. IR: infrared. e. Proof-of-principal experiment protocol for thermogenetic stimulation. f. The fraction of larvae for which a roll was detected in each stimulation cycle. 69F06-Gal4 x UAS-dTrpA1 and 72F11-Gal4 x UAS-dTrpA1 larvae (dTrpA1 expressed in neurons triggering roll behaviour; experiment groups) were compared to attP2 x UAS-dTrpA1 larvae (no dTrpA1 expression; control group). Fisher's exact test was used to calculate statistical differences between the experiment and control groups (*** < 0.001).
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Figure 3. Operant conditioning of bend direction in Drosophila larvae requires the ventral nerve cord. a. Experiment protocol using the high-throughput closed-loop tracker. Behaviours are depicted as larval contours (black) with head (green). During training, the larva received an optogenetic stimulus (red light bulb) whenever it bent to one predefined side (here depicted as the left for simplicity), and light was switched off during all other behaviours (grey light bulb). b,d,e. Larval bend rate shown as the number of bends per minute, grouped by bend direction. The bend rate to the stimulated side (depicted as a left bend with a red light bulb for simplicity) is shown in red and the bend rate to the unstimulated side (depicted as a right bend with a grey light bulb for simplicity) is shown in grey. For larvae that received random, uncorrelated stimulation during 50% of bends, the bend rates to the left and right are shown in black. Statistical differences within groups were tested with a two-sided Wilcoxon signed-rank test; statistical differences between two groups were tested with a two-sided Mann-Whitney U test. c,f. Probability that a given bend was directed towards the stimulated side or, in the case of the uncorrelated training group, towards the left. Grey line indicates equal probability of 0.5 for bends to either side. Statistics calculated from a two-sided Wilcoxon signed-rank test. b-f. Gal4 expression depicted as color-coded CNS. All data is shown as (mean ± s. e. m.). n. s. For each larva, two measures served as a read-out for bend direction preference: i) the bend rate, measured as the number of bends per minute performed towards a given side, and ii) the probability that a given bend was directed towards the stimulated side, obtained by normalising the bend rate with the total number of bends performed by the larva in that minute. Individual larva variation in bend rate yielded different results for these measures at the population level. In the one-minute test prior to the first training session, we observed no significant difference in larval bend rate to either side and the likelihood of these naïve animals choosing one side over the other was not significantly different from chance. In the one-minute test following the fourth training session, larvae showed a preference for bends towards the side paired with red light stimulation during training, and the probability of these larvae bending towards this previously stimulated side was significantly greater than 50% (Figure 3B).

The light-dependent activation of neurons using CsChrimson requires a cofactor, retinal, which we supplemented in the food during development [START_REF] Klapoetke | Independent optical excitation of distinct neural populations[END_REF]; see Materials and methods). A control group of larvae raised on food without retinal showed no significant difference in absolute bend rate (Figure 3B) or bend direction probability (Figure 3C) throughout the experiment. This suggested that the US, which triggered a learned direction preference for bends in larvae raised on retinal, was indeed the collective activation of all Ddc neurons and not the red light itself. Notably, when directly comparing larvae raised with retinal to this control group raised without, the two groups showed no significant difference in the bend rate towards the stimulated side. Instead, the bend rate towards the unstimulated side was significantly reduced in larvae that received paired training compared to this control (Figure 3B). This raised the question whether larvae were learning to prefer the side paired with the rewarding US, or rather to avoid the side without the stimulus.

To confirm that the bend preference we observed after training was attributable to pairing light with bends solely in one direction, we conducted another control experiment in which larvae received random, uncorrelated stimulation during 50% of bends regardless of direction. After training, larvae showed neither a difference in absolute left and right bend rates, nor a significant probability of choosing one side over the other (Figure 3B, Figure 3C). These bend rates averaged together were indistinguishable from those of pair-trained larvae as they bent to the previously stimulated side. However, larvae which received uncorrelated training showed a significantly higher bend rate overall compared to pair-trained larvae bending to the previously unstimulated side (Figure 3D).

The mushroom body is not sufficient to mediate operant conditioning in larvae

Our experiments showed that activation of Ddc neurons is a sufficient US for operant conditioning. While we did not identify which individual neurons mediate the observed effect, we hypothesised that not all Ddc neurons are involved. Some prior work in adult flies suggests that the MB is involved in operant conditioning [START_REF] Sun | Anti-instinctive Learning Behavior Revealed by Locomotion-Triggered Mild Heat Stress in Drosophila[END_REF], while other studies in the adult suggest that operant conditioning does not require the MB [START_REF] Booker | Conditioning of leg position in normal and mutant Drosophila[END_REF][START_REF] Wolf | Drosophila mushroom bodies are dispensable for visual, tactile, and motor learning[END_REF]Colomb andBrembs, 2010, 2016) and may instead involve motor neuron plasticity [START_REF] Colomb | PKC in motorneurons underlies selflearning, a form of motor learning in Drosophila[END_REF]. The extent to which the MB is dispensable in larval operant conditioning is unknown. We investigated whether smaller subsets of Ddc neurons in the brain and subesophageal zone (SEZ) could support memory formation in our bend direction paradigm. GAL80 under control of the tsh promoter suppresses GAL4 expression in the ventral nerve cord (VNC), but not in the brain or SEZ [START_REF] Clyne | Sex-Specific Control and Tuning of the Pattern Generator for Courtship Song in Drosophila[END_REF]; Figure 3

-Figure Supplement 1).

When trained under our operant conditioning protocol (Figure 3A), Ddc-Gal4 x UAS-CsChrimson; tsh-LexA, LexAop-Gal80 larvae were equally likely to bend towards the side where they had previously received the optogenetic stimulus as they were to bend towards the unstimulated side (Figure 3E, Figure 3F). Activating these neurons was thus an insufficient rewarding US in this paradigm. The loss of the operant conditioning effect we observed with Ddc-Gal4 x UAS-CsChrimson larvae highlighted the necessity of dopaminergic or serotonergic neurons in the VNC for the formation of a 9 of 36 bend direction preference. Their sufficiency was inconclusive, however, since perhaps two or more distinct groups of Ddc neurons needed collective activation in order to form a memory.

We then assessed whether exclusively activating the PAM cluster dopaminergic neurons innervating the MB could induce operant conditioning, as is the case for classical conditioning. 58E02-Gal4 drives expression in the majority of these neurons [START_REF] Rohwedder | Four Individually Identified Paired Dopamine Neurons Signal Reward in Larval Drosophila[END_REF]. 58E02-Gal4 x UAS-CsChrimson larvae did not develop any direction preference for bends following training (Figure 3E, Figure 3F). It is unsurprising that activation of these neurons alone could not act as a rewarding US in this paradigm, given our finding that Ddc neurons in the brain and SEZ are insufficient. It is remarkable, however, because it suggests that the neural circuits signalling reward in operant conditioning differ from those of classical conditioning. Although it remains to be seen whether these PAM cluster neurons contribute to memory formation by interacting with other Ddc neurons, these results further supported the idea that operant conditioning in Drosophila may not be mediated by the MB.

Serotonergic neurons in brain and SEZ are a sufficient reward signal in classical conditioning

Pairing an action with activation of numerous dopaminergic and serotonergic neurons across the CNS was sufficient to induce operant conditioning of bend direction preference. Furthermore, our results indicated that the VNC subset of these neurons was essential for memory formation in the paradigm. It was an open question, however, whether this learning was mediated by dopamine, serotonin, or both. Dopamine and serotonin receptors are necessary for different classical conditioning tasks in honeybees, suggesting that the two neurotransmitters may carry out separate functions [START_REF] Wright | Parallel reinforcement pathways for conditioned food aversions in the honeybee[END_REF]. We conducted a high-throughput classical conditioning screen of sparser dopaminergic and serotonergic driver lines to identify US candidates for comparison with our operant conditioning paradigm.

We expressed CsChrimson under the control of different GAL4 driver lines and tested whether pairing optogenetic activation of these neurons (US) with odour presentation (CS) could induce olfactory memory. Conditioning was performed using a similar procedure to those described in Gerber and Hendel (2006), Saumweber et al. [START_REF] Brembs | Spontaneous decisions and operant conditioning in fruit flies[END_REF]Eschbach et al. (2020b). In the paired group, larvae were exposed to alternating three-minute presentations of ethyl acetate with red light and air with no light. To ensure that any observed effects were a result of learning rather than innate odour preference or avoidance, an unpaired group was trained simultaneously with reciprocal stimulus presentation (odour/dark, air/light). Following training, larvae in both groups were tested on their preference for the odour in the absence of light (Figure 4A). All learning scores were compared to a negative control containing no GAL4 driver, w 1118 x UAS-CsChrimson, which did not exhibit a learning phenotype (Figure 4B). Consistent with prior study results [START_REF] Rohwedder | Four Individually Identified Paired Dopamine Neurons Signal Reward in Larval Drosophila[END_REF][START_REF] Eichler | The complete connectome of a learning and memory centre in an insect brain[END_REF][START_REF] Almeida-Carvalho | The Ol1mpiad: concordance of behavioural faculties of stage 1 and stage 3 Drosophila larvae[END_REF], 58E02-Gal4 x UAS-CsChrimson larvae showed appetitive olfactory learning with a significantly higher performance index than w 1118 x UAS-CsChrimson larvae and so were used as a positive control (Figure 4B). Ddc-Gal4 x UAS-CsChrimson larvae exhibited appetitive memory comparable to 58E02-Gal4( = 0.1304, two-sided Mann-Whitney U test); an unsurprising result since the Ddc-Gal4 expression pattern includes the PAM cluster neurons. Consistent with previous studies in the larva [START_REF] Schroll | Light-Induced Activation of Distinct Modulatory Neurons Triggers Appetitive or Aversive Learning in Drosophila Larvae[END_REF] and adult [START_REF] Aso | Three Dopamine pathways induce aversive odor memories with different stability[END_REF][START_REF] Claridge-Chang | Writing Memories with Light-Addressable Reinforcement Circuitry[END_REF][START_REF] Liu | A subset of dopamine neurons signals reward for odour memory in Drosophila[END_REF], TH-Gal4 x UAS-CsChrimson larvae exhibited significant aversive olfactory learning. TH-Gal4 covers most dopaminergic neurons, excluding the PAM cluster [START_REF] Rohwedder | Four Individually Identified Paired Dopamine Neurons Signal Reward in Larval Drosophila[END_REF]. The effect we observed may be mediated by punishment-signalling dopaminergic neurons that project to the MB vertical lobes (Eschbach et al., 2020b;[START_REF] Selcho | The Role of Dopamine in Drosophila Larval Classical Olfactory Conditioning[END_REF]. Isolating the locus of this effect may prove challenging, given the dearth of larval driver lines targeting dopaminergic neurons without MB innervation.

