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algorithms in many cases, instead of easier-to-understand 
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Gillespie Algorithms for Stochastic Multiagent Dynamics 1

1 Introduction
We are compelled to understand and intervene in the dynamics of various com-
plex systems in which different elements, such as human individuals, interact
with each other. Such complex systems are often modeled by multiagent or
network-based models that explicitly dictate how each individual behaves and
influences other individuals. Stochastic processes are popular models for the
dynamics of multiagent systems when it is realistic to assume random elements
in how agents behave or in dynamical processes taking place in the system. For
example, random walks have been successfully applied to describe locomotion
and foraging of animals (Codling, Plank, & Benhamou, 2008; Okubo & Levin,
2001), dynamics of neuronal firing (Gabbiani & Cox, 2010; Tuckwell, 1988),
and financial market dynamics (Campbell, Lo, & MacKinlay, 1997; Mantegna
& Stanley, 2000) to name a few (see Masuda, Porter, and Lambiotte [2017] for
a review). Branching processes are another major type of stochastic processes
that have been applied to describe, for example, information spread (Eugster
et al., 2004; Gleeson et al., 2021), spread of infectious diseases (Britton, 2010;
Farrington, Kanaan, & Gay, 2003), cell proliferation (Jagers, 1975), and the
abundance of species in a community (McGill et al., 2007) as well as other
ecological dynamics (Black & McKane, 2012).
Stochastic processes in which the state of the system changes via discrete

events that occur at given points in time are a major class of models for dynam-
ics of complex systems (Andersson & Britton, 2000; Barrat, Barthélemy, &
Vespignani, 2008; Daley & Gani, 1999; de Arruda, Rodrigues, & Moreno,
2018; Kiss, Miller, & Simon, 2017a; Liggett, 2010; Shelton & Ciardo, 2014;
Singer & Spilerman, 1976; Van Mieghem, 2014). For example, in typical mod-
els for infectious disease spread, each infection event occurs at a given time t
such that an individual transitions instantaneously from a healthy to an infec-
tious state. Such processes are calledMarkov jump processeswhen they satisfy
certain independence conditions (Hanson, 2007), which we will briefly discuss
in Section 2.5. A jump is equivalent to a discrete event. In Markov jump pro-
cesses, jumps occur according to Poisson processes. In this volume, we focus
on how to simulate Markov jump processes. Specifically, we will introduce a
set of exact and computationally efficient simulation algorithms collectively
known as Gillespie algorithms. In the last technical section of this volume (i.e.,
Section 5), we will also consider more general, non-Markov, jump processes, in
which the events are generated in more complicated manners than by Poisson
processes. In the following text, we refer collectively toMarkov jump processes
and non-Markov jump processes as jump processes.
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2 The Structure and Dynamics of Complex Networks

The Gillespie algorithms were originally proposed in their general forms by
Daniel Gillespie in 1976 for simulating systems of chemical reactions (Gilles-
pie, 1976), whereas several specialized variants had been proposed earlier; see
Section 3.1 for a brief history review. Gillespie proposed two different variants
of the simulation algorithm, the direct method, also known as Gillespie’s sto-
chastic simulation algorithm (SSA), or often simply the Gillespie algorithm,
and the first reaction method. Both the direct and first reaction methods have
found widespread use and in fields far beyond chemical physics. Furthermore,
researchers have developed many extensions and improvements of the original
Gillespie algorithms to widen the types of processes that we can simulate with
them and to improve their computational efficiency.
The Gillespie algorithms are practical algorithms to simulate coupled Pois-

son processes exactly (i.e., without approximation error). Here “coupled”
means that an event that occurs somewhere in the system potentially influ-
ences the likelihood of future events’ occurrences in different parts of the same
system. For example, when an individual in a population, vi, gets infected by a
contagious disease, the likelihood that a different healthy individual in the same
population, vj, will get infected in the near future may increase. If interactions
were absent, it would suffice to separately consider single Poisson processes,
and simulating the system would be straightforward.
We believe that the Gillespie algorithms are important tools for students

and researchers that study dynamic social systems, where social dynamics are
broadly construed and include both human and animal interactions, ecological
systems, and even technological systems. While there already exists a large
body of references on the Gillespie algorithms and their variants, most are
concise, mathematically challenging for beginners, and focused on chemical
reaction systems.
Given these considerations, the primary aim of this volume is to provide a

detailed tutorial on the Gillespie algorithms, with specific focus on simulat-
ing dynamic social systems. We will realize the tutorial in the first part of the
Element (Sections 2 and 3). In this part, we assume basic knowledge of calcu-
lus and probability. Although we do introduce stochastic processes and explain
the Gillespie algorithms and related concepts with much reference to networks,
we do not assume prior knowledge of stochastic processes or of networks. To
understand the coding section, readers will need basic knowledge of program-
ming. The second part of this Element (Sections 4 and 5) is devoted to a survey
of recent advancements of Gillespie algorithms for simulating social dynam-
ics. These advancements are concerned with accelerating simulations and/or
increasing the realism of the models to be simulated.
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Gillespie Algorithms for Stochastic Multiagent Dynamics 3

2 Preliminaries
We review in this section mathematical concepts needed to understand the Gil-
lespie algorithms. In Sections 2.1 to 2.3, we introduce the types of models we
will be concerned with, namely jump processes, and in particular a simple type
of jump process termed Poisson processes. In Sections 2.4 to 2.6, we derive the
main mathematical properties of Poisson processes. The concepts and results
presented in Sections 2.1 to 2.6 are necessary for understanding Section 3,
where we derive the Gillespie algorithms. In Sections 2.7 and 2.8, we review
two simplemethods for solving themodels that predate theGillespie algorithms
and discuss some of their shortcomings. These two final subsections motivate
the need for exact simulation algorithms such as the Gillespie algorithms.

2.1 Jump Processes
Before getting into the nitty-gritty of the Gillespie algorithms, we first explore
which types of systems they can be used to simulate. First of all, with the Gilles-
pie algorithms, we are interested in simulating a dynamic system. This can be,
for example, epidemic dynamics in a population in which the number of infec-
tious individuals varies over time, or the evolution of the number of crimes in
a city, which also varies over time in general. Second, the Gillespie algorithms
rely on a predefined and parametrized mathematical model for the system to
simulate. Therefore, we must have the set of rules for how the system or the
individuals in it change their states. Third, Gillespie algorithms simulate sto-
chastic processes, not deterministic systems. In other words, every time one
runs the same model starting from the same initial conditions, the results will
generally differ. In contrast, in a deterministic dynamical system, if we specify
the model and the initial conditions, the behavior of the model will always be
the same. Fourth and last, the Gillespie algorithms simulate processes in which
changes in the system are primarily driven by discrete events taking place in
continuous time. For example, when a chemical reaction obeying the chemical
equation A + B→ C + D happens, one unit each of A and of B are consumed,
and one unit each of C and of D are produced. This event is discrete in that we
can count the event and say when the event happened, but it can happen at any
point in time (i.e., time is not discretized but continuous).
We refer to the class of mathematical models that satisfy these conditions and

may be simulated by a Gillespie algorithm as jump processes. In the remainder
of this section, we explore these processesmore extensively throughmotivating
examples. Then, we introduce some fundamental mathematical definitions and
results that the Gillespie algorithms rely on.
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4 The Structure and Dynamics of Complex Networks

2.2 Representing a Population as a Network
Networks are an extensively used abstraction for representing a structured
population, and Gillespie algorithms lend themselves naturally to simulate
stochastic dynamical processes taking place in networks. In a network represen-
tation, each individual in the population corresponds to a node in the network,
and edges are drawn between pairs of individuals that directly interact. What
constitutes an interaction generally depends on the context. In particular, for
the simulation of dynamic processes in the population, the interaction depends
on the nature of the process we wish to simulate. For simulating the spread
of an infectious disease, for example, a typical type of relevant interaction is
physical proximity between individuals.
Formally, we define a network as a graphG = (V,E), whereV = {1,2, . . . ,N}

is the set of nodes, E = {(u,v) : u,v ∈ V} is the set of edges, and each edge (u,v)
defines a pair of nodes u,v ∈ V that are directly connected. The pairs (u,v)may
be ordered, in which case edges are directed (by convention from u to v), or
unordered, in which case edges are undirected (i.e., v connects to u if and only
if u connects to v). We may also add weights to the edges to represent different
strengths of interactions, or we may even consider graphs that evolve in time
(so-called temporal networks) to account for the dynamics of interactions in a
population.
We will primarily consider simple (i.e., static, undirected, and unweighted)

networks in our examples. However, the Gillespie algorithms apply to simu-
lated jump processes in all kinds of populations and networks. (For temporal
networks, we need to extend the classic Gillespie algorithms to cope with the
time-varying network structure; see Section 5.4.)

2.3 Example: Stochastic SIR Model in Continuous Time
We introduce jump processes and explore their mathematical properties by
way of a running example. We show how we can use them to model epi-
demic dynamics using the stochastic susceptible-infectious-recovered (SIR)
model.1 For more examples (namely, SIR epidemic dynamics in metapopula-
tion networks, the voter model, and the Lotka–Volterramodel for predator–prey
dynamics), see Section 3.4.
We examine a stochastic version of the SIRmodel in continuous time defined

as follows. We consider a constant population of N individuals (nodes). At
any time, each individual is in one of three states: susceptible (denoted by S;

1 The SIR model was incidentally one of the first applications of a Gillespie-type algorithm in a
1953 article (Bartlett, 1953).
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Gillespie Algorithms for Stochastic Multiagent Dynamics 5

susceptible (S)

infectious (I)

recovered (R)

infection recovery

µ

Figure 1 Rules of state changes in the SIR model. An infectious individual
infects a susceptible neighbor at a rate β. Each infectious individual recovers

at a rate µ.

meaning healthy), infectious (denoted by I), or recovered (denoted by R). The
rules governing how individuals change their states are shown schematically in
Fig. 1. An infectious individual that is in contact with a susceptible individual
infects the susceptible individual in a stochastic manner with a constant infec-
tion rate β. Independently of the infection events, an infectious individual may
recover at any point in time, with a constant recovery rate µ. If an infection
event occurs, the susceptible individual that has been infected changes its state
to I. If an infectious individual recovers, it transits from the I state to the R
state. Nobody leaves or joins the population over the course of the dynamics.
After reaching the R state, an individual cannot be reinfected or infect oth-
ers again. Therefore, R individuals do not influence the increase or decrease
in the number of S or I individuals. Because R individuals are as if they no
longer exist in the system, the R state is mathematically equivalent to having
died of the infection; once dead, an individual will not be reinfected or infect
others.
We typically start the stochastic SIR dynamics with a single infectious indi-

vidual, which we refer to as the source or seed, and NS = N − 1 susceptible
individuals (and thus no recovered individuals). Then, various infection and
recovery events may occur. The dynamics stop when no infectious individuals
are left. In this final situation, the population is composed entirely of suscepti-
ble and/or recovered individuals. Since both infection and recovery involve an
infectious individual, and there are no infectious individuals left, the dynam-
ics are stuck. The final number of recovered nodes, denoted by NR, is called
the epidemic size, also known as the final epidemic size or simply the final
size.2 The epidemic size tends to increase as the infection rate β increases or
as the recovery rate µ decreases. Many other measures to quantify the behav-
ior of the SIR model exist (Pastor-Satorras et al., 2015). For example, we
may be interested in the time until the dynamics terminate or in the speed at
which the number of infectious individuals grows in the initial stage of the
dynamics.

2 The fraction NR/N is typically also referred to as the epidemic size.
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6 The Structure and Dynamics of Complex Networks

2

2µ

µ

0

v1 v2 v3

v4 v5 v6

susceptible (S)

infectious (I)

recovered (R)

(a) (b)

0

µ

0

v1 v2 v3

v4 v5 v6

Figure 2 Stochastic SIR process on a square-grid network with six nodes. (a)
Status of the network at an arbitrary time t. (b) Status of the network after v4
has recovered. The values attached to the nodes indicate the rates of the

events that the nodes may experience next.

Consider Fig. 2(a), where individuals are connected as a network. We gener-
ally assume that infection may only occur between pairs of individuals that are
directly connected by an edge (called adjacent nodes). For example, the node
v4 can infect v1 and v5 but not v3. The network version of the SIR model is fully
described by the infection rate β, the recovery rate µ, the network structure, that
is, which node pairs are connected by an edge, and the choice of source node
to initialize the dynamics.
Mathematically, we describe the system by a set of coupled, constant-rate

jump processes; constant-rate jump processes are known as Poisson processes
(Box 1). Each possible event that may happen is associated to a Poisson proc-
ess, that is, the recovery of each infectious individual is described by a Poisson
process, and so is each pair of infectious and susceptible individuals where
the former may infect the latter. The Poisson processes are coupled because
an event generated by one process may alter the other processes by changing
their rates, generating new Poisson processes, or making existing ones disap-
pear. For example, after a node gets infected, it may in turn infect any of its
susceptible neighbors, which we represent mathematically by adding new Pois-
son processes. This coupling implies that the set of coupled Poisson processes
generally constitutes a process that is more complicated than a single Poisson
process.
In the following subsections we develop the main mathematical properties

of Poisson processes and of sets of Poisson processes. We will rely on these
properties in Section 3 to construct the Gillespie algorithms that can simu-
late systems of coupled Poisson processes exactly. Note that the restriction
to Poisson (i.e., constant-rate) processes is essential for the classic Gillespie
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Gillespie Algorithms for Stochastic Multiagent Dynamics 7

algorithms to work; see Section 5 for recent extensions to the simulation of
non-Poissonian processes.

Box 1 Properties of Poisson Processes
A Poisson process is a jump process that generates events with a constant
rate, λ.

Waiting-Time Distribution

The waiting times τ between consecutive events generated by a Pois-
son process are exponentially distributed. In other words, τ obeys the
probability density

ψ(τ) = λe−λτ . (2.1)

Memoryless Property

The waiting time left until a Poisson process generates an event given that a
time t has already elapsed since the last event is independent of t. This prop-
erty is called the memoryless property of Poisson processes and is shown
as follows:

ψ(t + τ |t) = ψ(t + τ)
Ψ(t) =

λe−λ(t+τ)

e−λt
= λe−λτ, (2.2)

where ψ(t+ τ |t) represents the conditional probability density that the next
event occurs a time t + τ after the last event given that time t has already
elapsed; Ψ(t) =

∫ ∞
t ψ(τ)dτ = e−λt is called the survival probability and is

the probability that no event takes place for a time t. The first equality in
Eq. (2.2) follows from the definition of the conditional probability. The
second equality follows from Eq. (2.1).

Superposition Theorem

Consider a set of Poisson processes indexed by i ∈ {1,2, . . . ,M}. The
superposition of the processes is a jump process that generates an event
whenever any of the individual processes does. It is another Poisson process
whose rate is given by

Λ =

M∑
i=1

λi, (2.3)

where λi is the rate of the ith Poisson process.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
23

91
58

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009239158


8 The Structure and Dynamics of Complex Networks

Box 1 (Continued)
Probability of a Given Process Generating an Event in a Superposition of

Poisson Processes

Consider any given event generated by a superposition of Poisson pro-
cesses. The probability Πi that the ith individual Poisson process has
generated this event is proportional to the rate of the ith process. In other
words,

Πi = λi/Λ. (2.4)

2.4 Waiting-Time Distribution for a Poisson Process
We derive in this subsection thewaiting-time distribution for a Poisson process,
which characterizes how long one has to wait for the process to generate an
event. It is often easiest to start from a discrete-time description when exploring
properties of a continuous-time stochastic process. Therefore, we will follow
this approach here. We use the recovery of a single node in the SIR model as
an example in our development.
Let us partition time into short intervals of length δt. As δt goes to zero, this

becomes an exact description of the continuous-time process. An infectious
individual recovers with probability µδt after each interval given that it has not
recovered before.3

Formally, we define the SIR process in the limit δt → 0. Then, you might
worry that the recovery event is unlikely to ever take place because the proba-
bility with which it happens during each time-step, that is, µδt, goes toward 0
when the step size δt does so. However, this is not the case; because the number
of time-steps in any given finite interval grows inversely proportional to δt, the
probability to recover in finite time stays finite. For example, if we use a differ-
ent step size δt = δt/10, which is ten times smaller than the original δt, then the
probability of recovery within the short duration of time δt is indeed 10 times
smaller than µδt (i.e., = µδt). However, there are δt/δt = 10 windows of size
δt in one time window of size δt. So, we now have 10 chances for recovery to
happen instead of only one chance. The probability for recovery to occur in any
of these 10 time windows is equal to one minus the probability that it does not
occur. The probability that the individual does not recover in time δt is equal

3 To address a common misunderstanding, we emphasize that µ is a rate, not a probability, and
thus can be larger than one. Note, however, that µδt is a probability and thus cannot be greater
than one.
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Gillespie Algorithms for Stochastic Multiagent Dynamics 9

to (1 − µδt)δt/δt. Therefore, the probability that the individual recovers in any
of the δt/δt windows is

pI→R = 1 − (1 − µδt)δt/δt. (2.5)

Equation (2.5) does not vanish as we make δt small. In fact, the Taylor expan-
sion of Eq. (2.5) in terms of δt yields pI→R ≈ (δt/δt) × µδt = µδt, where ≈
represents “approximately equal to”. Therefore, to leading order, the recovery
probabilities are the same between the case of a single time window of size δt
and the case of δt/δt time windows of size δt.
In the limit δt → 0, the recovery event may happen at any continuous point

in time. We denote by τ the waiting time from the present time until the time
of the recovery event. We want to determine the probability density function
(probability density or pdf for short) of τ, which we denote by ψI→R(τ). By
definition, ψI→R(τ)δt is equal to the probability that the recovery event happens
in the interval [τ, τ + δt) for an infinitesimal δt (i.e., for δt → 0). To calculate
ψI→R(τ), we note that the probability that the event occurs after r = τ/δt time
windows, denoted by pI→R(r), is equal to the probability that it did not occur
during the first r time windows and then occurs in the (r + 1)th window. This
probability is equal to

pI→R(r) = (1 − µδt)r × µδt = (1 − µδt)τ/δtµδt. (2.6)

The first factor on the right-hand side of Eq. (2.6) is the probability that the
event has not happened before the (r + 1)th window; it is simply equal to the
probability that the event has not happened during a single window, raised to
the power of r. The second factor is the probability that the event happens in
the (r + 1)th window. By applying the identity limx→0(1 + x)1/x = e, known
from calculus (see Appendix), with x = −µδt to Eq. (2.6), we obtain the pdf of
the waiting time as follows:

ψI→R(τ) = lim
δt→0

pI→R(τ/δt)
δt

= µ lim
δt→0

(1 − µδt)τ/δt

= µ

[
lim
δt→0

(1 − µδt)1/(−µδt)
]−µτ

= µe−µτ . (2.7)

Equation (2.7) shows the intricate connection between the Poisson process and
the exponential distribution: the waiting time of a Poisson process with rate µ
(here, specifically the recovery rate) follows an exponential distribution with
rate µ (Box 1). This fact implies that the mean time we have to wait for the
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10 The Structure and Dynamics of Complex Networks

recovery event to happen is 1/µ. The exponential waiting-time distribution
actually completely characterizes the Poisson process. In other words, the Pois-
son process is the only jump process that generates events separated by waiting
times that follow a fixed exponential distribution.
If we consider the infection process between a pair of S and I nodes in

complete isolation from the other infection and recovery processes in the pop-
ulation, then exactly the same argument (Eq. (2.7)) holds true. In other words,
the time until infection takes place between the two nodes is exponentially
distributed with rate β, that is,

ψS→I(τ) = βe−βτ . (2.8)

However, in practice the infection process is more complicated than the recov-
ery process because it is coupled to other processes. Specifically, if another
process generates an event before the infection process does, then Eq. (2.8)
may no longer hold true for the infection process in question. For example,
consider a node v1 that is currently susceptible and an adjacent node v2 that
is infectious, as in Fig. 2. For this pair of nodes, two events are possible: v2
may infect v1, or v2 may recover. As long as neither of the events has yet taken
place, either of the two corresponding Poisson processes may generate an event
at any point in time, following Eqs. (2.8) and (2.7), respectively. However, if
v2 recovers before it infects v1, then the infection event is no longer possible,
and so Eq. (2.8) no longer holds. We explore in the following two subsections
how to mathematically deal with this coupling.

2.5 Independence and Interdependence of Jump Processes
Most models based on jump processes and most simulation methods, includ-
ing the Gillespie algorithms, implicitly assume that different concurrent jump
processes are independent of each other in the sense that the internal state of
one process does not influence another. This notion of independence may be
a source of confusion because a given process may depend on the events gen-
erated earlier by other processes, that is, the processes may be coupled, as we
saw is the case for the infection processes in the SIR model. In this section, we
sort out the notions of independence and coupling and what they mean for the
types of jump processes we want to simulate. We will also explore another type
of independence of Poisson processes, which is their independence of the past,
called the memoryless property.
We can state the independence assumption as the condition that different

processes are only allowed to influence each other by changing the state of the
system. In other words, at any point in time each process generates an event
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Gillespie Algorithms for Stochastic Multiagent Dynamics 11

at a rate that is independent of all other processes given the current state of
the system, that is, the processes are conditionally independent. For example,
the rate at which v2 infects v1 in Fig. 2(a) depends on v2 being infectious and
v1 being susceptible (corresponding to the system’s current state). However, it
does not depend on any internal state of v2’s recovery process such as the time
left until v2 recovers. Given the states of all nodes, the two processes are inde-
pendent. Poisson processes are always conditionally independent in this sense.
The conditional independence property follows directly from the fact that Pois-
son processes have constant rates by definition and thus are not influenced
by other processes. The conditional independence is essential for the Gilles-
pie algorithms to work. Even the recent extensions of the Gillespie algorithms
to simulate non-Poissonian processes, which we review in Section 5, rely on
an assumption of conditional independence between the jump processes.
We underline that the assumption of conditional independence does not

imply that the different jump processes are not coupled with each other. Such
uncoupled processes would indeed be boring. If the jump processes constitut-
ing a given system were all uncoupled, then they would not be able to generate
any collective dynamics. On the technical side, there would in this case be no
reason to consider the set of processes as one system. It would suffice to analyze
each process separately. We would in particular have no need for the special-
ized machinery of the Gillespie algorithms since we could simply simulate
each process by sampling waiting times from the corresponding exponential
distribution (Box 1, Eq. (2.1)).
In fact, the conditional independence assumption allows different processes

to be coupled, as long as they only do so by changing the physical state of the
system. This is a natural constraint in many systems. For example, in chemical
reaction systems, the processes (that is, chemical reactions) are coupled through
discrete reaction events that use molecules of some chemical species to gener-
ate others. Similarly, in the SIR model different processes influence each other
by changing the state of the nodes, that is, from S to I in an infection event or
from I to R in a recovery event. In the example shown in Fig. 2, when node v4
recovers, it decreases the probability that its neighboring susceptible node v1
gets infected within a certain time horizon compared with the scenario where v4
remains infectious. As this example suggests, the probability that a susceptible
node gets infected depends on the past states of its neighbors. Therefore, over
the course of the entire simulation, the dynamics of a node’s state (e.g., v1) are
dependent on those of its neighbors (e.g., v2 and v4).
Because of the coupling between jump processes, which is present in most

systems of interest, we cannot simply simulate the system by separately gen-
erating the waiting times for each process according to Eq. (2.1). Any event
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12 The Structure and Dynamics of Complex Networks

that occurs will alter the processes to which it is coupled, thus rendering the
waiting times we drew for the affected processes invalid. What the Gillespie
algorithms do instead is to successively generate the waiting time until the next
event, update the state of the system, and reiterate.
Besides being conditionally independent of each other, Poisson processes

also display a temporal independence property, the so-calledmemoryless prop-
erty (Box 1). In Poisson processes, the probability of the time to the next event,
τ, is independent of how long we have already waited since the last event.
In this sense, we do not need to worry about what has happened in the past.
The only things that matter are the present status of the population (such as v1
is susceptible and v2 is infectious right now) and the model parameters (such
as β and µ). The memoryless property can be seen as a direct consequence
of the exponential distribution of waiting times of Poisson processes (Box 1,
Eq.(2.2)).

2.6 Superposition of Poisson Processes
In this section, we explain a remarkable property of Poisson processes called the
superposition theorem. The direct method exploits this theorem. Other meth-
ods, such as the rejection sampling algorithm (see Section 2.8) and the first
reaction method, can also benefit from the superposition theorem to accelerate
the simulations without impacting their accuracy.
Consider a susceptible individual vi in the SIR model that is in contact with

NI infectious individuals. Any of the NI infectious individuals may infect vi.
Consider the case shown in Fig. 3(a), where NI = 3. If we focus on a sin-
gle edge connecting vi to one of its neighbors and ignore the other neighbors,
the probability that vi is infected via this edge exactly in time [τ, τ + δt) from
now, where δt is small, is given by ψS→I(τ)δt (see Eq. (2.8)). Each of vi’s NI

neighbors may infect vi in the same manner and independently. The neighbor
that does infect vi is the one for which the corresponding waiting time is the
shortest, provided that it does not recover before it infects vi. From this we can
intuitively see that the larger NI is, the shorter the waiting time before vi gets
infected tends to be. To simulate the dynamics of this small system, we need to
know, not when each of its neighbors would infect vi, but rather the time until
any of its neighbors infects vi.
To calculate the waiting-time distribution for the infection of vi by any of its

neighbors, we again resort to the discrete-time view of the infection processes.
Because the infection processes are independent, the probability that vi is not
infected by any of its NI infectious neighbors in a time window of duration δt
is given by

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
23

91
58

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009239158


Gillespie Algorithms for Stochastic Multiagent Dynamics 13

(1 − βδt)NI . (2.9)

Therefore, the probability that vi is infected after a time τ = rδt (i.e., vi gets
infected exactly in the (r + 1)th time window of length δt and not before) is
given by

pI→R =
[
(1 − βδt)NI

] r × [
1 − (1 − βδt)NI

]
. (2.10)

Here, the factor
[
(1 − βδt)NI

] r is the survival probability that an infection does
not happen for a time τ = rδt. The factor

[
1 − (1 − βδt)NI

]
is the probability

that any of vi’s infectious neighbors infects vi in the next time window, t ∈
[τ, τ + δt).
Using the exponential identity limx→0(1+ x)1/x = e with x = −βδt as we did

in Section 2.4, we obtain in the continuous-time limit that

lim
δt→0

[
(1 − βδt)NI

] r
= lim

δt→0

[
(1 − βδt)1/(−βδt)

]−NIβτ
= e−N1βτ, (2.11)

where the first equality is obtained by noting that r = τ/δt and rearranging the
terms. In the same limit of δt → 0, we obtain from Taylor expansion that[

1 − (1 − βδt)NI
]
≈ 1 − (1 − NIβδt) = NIβδt. (2.12)

By combining Eqs. (2.10), (2.11), and (2.12), we obtain pI→R ≈ NIβe−NIβτδt.
Therefore, the probability density with which vi gets infected at time τ is given
by

ψI→R(τ) = NIβe−NIβτ, (2.13)

that is, the exponential distribution with rate parameter NIβ. By comparing
Eqs. (2.8) and (2.13), we see that the effect of having NI infectious neighbors
(see Fig. 3(a) for the case of NI = 3) is the same as that of having just one
infectious neighbor with an infection rate of NIβ.
This is a convenient property of Poisson processes, known as the superposi-

tion theorem (see Box 1, Eq. (2.3) for the general theorem). To calculate how
likely it is that a susceptible node vi will be infected in time τ, one does not need
to examine when the infection would happen or whether the infection happens
for each of the infectious individuals contacting vi. We are allowed to agglom-
erate all those effects into one infectious supernode as if the supernode infects
vi with rate NIβ. We refer to such a superposed Poisson process that induces a
particular state transition in the system (in the present case, the transition from
the S to the I state for vi) as a reaction channel, following the nomenclature in
chemical reaction systems.
This interpretation remains valid even if vi is adjacent to other irrelevant indi-

viduals. In the network shown in Fig. 3(b), the susceptible node vi has degree
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14 The Structure and Dynamics of Complex Networks

vi

(a) (b)

vi
susceptible (S)

infectious (I)

recovered (R)

Figure 3 A susceptible node and other nodes surrounding it. (a) A
susceptible node vi surrounded by three infectious nodes. (b) A susceptible

node vi surrounded by five nodes in different states.