Serotonergic signalling is required for associative learning in both larval [START_REF] Huser | Anatomy and behavioral function of serotonin receptors in Drosophila melanogaster larvae[END_REF] and adult [START_REF] Johnson | Serotonin receptor activity is necessary for olfactory learning and memory in Drosophila melanogaster[END_REF][START_REF] Sitaraman | Serotonin is Critical for Rewarded Olfactory Short-Term Memory in Drosophila[END_REF] Drosophila. We tested Trh-Gal4 and Tph-Gal4, two driver lines that target the majority of serotonergic neurons and no dopaminergic neurons 10 of 36 across the CNS of third-instar larvae [START_REF] Huser | The Serotonergic Central Nervous System of the Drosophila Larva: Anatomy and Behavioral Function[END_REF]. Consistent with previous reports (Ganguly et al., 2020), larvae expressing CsChrimson under either driver line formed strong appetitive olfactory memory, highlighting the sufficiency of serotonin as a US in associative learning. Tph-Gal4 targets fewer serotonergic neurons than Trh-Gal4, making it valuable for narrowing down which serotonergic neurons serve as a relevant reward signal. We eliminated all Tph-Gal4 expression in the VNC using tsh-Gal80 (Figure 4-Figure Supplement 1). Activating the remaining Tph neurons in the brain and SEZ was sufficient to induce strong appetitive memory (Figure 4B). This result was notable and raised further questions: are serotonergic neurons in the brain and SEZ indirectly connected to MB-innervating dopaminergic neurons or do alternative learning circuits exist that altogether bypass the MB?

The contralaterally projecting serotonin-immunoreactive deutocerebral (CSD) neuron [START_REF] Roy | Metamorphosis of an identified serotonergic neuron in the Drosophila olfactory system[END_REF] is one previously described serotonergic brain neuron within the Tph-Gal4 expression pattern [START_REF] Huser | The Serotonergic Central Nervous System of the Drosophila Larva: Anatomy and Behavioral Function[END_REF] that innervates the antennal lobe and only has a few indirect connections to the MB [START_REF] Berck | The wiring diagram of a glomerular olfactory system[END_REF]. Combining anatomical features from existing EM reconstruction [START_REF] Berck | The wiring diagram of a glomerular olfactory system[END_REF] with available lineage information facilitated identification of a split-GAL4 line (SS01989) that drives expression exclusively in the CSD neuron (Figure 4 

Serotonergic neurons in VNC are necessary for operant conditioning of bend direction

Given their strong associative learning phenotypes, we used the TH-Gal4 and Tph-Gal4 drivers to investigate whether operant conditioning of bend direction could be induced exclusively by dopaminergic or serotonergic neurons, respectively. Under our high-throughput training protocol (Figure 3A), TH-Gal4 x UAS-CsChrimson larvae showed no difference in bend rate between the previously stimulated and unstimulated sides in the one-minute test period (Figure 4C). Furthermore, the probability that any given bend was directed towards the previously stimulated side was not significantly different from chance (Figure 4D). Activating these dopaminergic neurons was an insufficient substitute for reward or punishment in operant conditioning.

Paired activation of Tph-Gal4 neurons during bends to one side resulted in a significantly higher bend rate to the stimulated side relative to the unstimulated side during the test period (Figure 4C).

The probability of bending in the previously stimulated direction was also significantly elevated (Figure 4D). In this way, activation of Tph-positive serotonergic neurons paired with bends to one side was sufficient for the formation of a learned direction preference. Combining this result with the knowledge that operant conditioning was impaired following restriction of Ddc-Gal4 x UAS-CsChrimson expression to the brain and SEZ suggests that the serotonergic neurons of the VNC were necessary for memory formation in this paradigm. Because Tph-Gal4 is a broad driver line, it is possible that its expression pattern contains brain or SEZ neurons outside of those in Ddc-Gal4.

The existence of these neurons could have potentially induced learning through an alternate mechanism independent from that which drove memory formation following Ddc neuron activation.

To assess whether the VNC serotonergic neurons were necessary for the observed operant conditioning effect, we used tsh-Gal80 to restrict the Tph-Gal4 expression pattern to the brain and SEZ. Paired optogenetic activation of Tph-Gal4 x UAS-CsChrimson; tsh-LexA, LexAop-Gal80 with larval bends to one side was insufficient for operant conditioning (Figure 4C, Figure 4D). The Tph-Gal4 expression pattern contains two neurons per VNC hemisegment (with the exception of a single neuron in each A8 abdominal hemisegment), all of which are serotonergic [START_REF] Huser | The Serotonergic Central Nervous System of the Drosophila Larva: Anatomy and Behavioral Function[END_REF].

While there are few serotonergic VNC candidates, we could not conclude from our data whether the operant conditioning effect relied solely on these neurons or whether synergistic activity from both the VNC and the brain or the SEZ was needed. Testing these hypotheses remains challenging since, to our knowledge, no sparse driver lines exist to exclusively target VNC serotonergic neurons.

Under a classical conditioning paradigm, we have confirmed that there exist learning pathways in Drosophila that rely on serotonergic neurons. We have also shown that serotonergic neurons can serve as a sufficient US for operant conditioning. Notably, different circuit mechanisms underlie classical and operant conditioning mediated by serotonergic neurons: activation of the brain and SEZ is sufficient for classical conditioning, whereas the VNC is necessary for operant conditioning.

Discussion

Due to available genetic tools and the emerging connectome, the Drosophila larva is a uniquely advantageous model organism for neuroscience. We have uncovered a previously unknown neuronal mechanism of operant conditioning in the Drosophila larva. Serotonergic signalling can be employed as a reinforcing US in both classical and operant associative learning, but we are mindful that a single neural mechanism for learning may not exist. Distinct types of learning may share neurotransmitters or circuit components, but there may remain fundamental differences in connectivity and function. The experimental system we built was instrumental in investigating the neural circuits of operant conditioning, as it combined FPGA-based real-time tracking of multiple larvae with robust online behaviour detection and closed-loop stimulus presentation. This system could facilitate further research in taxis [START_REF] Luo | Navigational Decision Making in Drosophila Thermotaxis[END_REF][START_REF] Gomez-Marin | Active sampling and decision making in Drosophila chemotaxis[END_REF][START_REF] Kane | Sensorimotor structure of Drosophila larva phototaxis[END_REF][START_REF] Jovanic | Neural Substrates of Drosophila Larval Anemotaxis Article Neural Substrates of Drosophila Larval Anemotaxis[END_REF], decision-making [START_REF] Krajbich | Accounting for attention in sequential sampling models of decision making[END_REF][START_REF] Dasgupta | Olfactory Memory Formation in Drosophila: From Molecular to Systems Neuroscience[END_REF], and spatial navigation and memory [START_REF] Neuser | Analysis of a spatial orientation memory in Drosophila[END_REF][START_REF] Haberkern | Visually Guided Behavior and Optogenetically Induced Learning in Head-Fixed Flies Exploring a Virtual Landscape[END_REF]. While further work is necessary, our bend direction paradigm provides a strong foundation for continued study of the circuit and cellular mechanisms underlying operant conditioning.

High-throughput operant conditioning in Drosophila larvae

We have shown that Drosophila larvae are capable of operant conditioning and that optogenetic activation of Ddc neurons serves as a rewarding US during this learning process. With training, larvae formed an association between the presence or absence of this US and the direction in which they were bending. During testing, in the absence of any stimulation, larvae showed a significant learned preference for bending towards the previously stimulated side. This learned modification of future behaviour was only observed when the CS and US were paired during training; a hallmark of operant conditioning. Because Ddc-Gal4 drives expression in dopaminergic and serotonergic neurons [START_REF] Li | Ectopic G-protein expression in dopamine and serotonin neurons blocks cocaine sensitization in Drosophila melanogaster[END_REF][START_REF] Sitaraman | Serotonin is necessary for place memory in Drosophila[END_REF], we concluded that one or both neurotransmitters are involved in memory formation under these experiment conditions.