(i.e., number of other nodes that are connected to i by an edge) ki = 5. Three
neighbors of vi are infectious, one is susceptible, and one is recovered. In this
case, vi will be infected at a rate of 3β, the same as in the case of vi in the
network shown in Fig. 3(a).
In both cases, we are replacing three instances of the probability density of

the time to the next infection event, each given by βe−βτ , by a single probabil-
ity density 3βe−3βτ . Representing the three infectious nodes by one infectious
supernode, that is, one reaction channel, with three times the infection rate is
equivalent to superposing the three Poisson processes into one. Figure 4 illus-
trates this superposition, showing the putative event times generated by each
Poisson process as well as those generated by their superposition. The superpo-
sition theorem dictates that the superposition is a Poisson process with a rate of
3β. This in particular means that we can draw the waiting time τ until the first
of the events generated by all the three Poisson processes happens (shown by
the double-headed arrow in Fig. 4) directly from the exponential distribution
ψ(τ) = 3βe−3βτ . Note that Poisson processes are defined as generating events
indefinitely, and for illustrative purposes we show multiple events in Figure 4.
However, in the SIR model only the first event in the superposed process will
take place in practice. For example, once the event changes the state of vi from
S to I, the node cannot be infected anymore, and therefore none of the three
infection processes can generate any more events.
Let us consider again the snapshot of the SIR dynamics shown in Fig. 3(a),

but this time we consider all the possible infection and recovery events. We can
represent all the possible events that may occur by four reaction channels (i.e.,
Poisson processes). One channel represents the infection of the node vi by any
of its neighbors, which happens at a rate 3β. We refer to this reaction channel as
the first reaction channel. The three other channels each represent the recovery
process of one of the infectious nodes. We refer to these three reaction channels
as the second to the fourth reaction channels. We can use the same approach
as above to obtain the probability density for the waiting time until the first
event generated by any of the channels. However, to completely describe the
dynamics, it is not sufficient to know when the next event happens. We also
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time

rate = 

rate = 

rate = 

rate = 3

current 
time

vj

vj′

vj′′

vi

vi

vi

vi

superposition

Figure 4 Superposition of three Poisson processes. The event sequence in the
bottom is the superposition of the three event sequences corresponding to
each of the three edges connecting vi to its neighbors vj, vj′ , and vj′′ . The
superposed event sequence generates an event whenever one of the three
individual processes does. Note that edges (vi, vj), (vi, vj′), and (vi, vj′′)

generally carry different numbers of events in a given time window despite
the rate of the processes (i.e., the infection rate, β) being the same. This is due

to the stochastic nature of Poisson processes.

need to know which channel generates the event. Precisely speaking, we need
to know the probability Πi that it is the ith reaction channel that generates the
event. Using the definition of conditional probability, we obtain

Πi =
{probability that an event in the ith reaction channel occurs}

{probability that an event in any reaction channel j ∈ {1,2,3,4} occurs} .

(2.14)

In a discrete-time description, the numerator in Eq. (2.14) is simply λiδt, where
λ1 = 3β and λ2 = λ3 = λ4 = µ are the rates of the reaction channels. The
denominator is equal to 1 − ∏4

j=1(1 − λjδt), which in the limit of small δt can
be Taylor expanded to

∑4
j=1 λjδt = 3(β+ µ)δt. Thus, the probability that the ith

reaction channel has generated an event that has taken place is

Πi =
λi∑4
j=1 λj

, (2.15)

that is, Πi is simply proportional to the rate λi.
The same result holds true for general superpositions of Poisson processes

(see Box 1).

2.7 Ignoring Stochasticity: Differential Equation Approach
We have introduced the types of models we are interested in and have explored
their basic mathematical properties. We now turn our attention to the prob-
lem of how we can solve such models in practice. We consider again the SIR
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16 The Structure and Dynamics of Complex Networks

model. One simple strategy to solve it is to forget about the true stochastic
nature of infection and recovery and approximate the processes as being deter-
ministic. In this approach, we only track the dynamics of the mean numbers of
susceptible, infectious, and recovered individuals. Such deterministic dynam-
ics are described by a system of ordinary differential equations (ODEs). The
ODE version of the SIR model has a longer history than the stochastic one, dat-
ing back to the seminal work by William Ogilvy Kermack and Anderson Gray
McKendrick in the 1920s (Kermack & McKendrick, 1927). For the basic SIR
model described previously, the corresponding ODEs are given by

dρS
dt
= − βρSρI, (2.16)

dρI
dt
= βρSρI − µρI, (2.17)

dρR
dt
= µρI, (2.18)

where ρS = NS/N, ρI = NI/N, and ρR = NR/N are the fractions of S, I, and
R individuals, respectively. The βρSρI terms in Eqs. (2.16) and (2.17) repre-
sent infection events, through which the number of S individuals decreases and
the number of I individuals increases by the same amount. The µρI terms in
Eqs. (2.17) and (2.18) represent recovery events.
One can solve Eqs. (2.16), (2.17), and (2.18) either analytically, to some

extent, or numerically using an ODE solver implemented in various program-
ming languages. Suppose that we have coded up Eqs. (2.16), (2.17), and (2.18)
into an ODE solver to simulate the infection dynamics (such as time courses of
ρI) for various values of β and µ. Does the result give us complete understand-
ing of the original stochastic SIR model? The answer is negative (Mollison,
Isham, & Grenfell, 1994), at least for the following reasons.
First, the ODE is not a good approximation when N is small. In Eqs. (2.16),

(2.17), and (2.18), the variables are the fraction of individuals in each state.
For example, ρI = NI/N. The ODE description assumes that ρI can take any
real value between 0 and 1 and that ρI changes continuously as time goes by.
However, in reality ρI is quantized, so it can take only the values 0, 1/N, 2/N,
. . . (N − 1)/N, and 1, and it changes in steps of 1/N (e.g., it changes from 3/N
to 4/N discontinuously). This discrete nature does not typically cause serious
problems when N is large, in which case ρ I is close to being continuous. By
contrast, the ODEmodel is not accurate whenN is small due to the quantization
effect. (Note that the ODE approach is problematic in some cases even when
N is large, i.e. near critical points, as we discuss in what follows.)
Second, even ifN is large, the actual dynamic changes in ρI, for example, are

not close to what the ODEs describe when the number of infectious individuals

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
23

91
58

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009239158


Gillespie Algorithms for Stochastic Multiagent Dynamics 17

is small. For example, if ρI = 2/N, there are two infectious individuals. If one
of them recovers, ρI changes to 1/N, and this is a 50 percent decrease in ρI. The
ODE assumes that ρ I changes continuously and is not ready to describe such
a change. As another example, suppose that we initially set ρS = (N − 1)/N,
ρI = 1/N, and ρR = 0. In other words, there is a single infectious seed, and
all the other individuals are initially susceptible. In fact, the theory of the ODE
version of the SIR model shows that ρI increases deterministically, at least ini-
tially, if β > µ, corresponding to the situation in which an outbreak of infection
happens. However, in the stochastic SIR model, the only initially infectious
individual may recover before it infects anybody even if β > µ. When this
situation occurs, the dynamics terminate once the initially infectious individ-
ual has recovered, and no outbreak is observed. Although the probability with
which this situation occurs decreases as β/µ increases, it is still not negligibly
small for many large β/µ values. This is inconsistent with the prediction of the
ODE model. It should be noted that another common way to initialize the sys-
tem is to start with a small fraction of infectious individuals, regardless of N. In
this case, if we start the stochastic SIR dynamics in a large, well-mixed popula-
tion and, for example, with 10 percent initially infectious individuals, the ODE
version is sufficiently accurate at describing the stochastic SIR dynamics.
Third, ODEs are not accurate at describing the counterpart stochastic dynam-

ics when the system is close to a so-called critical point. For example, in the
SIR model, given the value of the infection rate (i.e., µ), there is a value of
the infection rate called the epidemic threshold, which we denote by βc. For
β < βc, only a small number of the individuals will be infected (i.e., the final
epidemic size is ofO(1)). For β > βc, the final epidemic size is large (i.e.,O(N))
with a positive probability. In analogy with statistical physics, βc is termed a
critical point of the SIR model. Near criticality the fluctuations of ρS, ρI, and
ρR are not negligible compared to their mean values, even for large N, and the
ODE generally fails.
Fourth, ODEs are not accurate when dynamics are mainly driven by stochas-

ticity rather than by the deterministic terms on the right-hand sides of the ODEs.
This situation may happen even far from criticality or in a model that does
not show critical dynamics. The voter model (see Section 4.10.3 for details)
is such a case. In its simplest version, the voter model describes the tug-
of-war between two equally strong opinions in a population of individuals.
Because the two opinions are equally strong, the ODE version of the voter
model predicts that the fraction of individuals supporting opinion A (and that of
individuals supporting opinion B) does not vary over time, that is, one obtains
dρA/dt = dρB/dt = 0, where ρA and ρB are the fractions of individuals sup-
porting opinions A and B, respectively. However, in fact, the opinion of the
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18 The Structure and Dynamics of Complex Networks

individuals flips here and there in the population due to stochasticity, and it
either increases or decreases over time.
To summarize, when stochasticity manifests itself, the approximation of the

original stochastic dynamics by an ODE model is not accurate.

2.8 Rejection Sampling Algorithm
Themost intuitive method to simulate the stochastic SIRmodel, while account-
ing for the stochastic nature of the model, is probably to discretize time and
simulate the dynamics by testing whether each possible event takes place in
each step. This is called the rejection sampling algorithm. Let us consider the
stochastic SIR model on a small network composed of N = 6 nodes, as shown
in Fig. 2, to explain the procedure.
Assume that the state of the network (i.e., the states of the individual nodes) is

as shown in Fig. 2(a) at time t; three nodes are susceptible, two nodes are infec-
tious, and the other node is recovered. In the next time-step, which accounts for
a time length of ∆t and corresponds to the time interval [t, t + ∆t), an infection
event may happen in five ways: v2 infects v1, v2 infects v3, v2 infects v5, v4
infects v1, and v4 infects v5. Recovery events may happen for v2 and v4. There-
fore, there are seven possible events in total, some ofwhichmay simultaneously
happen in the next time-step.
With the rejection sampling method, we sequentially (called asynchronous

updating) or simultaneously (called synchronous updating) check whether or
not each of these events happens in each time-step of length ∆t. Note that it is
not possible to go to the limit of ∆t → 0 in rejection sampling. In our example,
v2 infects v1 with probability β∆t in a time-step. With probability 1 − β∆t,
nothing occurs along this edge. In practice, to determine whether the event
takes place or not, we draw a random number u uniformly from [0,1). If u ≥
β∆t, the algorithm rejects the proposed infection event (thus the name rejection
sampling). If u < β∆t, we let the infection occur. Then, under asynchronous
updating, we change the state of v1 from S to I and update the set of possible
events accordingly right away, and then proceed to check the occurrence of
each of the remaining possible events in turn. Under synchronous updating,
we first check whether each of the possible state changes takes place and note
down the changes that take place. We then implement all the noted changes
simultaneously. Regardless of whether we use asynchronous or synchronous
updating, the infection event occurs with probability β∆t.
If v4 recovers, which occurs with probability µ∆t, and none of the other six

possible events occurs in the same time-step, the status of the network at time
t+∆t is as shown in Fig. 2(b). Then, in the next time-step, v1 may get infected, v2
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may recover, v3 may get infected, and v5 may get infected, which occurs with
probabilities β∆t, µ∆t, β∆t, and β∆t, respectively. In this manner, we carry
forward the simulation by discrete steps until no infectious nodes are left.
There are several caveats to this approach. First, the asynchronous and the

synchronous updating schemes of the same stochastic dynamics model may
lead to systematically different results (Cornforth, Green, &Newth, 2005; Greil
& Drossel, 2005; Huberman & Glance, 1993).
Second, one should set ∆t such that both β∆t < 1 and µ∆t < 1 always hold

true. In fact, the discrete-time interpretation of the original model is justified
only when ∆t is small enough to yield β∆t ≪ 1 and µ∆t ≪ 1.
Third, in the case of asynchronous updating, the order of checking the events

is arbitrary, but it affects the outcome, particularly if∆t is not tiny. For example,
we can sequentially check whether each of the five infection events occurs and
then whether each of the two recovery events occurs, completing one time-
step, One can alternatively check the recovery events first and then the infection
events. If we do so and v4 recovers in the time-step, then it is no longer possible
that v4 infects v1 or v5 in the same time-step because v4 has recovered. If the
infection events were checked before the recovery events, it is possible that v4
infects v1 or v5 before v4 recovers in the same time-step.
Fourth, some of the seven types of event cannot occur simultaneously in a

single time-step regardless of whether the updating is asynchronous or syn-
chronous, and regardless of the order in which we check the events in the
asynchronous updating. For example, if v2 has infected v1, then v4 cannot infect
v1 in the same time-step (or anytime later) and vice versa. In fact, from the
susceptible node v1’s point of view, it does not matter which infectious neigh-
bor, either v2 or v4, infects v1. What is primarily important is whether v1 gets
infected or not in the given time-step, whereas one wants to know who infected
whom in some tasks such as contact tracing.
A useful method to mitigate the effect of overlapping events of this type is

to take a node-centric view. The superposition theorem implies that v1 will get
infected according to a Poisson process with rate 2β because it has two infec-
tious neighbors (Section 2.6). By exploiting this observation, let us redefine the
list of possible events at time t. The node v1 will get infected with probability
2β∆t (and will not get infected with probability 1−2β∆t). Nodes v3 and v5 will
get infected with probabilities β∆t and 2β∆t, respectively. As before, v2 and v4
recover with probability µ∆t each. In this manner, we have reduced the number
of possible events from seven to five. We are usually interested in simulating
such stochastic processes in much larger networks or populations, where nodes
tend to have a degree larger than in the network shown in Fig. 2. For example,
if a node vi has 50 infectious neighbors, implementing the rejection sampling
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20 The Structure and Dynamics of Complex Networks

using the probability that vi gets infected, 50β∆t, rather than checking if vi gets
infected with probability β∆t along each edge that vi has with an infectious
neighbor, will confer a fiftyfold speedup of the algorithm.
Rejection sampling is a widely used method, particularly in research com-

munities where continuous-time stochastic process thinking does not prevail.
In a related vein, many people are confused by being told that the infection
and recovery rates β and µ can exceed 1. They are accustomed to think in dis-
crete time such that they are not trained to distinguish between the rate and
probability. They are different; simply put, the rate is for continuous time, and
the probability is for discrete time. Here we advocate that we should not use
the discrete-time versions in general, despite their simplicity and their appeal
to our intuition, for the following reasons (see Gómez, Gómez-Gardeñes,
Moreno, and Arenas [2011] and Fennell, Melnik, and Gleeson [2016] for
similar arguments).
First, the use of a small ∆t, which is necessary to assure an accurate

approximation of the actual continuous-time stochastic process, implies a large
computation time. If the duration of time that one run of simulation needs is T,
one needs n = T/∆t discrete time-steps, which is large when ∆t is small. How
small should∆t be? It is difficult to say. If you run simulations with a choice of a
small ∆t and calculate statistics of your interest or draw a figure for your report
or paper, a good practice is to try the same thing after halving ∆t. If the results
do not noticeably change, then your original choice of ∆t is probably small
enough for your purpose. Otherwise, you need to make ∆t smaller. It takes time
to carry out such a check just to determine an appropriate∆t value.Many people
skip it. The Gillespie algorithms do not rely on a discrete-time approximation
and are also typically faster than rejection sampling with a reasonably small ∆t
value.
Second, no matter how small ∆t is, the results of rejection sampling are only

approximate. This is because it is exact only in the limit ∆t → 0. By contrast,
the Gillespie algorithms are always exact.
Proponents of the rejection sampling method may say that they want to

define the model (such as the SIR model) in discrete time and run it rather
than to consider the continuous-time version of the model and worry about
the choice of ∆t or the accuracy of the rejection sampling. We recommend
against this as well. In the SIR model in discrete time, any infectious individ-
ual vi infects a neighboring susceptible individual vj with probability β′, and
each infectious individual recovers with probability µ′. Then, there are at least
two problems related to this. First, the order of the events affects dynamics
in the case of asynchronous updating. Second, and more importantly, we do
not know how to change the time resolution of the simulation when we need
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to. For example, if one simulation step currently corresponds to one hour, one
may want to now simulate the same model with some more temporal detail
such that one step corresponds to ten minutes. Because the physical time is
now one sixth of the original one, should we multiply β′ and µ′ by 1/6 and do
the same simulations? The answer is no. If the original time-step corresponds to
∆t = 1, which is often implicit, then the probability that an infectious individ-
ual recovers in the continuous-time stochastic SIR model within time ∆t(= 1)
is 1 − e−µ∆t = 1 − e−µ, which we equate with µ′. Then, if we scale the time c
times (e.g., c = 1/6), the probability that the recovery occurs in a new single
time-step is 1− e−µc∆t = 1− e−cµ, which is not equal to cµ′. For example, with
µ = 1 and c = 1/6, one obtains 1 − e−cµ ≈ 0.154, whereas cµ′ ≈ 0.105.

3 Classic Gillespie Algorithms
The Gillespie algorithms overcome the two major drawbacks of the rejection
sampling algorithm that we discussed near the end of Section 2.8; namely, its
computational inefficiency and its reliance on a discrete-time approximation
of the dynamics. The Gillespie algorithms are typically faster than rejection
sampling, and they are stochastically exact (i.e., they generate exact realiza-
tions of the simulated jump processes). In this section, we present the two
basic Gillespie algorithms for simulating coupled Poisson processes, largely
in their original forms proposed by Daniel Gillespie: the first reaction method
and the direct method. The two methods are mathematically equivalent (Gil-
lespie, 1976). Nevertheless, the two algorithms have pros and cons in terms of
ease of implementation and computational efficiency. Because these two fac-
tors depend on the model to be simulated, which algorithm one should select
depends on the model as well as personal preference.
We first provide a brief history of the Gillespie algorithms (Section 3.1). We

then introduce the first reaction method (Section 3.2) because it is conceptu-
ally the simpler of the two, followed by the direct method (Section 3.3), which
builds on elements of the first reaction method but makes use of the superpo-
sition theorem (Box 1) to directly draw the waiting time between events. We
end this section with example implementations in Python of the stochastic SIR
dynamics.

3.1 Brief History
As the name suggests, the Gillespie algorithms are ascribed to American phys-
icist Daniel Thomas Gillespie (Gillespie, 1976, 1977). He originally proposed
them in 1976 for simulating stochastic chemical reaction systems, and they
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have seenmany applications as well as further algorithmic developments in this
field. Nevertheless, the algorithms only rely on general properties of Poisson
processes and not on any particular properties of chemical reactions. Therefore,
the applicability of the Gillespie algorithms is much wider than to chemical
reaction systems. In fact, they have been extensively used in simulations of
multiagent systems both in unstructured populations and on networks. The only
assumptions are that the system undergoes changes via sequences of discrete
events (e.g., somebody infects somebody, somebody changes its internal state
from a low-activity state to a high-activity state) and with a rate that stays con-
stant in between events. Nevertheless, the latter assumption has been relaxed
in recent extensions of the algorithms; we review these in Section 5.
There were precursors to the Gillespie algorithms. TheAmericanmathemati-

cian Joseph Leo Doob developed in his 1942 and 1945 papers the mathematical
foundations of continuous-timeMarkov chains that underlie the Gillespie algo-
rithms (Doob, 1942, 1945). In the second of the two papers, he effectively
proposed the direct method, although the focus of the paper was mathemat-
ical theory and he did not propose a computational implementation (Doob,
1945, pp. 465–466). Due to this, the algorithm is sometimes called the Doob–
Gillespie algorithm. David George Kendall, who is famous for Kendall’s
notation in queuing theory,4 implemented an equivalent of the direct method
to simulate a stochastic birth-death process on a computer as early as in 1950
(Kendall, 1950). In 1953, Maurice Stevenson Bartlett, a British statistician,
simulated the SIR model in a well-mixed population (i.e., every pair of indi-
viduals is directly connected to each other) using the direct method (Bartlett,
1953).
Independently of Gillespie, Alfred B. Bortz and colleagues also proposed the

same algorithm as the direct method to simulate stochastic dynamics of Ising
spin systems in statistical physics in 1975 (Bortz, Kalos, & Lebowitz, 1975).
Therefore, the direct method is also called theBortz–Kalos–Lebowitz algorithm
(or the n-fold way following the naming in their paper, and also rejection-free
kinetic Monte Carlo and the residence-time algorithm). An even earlier paper
published in 1966 in the same field proposed almost the same algorithm, with
the only difference being that the waiting time between events was assumed
to take a deterministic value rather than being stochastic as in the Gillespie
algorithms (Young & Elcock, 1966).

4 Not to be confused with another British statistician of the time, Maurice Kendall, famous for
Kendall tau rank correlation. Both Kendalls were awarded the honor of the Royal Statistical
Society, the Guy Medal in Gold.
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3.2 First reaction method
To introduce the first reaction method, we consider our earlier example of the
SIR model on a six-node network (see Fig. 2(a)). Here two types of events
may happen next: either a susceptible node becomes infected (S → I), or an
infectious node recovers (I → R). The rates at which each node experiences a
state transition are shown in Fig. 5(a), which replicates Fig. 2(a). For example,
v1 is twice as likely to be infected next as v3 is because v1 has two infectious
neighbors whereas v3 has one infectious neighbor. Each event obeys a separate
Poisson process. Therefore, let us first generate hypothetical event sequences
according to each Poisson process with their respective rates (see Fig. 5(b)).
In fact, we need to use at most only the first event in each sequence (shown
in magenta in Fig. 5(b)). For example, in the event sequence for v1, the first
event may be used, in which case v1 will be infected. Once v1 is infected, the
subsequent events on the same event sequence will be discarded because v1 will
never be infected again. If v1 is infected, it will undergo another type of event,
which is recovery. However, we cannot reuse the second or any subsequent
events in the same sequence as the recovery event because the recovery occurs
with rate µ, which is different from the rate 2β with which we have generated
the event sequence for v1. A lesson we learn from this example is that we should
not prepare many possible event times beforehand because most of themwould
be discarded.
Given this reasoning, Gillespie proposed the first reaction method in one

of his two original papers on the Gillespie algorithms (Gillespie, 1976). The
idea of the first reaction method is to generate only the first putative event time
(shown in magenta in Fig. 5(b)) for each node. These putative times correspond
to when each node would experience a next event if nothing else happens in the
rest of the system. We do not generate an event time for v6 because this node is
recovered, so it will never undergo any event. We then figure out which event
occurs first. (In the example in Fig. 5(a), it is node v4 that will change its state,
and the state change is from I to R.)
To generate a putative waiting time for each node v1, . . ., v5 in practice, we

use a general technique called inverse sampling, which proceeds as follows.
For example, the time to the first event for v1 obeys the exponential distribu-
tion ψ1(τ) ≡ 2βe−2βτ . The probability that the time to the next event is larger
than τ, called the survival probability (also called the survival function and the
complementary cumulative distribution function), is given by

Ψ1(τ) ≡
∫ ∞

τ
ψ1(τ′)dτ′ =

∫ ∞

τ
2βe−2βτ

′
dτ′ = e−2βτ . (3.1)
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(a)

v1

v2

v3

v4

v5

v6

superposed
current 

time
time

(b)

Figure 5 Determination of the time to the next event in the SIR model using
the Gillespie algorithms. (a) The current state of the system. The rate with

which each node changes its state is shown next to the node. (b) The putative
events generated by the Poisson process corresponding to each node, with the

first event of each process shown in magenta. There is no event on the
timeline of v6. This is because v6 is in the recovered state and no longer

undergoes any state change; therefore the event rate of the Poisson process
associated with v6 is equal to 0. The first reaction method generates a putative
waiting time until the first event for each process and selects the smallest one.
The direct method directly generates the waiting time until the first event in

the superposed process (bottom of panel (b)).