Strong parallels exist between our operant learning paradigm and those employed for conditioning direction preference in adult Drosophila. Consider the work of Nuwal et al. (2012), in which tethered flies walked on a rotating ball and were rewarded with optogenetic activation of sugarsensing neurons upon turns to one direction. As a consequence of this pairing, the flies learned to increase the number of turns to this side. Notably, the nature of the US remains an important difference between these paradigms. Our initial attempts to operantly condition larvae using activation of sugar-sensing neurons as a rewarding US were unsuccessful. These neurons, defined by two different Gr43a-Gal4 drivers, were also insufficient for memory formation when activated with a paired odour in an olfactory conditioning screen. This was surprising, considering extensive evidence that natural sugar can serve as a rewarding US for classical conditioning in larvae [START_REF] Apostolopoulou | Appetitive Associative Olfactory Learning in Drosophila Larvae[END_REF][START_REF] Schleyer | Learning the specific quality of taste reinforcement in larval Drosophila[END_REF][START_REF] Weiglein | One-trial learning in larval Drosophila[END_REF][START_REF] Honjo | Induction of cAMP Response Element-Binding Protein-Dependent Medium-Term Memory by Appetitive Gustatory Reinforcement in Drosophila Larvae[END_REF][START_REF] Neuser | Appetitive olfactory learning in Drosophila larvae: effects of repetition, reward strength, age, gender, assay type and memory span[END_REF][START_REF] Rohwedder | Nutritional Value-Dependent and Nutritional Value-Independent Effects on Drosophila melanogaster Larval Behavior[END_REF][START_REF] Scherer | Olfactory Learning in Individually Assayed Drosophila Larvae[END_REF][START_REF] Schipanski | Behavioral Analyses of Sugar Processing in Choice, Feeding, and Learning in Larval Drosophila[END_REF].

One possible explanation for these discrepancies is that multiple groups of sensory neurons must be co-activated in order to relay a meaningful reward signal. Alternatively, it may be necessary to adjust the temporal pattern or intensity of optogenetic stimulation.

It remains to be seen whether operant learning can occur by pairing roll or back-up behaviour with reward or punishment. Conditioning these actions is challenging given their infrequency in naïve, freely behaving animals. Rolls only occur in response to noxious stimuli (Ohyama et al., 2013, 13 of 36 2015; [START_REF] Robertson | Larval Defense against Attack from Parasitoid Wasps Requires Nociceptive Neurons[END_REF][START_REF] Tracey | painless, a Drosophila Gene Essential for Nociception[END_REF]. Back-ups also occur at very low rates [START_REF] Masson | Identifying neural substrates of competitive interactions and sequence transitions during mechanosensory responses in Drosophila[END_REF]. Consequently, the amount of US which larvae would receive during paired training would be very small, making observable memory formation more difficult. Our high-throughput tracker could potentially address this challenge with probabilistic, thermogenetic activation of roll or back-up command neurons [START_REF] Ohyama | A multilevel multimodal circuit enhances action selection in Drosophila[END_REF][START_REF] Carreira-Rosario | MDN brain descending neurons coordinately activate backward and inhibit forward locomotion[END_REF] and optogenetic reward when performing the desired action.

Neural circuits of operant conditioning

From the available data, it cannot be concluded that the brain and SEZ are dispensable for operant conditioning in Drosophila larvae. Examples from both vertebrates [START_REF] Grau | Instrumental learning within the spinal cord: I. Behavioral properties[END_REF] and invertebrates [START_REF] Horridge | Learning of leg position by the ventral nerve cord in headless insects[END_REF][START_REF] Booker | Conditioning of leg position in normal and mutant Drosophila[END_REF] show the spinal cord or VNC as sufficient for learning, suggesting that conserved mechanisms exist for brain-independent operant conditioning across species. This does not, however, exclude the possibility that there exist alternative learning pathways using the brain. In mammals [START_REF] Redgrave | Functional properties of the basal ganglia's re-entrant loop architecture: selection and reinforcement[END_REF][START_REF] Balleine | The integrative function of the basal ganglia in instrumental conditioning[END_REF] and birds [START_REF] Fee | A hypothesis for basal ganglia-dependent reinforcement learning in the songbird[END_REF], brain correlates of operant conditioning have been identified. It is unclear where such pathways would be located in the insect brain. Both our larval experiments and previous adult fly studies [START_REF] Colomb | PKC in motorneurons underlies selflearning, a form of motor learning in Drosophila[END_REF][START_REF] Wolf | Drosophila mushroom bodies are dispensable for visual, tactile, and motor learning[END_REF][START_REF] Colomb | The biology of psychology[END_REF][START_REF] Booker | Conditioning of leg position in normal and mutant Drosophila[END_REF] support the idea that operant conditioning can occur independently of the MB, such that other learning centres might exist. To determine whether larval operant conditioning can be fully mediated by the VNC or whether the brain or SEZ are necessary, new driver lines must be created. A collection of sparse split-GAL4 lines, each specific to a distinct group of serotonergic neurons, could help identify the minimum subset of neurons necessary for conveying a US in our bend direction paradigm.

Even if the learning signal for operant conditioning can be mapped to a few serotonergic neurons, there remain several open questions regarding the neuronal mechanisms underlying this learning. Locally, neurons could drive synaptic plasticity or modulate the intrinsic excitability of their postsynaptic partners. Alternatively, the learning signal could propagate further downstream, yielding learning correlates elsewhere in the network. Furthermore, memory formation requires integrating the US with information about the occurrence of the reinforced action. Motor feedback (e. g. efference copy, [START_REF] Webb | Neural mechanisms for prediction: Do insects have forward models?[END_REF][START_REF] Fee | The role of efference copy in striatal learning[END_REF] or proprioceptive input could be used to transmit this movement signal to higher-level circuits for convergence with the valence-encoding US. However, if memory formation occurred at a lower level, the action-specific signal and associated valence could be locally integrated inside the motor or premotor neuron without the need for feedback loops. (2008) proposed intracellular mechanisms for modulating the intrinsic excitability of the Aplysia premotor neuron B51 during operant conditioning, mediated by the highly conserved protein kinase C (PKC) gene. PKC signalling is also essential for operant conditioning in Lymnaea [START_REF] Rosenegger | The participation of NMDA receptors, PKC, and MAPK in the formation of memory following operant conditioning in Lymnaea[END_REF] and adult Drosophila [START_REF] Brembs | Double Dissociation of PKC and AC Manipulations on Operant and Classical Learning in Drosophila[END_REF][START_REF] Colomb | PKC in motorneurons underlies selflearning, a form of motor learning in Drosophila[END_REF]. If the Drosophila larva showed evidence of PKC-induced motor neuron plasticity, EM reconstruction of the pathways between the serotonergic neurons of the VNC and the PKC-positive motor neurons could further elucidate the mechanisms of memory formation and retrieval. A similar investigation of the Drosophila gene FoxP may also be informative, as its mutation in the adult results in impaired operant self-learning [START_REF] Mendoza | Drosophila FoxP mutants are deficient in operant self-learning[END_REF]. The vertebrate homologue FOXP2 is associated with deficits in human speech acquisition [START_REF] Lai | A forkhead-domain gene is mutated in a severe speech and language disorder[END_REF], song learning in birds [START_REF] Haesler | Incomplete and inaccurate vocal imitation after knockdown of FoxP2 in songbird basal ganglia nucleus Area X[END_REF], and motor learning in mice [START_REF] Groszer | Impaired Synaptic Plasticity and Motor Learning in Mice with a Point Mutation Implicated in Human Speech Deficits[END_REF].

Lorenzetti et al.

Serotonin as a learning signal

A limited set of studies have shown that serotonergic signalling is sufficient to induce learning [START_REF] Liu | Dorsal Raphe Neurons Signal Reward through 5-HT and Glutamate[END_REF][START_REF] Hawkins | Associative Learning in Invertebrates[END_REF][START_REF] Ganguly | Serotonin receptor 5-HT7 in Drosophila mushroom body neurons mediates larval appetitive olfactory learning[END_REF]. Previous Drosophila studies highlight other roles of serotonin in associative learning [START_REF] Yu | Drosophila DPM neurons form a delayed and branch-specific memory trace after olfactory classical conditioning[END_REF][START_REF] Keene | Diverse odor-conditioned memories require uniquely timed dorsal paired medial neuron output[END_REF][START_REF] Keene | Drosophila Dorsal Paired Medial Neurons Provide a General Mechanism for Memory Consolidation[END_REF][START_REF] Lee | Serotonin-mushroom body circuit modulating the formation of anesthesia-resistant memory in Drosophila[END_REF][START_REF] Huser | Anatomy and behavioral function of serotonin receptors in Drosophila melanogaster larvae[END_REF]. [START_REF] Sitaraman | Serotonin is Critical for Rewarded Olfactory Short-Term Memory in Drosophila[END_REF] have shown that synaptic transmission from sero-tonergic neurons is essential for appetitive olfactory conditioning in the adult. Aversive olfactory memory formation is impaired in flies fed with a tryptophan hydroxylase inhibitor which blocks serotonin biosynthesis [START_REF] Lee | Serotonin-mushroom body circuit modulating the formation of anesthesia-resistant memory in Drosophila[END_REF]. Furthermore, serotonin receptor signalling is required for memory formation in classical conditioning tasks [START_REF] Johnson | Serotonin receptor activity is necessary for olfactory learning and memory in Drosophila melanogaster[END_REF]. In larvae, aversive olfactory conditioning is impaired by either ablation of serotonergic neurons during development or mutations in a serotonin receptor gene [START_REF] Huser | Anatomy and behavioral function of serotonin receptors in Drosophila melanogaster larvae[END_REF].

Our work suggests a novel role of serotonin as a reward signal for learning in Drosophila larvae.

In our olfactory classical conditioning screen, optogenetic stimulation of serotonergic neurons in the brain and SEZ was sufficient to induce strong appetitive learning. Conversely, operant conditioning necessitated serotonergic neuron activity in the VNC. Since it remains unclear to what extent serotonergic neurons in the brain and SEZ are also involved in the operant conditioning effect we observed, it is possible that some neurons mediate both forms of associative learning.

Further investigation is necessary to better understand the function of serotonin in memory formation. It is possible that even a single instance of learning leads to a variety of changes across the nervous system. In the case of operant conditioning, higher brain centres, motor command neurons, premotor circuits and motor neurons would all qualify as potential learning sites. In addition to thoroughly analysing the expression patterns of driver lines used in our classical conditioning screen, developing new, sparse driver lines targeting serotonergic neurons would be valuable for identifying the minimal subset of neurons which provide the serotonergic learning signal. The larval connectome could be used to subsequently trace the paths from these neurons to the MB.