By definition, Ψ1(τ) is a probability, so 0 < Ψ1(τ) ≤ 1. We have excluded
Ψ1(τ) = 0 because it happens only in the limit τ → ∞. This exclusion does not
cause any problem in the following development.
Then, we draw a number u from an unbiased random number generator that

generates random numbers uniformly in the interval (0,1]. The generated num-
ber u is called a uniform (0,1] random variate. Any practical programming
language has a function to generate uniform (pseudo) random variates. We
do, however, advise against using a programming language’s standard pseudo-
random number generator, which is typically of poor quality. You should
instead use one from a scientific programming library or code it yourself.
We will discuss some good practices for pseudorandom number generation in
Section 4.9. Given u, we then generate τ from the implicit equation

u = Ψ1(τ). (3.2)

For example, if we draw u = 0.3, we can find the unique τ value that satisfies
Eq. (3.2). This method for generating random variates obeying a given distri-
bution is called inverse (transform) sampling (von Neumann, 1951). One can
use this method for a general probability density function, ψ(τ), as long as one
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can calculate its survival function, Ψ(τ) =
∫ ∞
τ
ψ(τ′)dτ′, like in Eq. (3.1). In

the present case, by combining Eqs. (3.1) and (3.2), we obtain

u = e−2βτ, (3.3)

which leads to

τ = − ln u
2β

. (3.4)

Note that τ ≥ 0 because ln u ≤ 0. Equation (3.4) is reasonable in the sense that
a large event rate 2β will yield a small waiting time τ on average.
In the same manner, one can generate the putative times to the next event for

v1, . . ., v5, denoted by τput1 , . . ., τput5 , using five uniform random variates. If the
realized τput1 , . . ., τput5 values are as shown in Fig. 5(b), we conclude that node
v4 recovers next. Then, we change the state of v4 from I to R and advance the
clock by time τ = τ

put
4 . Once v4 recovers, the configuration of the six nodes

will be the one given in Fig. 2(b). We then repeat the same procedure to find
the next event given the updated set of processes corresponding to the nodes’
states after the event (i.e., we now have three infection processes with rate β
and one recovery process with rate µ), and so on.
Note that in our example, the event rate changed for v1, v4, and v5, while

it remained unchanged for v2 and v3. Therefore, we do not need to generate
entirely new putative waiting times for v2 and v3. We just have to update τput2
and τput3 as τput2 → τ

put
2 − τ and τput3 → τ

put
3 − τ, respectively, to account for the

time τ that has elapsed.
In this manner, we can reuse τput2 and τput3 (by subtracting τ) and avoid having

to generate new pseudorandom numbers for redrawing τput2 and τ put
3 . The effect

of this frugality becomes important for larger systems where an event gener-
ally affects only a small fraction of the processes. The so-called next reaction
method (Gibson & Bruck, 2000) exploits this idea to improve the computa-
tional efficiency of the first reaction method. Although the classic first reaction
method did not make use of this trick, we include it here because it is simple to
implement.
Let us go back to our example. For v4, we no longer need to generate the

time to the next event because v4 is now in the R state. For v1 and v5, we need
to discard τput1 and τ put

5 because they were generated under the assumption that
the event rate was 2β. Now, we need to redraw the time to the next event for
the two nodes according to the new distribution ψ1(τ) = ψ5(τ) = βe−βτ . For
example, we reset τput1 = − ln u′/β, where u′ is a new uniform (0,1] random
variate. Although the time τ has passed to transit from the status of the network
shown in Fig. 2(a) to that shown in Fig. 2(b), we do not need to take into account
the elapsed time (i.e., τ) when generating the new τ

put
1 and τput5 values. This is
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Box 2 Gillespie’s First Reaction Method

0. Initialization:
(a) Define the initial state of system, and set t = 0.
(b) Calculate the rate λj for each reaction channel j ∈ {1, . . . ,M}.
(c) Draw M random variates uj from a uniform distribution on (0,1].
(d) Generate a putative waiting time τputj = − ln uj/λj for each reaction

channel.
1. Select the reaction channel i with the smallest τputi , and set τ = τputi .
2. Perform the event on reaction channel i.
3. Advance the time according to t → t + τ.
4. Update λi and all other λj that are affected by the event produced.
5. Update putative waiting times:

(a) Draw newwaiting times for reaction channel i and for the other reac-
tion channels j whose λj has changed, according to τputj = − ln uj/λj
with uj being newly drawn from a uniform distribution on (0,1].

(b) Update the waiting times for all reaction channels j that have not
been affected by the last event according to τputj → τ

put
j − τ.

6. Return to Step 1.

due to the memoryless property of Poisson processes (see Box 1), that is, what
happened in the past, such as how much time has passed to realize the state
transition of v4, is irrelevant.
The first reaction method in its general form is given in Box 2.

3.3 Direct Method
The direct method exploits the superposition theorem to directly generate the
waiting times between successive events in the full system of coupled Pois-
son processes. For expository purposes, we hypothetically generate an event
sequence on each node with the respective rate, although only at most the
first event in each sequence will be used. We then superpose the nodal event
sequences into one Poisson process (see Fig. 5(b)). Owing to the superposition
theorem (Box 1, Eq. (2.3)), the superposed event sequence is itself a Poisson
process with a rate Λ that is equal to the sum of the individual rates, that is,
Λ = 2β + µ + β + µ + 2β + 0 = 5β + 2µ.
Therefore, we can generate the time to the next event in the entire popula-

tion using the inverse sampling method, which we introduced in Section 3.2,
according to τ = − ln u/Λ, where u is a uniform random variate in the interval
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1 = 2/3, 2 = 1/3

1 = 2

2 = 

1 + 2 = 3

time

Figure 6 Superposition of Poisson processes and how to determine which
component Poisson processes contribute to an event in the superposed event
sequence. We considerM = 2 Poisson processes, one with rate λ1 = 2β and
the other with λ2 = β. The superposed Poisson process has rate λ1 + λ2 = 3β.
The next event in the superposed event sequence (shown in the dotted circle)
belongs to process 1 with probability Π1 = λ1/(λ1 + λ2) = 2/3 and process 2

with probability Π2 = λ2/(λ1 + λ2) = 1/3.

(0,1]. We now know the time to the next event but not which node (or more
generally, which one individual Poisson process) is responsible for the next
event. This is because the superposition lacks information about the individual
constituent event sequences.
We thus need to determine which node produces the event. Themathematical

properties of Poisson processes guarantee that the probability that a given node
produces the event is proportional to its event rate (see Box 1, Eq. (2.4)). For
example, in Fig. 6, where the event rates of the two nodes v′1 and v′2 are 2β
and β, respectively, each event in the superposed event sequence comes from
v′1 and v′2 with probability Π1 = 2/3 and Π2 = 1/3, respectively. Therefore,
the probability that the first event is generated by v′1 is 2/3. The probability it
is generated by v′2 is 1/3. This is natural because the sequence for v′1 has on
average twice as many events as that for v′2. In our example (see Fig. 5), the vi
(with i = 1, . . . ,5) that produces the next event is drawn with probability Πi,
whereΠ1 = Π5 = 2β/(5β+2µ),Π2 = Π4 = µ/(5β+2µ), andΠ3 = β/(5β+2µ).
We will explain computational methods for doing this later.
Assume that v4 generates the next event and transitions from state I to state

R. Then, the new event rate for each node is as shown in Fig. 2(b). We advance
the clock by τ and go to the next step. Again, to determine the time to the
following event, regardless of which node produces the event, we only need
to consider the sum of the event rates of the six nodes, which is now given
by Λ = β + µ + β + 0 + β + 0 = 3β + µ. Then, the time to the next event,
which we again denote by τ, is given by τ = − ln u/(3β + µ), where u is a new
uniform random variate. We draw another random number to determine which
of the four eligible nodes, v1, v2, v3, or v5, produces the event and changes its
state. (Note that v4 and v6 are recovered, so they cannot undergo a further state
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Figure 7 Complete graph with N = 7 nodes.

change.) The four remaining nodes are each selected with probability Π1 =
Π3 = Π5 = β/(3β + µ) and Π2 = µ/(3β + µ).
In this manner, we draw τ, determine which node produces the event, imple-

ment the state change, advance the clock by τ, and repeat. This is Gillespie’s
direct method.
Let us take a look at another example, which is the SIR model in a popula-

tion composed of N individuals, in which everybody is directly connected to
anybody else (called a well-mixed population; equivalent to a complete graph;
see Fig. 7 for an example). In contrast to the general network case, each indi-
vidual in a well-mixed population is indistinguishable from the others. In the
well-mixed population, it is not the case that, for example, an individual has
two neighbors while another has three neighbors (such as in Fig. 2); they all
have N − 1 neighbors. Recall that recovered individuals do not change their
state again. Therefore, it suffices to consider NS +NI event sequences and their
superposition to determine the time to the next event and which individual will
produce the next event.
However, in the well-mixed population, we can make the procedure more

efficient. Because everybody is alike, we do not need to keep track of the state
of each individual.
In the case of a network, we generally need to distinguish between different

susceptible individuals. For example, in Fig. 2(a), the susceptible nodes v1 and
v5 are different because they have different sets of neighbors. Furthermore, v1
has degree 2, while v5 has degree 3. Therefore, if v1 gets infected and changes
its state, it is not equivalent to v5 getting infected. So, we must keep track of
the state of each individual in a general network. By contrast, in the well-mixed
population, such a distinction is irrelevant. Everybody is adjacent to all the
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other N − 1 nodes, and the number of infectious neighbors is the same for any
susceptible individual, that is, it is equal toNI. It does not matter which particu-
lar node gets infected in the next event. The only thing that matters for the SIR
model in the well-mixed population is the number of susceptible, infectious,
and recovered individuals, which is NS, NI, and N R, respectively.
It thus suffices to monitor these numbers. If an infection event happens, then

NS decreases by one, and NI increases by one. If an infectious individual recov-
ers, then NI decreases by one, and NR increases by one. Because the number of
individuals is preserved over time, it holds true that

NS + NI + NR = N (3.5)

at any time. Because anybody is connected to everybody else, any suscep-
tible individual has NI infectious neighbors, so it gets infected at rate βNI.
Because recovery occurs independently of a node’s neighbors, every infectious
individual recovers at the same rate µ.
Based on this reasoning, we can aggregate the event sequences of theNS sus-

ceptible individuals into one even before considering which method we should
use to simulate the SIR dynamics. (Therefore, this logic also works for the first
reaction method and for rejection sampling.) Each event sequence correspond-
ing to a single susceptible individual has the associated event rate N Iβ. The
superposed event sequence is a realization of a single Poisson process with rate
NS ×NIβ = NSNIβ. If an event from this Poisson process occurs, one arbitrary
susceptible individual gets infected. Likewise, we do not need to differentiate
between theNI infectious individuals. So, we superpose theNI event sequences,
each of which has the associated event rate µ, into an event sequence, which is
a realization of a Poisson process with rate NI× µ. If an event from this Poisson
process occurs, then an arbitrary infectious individual recovers.
In summary, in a well-mixed population we only need to consider two cou-

pled Poisson processes, one corresponding to contracting infection at a rate
βNSNI, and the other corresponding to recovery at a rate µNI. In a single step
of the direct method, we first determine the waiting time to the next event, τ.
We set τ = − ln u/(βNSN I + µNI), where u is a uniformly random (0,1] vari-
ate. Next, we determine which type of event happens, either the infection of a
susceptible node (with probability ΠS→I) or the recovery of an infectious node
(with probability ΠI→R). We obtain

ΠS→I =
βNSNI

βNSNI + µNI
=

βNS

βNS + µ
, (3.6)

ΠI→R =
µNI

βNSNI + µNI
=

µ

βNS + µ
. (3.7)
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1 = 0.5 2 = 2 3 = 1 4 = 1.5

5
(= 1 + 2 + 3 + 4)

3.5
(= 1 + 2 + 3)

2.5
(= 1 + 2)

0 0.5
(= 1)

u

Figure 8 Linear search method for computing which Poisson process
produces the next event for the entire population. We considerM = 4 possible
events, with respective rates λ1 = 0.5, λ2 = 2, λ3 = 1, and λ4 = 1.5. Suppose
that we draw a uniform random variate ranging between 0 and

∑M
i=1 λi = 5

whose value is u = 2.625. We first check whether u falls inside the first
interval; in practice, we check if u ≤ λ1 = 0.5. Because this is not the case,

we then check iteratively if it lies in each following interval. Because
2.5 < u ≤ 3.5, we find that u falls in the third interval from the left (dotted
arrow). The iteration over i as described in Step 2 in Box 3 thus stops in the

third interval, and the method will select i = 3.

If an infection event occurs, we decrease NS by 1 and increase NI by 1. If a
recovery event occurs, we decrease NI by 1 and increase NR by 1. In either
case, we advance the clock by τ and go to the next step. We repeat the loop
until NI hits 0.
In general applications of the direct method, we consider a set of M inde-

pendent Poisson processes with rates λi (1 ≤ i ≤ M). The superposition of
the M Poisson processes is a single Poisson process with rate Λ =

∑M
i=1 λi by

the superposition theorem. Therefore, the time to the next event in the entire
population, τ, follows the exponential distribution given by

ψ(τ) = Λe−Λτ . (3.8)

After time τ, the ith process produces the next event with probability

Πi =
λi
Λ
. (3.9)

By drawing a random number obeying the categorical distribution over the
M possibilities given by {Π1, . . . ,ΠM}, we can then determine which Poisson
process i generates one event. Gillespie’s original implementation does this by
iterating over the list of Πi values (see Fig. 8).
We summarize the steps of the direct method in Box 3. Similarly to the first

reaction method, the direct method is easy to implement, but it is not very fast
in its original form (see Fig. 8) whenM is large. For this reason more efficient
algorithms have been proposed. We review them in Section 4.
Although we have assumed in our example that a reaction channel (i.e., a

Poisson process in the present case) is attached to each node/individual, this
does not always have to be the case. As we have seen, in the case of the
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Box 3 Gillespie’s Direct Method

0. Initialization:
(a) Define the initial state of the system, and set t = 0.
(b) Calculate the rate λj for each reaction channel j ∈ {1, . . . ,M}..

1. Draw a random variate u1 from a uniform distribution on (0,1], and
generate the waiting time by τ = − ln u1/Λ, where Λ =

∑M
j=1 λj is the

total rate.
2. Draw u2 from a uniform distribution on (0,Λ]. Select the event i to occur

by iterating over i = 1,2, . . . ,M until we find the i for which
∑i−1

j=1 λj <

u2 ≤ ∑i
j=1 λj.