One could then test whether learning as induced by the serotonergic US remains intact when these connections are silenced. The expression pattern of serotonin receptors could also provide clues about how the serotonergic signal triggers learning. One should certainly consider the possibility that learning is not induced by serotonin itself, but by other neurotransmitters coexpressed by serotonergic neurons. This could be assessed by suppressing serotonin biosynthesis in the desired neuronal subset.

Materials and methods

High-throughput closed-loop tracker

Hardware set-up

A high-resolution camera (3072 x 3200 pixels) (#TEL-G3-CM10-M5105, Teledyne DALSA, Ontario, Canada) positioned above a 23 cm x 23 cm 4% agarose plate captured 8-bit greyscale images at 20 Hz. The agarose plate was illuminated from below by a 30 cm x 30 cm 850 nm LED backlight (#SOBL-300x300-850, Smart Vision Lights, Norton Shores, Michigan) equipped with intensity control (#IVP-C1, Smart Vision Lights, Norton Shores, Michigan). An 800 nm longpass filter (#LP800-40.5, Midwest Optical Systems, Palatine, Illinois) mounted on the camera blocked all visible wavelengths, including those used for optogenetics. When the agarose plate comprised most of the camera image, each pixel corresponded to a 72.92 µm diameter section of the plate.

Each camera image was processed in parallel on both the host computer (#T7920, running Windows 10, Dell Technologies Inc, Round Rock, Texas) and an FPGA device (#PCIe-1473R-LX110, National Instruments, Austin, Texas). LabVIEW 2017 (National Instruments, Austin, Texas) software extracted larval contours and interfaced with C++ software that performed real-time behaviour detection. The LabVIEW software controlled closed-loop optogenetic and thermogenetic stimulation in response to these detected behaviours.

Multi-animal detection and tracking

Raw camera images were read by the FPGA at 20 Hz and then sent to the host computer. The Lab-VIEW process on the host computer then filtered out non-larval objects by combining background subtraction and binary thresholding. The remaining objects were each enclosed in a rectangular box of minimal size, with edges parallel to the camera image axes. We defined the following criteria to detect third-instar larvae within these boxes:

• Pixel intensity range (default 25-170): the minimum and maximum brightness values for pixels selected by binary thresholding (between 0 and 255 for an 8-bit image).

• Box side length (pixels) (default 6-100): the range of eligible values for width and height of each box.

• Box width + height (pixels) (default 12-200): the range of eligible values for the sum of each box's width and height.

• Box area (pixels) (default 300-900): the range of eligible values for the area of each box.

To track larvae over time, the host computer assigned a numerical identifier to each eligible object.

We used distance-based tracking with a hard threshold of 40 pixels to maintain larval ID based on centroid position. Although identity was lost when larvae touched or reached the plate's edge, new IDs were generated when larvae matched detection criteria. For each of the largest 16 objects, the host computer sent a binary pixel pattern and location (defined as the centre of the box) to the FPGA. Since the host computer required more than 50 ms of run time for object detection, this process was not executed in every frame. On average, the FPGA received updated objects and their locations every three frames.

The FPGA extracted object contours in three steps. Within a 2 cm 2 region of interest around the object's centre, the FPGA first applied a user-defined binary threshold, then applied both vertical and a horizontal convolution with a 2 x 1 XOR kernel, and finally generated edge pixels by combining the results of the two convolutions using an OR operation. Contours were extracted from edge images using the Moore boundary tracing algorithm [START_REF] Gonzalez | Digital image processing[END_REF] with three added error capture procedures. First, if the algorithm yielded a contour that ended prematurely or contained small loops, the construction process could be reversed by up to 16 contour points to find an alternative contour. Second, 10,000 FPGA clock cycles (≈ 100 us) was the maximum allotted execution time, with each pixel comparison occurring within one clock cycle. In the rare event that this window was exceeded, the algorithm returned the already constructed contour points. Third, a contour containing fewer than 63 points was rejected and the FPGA returned the last valid contour detected for a given larva ID. The algorithm stopped when none of the remaining neighbours were edge pixels (Figure 1-Figure Supplement 1).

Contour processing and landmark detection

An undesired result of the FPGA contouring algorithm was the variable number of contour points across larvae and frames. We aimed to detect behaviour based on a smooth contour with a fixed number of 100 contour points. This contour regularization was achieved inside the Behaviour Programme using Fourier decomposition and reconstruction as in Masson et al. (2020).

The initial detection of head and tail was implemented on FPGA. The larva's head and tail were defined as the contour points with the sharpest and second-sharpest curvature, respectively (Fig- 

Feature extraction

We developed a machine learning approach to address the high deformability of the larva shape, ensure live execution, reduce overfitting, and limit the volume of data tagging. What follows is a brief summary of larval features describing motion direction, body shape, and velocity that were calculated from the contour and spine data inside the Behaviour Programme. Features were designed as in Masson et al. (2020), with notable modifications required to run the inference live: • larva_arc_ratio: ratio of contour perimeter to convex hull perimeter (larva_arc_ratio ≥ 1 and was close to 1 when larva was in either straight or ball-like shape)

• larva_area_ratio: ratio of the areas enclosed by the contour and its convex hull (0 ≤ larva_area_ratio ≤ 1 and was close to 1 when the larva was in either straight, heavily curved, or ball-like shape)

• eig_reduced: eig_reduced = | 1 -2 | 1 + 2
where 1 , 2 were the eigenvalues of the structure tensor of the larval contour with respect to the neck (0 ≤ eig_reduced ≤ 1 and eig_reduced decreased as the bend amplitude of the larva increased)

• s: normalised angle along the body (-0.5 ≤ s ≤ 1, was close to 1 when larva was straight, and decreased with increasing bend amplitude)

• asymmetry: sine of the angle between direction_vector and direction_head_vector (asymmetry > 0 when larva bent left and asymmetry < 0 when larva bent right)

• angle_upper_lower: absolute angle between direction_vector and direction_head_vector (despite similarity to asymmetry, this develops different dynamics following temporal smoothing, which are valuable for stable left and right bend detection)

Velocity (Figure 1-Figure Supplement 6)

• Velocity of all six landmark points (head_speed, neck_top_speed, neck_speed, neck_down_speed, tail_speed, and v_centroid) in mm/s over interval = 0.2 (four frames)

• v_norm: arithmetic mean of neck_top_speed, neck_speed, and neck_down_speed, passed through a hyperbolic tangent activation function to suppress excessively large values

• speed_reduced: relative contribution of neck_top_speed to v_norm, passed through a hyperbolic tangent activation function to suppress excessively large values (speed_reduced increased when the anterior larval body moved quickly compared to the posterior, e. g. when a bend was initiated)

• damped_distance: distance (mm) travelled by neck, giving greater weight to recent over past events

• crab_speed: lateral velocity (mm/s), defined as the component of neck_speed orthogonal to direction_vector_filtered

• parallel_speed: forward velocity (mm/s), defined as the component of neck_speed_filtered parallel to direction_vector_filtered

• parallel_speed_tail_raw: tail's forward velocity (mm/s), defined as the component of tail_speed_filtered parallel to direction_tail_vector_filtered

• parallel_speed_tail: similar to parallel_speed_tail_raw, with the difference that tail_-speed_filtered was normalised prior to calculating the dot product (i. e. a measure of tail movement direction which took values between -1 (backward) and +1 (forward))

To extract features in real time and address various sources of noise, we implemented exponential smoothing defined as follows for a given feature f (Figure 1 (2012). For a given feature f at time , f_convolved_squared was calculated as follows:

f1 = (1 -Δ ) ⋅ f1 -Δ + 1 2 Δ ⋅ (f -Δ + f ) f2 = Δ ⋅ f1 -Δ + (1 -Δ ) ⋅ f2 -Δ f_convolved_squared = ⋅ (f1 -f2 ) 2 ,
where Δ = 0.05 , = 1 , = 0.25 , and = 5 . values were empirically chosen for each feature.

Behaviour classifiers

Behaviour classifiers were developed using a user interface similar to JAABA [START_REF] Kabra | JAABA: interactive machine learning for automatic annotation of animal behavior[END_REF].

The underlying algorithms combined trained neural networks and empirically determined linear thresholds. We developed a MATLAB (MathWorks, Natick, Massachusetts) user interface with functions for data visualisation, manual annotation, and machine learning using the Neural Network Toolbox, the Deep Learning Toolbox, and the Statistics and Machine Learning Toolbox. Here we briefly describe the behaviour classifiers and provide performance results based on manual validation (Table 1).

The bend classifier was based on predefined thresholds for temporally smoothed body shape features and was itself exponentially smoothed over time. Independent left and right classifiers were used to initially detect bend direction. To detect left and right bends, these classifiers were combined with the smoothed bend classifier using an AND conjunction. The raw time series of left and right bends was further smoothed post-acquisition using a custom MATLAB script: two bends to the same side separated by less than 200 ms were combined into a single long bend, and short bends of less than 200 ms were removed from analysis.

To improve left and right detection performance, we developed a classifier for circular larval contours. This ball classifier used a feed-forward neural network with a single fully connected hidden layer whose inputs were normalised values of eig_reduced, larva_arc_ratio, and larva_-area_ratio. The hidden layer consisted of five neurons with a hyperbolic tangent activation function. The output layer contained a single neuron and used a sigmoid activation function. The neural network was trained in MATLAB on a manually annotated data set for 500 epochs using a cross-entropy loss function and scaled conjugate gradient backpropagation. If a ball was detected within the previous 1.5 s, left and right classifiers were overwritten to match the last detected bend direction prior to the beginning of the ball.

The back classifier detected individual backward peristaltic waves based on thresholds for smoothed tail velocity features combined with no ball detection within the previous 1.5 s.

Two different classifiers were used to detect crawling. forward detected longer forward crawl periods based on thresholds for smoothed tail velocity features combined with no ball detection 18 of 36 Calibration was performed by projecting square spots at fixed DMD pixel locations and linearly fitting the corresponding camera coordinates.

19 of 36

We determined that DMD illumination using the default light output was not uniform at plate level, which could have resulted in variable optogenetic stimulation depending on larval location.

The maximum achievable light intensity at the plate's edge was approximately 40% of the peak value at its centre. We therefore normalised the pixel intensity of the DMD image to the highest intensity uniformly achievable at all plate locations. A look-up table containing the normalisation factor for each DMD pixel was then calculated using bi-linear interpolation with approximately 100 light intensity values measured across the plate. To accommodate for possible differences in non-uniformity between the two DMDs, this intensity calibration was performed for both DMDs simultaneously following spatial calibration. When fully calibrated, the system could achieve a uniform light intensity of 285 µW/cm 2 .

A user-defined Behaviour Programme protocol operated on the behaviour detection output and sent 8-bit optogenetic stimulation instructions to the LabVIEW application. Because the Lab-VIEW application updated DMD projections at 20 Hz, the delay between behaviour detection and closed-loop optogenetic stimulation of individual larvae did not exceed 50 ms. Furthermore, if two or more larvae were close enough such that their corresponding stimulation areas overlapped, the light intensity in the overlapping region was set to the smallest of those values to avoid undesired stimulation.

Thermogenetic stimulation

Thermogenetic stimulation was achieved by heating up larvae with a custom IR laser set-up. A 1490 nm laser diode beam (#2CM-101, SemiNex, Peabody, Massachusetts) was fed into a twoaxis galvanometer system (#GVSM002, Thorlabs, Newton, New Jersey), both controlled by an analogue output device (#PCIe-6738, National Instruments, Austin, Texas). Two mirrors inside the galvanometer were rotated around orthogonal axes to target the beam spot to any user-defined location on the agarose plate. The beam spot measured approximately 5 mm in diameter, depending on the beam's angle of incidence to the plate. Mirror positions were controlled by two integrated motors that received voltage inputs. Each voltage pair clearly defined the laser beam's position.

Spatially calibrating the galvanometer was necessary to obtain a map between larval locations in world coordinates and the mirror motor input voltages. A visible aiming beam was scanned across the agarose plate using a fixed set of voltage pair inputs to the galvanometer. With the optical filter removed from the camera, the aiming beam's location in camera coordinates was automatically extracted from the image using binary thresholding. Two voltage-to-camera look-up tables were generated through bi-linear interpolation of these measured coordinates. For accurately targeted thermogenetic stimulation, the location of the larval centroid was first converted to camera coordinates using the existing world-to-camera transform and was then mapped to a pair of galvanometer input voltages using the look-up tables.

Laser intensity calibration was also necessary to ensure that all larvae received the same stimulation regardless of their position on the agarose plate. A larva's location changed the laser beam's angle of incidence, causing the illuminated spot at plate level to take an elliptical shape with variable size. Although laser beam power was constant, the changing spot area generated inconsistencies in the amount of IR light covering each larva. Calibration was used to normalise the desired laser intensity to achieve constant power per unit area. A visible aiming beam was scanned across the plate and the camera image automatically measured the beam's spot size at various locations. Bilinear interpolation was then used to generate a pixel-wise look-up table containing the necessary scaling factors for the laser power. At the location where the laser spot area was smallest, the maximum power was reduced to 67.3%. We also accounted for a nonlinear relationship between the laser source input voltage and the laser's total power output by generating a voltage-to-power map from manual measurements. With these transformations, the system could calculate the laser source input voltage necessary to produce uniform, 5.26 W stimulation at any location.

A user-defined Behaviour Programme protocol operated on the 20 Hz behaviour detection out-20 of 36 put and sent thermogenetic stimulation instructions to the LabVIEW application which controlled the galvanometer and laser. Four centroid locations were specified on every frame, enabling a single galvanometer to cycle the laser beam between four individual larvae at 20 Hz. Within the available 50 ms time window, each larva was heated for 11 ms. Switching off the laser input for 1.5 ms between larvae accounted for small time fluctuations surrounding each new galvanometer position update and helped avoid undesired stimulation of other plate areas (Figure 2D). If fewer than four objects were detected in a given frame, the remaining galvanometer target locations were set to the plate's centre and the corresponding laser intensity was set to zero. This temporal pattern of galvanometer position updates yielded no more than 100 ms delay between behaviour detection and closed-loop thermogenetic stimulation.

Three parameters influenced larval temperature increase following thermogenetic stimulation with the IR beam: i) the laser power, ii) the total duration of the stimulus, and iii) the order in which the galvanometer cycles between locations in its 80 Hz movement. Preliminary experiments suggested that these parameters could be adjusted to simultaneously stimulate eight or twelve larvae using a single galvanometer. This could potentially eliminate the need to install three additional laser sources to target all 16 larvae.

Software availability

All software code is available upon request.

Fly strains and larval rearing

We used the following fly strains: 58E02-Gal4 (Bloomington stock 41347), 69F06-Gal4 (Bloomington stock 39497), 72F11-Gal4 (Bloomington stock 39786), attP2 [START_REF] Pfeiffer | Tools for neuroanatomy and neurogenetics in Drosophila[END_REF], Ddc-Gal4 (Li et al., 2000), SS01989 (own stock), TH-Gal4 [START_REF] Friggi-Grelin | Targeted gene expression in Drosophila dopaminergic cells using regulatory sequences from tyrosine hydroxylase[END_REF], Tph-Gal4 (Park et al., 2006), Trh-Gal4 [START_REF] Alekseyenko | Targeted Manipulation of Serotonergic Neurotransmission Affects the Escalation of Aggression in Adult Male Drosophila melanogaster[END_REF], UAS-CsChrimson (Bloomington stock 55134), UAS-CsChrimson; tsh-LexA, LexAop-Gal80 (Dr Stefan Pulver, Dr Yoshinori Aso), UAS-dTrpA1 (Dr Paul Garrity), UAS-GFP [START_REF] Nern | Optimized tools for multicolor stochastic labeling reveal diverse stereotyped cell arrangements in the fly visual system[END_REF], and w 1118 [START_REF] Hazelrigg | Transformation of white locus DNA in Drosophila: Dosage compensation, zeste interaction, and position effects[END_REF].

Fly stocks were maintained in vials filled with standard cornmeal food [START_REF] Wirtz | The Drosophila kitchen-equipment, media preparation, and supplies[END_REF] 49.2 ml of molasses, 19.9 g of yeast, 82.2 g of cornmeal, 7.4 g of agarose, 9.8 ml of 20% Tegosept solution in 95% ethanol and 5.2 ml of propionic acid in 1 litre of water). For proof-of-principle and operant and classical learning experiments, eggs were collected overnight for approximately 12-18 hours on standard cornmeal food plates with additional dry yeast to increase laying. These experiments were performed using foraging-stage third-instar larvae (72-96 hours after egg laying) reared at 25°C and 65% humidity [START_REF] Ohyama | High-Throughput Analysis of Stimulus-Evoked Behaviors in Drosophila Larva Reveals Multiple Modality-Specific Escape Strategies[END_REF][START_REF] Ohyama | A multilevel multimodal circuit enhances action selection in Drosophila[END_REF][START_REF] Jovanic | Competitive Disinhibition Mediates Behavioral Choice and Sequences in Drosophila[END_REF][START_REF] Jovanic | Neural Substrates of Drosophila Larval Anemotaxis Article Neural Substrates of Drosophila Larval Anemotaxis[END_REF]Eschbach et al., 2020b). Specifically for optogenetics experiments, larvae were raised in the dark and a 1:200 retinal solution (diluting 1 g of powdered all-trans-retinal (#R240000, Toronto Research Chemicals, Ontario, Canada) in 35.2 ml of 95% ethanol) was added to the food unless indicated otherwise.

For immunohistochemistry, eggs were collected during daytime for approximately four hours on standard cornmeal food plates with added yeast. Dissections were performed using wanderingstage third-instar larvae (118-122 hours after egg laying).

Immunohistochemistry and confocal imaging

All dissections, immunohistochemical stainings, and confocal imaging were done using a procedure adapted from 2E). Optogenetics were performed with the maximum available red light intensity of 285 µW/cm 2 . Thermogenetics were performed with 40% of the maximum available laser intensity.

Verification of optogenetic and thermogenetic stimulation efficiency

We analysed both optogenetic and thermogenetic experiment data using identical assessment and exclusion criteria. For each larva, the criterion for a single roll was detection of the behaviour for at least 300 ms during a given 15 s stimulation cycle. This threshold ensured true rolls were counted, as opposed to rapid larval bends characteristic of aversion to light.

High-throughput operant conditioning

Experiment procedures

We performed high-throughput operant conditioning using our multi-larva closed-loop tracker. All larval handling and experiments were performed in the dark to avoid unintended optogenetic stimulation. We used water to wash approximately 10-12 larvae out of their food. Using a brush, we immediately placed these larvae into the centre of the agarose plate in such a way that they were not touching each other. We placed the agarose plate inside the tracker on top of the backlight and then shut the tracker door. Larvae were given at least 30 s to accustom to their new environment before we started the experiment.

The experiment protocol began and ended with a one-minute test period without optogenetic stimulation. Between these test periods were four, three-minute training sessions during which larvae received red light stimulation of 285 µW/cm 2 for the entire duration of the detected bend.

Which side received stimulation was randomized across trials such that approximately 50% of larvae were trained to develop a right bend preference and 50% a left bend preference. No stimulus was triggered when the larva was bending right or when its body was straight. The test periods were each separated by three-minute periods without stimulation. After the first minute of this period, a brush was used to gently move all larvae back to the centre of the plate and larvae were given time to recover before the beginning of the next training session. This recentring addresses problems encountered when performing prolonged experiments with freely behaving larvae on a small agarose plate. The longer larvae are left undisturbed, the more likely they are to touch the plate's edge, causing tracking disruption and temporary loss of valid objects. This shrinks sample size and reduces training efficiency by decreasing the proportion of animals which are receiving the stimulus.