3. Perform the event on reaction channel i.
4. Advance the time according to t → t + τ.
5. Update λi as well as all other λj that are affected by the produced event.
6. Return to Step 1.

well-mixed population, we only need to track two reaction channels, that is,
the number of susceptible individuals NS and the number of infectious indi-
viduals NI. In a more complicated setting where the network structure changes
in addition to the nodes’ states, some reaction channels are assigned to nodes,
and other reaction channels may be assigned to the state of the edges, which
may switch between on (i.e., edge available) and off (edge unavailable, or only
weakly available) (Clementi et al., 2008; Fonseca dos Reis, Li, & Masuda,
2020; Kiss et al., 2012; Ogura & Preciado, 2016; Volz &Meyers, 2007; Zhang,
Moore, & Newman, 2017). In all of the preceding cases, the key assumptions
are that all types of reaction channels that trigger events are Poisson processes
and that their event rate may only change in response to events generated by
Poisson processes occurring anywhere in the population/network.

3.4 Codes
Here we present Python codes for the two classic Gillespie algorithms for simu-
lating the SIRmodel. Then, we compare their output and runtimes to each other
and to the rejection sampling algorithm presented in Section 2.8. We first show
codes for the SIR model in a well-mixed population (Section 3.4.1). We then
present implementations for the SIRmodel on a network (Section 3.4.2), which
requires additional bookkeeping to track the dependencies between nodes and
the varying number of reaction channels.
All our example codes rely on the NumPy library in Python for vectorized

computation and for generating pseudorandom numbers. The following code
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imports the NumPy library and initializes the pseudorandom number generator
(see Section 4.9 for a discussion of how to generate random numbers on a
computer).

1 import numpy as np
2 from numpy.random import Generator, PCG64
3

4 seed = 42 # Set seed for PRNG state
5 rg = Generator(PCG64(seed)) # Initialize random number

generator

The following codes as well as those for the rejection sampling algorithm
and those for producing figures are found in Jupyter notebooks at github.
com/naokimas/gillespie-tutorial.

3.4.1 SIR Model in Well-Mixed Populations

The major part of the code for simulating the SIR model is identical for the first
reaction and direct methods and is simply related to updating and saving the
system’s state. We thus show only the code needed for generating the waiting
time and the next event in each iteration.
The following code snippet implements the first reaction method for the SIR

model in a well-mixed population:
1 def draw_next_event_first_reaction(lambda_inf, lambda_rec):
2 '''Input: total infection and recovery rates, lambda_inf=S*I

*beta_k and lambda_rec=I*mu, respectively.
3 Output: selected reaction channel, i_selected, and waiting

time until the event, tau.'''
4

5 # Draw a uniform random variate from (0,1] for each waiting
time:

6 u = 1. - rg.random(2)
7

8 # Draw waiting times:
9 waiting_times = - np.log(u) / np.array([lambda_inf,

lambda_rec])
10

11 # Select reaction with minimal tau:
12 tau = np.min(waiting_times)
13 i_selected = np.argmin(waiting_times)
14

15 return(i_selected, tau)

The following snippet implements the direct method:
1 def draw_next_event_direct(a_inf, a_rec):
2 '''Input: total infection and recovery rates, lambda_inf=S*I

*beta_k and lambda_rec=I*mu, respectively.
3 Output: selected reaction channel, i_selected, and the

waiting time until the event, tau.'''
4

5 # Calculate cumulative rate:
6 Lambda = lambda_inf + lambda_rec
7

8 # Draw two uniform random variates from (0,1]:
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9 u1, u2 = 1. - rg.random(2)
10

11 # Draw waiting time:
12 tau = - np.log(u1) / Lambda
13

14 # Select reaction and update state:
15 if u2 * Lambda < lambda_inf: # S->I reaction
16 i_selected = 0
17 else: # I->R reaction
18 i_selected = 1
19

20 return(i_selected, tau)

Finally, the following code snippet, which is common to the two meth-
ods, implements the state update after the next event has been selected and
recalculates the values of the infection and recovery rates:

1 # Update state:
2 if i_selected == 0: # S->I reaction
3 S -= 1; I += 1
4 else: # I->R reaction
5 I -= 1 ;R += 1
6

7 # Update infection and recovery rates:
8 lambda_inf = S * I * beta_k # Infection rate
9 lambda_rec = I * mu # Recovery rate

We compare simulation results for the SIR model in a well-mixed popula-
tion with N = 100 individuals among the rejection sampling, Gillespie’s first
reaction method, and Gillespie’s direct method in Fig. 9. The time-step used for
rejection sampling shown in Fig. 9(a) is ∆t = 0.1 With this time-step, rejection
sampling leads to an undershoot of the peak number of infectious individuals;
compare Fig. 9(a) to Figs. 9(b) and 9(c). We also note that the average curves,
shown by the solid lines, fail to capture the large variation and bimodal nature
of the stochastic SIR dynamics in all the panels. Finally, we note that the aver-
age runtimes of the three different algorithms to generate one simulation are of
the order of 300 ms for the rejection sampling algorithm and of the order of 10
ms for both the Gillespie algorithms.

3.4.2 SIR Model on a Network

To simulate the SIR model on a network, we rely on the NetworkX library in
addition to NumPy to store and update information about nodes in the network
as well as their event rates. We import NetworkX as follows:

1 import networkx as nx

The following code implements the generation of a single event of the SIR
model on a network G using the first reaction method. Here, G stores the con-
nections between nodes as well as each node’s state (S, I, or R), event rate, and
putative waiting time.
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(b) (c)(a)

Figure 9 Evolution of the number of infectious individuals NI over time of
the SIR model in a well-mixed population simulated using (a) the rejection

sampling method, (b) the first reaction method, and (c) the direct method. The
population is composed of N = 100 individuals. The infection rate is β = 0.5.
The recovery rate is µ = 0.2. We carried out 1 000 simulations with each

method. Each panel shows the number of infectious individuals over time. The
overlapping thin red lines show the result for each of the 1 000 simulations.

The thick black lines show the average over the 1 000 simulations. Note that a
substantial portion of the simulations do not lead to any secondary infections;
the red lines drop rapidly to zero, appearing as straight red lines at NI = 0.
Otherwise, NI increases first and then decays towards zero. The average
behavior does not capture this bimodal nature of the stochastic dynamics.

1 def draw_next_event_first_reaction(G):
2 '''Input: the network G.
3 Output: selected reaction channel, i_selected, and the

waiting time until the event, tau.'''
4

5 # Get waiting times for active reaction channels from G:
6 node_indices = list(nx.get_node_attributes(G, 'tau'))
7 waiting_times = list(nx.get_node_attributes(G, 'tau').values

())
8

9 # Select reaction with minimal waiting time:
10 tau = np.min(waiting_times)
11

12 i_selected = np.where(waiting_times == tau)[0][0]
13

14 return(i_selected, tau)

The following code implements the generation of a single event of the SIR
model on a network G using the direct method. Here, G stores the connections
between nodes as well as each node’s state (S, I, or R) and its event rate.

1 def draw_next_event_direct(Lambda, G):
2 '''Input: the network, G, and the total event
3 rate, Lambda.
4 Output: selected reaction channel, i_selected, and the

waiting time until the event, tau.'''
5

6 # Draw two uniform random variates from (0,1]:
7 u1, u2 = rg.random(2)
8

9 # Draw waiting time:
10 tau = - np.log(1. - u1) / Lambda
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11

12 # Select reaction by linear search:
13 target_sum = u2 * Lambda
14 sum_i = 0
15

16 for i,attributes in G.nodes(data=True):
17 sum_i += attributes['lambda']
18

19 if sum_i >= target_sum:
20 break
21

22 return(i, tau)

Lines 13–20 implement the selection of the reaction channel that generates the
next event using the simple algorithm illustrated in Fig. 8.

4 Computational Complexity and Efficient
Implementations

In this section we investigate the computational efficiency of the Gillespie algo-
rithms. We also review improvements that have been developed to make the
algorithms more efficient when simulating systems with a large number of
reaction channels.
A typical way to quantify the efficiency of stochastic algorithms, and the

one we shall be concerned with here, is their expected time complexity. In the
context of event-based simulations, it measures how an algorithm’s average
runtime depends on the number of reaction channels, M. While it is gener-
ally impossible to exactly calculate the expected runtime of an algorithm for
all different use cases, we are often able to show how the algorithm’s aver-
age runtime scales with M for large M. We indicate the complexity of an
algorithm using big-O notation,5 where O(f(M)) means that the algorithm’s
expected runtime is proportional to f(M) for largeM. For example, an algorithm
with expected runtime T1(M) = 7M+ 10 and another with expected runtime
T2(M) = 0.5M+ logM both have linear time complexity, that is, Ti(M) = O(M)
for i = 1,2.
As we shall see in Section 4.1, the classic implementations of the Gillespie

algorithms presented in Section 3 have O(M) time complexity for each sim-
ulation step of the algorithms. While a linear time complexity may not seem
computationally expensive, it is typical that the number of events taking place
per time unit also scales linearly with the size of the system, namely N in most

5 In the computer science literature, the big-O notation is often informally used to denote the
expected time complexity of an algorithm. This differs from the formal definition of the big-
O notation, which is pertinent to the worst-case complexity (Knuth, 1976). To keep things
simple and to keep our notation consistent with the literature, we also adopt the big-O notation
to denote the average time complexity.
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of our examples. Thus, the number of computations per simulated unit of time
then scales asO(NM). This means that the overall time complexity of running a
single simulation using the classic Gillespie algorithms is O(NMT), where T is
the typical duration of a single simulation. An O(NMT) computation time may
be prohibitively expensive for large N and M. Because M scales linearly with
N at least, which occurs for sparse networks (i.e., networks with relatively few
edges), we have at least O(N2T) time complexity in this scenario.
To make the Gillespie algorithms more efficient for large systems,

researchers have come up with many algorithmic improvements to lower the
computational complexity of both the bookkeeping and simulation steps of the
algorithms.While these improved algorithms aremore complex than the simple
Gillespie algorithms presented in Section 3, many of these techniques are worth
the effort to learn because they usually shorten the computation time immensely
without sacrificing the exactness of the simulations. With these techniques, we
may be able to simulate a large system that we could not simulate otherwise.
However, we should note that, for systems with a small number of reaction
channels, these methods will not confer a significant speedup and may even be
slightly slower because they introduce some additional overhead. In this sec-
tionwe review several general methods that we believe to be themost important
ones to be aware of for researchers looking to simulate social systems, although
many more exist (seeMarchetti, Priami, and Thanh [2017] for a recent review).
We detail in Section 4.1 the computational complexity of each step of the

original first reaction and direct methods. We next discuss in Section 4.2 a
simple way to improve the computational efficiency of the direct method by
grouping similar processes together to reduce the number of reaction channels.
We then review algorithmic improvements that decrease the expected complex-
ity of both the direct (Section 4.3) and first reaction (Section 4.4) methods to
O(logM) time. More recent methods further decrease the expected runtime of
the direct method, which we review in Sections 4.5, 4.6, and 4.7. Other methods
have been developed that sacrifice the exactness of the Gillespie algorithms to
some extent for additional speed gains. Such methods are not the main focus of
this Element, but we briefly review one suchmethod, the tau-leapingmethod, in
Section 4.8. We provide a short note on how to generate pseudorandom num-
bers needed for stochastic numerical simulations in Section 4.9. We end this
section with example codes and simulation results (Section 4.10).

4.1 Average Complexity of the Classic Gillespie Algorithms
In this subsection we will analyze the runtime complexity of each step in Gil-
lespie’s two algorithms. Knowing which parts of the algorithms are the most

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
23

91
58

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009239158


Gillespie Algorithms for Stochastic Multiagent Dynamics 37

computationally expensive will also tell us which parts of the algorithms we
should focus on to make them more efficient.
We first analyze the complexity of the steps of the first reaction method in

the order they appear in Box 2:

• Step 1: To find the smallest putative waiting time, we go through the
entire list {τput1 , . . . , τ

put
M }. Because there areM elements in the list, this step

requires O(M) time.
• Steps 2–4: Updating the system’s state and event rates following an event
requires a number of operations that is proportional to the number of reac-
tion channels that are affected by the event.6 In the case of a network, the
number is often proportional to the average node degree. Typically the aver-
age node degree is relatively small and does not grow much with the size
of the system, which we conventionally identify with the number of nodes.
Such a network is referred to as a sparse network. So, this step takes O(1)
time. (However, for dense or heterogeneous networks, the number of reac-
tion channels affected by an event may scale withM, in which case this step
may take O(M) time – see Section 4.7.)

• Step 5: To update the putative waiting times, we only have to generate new
random variates for the reaction channel that generated the event and for
those that changed their event rate due to the event. However, all the other
waiting times still need to be updated in Step 5(b) in Box 2. Therefore, this
step also has O(M) time complexity.

We observe that, although we have avoided some costly parts of the original
implementation of the first reaction method, which we introduced in Sec-
tion 3.2, the algorithm still has linear time complexity. Thus, for systems with
largeM, the first reaction method may be slow.
Let us similarly analyze the time complexity per iteration of the direct

method step-by-step in the order they appear in Box 3.

• Step 1: Generating the waiting time requires generating a random variate
and transforming it. This is a constant-time operation, O(1), because the
runtime does not depend onM.

• Step 2: To find the reaction channel i that generates the event, we have to
iterate through half of the list of the event rates on average. This step thus
takes O(M) time.

6 Note that the original implementation of the first reaction method updates all λi at each time-
step, which is an O(M)-time operation. However, we only need to update the rates that are
affected by the event i, which is an O(1)-time operation if the average number of affected
reaction channels is of constant order, that is, O(1).
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• Steps 3–5: The steps for updating the system’s state and event rates are
identical to Steps 2–4 for the first reaction method. Therefore, these steps
typically have O(1) time complexity.