Control experiments were designed so that valid objects received optogenetic stimulation uncorrelated with behaviour. These control experiments were split into 60 s time bins, during which each valid object was randomly assigned a stimulus train from this same time bin, pulled from a prior experiment where stimulation correlated with behaviour.

Data analysis

Data analysis was conducted using custom MATLAB software. To ensure high quality data, it was necessary to remove invalid objects from the data set prior to behavioural analysis. These included corrupted objects (e.g. scratches on the plate or residual food) that the software mistook for larvae.

They also included larvae that lost their object identity and were consequently detected for only part of the experiment (e.g. after temporarily reaching the plate's edge or touching other larvae).

After equally splitting each experiment into 60 s time bins, we retained objects for analysis that fulfilled strict criteria: i) the object must have been detected in every frame of the bin; ii) the object's initial detection must have occurred at least 20 s prior to the start of the bin; iii) at no point during the bin did the smoothed velocity of the larval centroid exceed 1.5 mm/s; and iv) the mean of the smoothed centroid velocity across the object's detection period in the bin was at least 0.5 mm/s.

To quantify the accuracy of this method, we manually reviewed 350 videos of objects flagged as valid for a given 60 s bin. In this group, we observed no severely corrupted objects. In one case (0.3%), a larva briefly touched another larva. In another case (0.3%), head and tail of a larva were falsely detected the majority of the time, leading to flipped detection of left and right bends.

When analysing valid bin data for operant conditioning of bend direction preference, we counted, for each larva, the numbers of left and right bends initiated within the bin. This was defined as the bend rate towards the respective direction. The probability of the larva bending towards the side paired with the optogenetic stimulus was defined as the ratio of the number of bends towards this side to the total number of bends initiated in the bin. We pooled together all larval data within each bin because bends to the left and right were each paired with the optogenetic stimulus for approximately half of the larvae. Mean and standard error were calculated for bend rate to the stimulated side, bend rate to the unstimulated side, and probability of bending towards the stimulated side. For the control condition in which larvae received random stimulation during 50% of bends regardless of direction, we calculated mean and standard error for bend rates to the left and right and the probability for bending towards the left. Bend rates to either side were compared to each other using a two-sided Wilcoxon signed-rank test. The probability for bending to a given side was compared to chance level (0.5) using a two-sided Wilcoxon signed-rank test. The behaviour characteristics of experimental animals were compared to the control group using a two-sided Mann-Whitney U test.

Classical conditioning

Experiment procedures

CsChrimson [START_REF] Klapoetke | Independent optical excitation of distinct neural populations[END_REF] was expressed under the control of driver lines targeting candidate valence-conveying neurons. These driver lines were classified based on expression pattern and previous functional data and are known to drive expression in larvae. Optogenetic activation of neurons (US) was paired with odour presentation (CS) to induce olfactory memory (Figure 4A).

For each driver line, data was acquired from at least two separate crosses.

Classical conditioning followed a procedure similar to those described in Gerber and Hendel (2006), Saumweber et al. [START_REF] Brembs | Spontaneous decisions and operant conditioning in fruit flies[END_REF]Eschbach et al. (2020b). Approximately 40 third-instar larvae were transferred onto a 4% agarose petri dish. Larvae were presented with an odour (1:10 4 ethyl acetate in ddH 2 O) pipetted onto two pieces of filter paper attached to the lid of the dish. This enclosed dish was exposed to red light (630 nm, 350 µW/cm 2 ) for three minutes. Larvae were then transferred to a new agarose-filled petri dish with no odour on its lid ("air") and placed in the dark for three minutes. This training procedure was repeated three times, with alternating presentation of odour/light and air/dark (paired group). An unpaired group receiving reciprocal stimulus presentation (odour/dark, air/light) was trained simultaneously. This ensured that any observed effects were attributable to learning rather than innate odour preference or avoidance. The training trial order was reversed in half of the experiments, starting with air instead of odour presentation.

After training, larvae of both paired and unpaired groups were immediately transferred to a 1 cm middle zone in the centre of fresh agarose-filled petri dishes. A lid was placed on each dish, with odour presented on one side (odour side) but not the other (air side). After a three-minute test period in the dark, the number of larvae on the odour side, the air side, and in the middle zone were manually counted and entered into an Excel spreadsheet (Microsoft Corporation, Remond, Washington).

Data analysis

All data was manually entered into MATLAB and analysed using custom software. For each experiment, a performance index (PI) was calculated as follows: PIs take values between -1 and +1, where a positive PI reflects appetitive learning and a negative PI reflects aversive learning. Mean and standard error were calculated for each condition.

Statistical differences between two groups were tested using a two-sided Mann-Whitney U test with Bonferroni correction. Significance compared to zero was tested with a two-sided Wilcoxon signed-rank test with Bonferroni correction. A simplified example is shown using a 10 x 10 pixel box containing a small object. a. The object (black) was detected against the background (white) using binary thresholding. Edge pixels were detected by combining the results of vertical and horizontal image convolution with a 2 x 1 XOR kernel using an OR operator. b. The contour points were reconstructed in an iterative process, starting with the edge pixel closest to the centre of the box. The next contour point was defined as the first neighbouring pixel that was found to be an edge pixel. Neighbouring pixels were assessed clockwise from the pixel directly above the contour point. The process ended when no eligible edge pixels could be found. The initial detection of head and tail was incorrect in some cases. False detection could be corrected by swapping head and tail, thereby minimising the distances from head and tail in the current frame (solid contour) to head and tail in the previous frame (transparent contour). c. The correction described in b failed if larvae curled up such that the contour appeared circular ("ball"). To eliminate this source of false head and tail detection, these events were detected using a ball classifier.

1481 Outline of a larva with contour (black) and its convex hull (blue). b. Shown here are the eigenvectors (blue) of the larval contour (black) structure tensor with respect to neck and their corresponding eigenvalues 1 and 2 . c. was defined as the angle between direction_vector (blue) and the vector ⃗ that passed through spine points i and i+1 (black). d. head was defined as the angle between direction_vector and direction_head_vector. head and tail are shown in green. ). This confirmed that Ddc-Gal4 drives broad expression across the central nervous system (CNS) [START_REF] Lundell | Temporal and Spatial Development of Serotonin and Dopamine Neurons in the Drosophila CNS[END_REF][START_REF] Li | Ectopic G-protein expression in dopamine and serotonin neurons blocks cocaine sensitization in Drosophila melanogaster[END_REF]. e-h. Ddc-Gal4 x UAS-CsChrimson; tsh-LexA, LexAop-Gal80 larvae. As expected, no GFP-positive neurons were found in the VNC ( = 6). Ddc-Gal4 brain and SEZ expression remained largely unaffected by GAL80, as the GFP-positive neurons in both areas that could be consistently identified in Ddc-Gal4 x UAS-CsChrimson larvae ( = 3) were also present in Ddc-Gal4 x UAS-CsChrimson; tsh-LexA, LexAop-Gal80 larvae ( = 3). a-h. Plan-Apochromat 20x objective, resolution: 592 x 800 pixels, scale bar: 100 µm. Images courtesy of the HHMI Janelia FlyLight team. 
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 1 Figure 1. High-throughput operant conditioning in Drosophila larvae. a. Behavioural repertoire of Drosophila larvae. Schematics show the four most prominent actions displayed by Drosophila larvae (crawl, left and right bend, back-up and roll). The larval contour is displayed as a black outline with a green dot marking the head. b. In fully automated operant conditioning, an action of interest was reinforced by coupling real-time behaviour detection with optogenetic activation of reward circuits. c. High-throughput tracker schematic showing the relative positions of the agarose plate, backlight, camera, digital micromirror devices (DMDs), and galvanometers. IR: infrared. d. Block diagram of hardware components. AO: analogue output, FPGA: field-programmable gate array. e. Data flow between software elements.
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 1 Figure 1-Figure supplement 1. Contour calculation on field-programmable gate array (FPGA).
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 1 Figure 1-Figure supplement 2. Detecting head and tail.
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 1 Figure 1-Figure supplement 3. Calculating a smooth spine and landmark points.
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 1 Figure 1-Figure supplement 4. Calculating direction vectors.
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 1 Figure 1-Figure supplement 5. Features describing body shape.
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 1 Figure 1-Figure supplement 6. Velocity features.
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 1 Figure 1-Figure supplement 7. Temporal smoothing of features.
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 1 Figure 1-Figure supplement 8. Differentiation by convolution.

  Several computer vision algorithms exist for real-time tracking of freely behaving animals. Stowers et al. (2017) and Krynitsky et al. (2020) developed software for tracking mice, and Mischiati et al.
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 2 Figure 2. Optogenetic and thermogenetic stimulation with the high-throughput tracker. a. Hardware design schematic for optogenetic stimulation. Although the high-throughput tracker included two digital micromirror devices (DMDs), only one is shown for simplicity. b. Proof-of-principal experiment protocol for optogenetic stimulation. c. The fraction of larvae for which a roll was detected in each stimulation cycle. 69F06-Gal4 x UAS-CsChrimson and 72F11-Gal4 x UAS-CsChrimson larvae (CsChrimson expressed in neurons triggering roll behaviour; experiment groups) were compared to attP2 x UAS-CsChrimson larvae (no CsChrimson expression; control group).Fisher's exact test was used to calculate statistical differences between the experiment and control groups (*** < 0.001). d. Hardware design schematic for thermogenetic stimulation. Although the high-throughput tracker included four two-axis galvanometers, only one is shown for simplicity. IR: infrared. e. Proof-of-principal experiment protocol for thermogenetic stimulation. f. The fraction of larvae for which a roll was detected in each stimulation cycle. 69F06-Gal4 x UAS-dTrpA1 and 72F11-Gal4 x UAS-dTrpA1 larvae (dTrpA1 expressed in neurons triggering roll behaviour; experiment groups) were compared to attP2 x UAS-dTrpA1 larvae (no dTrpA1 expression; control group). Fisher's exact test was used to calculate statistical differences between the experiment and control groups (*** < 0.001).