Our implementation of the first reaction method has two steps of linear time
complexity, whereas the direct method only has a single step of linear time
complexity. Therefore, the direct method may be slightly faster than the first
reactionmethod. However, the former’s overall scalingwithM is still linear. So,
the direct method may be slow for largeM, just like the first reaction method.

4.2 Grouping Reaction Channels
A simple way to reduce the effective number of reaction channels in the direct
method, and thus accelerate the sampling of the next event, is available when
the rates λi only take a small number of different values. The strategy is to group
i’s that have the same λi value and then apply a rounding operation, which is
fast for a computer, to determine a unique value of i to be selected (Schulze,
2002).
This method works as follows. Consider an idealized situation in the SIR

dynamics on a network in which N = 100, NS = 60, NI = 30, and NR = 10.
Let us further assume that, at the present moment in time, 40 out of the 60
susceptible individuals are adjacent to three infectious nodes, and the other
20 are adjacent to two infectious nodes (Fig. 10). We can safely ignore the
NR = 10 recovered individuals because they do not generate an event. For each
susceptible individual with three and two infectious neighbors, the rate to get
infected is 3β and 2β, respectively. For each infectious individual, the recovery
rate is µ. Therefore, the total (i.e., cumulative) event rate is equal to Λ = 40 ×
3β + 20 × 2β + 30 × µ = 160β + 30µ. If the population is well-mixed and
one just wants to track the numbers of the susceptible, infectious, and recovered
individuals, one needs to prepare only two reaction channels, one for infection

rate = 3 rate = 0rate = 2 rate = µ

2040 NI = 30 NR = 10

NS = 60

Figure 10 Diagram of the state of each node undergoing the SIR dynamics.
Out of the N = 100 nodes, 40 nodes are susceptible and have three infectious

neighbors (and other susceptible or recovered neighbors), 20 nodes are
susceptible and have two infectious neighbors, 30 nodes are infectious, and 10

nodes are recovered.
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(i.e., NS decreases by 1, and NI increases by 1) with rate 160β, and the other
for recovery (i.e., NI decreases by 1, and NR increases by 1) with rate 30µ.
However, the population that we are considering is not well-mixed because
the number of infectious neighbors that a susceptible individual has at each
moment in time depends explicitly on the states of its neighbors in the network.
We thus need to keep track of each individual’s state individually to be able to
simulate the dynamics.
Each susceptible individual will generate the next event with probability

Πi =
3β

160β + 30µ
(4.1)

or

Πi =
2β

160β + 30µ
, (4.2)

depending on whether it has three or two infectious neighbors, respectively,
while each infectious individual will generate the event with probability

Πi =
µ

160β + 30µ
. (4.3)

We group together the 40 susceptible individuals with three infectious neigh-
bors, which altogether have a total rate of λ′1 ≡ 40 × 3β = 120β. Likewise, we
group together the 20 susceptible individuals with two infectious neighbors,
whose total rate is λ′2 ≡ 20 × 2β = 40β. The group of infectious individuals
finally has a total rate of λ′3 ≡ 30 × µ = 30µ. Then, we determine which group
is responsible for the next event. Because there are only three groups, this is
computationally easy. In other words, we draw u2 from a uniform distribution
on [0,160β+30µ), and if u2 < λ′1, then it is group 1; if λ

′
1 ≤ u2 < λ′1+λ

′
2, then

it is group 2; otherwise, it is group 3.
We can next easily determine which individual in the selected group expe-

riences the event. If group 1 is selected, we need to select one from the 40
susceptible nodes. Because their event rate is the same (i.e.,= 3β), they all have
the same probability to be selected. Therefore, one can select the ith individual
(with i = 1, . . . ,40) according to

i =
⌊
u2
λ′1

× 40
⌋
+ 1, (4.4)

where ⌊·⌋ denotes rounding down to the nearest integer. Note that, because
group 1 was selected, we have conditioned on 0 ≤ u2 < λ′1, and u2/λ′1 is
thus a uniform random variate on [0,1). Therefore, u2/λ′1 × 40 is uniformly
randomly distributed on [0,40). By rounding down this number, we can sample
each integer from 0 to 39 with equal probability, namely 1/40. The term +1 on
the right-hand side of Eq. (4.4) lifts the sampled integer by one to guarantee
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that i is an integer between 1 and 40. Likewise, if group 2 has been selected,
we set

i =
⌊u2 − λ′1

λ′2
× 20

⌋
+ 41. (4.5)

Because λ′1 ≤ u2 < λ′1 + λ
′
2 when group 2 is selected, (u2 − λ′1)/λ′2 is a uniform

random variate on [0,1), and (u2 − λ′1)/λ′2 × 20 is uniformly distributed on
[0,20). Therefore,

⌊
u2−λ′1
λ′2

× 20
⌋
yields an integer between 0 and 19 with equal

probability (i.e., = 1/20), and Eq. (4.5) yields an integer between 41 and 60,
each with probability 1/20. Finally, if group 3 has been selected, we set

i =
⌊u2 − (λ′1 + λ′2)

λ′3
× 30

⌋
+ 61 (4.6)

such that i is an integer between 61 and 90, each with probability 1/30.
Although we have considered an idealized scenario, the assumption that we

can find groups of individuals sharing the event rate value is not unrealistic. In
the homogeneous SIR model (i.e. where all individuals have the same suscepti-
bility, infectiousness, and recovery rate), all the infectious individuals share the
same event rate µ. Furthermore, we may be able to group the susceptible nodes
according to their number of infectious neighbors and other factors. As events
occur, the grouping will generally change and must thus be updated after the
event. For example, if an infectious node recovers, then the group of infectious
nodes, whose total event rate (for recovery) was µNI, loses one member such
that the total event rate is updated to µ(NI − 1).

4.3 Logarithmic-Time Event Selection in the Direct Method
Using a Binary Tree

We now move on to a general method for speeding up the direct method. To
speed up the implementation, we use a binary tree data structure to store the
λi values. This allows us to select the reaction channel i that will produce the
next event (Step 2 in Box 3) inO(logM) operations instead ofO(M) operations
(Gibson & Bruck, 2000).7 (See also Blue, Beichl, and Sullivan [1995] for ear-
lier studies and Wong and Easton [1980] for the general case of sampling from
urns with a general categorical probability distribution {Π1, . . . ,ΠM}.) Because
the other steps of the direct method typically have constant time complexity,

7 Note that each update of a λj value in the binary tree also takes O(logM) time, which is slower
than the original algorithm’s O(1) runtime. However, the overall runtime of the new algorithm
is logarithmic, compared to the linear time complexity of the original one, which will make a
huge difference for large systems.
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1 2 3 4 5 7 86

(a)

(b)

1 2 3 4 5

0.6
7 8

0.5 2 1 1.5 0.3
6

0.3 2

2.5 2.5 0.9 2.3

3.25

8.2

1+ 2 3+ 4 5+ 6 7+ 8

1+ 2+ 3+ 4 5+ 6+ 7+ 8

1+ 2+ + 8

Figure 11 Binary tree for drawing i from a discrete distribution {λ1, . . . , λM}.
We assume M = 8. (a) General case. (b) An example. The value in each
nonleaf node of the tree is equal to the sum of its two child nodes’ values.

There are log2M + 1 = 4 hierarchical levels.

improving the time complexity of the event selection step will speed up the
entire algorithm.
The main idea is to store the λi values in the leaves of a binary tree and

let each parent node store the sum of the values in its two child nodes (see
Fig. 11(a)). By repeating this procedure for all the internal nodes of the tree, we
reach the single root node on the top of the tree, to which the valueΛ =

∑M
i=1 λi

is assigned. For simplicity, we assume thatM is a power of 2 in Fig. 11(a) such
that the tree is a perfect binary tree, that is, a binary tree where every level is
completely filled. In fact, M varies in the course of a single simulation in gen-
eral, but if M is not a power of 2, we can simply pad leaves of the binary tree
with zeros to get a perfect tree. For example, if M = 6, we pad the two right-
most leaves in Fig. 11(a) with λ7 = λ8 = 0. Then, these two reaction channels
are never selected for event generation. If a next event changes the number of
reaction channels fromM = 6 toM = 7, then we fill λ7 by a designated positive
value as well as possibly have to renew the values of some of λ1, . . ., λ6.
To determine which event occurs, we first draw a random variate u2 from a

uniform distribution on (0,Λ]. We then start from the root node in the binary
tree and look at the node’s left child. If u2 is smaller than or equal to the value
stored in the left child, we move to the left child and repeat the procedure. Oth-
erwise, we subtract the value in the left child from u2, move to the right child,
and repeat. For example, if u2 = 5.5 and the binary tree is as given in Fig. 11(b),
we move to the right child of the root node because u2 > 5. Then, we update
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u2 by subtracting the value in the left child node: u2 → 5.5 − 5 = 0.5. Note
that the new u2 value is a realization of a random variate uniformly distributed
on (0,3.2]. Because the new u2 < 0.9, we next move to the left child of the
node with value 3.2. We repeat this procedure until we reach a leaf. This leaf’s
index is the selected value of i. In the current example, we eventually reach the
leaf node i = 6. There are log2M levels in the binary tree if we do not count
the root node of the tree. Therefore, determining a value of i given u2 requires
O(logM) time.
Once we have carried out the event associated with the selected i value, we

need to update the λj values that are affected by the event (typically including
λi). In the binary tree we can complete the updating locally for each j, that is,
by only changing the affected leaf and its parent nodes in the tree. For example,
if λ2 changes due to an event generated by the ith reaction channel, then, first
of all, we replace λ2 by the new value. Then, we need to replace the internal
node of the binary tree just above λ2 by a new value owing to the change in
the value of λ2. For example, suppose that the new value of λ2 is 2.4, which
is 0.4 larger than the previous λ2 value (= 2 as shown in Fig. 11(b)). Then,
we need to increase the value of the parent of λ2 by 0.4 so that we replace 2.5
by 2.9. We repeat this procedure up through the hierarchical levels of the tree
and update the values of the relevant internal nodes and finally that of the root
node. Therefore, we need to update only log2M + 1 values per λj value that
changes. This is a small number compared to the total number of nodes in the
binary tree, which is 2M − 1. Even if we need to update λj for several j’s, the
total number of nodes in the binary tree to be updated is typically still small
compared to 2M − 1. (However, if we need to update a large fraction of the λj,
the number of updates may become comparable to or even surpass 2M−1.) The
steps for implementing the direct method with binary tree search and updating
of the tree are shown in Box 4.

Box 4 Gillespie’s Direct Method with Binary Tree Search and
Updating of the Tree

0. Initialization:
(a) Define the initial state of the system, and set t = 0.
(b) Calculate the rate λj for each reaction channel j ∈ {1, . . . ,M}.
(c) Initialize the binary tree:

i. Store each λj in a leaf of a perfect binary tree with 2 ⌈log2 M⌉ leafs,
where ⌈log2M⌉ denotes the smallest integer larger than or equal
to log2M.
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ii. Fill the remaining leaf nodes with zeros.
iii. Move up through the remaining ⌈log2M⌉ levels of the tree, set-

ting the value of each node equal to the sum of the values of its
two child nodes.

iv. The value in the root node is equal to the total rate Λ =
∑M

j=1 λj.
1. Draw a random variate u1 from a uniform distribution on (0,1], and

generate the waiting time by τ = − ln u1/Λ.
2. Binary tree search:

(a) Draw u2 from a uniform distribution on (0,Λ].
(b) Start from the root node.
(c) If u2 ≤ al, where al is the value in the left child of the current node,

then go to the left child. Otherwise, set u2 → u2 − al and go to the
right child.

(d) Repeat Step (c) until a leaf node is reached. The index i of the leaf
node gives the reaction channel that produces the next event.

3. Perform the event on reaction channel i.
4. Advance the time by setting t → t + τ.
5. Update λi as well as all other λjs that are affected by the produced event.
6. Update the binary tree:

(a) For a reaction channel whose rate λj changes, set ∆λj = λ
(new)
j −

λ
(old)
j , where λ

(new)
j and λ

(old)
j are the new and old event rates,

respectively.
(b) Increase the value of the jth leaf and all its parents including the root

node of the tree by ∆λj.
(c) Repeat Steps (a) and (b) for all reaction channels j to be updated.

7. Return to Step 1.

4.4 Next Reaction Method: Logarithmic-Time Version of the
First Reaction Method

It is also possible to make the runtime of the first reaction method scale log-
arithmically with the number of reaction channels, that is, to make it have a
O(logM) time complexity. The improvements, collectively referred to as the
next reaction method, were proposed in Gibson and Bruck (2000). Because
both finding the smallest waiting time (Step 1 in Box 2) and updating the wait-
ing times (Step 5 in Box 2) haveO(M) time complexity, we need to decrease the
complexity of both steps to reduce the time complexity of the entire algorithm.
The next reaction method implements three distinct improvements of the steps
of the first reaction method. We describe each in turn.
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4.4.1 Switch to Absolute Time

One can make Step 5 of the first reaction method (see Box 2) more efficient
simply by switching from storing the putative waiting times τputj for each reac-
tion channel j to storing the putative absolute times of the next event, denoted by
tputj . Analogous to the original first reaction method, the event with the smallest
time t = min{tput1 , . . . , tputM } is selected to happen next, and the current time is
set to t. Following the event, we only need to draw new waiting times for the
reaction channel that generated the event, i, as well as for other reaction chan-
nels that are affected by the event. For these reaction channels, we reset the
putative absolute time of the next event by adding the new waiting time drawn
to the current time t. Thus, for each reaction channel j that must be updated, we
set tputj → t + τ put

j , where τputj is the new putative waiting time drawn. There
is no need to update the putative absolute times of the next event for the other
reaction channels because the absolute times of the next event for these reaction
channels do not depend on the current time.
In comparison, the putative waiting time until reaction channel j will gener-

ate an event, namely τputj , does change for all the reaction channels following
an event. This is because the waiting times are measured relative to the current
time and thus change whenever the time advances. Therefore, the putative wait-
ing times for all reaction channels need to be updated after each event in the
original first reaction method. Because only a small number of reaction chan-
nels are affected by each event on average (except for systems that are densely
connected or are in a critical phase), the use of the absolute time in place of the
waiting time reduces the complexity of this step from O(M) to O(1).