  Figure 3. Operant conditioning of bend direction in Drosophila larvae requires the ventral nerve cord. a. Experiment protocol using the high-throughput closed-loop tracker. Behaviours are depicted as larval contours (black) with head (green). During training, the larva received an optogenetic stimulus (red light bulb) whenever it bent to one predefined side (here depicted as the left for simplicity), and light was switched off during all other behaviours (grey light bulb).b,d,e. Larval bend rate shown as the number of bends per minute, grouped by bend direction. The bend rate to the stimulated side (depicted as a left bend with a red light bulb for simplicity) is shown in red and the bend rate to the unstimulated side (depicted as a right bend with a grey light bulb for simplicity) is shown in grey. For larvae that received random, uncorrelated stimulation during 50% of bends, the bend rates to the left and right are shown in black. Statistical differences within groups were tested with a two-sided Wilcoxon signed-rank test; statistical differences between two groups were tested with a two-sided Mann-Whitney U test. c,f. Probability that a given bend was directed towards the stimulated side or, in the case of the uncorrelated training group, towards the left. Grey line indicates equal probability of 0.5 for bends to either side. Statistics calculated from a two-sided Wilcoxon signed-rank test. b-f. Gal4 expression depicted as color-coded CNS. All data is shown as (mean ± s. e. m.). n. s. ≥ 0.05 (not significant), * < 0.05, ** < 0.01, *** < 0.001. b. Bend rate for Ddc-Gal4 x UAS-CsChrimson larvae. Data is shown from the test period before the first training session and the test period after the fourth training session. c. Data from same experiments as in b. d. Same data as in b, but bend rate for uncorrelated training group was calculated without stratification by bend direction. e. Bend rate for Ddc-Gal4 x UAS-CsChrimson; tsh-LexA, LexAop-Gal80 and 58E02-Gal4 x UAS-CsChrimson larvae. The effector, UAS-CsChrimson, is omitted from the figure for visual clarity. Data is shown from the test period immediately following the fourth training session. f. Data from same experiments as in e.

Figure 3 -

 3 Figure 3-Figure supplement 1. Ddc-Gal4 expression pattern without and with tsh-Gal80 restriction.

Figure 4 .

 4 Figure 4. Different serotonergic neurons mediate classical and operant conditioning. All fly lines contained the UAS-CsChrimson effector, which is omitted from the figure for visual clarity. Gal4 expression depicted as color-coded CNS. a. Olfactory conditioning experiment protocol.During training, larvae in the paired group received three minutes of optogenetic red light stimulation (solid red circles) paired with the odour (white cloud) followed by three minutes of darkness (solid white circles) paired with air (no cloud). The unpaired group received reciprocal stimulus presentation (dark paired with odour, light paired with air). This procedure was repeated three times. In half of the experiments, the order of training trials was reversed, starting with air presentation instead of odour presentation. Both groups were then tested for learned odour preference in the dark with odour presented on one side of the plate and no odour on the other (PI = performance index). b. Performance indices following olfactory conditioning, plotted as raw data points and mean. w 1118 x UAS-CsChrimson was the negative control (grey, = 8), 58E02-Gal4 x UAS-CsChrimson was the positive control (blue, = 8). Statistical comparisons to w 1118 x UAS-CsChrimson were calculated using a two-sided Mann-Whitney U test with Bonferroni correction; n. s. ≥ 0.05∕7 (not significant), ** < 0.01∕7. Statistical comparisons to Tph-Gal4 x UAS-CsChrimson were calculated using a two-sided Mann-Whitney U test with Bonferroni correction; n. s. ≥ 0.05∕2 (not significant), *** < 0.001∕2. c,d. All data is shown as (mean ± s. e. m.), n. s. ≥ 0.05 (not significant), * < 0.05. c. Experiments followed the protocol depicted in Figure3A. Data is shown from the test period immediately following the fourth training session. Larval bend rate shown as the number of bends per minute, grouped by bend direction. The bend rate to the stimulated side (depicted as a left bend with a red light bulb for simplicity) is shown in red and the bend rate to the unstimulated side (depicted as a right bend with a grey light bulb for simplicity) is shown in grey. Statistical differences within a group were tested with a two-sided Wilcoxon signed-rank test. d. Probability that a given bend is directed towards the stimulated side. Grey line indicates equal probability of 0.5 for bends to either side. Statistics were based on a two-sided Wilcoxon signed-rank test.
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 4 Figure 4-Figure supplement 1. Tph-Gal4 expression pattern without and with tsh-Gal80 restriction.
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 4 Figure 4-Figure supplement 2. SS01989 exclusively drives expression in the CSD neuron.

Figure 4 -

 4 Figure 4-Figure supplement 3. Paired and unpaired group data for olfactory conditioning experiments.

  -Figure Supplement 2). Pairing activation of SS01989 with ethyl acetate was insufficient for inducing olfactory memory (Figure 4B), suggesting that the classical conditioning phenotype we observed under Tph-Gal4 x UAS-CsChrimson; tsh-LexA, LexAop-Gal80 was mediated by at least one other group of serotonergic neurons in the brain or SEZ.
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 1 Figure Supplement 2).While correct in most cases, this calculation sometimes led to flipped detection of the two body ends. The Behaviour Programme flagged and corrected these false detection events at run time by calculating the distance head and tail traveled between frames and tracking the number of correct versus flipped detection events. The vote system correction commonly failed when the larva made large angle bends. The resulting contour was nearly-circular and exhibited similar curvature across all points. The solution required resetting the vote tallies when detecting these ball events (Figure1-Figure Supplement 2). We defined the larval spine as 11 points running along the central body axis from head to tail (Figure 1-Figure Supplement 3; Swierczek et al., 2011). In addition to head and tail, the Behaviour Programme calculated three equally distributed landmark points along the spine (neck_top, neck, and neck_down). A fourth landmark, the centroid, defined the larva's location. The six landmarks were collectively used to extract features for training behaviour classifiers (Figure 1-Figure Supplement 3). The Behaviour Programme transformed the raw contour and spine from camera coordinates 16 of 36 (in pixels) to world coordinates (in mm). If stable larval detection criteria were met, all spine points were temporally smoothed using exponential smoothing (Figure 1-Figure Supplement 3).

  1. Motion Direction (Figure 1-Figure Supplement 4) • direction_vector: normalised vector describing the main body axis • direction_head_vector: normalised vector describing the head axis • direction_tail_vector: normalised vector describing the tail axis 2. Body Shape (Figure 1-Figure Supplement 5) • skeleton_length: summed distances between consecutive spine points • perimeter: summed distances between neighbouring contour points

  -Figure Supplement 7): f_filtered = (1 -) ⋅ f_filtered -Δ + ⋅ f where t is unitless, but derived from the experiment time in seconds, = Δ with Δ = 0.05 and = 0.25 . Features that had the potential to exhibit large value deviations (e. g. v_norm) were instead bounded using a hyperbolic tangent function. Additionally, some features were exponentially smoothed over a longer time window (where = Δ with Δ = 0.05 and = 5 ) (Figure 1-Figure Supplement 7). Convolution was used to approximate a smoothed squared derivative for each feature (Figure 1-Figure Supplement 8); useful for integrating information over time without needing to further expand the feature space. The underlying mathematical concepts were motivated by Masson et al.

  within the previous 1.5 s. forward_peristaltic detected individual forward peristaltic waves based on the forward classifier and a threshold on forward tail velocity.The roll classifier was based on thresholds for body shape and velocity combined with no ball detection and was exponentially smoothed over time. If a roll was detected within the previous 1.5 s, forward, forward_peristaltic, and back classifier values were reset to reduce false-positive detection for these classifiers. Unusual behaviour patterns such as rapid bending or twitching could be observed in addition to true larval rolling. These behaviours were considered "roll-like" events during manual validation of the roll classifier's performance.Optogenetic stimulationOptogenetic stimulation was achieved using two digital micromirror devices DMDs to project light patterns onto larvae on the agarose plate. During the hardware design process, two different DMD models were tested. One contained an integrated 613 nm LED (#CEL-5500-LED, Digital Light Innovations, Austin, Texas) and the other (#CEL-5500-FIBER, Digital Light Innovations, Austin, Texas) received input from an external 625 nm LED (#BLS-GCS-0625-38-A0710, Mightex Systems, Ontario, Canada) controlled by a BioLED light source control module (#BLS-13000-1, Mightex Systems, Ontario, Canada) and fed through an optic fibre (#LLG-05-59-420-2000-1, Mightex Systems, Ontario, Canada). Both DMDs operated like a 768 x 1024 pixel monochrome red light projector with numerous rotatable micromirrors used to modulate the intensity of individual pixels. Although both achieved similar light intensities, each DMD on its own was insufficient for optogenetic stimulation of larvae. We installed both devices on the system such that their projections each covered the entire agarose plate. In this way, the summed light intensities of the two DMDs could be achieved at all locations. Accurately aiming light at crawling larvae required spatial calibration of each DMD.

  We assessed the multi-larva tracker's optogenetic and thermogenetic stimulation efficiency through open-loop experiments. The behavioural readout was rolling upon exposure to stimulation. All larval handling and experiments were performed in the dark to avoid unintended optogenetic stimulation. The one-minute experiment protocol began with a 15 s initialisation period in which larvae acclimated to the agarose plate and the roll behaviour classifier stabilised. In three subsequent 15 s stimulation cycles, larvae received 5 s of open-loop stimulation followed by 10 s without stimulation (Figure 2B, Figure

  Pref paired = #(larvae on odour side) -#(larvae on air side) #(larvae on plate) (paired dish)Pref unpaired = #(larvae on odour side) -#(larvae on air side)

Figure 1 -

 1 Figure 1-Figure supplement 1. Contour calculation on field-programmable gate array (FPGA).A simplified example is shown using a 10 x 10 pixel box containing a small object. a. The object (black) was detected against the background (white) using binary thresholding. Edge pixels were detected by combining the results of vertical and horizontal image convolution with a 2 x 1 XOR kernel using an OR operator. b. The contour points were reconstructed in an iterative process, starting with the edge pixel closest to the centre of the box. The next contour point was defined as the first neighbouring pixel that was found to be an edge pixel. Neighbouring pixels were assessed clockwise from the pixel directly above the contour point. The process ended when no eligible edge pixels could be found.
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 1 Figure 1-Figure supplement 2. Detecting head and tail. The larval contour (black outline) and head and tail (green) are shown. a. Initial detection of head and tail. The head was the contour point with the sharpest curvature. The tail was the contour point with the next-sharpest curvature which did not lie in close proximity to the head. b.The initial detection of head and tail was incorrect in some cases. False detection could be corrected by swapping head and tail, thereby minimising the distances from head and tail in the current frame (solid contour) to head and tail in the previous frame (transparent contour). c. The correction described in b failed if larvae curled up such that the contour appeared circular ("ball"). To eliminate this source of false head and tail detection, these events were detected using a ball classifier.
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 111 Figure 1-Figure supplement 3. Calculating a smooth spine and landmark points. The larval contour is shown (black outline). The spine was comprised of eleven points (black), including head and tail (green). a. The raw spine points were obtained by finding the centres between equally spaced contour points on either half of the contour as defined by head and tail. The first spine point was the head, the last spine point was the tail. b. The smooth spine was obtained by exponentially smoothing the raw spine. c. Four additional landmark points, neck_top, neck, and neck_down (blue), and the contour centroid (grey), were calculated.
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Figure 1 -

 1 Figure 1-Figure supplement 6. Velocity features. The larval contour is shown in black while head and tail are shown in green. a. crab_speed (blue) was defined as the component of neck_speed (grey) that was orthogonal to direction_vector_filtered (black). b. parallel_speed (blue)was defined as the component of neck_speed_filtered (grey) that was parallel to direction_vec-tor_filtered (black). c. parallel_speed_tail_raw (blue) was defined as the component of tail_-speed_filtered (grey) that was parallel to direction_tail_vector_filtered (black). d. tail was defined as the angle between tail_speed_filtered (grey) and direction_tail_vector_filtered (black).
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Figure 1 -Figure 1 -

 11 Figure 1-Figure supplement 7. Temporal smoothing of features. a-b. Example graphs of raw (dark blue) and filtered (mid blue) asymmetry (a) and eig_reduced (b) values over time. c-d. Example graphs of raw (dark blue), filtered (mid blue), and long-time filtered (light blue) v_norm values over a short (c) and a long (d) period of time.

Figure 3 -

 3 Figure 3-Figure supplement 1. Ddc-Gal4 expression pattern without and with tsh-Gal80 restriction. Maximum intensity projections of confocal images obtained after immunohistochemical staining. a, e; green in d and h. Targeting a green fluorescent protein (GFP) antibody to the mVenus tag of CsChrimson. b, f; red in d and h. Staining against BP104. c, g; blue in d and h. Staining against N-cadherin. a-d. Ddc-Gal4 x UAS-CsChrimson larvae. Manually counting the cell bodies in the image stacks revealed more than 200 GFP-positive neurons located in the brain, subesophageal zone (SEZ), and ventral nerve cord (VNC), including the PAM cluster dopaminergic neurons innervating the mushroom body ( = 2). This confirmed that Ddc-Gal4 drives broad expression across the central nervous system (CNS)[START_REF] Lundell | Temporal and Spatial Development of Serotonin and Dopamine Neurons in the Drosophila CNS[END_REF][START_REF] Li | Ectopic G-protein expression in dopamine and serotonin neurons blocks cocaine sensitization in Drosophila melanogaster[END_REF]. e-h. Ddc-Gal4 x UAS-CsChrimson; tsh-LexA, LexAop-Gal80 larvae. As expected, no GFP-positive neurons were found in the VNC ( = 6). Ddc-Gal4 brain and SEZ expression remained largely unaffected by GAL80, as the GFP-positive neurons in both areas that could be consistently identified in Ddc-Gal4 x UAS-CsChrimson larvae ( = 3) were also present in Ddc-Gal4 x UAS-CsChrimson; tsh-LexA, LexAop-Gal80 larvae ( = 3). a-h. Plan-Apochromat 20x objective, resolution: 592 x 800 pixels, scale bar: 100 µm. Images courtesy of the HHMI Janelia FlyLight team.
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 44 Figure 4-Figure supplement 1. Tph-Gal4 expression pattern without and with tsh-Gal80 restriction. Maximum intensity projections of confocal images obtained after immunohistochemistry. a-d. Tph-Gal4 x UAS-CsChrimson larvae, e-h. Tph-Gal4 x UAS-CsChrimson; tsh-LexA, LexAop-Gal80 larvae. a, e; green in d and h. Staining against green fluorescent protein (GFP) antibody targeting the mVenus tag of CsChrimson. b, f; red in d and h. Staining against BP104. c, g; blue in d and h. Staining against N-cadherin. a-h. Plan-Apochromat 20x objective, resolution: 592 x 800 pixels, scale bar: 100 µm. Image courtesy of the HHMI Janelia FlyLight team.

Figure 4 -

 4 Figure 4-Figure supplement 3. Paired and unpaired group data for olfactory conditioning experiments. The data shown here underlies the performance indices depicted in Figure 4B. Gal4 expression depicted as color-coded central nervous system. Preference scores for paired (light/odour, dark/air) and unpaired (dark/odour, light/air) groups are shown in red and grey, respectively.
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Table 1 .

 1 Manual quantification of behaviour detection performance.

	back (268 events from 24 larvae in 60 minutes of video data)	
	Precision	86.5%
	Recall	88.4%
	bend (714 events from 24 larvae in 60 minutes of video data)	
	Precision	95.6%
	Recall	96.4%
	Accuracy of left and right detection (true-positive bends)	97.3%
	forward (425 events from 24 larvae in 60 minutes of video data)	
	Precision	97.8%
	Recall	94.1%
	forward_peristaltic (2954 events from 24 larvae in 60 minutes of video data)
	Precision	99.5%
	Recall	93.6%
	Events which are falsely combined with another event	10.7%
	Events which are detected as more than one event	1.2%
	roll (240 events from 24 larvae in 60 minutes of video data)	
	Precision (rolls and roll-like events)	96.6%
	Recall (rolls)	86.7%
	Recall (roll-like events)	25.8%

  The tissue was then incubated in the primary antibody solution, first for four hours at room temperature and then for two nights at 4°C. This solution contained mouse anti-Neuroglian (1:50, #BP104 anti-Neuroglian, Developmental Studies Hybridoma Bank, Iowa City, Iowa), rabbit antigreen fluorescent protein (GFP) (1:500, #A11122, Life Technologies, Waltham, Massachusetts) and rat anti-N-Cadherin (1:50, #DN-Ex #8, Developmental Studies Hybridoma Bank, Iowa City, Iowa) in PBT. This solution was then removed and the tissue washed four times in PBT. The tissue was then incubated in the secondary antibody solution, first for four hours at room temperature and then Massachusetts) three times for five minutes each. Finally, the coverslips were mounted in dibutyl phthalate in xylene(DPX, #13512, Electron Microscopy Sciences, Hatfield, Pennsylvania) with the tissue facing down on a microscope slide with spacers. The DPX was allowed to dry for at least two nights prior to confocal imaging with an LSM 710 microscope (Zeiss).Details on the confocal imaging settings are provided in the respective figure captions. Confocal images were analysed using Fiji (ImageJ). Neurons were counted by specifying regions of interest around the cell bodies using raw image stacks.

	for two nights at 4°C. This solution contained Alexa Fluor 568 donkey anti-mouse (1:500, #A10037,
	Invitrogen, Waltham, Massachusetts), FITC donkey anti-rabbit (1:500, #711-095-152, Jackson Im-
	muno Research West Grove, Pennsylvania) and Alexa Fluor 647 donkey anti-rat (1:500, #712-605-
	153, Jackson Immuno Research West Grove, Pennsylvania) in PBT. After removal of the secondary
	solution, the tissue was washed in PBT four times and mounted on a coverslip coated with poly-L-
	lysine (#P1524-25MG, Sigma Aldrich, St. Louis, Missouri).
	The coverslip with the CNSs was dehydrated by moving it through a series of jars containing
	ethanol at increasing concentrations (30%, 50%, 75%, 95%, 100%, 100%, 100%) for ten minutes
	each. The tissue was then cleared by soaking the coverslip with xylene (#X5-500, Fisher Scientific,
	Waltham,
	Jenett et al. (2012) and Li et al. (2014). Larval CNSs were dissected in cold 1x
	phosphate buffer saline (PBS, Corning Cellgro, #21-040) and transferred to tubes filled with cold
	4% paraformaldehyde (Electron Microscopy Sciences, #15713-S) in 1x PBS. Tubes were incubated
	for one hour at room temperature. The tissue was then washed four times in 1x PBS with 1%
	Triton X-100 (#X100, Sigma Aldrich St. Louis, Missouri) (PBT) and incubated in 1:20 donkey serum
	(#017-000-121, Jackson Immuno Research, West Grove, Pennsylvania) in PBT for two hours at room
	temperature.
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