4.4.2 Reuse Putative Times to Generate Fewer Random Numbers

Gibson and Bruck also developed a procedure for generating new putative wait-
ing times τputj for the reaction channels that are different from i and are affected
by the event. Their idea is to reuse the old putative event time for each affected
reaction channel. With this new procedure, one does not have to generate a
new random variate to determine the new putative waiting time τputj for each of
these reaction channels. Let us denote by M′ the number of reaction channels
affected by the event in the ith reaction channel besides i itself. Then, this new
procedure brings the number of random variates generated per reaction down
from M′ + 1 for the first reaction method to one for the next reaction method.
While the introduction of this procedure does not change the computational
complexity of the step, which remains O(1), the reduction in the actual com-
putation time may be considerable when pseudorandom number generation is
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much slower than arithmetic operations. However, this is generally less of a
concern for newer pseudorandom number generators than it was earlier.
The procedure takes advantage of the memoryless property of Poisson pro-

cesses (see Box 1). Suppose that the rate for reaction channel j has changed
from λ

(old)
j to λ(new)j owing to the event that has occurred in reaction channel i.

Thememoryless propertymeans that if the reaction channel’s rate had remained
unchanged, that is, if λ(new)j = λ

(old)
j , then the waiting time until the next event

for reaction channel j, that is, τputj = tputj − t, would follow the same exponential
distribution as that of the original waiting time. Furthermore, any rescaling of
an exponentially distributed random variable, τ′

= aτ, is also an exponentially
distributed variable, with a rescaled rate λ′

= λ/a. Thus, we define the new
waiting time

τput(new) ≡ tput(new)j − t, (4.7)

which is related to the old waiting time by the rescaling

τ
put(new)
j =

λ
(old)
j τ

put(old)
j

λ
(new)
j

. (4.8)

This τ(new) follows the desired distribution of the new waiting time, that is,

p
(
τput(new)

)
= λ

(new)
j e−λ

( new)
j τ

put(new)
j . (4.9)

The combination of Eqs. (4.7), (4.8), and the definition τput(old)j = tput(old)j −
t implies that, for the reaction channels j whose rates have changed, we can
generate the new putative time of the next event according to

tput(new)j =
λ
(old)
j

(
tput(old)j − t

)
λ
(new)
j

+ t. (4.10)

4.4.3 Use an Indexed Priority Queue for Selecting the Next Event

Increasing the efficiency of Step 1 of the first reaction method, which finds
the reaction channel with the smallest waiting time, is more involved than the
first two improvements described in Sections 4.4.1 and 4.4.2. It relies on a
data structure similar to the binary tree discussed in Section 4.3. Gibson and
Bruck dubbed this structure an indexed priority queue, which is a binary heap,
that is, a type of binary tree that is optimized for implementing a priority
queue, coupled to an index array (see Fig. 12). The binary heap stores the puta-
tive times of the next event, tputi , for all reaction channels, ordered from the
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Figure 12 Indexed priority queue for storing putative reaction times in the
next reaction method. (a) Example of an indexed priority queue. The indexed
priority queue consists of a binary heap (top) and an index array (bottom).
The binary heap contains tuples (i, tputi ), where i is the reaction channel

number and tputi the putative time when it would generate its next event. The
nodes in the binary heap are ordered vertically by the value of tputi they store.
The index array points to the node in the binary heap that corresponds to each
reaction channel. (b) Configuration of the indexed priority queue after the
value of tput7 has been updated to 2.9 and the values stored in the nodes have
been rearranged to satisfy the vertical ordering of the tputi values. All entries of
the binary heap and the index array that the updating has affected are marked

in red.
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smallest to the largest, and provides lookup of the smallest of them, namely
min

{
t put1 , . . . , tputM

}
, in O(1) time. The index array contains pointers to each

reaction channel’s position in the binary heap to provide fast updating of the ti
values, that is, in O(logM) time.
The binary heap is a complete binary tree that stores a pair (i, tputi ) in each

node and is ordered such that each node has a tputi value that is smaller than that
of both its children and larger than that of its parent, as shown in Fig. 12(a).
Therefore, the heap stores the smallest tputi value in the root node. This implies
that finding the smallest putative event time requires only a single operation,
that is, it has O(1) time complexity.
Because the nodes in the binary heap are not ordered by their reaction chan-

nel number i, the index array (see Fig. 12) stores for each reaction channel i
a pointer to the position of the node in the binary heap that corresponds to i.
Specifically, the ith entry of the index array points to the node in the binary
heap that contains (i, tputi ). For example, in Fig. 12(a), the reaction channel 2
is located at node F in the tree. The index array removes the need to search
through the binary heap to locate a given reaction channel and the correspond-
ing event time. The index array thus enables us to find the nodes that need to
be updated after an event in O(1) time.
After updating the waiting time in a given node of the binary heap, we may

need to update the ordering of the nodes in the binary heap to respect the order
of putative event times across the hierarchical levels (i.e., descending order as
one goes from any leaf node toward the root node). We perform this reordering
by “bubbling” the values up and down: starting at the node whose value has
changed, corresponding to reaction channel j, say, we repeat either Step (1) or
(2) in the following list, depending on the value of tputj , until one of the stopping
conditions is satisfied.

(1) If the new tputj value is smaller than the tput value stored in its parent node,
swap (j, tputj ) with the value in the parent node, and also swap the two
nodes’ pointers in the index array. We repeat this procedure for the parent
node.

(2) Otherwise, that is, if the new tputj value is larger than or equal to the tput

value stored in its parent node, compare tputj to the tput values in its two
child nodes. If tputj is larger than the minimum of the two, swap (j, tputj ) with
the values in the child node that attains the minimum, and also swap the
two nodes’ pointers in the index array. We repeat this procedure for the
child node that attained the minimum of tput before the swapping.

• Stopping conditions: We repeat the procedure until the new tputj value is
larger than its parent’s and smaller than both of its children’s. Alternatively,
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Box 5 Bubbling Algorithm
bubbling(node n):

• If the tput value in the node n is smaller than the tput value in n’s parent
node, parent(n), then
(a) swap n and parent(n), and update the index array correspondingly;
(b) run bubbling(parent(n)).

• Else if the tput value in n is larger than the smaller tput value of its two
children, then
(a) swap n and the corresponding child node, min_child(n), and

update the index array correspondingly;
(b) run bubbling(min_child(n)).

• Else, stop the bubbling algorithm.

if the value (j, tputj ) has bubbled up to the root node or down to a leaf, we
also terminate the procedure.

This procedure allows us to update the binary heap in O(logM) time for each
reaction channel whose event rate has changed following an event. This is the
most costly part of the algorithm. So, the next reaction method improves the
overall runtime of the first reaction method from O(M) to O(logM). Box 5
shows an implementation of the bubbling algorithm.
To illustrate the bubbling procedure we turn to the example shown in

Fig. 12(a). Suppose that the putative event time for reaction channel 7 changes
from tput7 = 0.32 to tput7 = 2.9 following an event. We first update the value
in node B of the binary heap. We then compare the value of tput7 to the value
in the parent node, node A, in Step (1). Because tput7 is larger than the value
stored in node A, we then compare tput7 to the values stored in node B’s two
child nodes in Step (2). Because tput7 is larger than the values in both the child
nodes, we swap the values with the node containing the smallest of the two,
which is node D, containing tput6 = 0.60. We also update the index array by
swapping the pointers of reaction channels 6 and 7. We then repeat the pro-
cedure for node D, which now contains (7, tput7 ). Because we just swapped the
content of nodes B and D, we know that tput7 is larger than the value stored in
node D’s parent node (i.e., node B). So, we compare tput7 to the value stored in
the only child node of node D, namely, node H. We find that tput7 is larger than
the value stored in node H (i.e., tput1 = 2.6). Therefore, we swap the content
of the two nodes, and we update the index array by swapping the pointers to
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channels 1 and 7. Because tput7 is now stored in a leaf node, a stopping condition
is satisfied, and we stop the procedure. Figure 12(b) shows the indexed priority
queue after being updated.
One can also use the bubbling operation to initialize the indexed priority

queue by successively adding nodes corresponding to each reaction channel.
Because we initially need to add M values of t puti (with i = 1, . . . ,M), the
initialization using bubbling takes O(M logM) time. More efficient methods
to initialize the priority queue exist (Chen et al., 2012). However, one runs
the initialization only once during a simulation. Therefore, using an efficient
initialization method would typically not much contribute to the algorithm’s
runtime as a whole.
The binary search tree for the direct method and the binary heap for the next

reactionmethod are both binary tree data structures and accelerate search. How-
ever, their aims are different. The binary tree for the direct method enables us
to efficiently draw i with probability Πi, and the tree holds and updates all the
λi values (i = 1, . . . ,M). The binary heap used in the next reaction method
enables us to efficiently determine the i that has the smallest tputi value, and the
tree holds and updates all the tputi values (i = 1, . . . ,M). In both these struc-
tures, updating the values stored in the node (i.e., λj for the direct method or
tputj for the next reaction method) following an event is less efficient than for
the linear arrays used in their original implementation. Specifically, updating a
value in the tree structures takes O(logM) time as opposed to O(1) time for the
linear array. However, the improved direct and the next reaction methods still
have an overall O(logM) time complexity. In contrast, the original direct and
first reaction methods have an overall O(M) time complexity due to the linear
search, which costsO(M) time. For large systems, the time saved by getting rid
of the linear search is larger than the added overhead.
Finally, note that the binary heap has onlyM nodes, which contrasts with the

binary tree used for the direct method (Section 4.3), which has 2M−1 nodes in
the ideal case ofM being a power of 2. However, because the nodes in the binary
heap are ordered according to their tputi value and not their index, the binary heap
also needs to store the reaction channel’s index i in each node. In addition to
the binary heap, the indexed priority queue also needs to store the index array,
representing an additionalM values. Thus, the indexed priority queue stores 3M
values,M of which are floating-point numbers and 2M are integers. In contrast,
the binary tree stores 2M − 1 floating-point numbers. Therefore, the memory
footprints of the indexed priority queue and the binary tree are similar.
The steps for implementing the next reaction method are shown in Box 6.
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Box 6 Next Reaction Method

0. Initialization:
(0) Define the initial state of the system, and set t = 0.
(b) Calculate the rate λj for each reaction channel j ∈ {1, . . . ,M}.
(c) Draw M random variates uj from a uniform distribution on (0,1].
(d) Generate a putative event time tputj = − ln uj/λj for each j.
(e) Initialize the indexed priority queue:

Sequentially for each reaction channel j, add a node containing the
values (j, t putj ) to the binary heap and its position to the index array,
by performing the bubbling algorithm (see Box 5).

1. Select the reaction channel i corresponding to the root node in the heap
(which has the smallest tputi ).

2. Perform the event on reaction channel i.
3. Advance the time t → tputi .
4. Update λi and all other λj that are affected by the event produced.
5. Update the indexed priority queue:

(a) Draw a new putative waiting time for reaction channel i according
to τ put

i = − ln u/λi, with u being drawn from uniform distribution
on (0,1], and set tputi = t + τputi .

(b) Generate new tputj values for other reaction channels j whose λj has

changed, according to tput(new)j → λ
(old)
j

(
tput(old)j − t

) /
λ
(new)
j + t.

(c) For each reaction channel j whose tputj value has changed (includ-
ing i), look up in the index array the node n that stores (j, tputj ) in
the binary heap; update tputj in the node n, and run the bubbling
algorithm (see Box 5) to reorder the heap and update the index array.

6. Return to Step 1.

4.5 Composition and Rejection Algorithm to Draw the Next
Event in the Direct Method

Let us discuss a third method to draw an event i with probability Πi from a
categorical distribution {Π1, . . . ,ΠM} in the direct method. The idea is to use
the so-called composition and rejection (CR) algorithm (Schulze, 2008; Slepoy,
Thompson, & Plimpton, 2008). This is a general method to sample a random
variate that obeys a given distribution (von Neumann, 1951), which typically
has a constant time complexity, namely, O(1), and thus can be fast even for
large systems.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
23

91
58

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009239158


Gillespie Algorithms for Stochastic Multiagent Dynamics 51

The idea is to first represent the categorical distribution {Π1, . . . ,ΠM} as a
bar graph. The bar graph corresponding to the distribution given by Fig. 8 is
shown in Fig. 13. The total area of the bar graph is equal to 1. We consider a
rectangle that bounds the entirety of the bar graph, shown by the dotted lines
in Fig. 13. Then, we draw two random variates, denoted by u3 and u4, from
the uniform distribution on (0,1] and consider the point (u3M, u4Πmax), where
Πmax = max{Π1, . . . ,ΠM}. By construction, the point drawn is distributed uni-
formly (i.e., without bias) in the rectangle. If the point happens to be inside the
area of the bar graph, it is in fact a uniformly random draw from the bar graph.
Thus, the probability for the point to land inside the ith bar is proportional toΠi

in this case. The composition and rejection algorithm uses this property to draw
the event that happens, without having to iterate over a list (or a binary tree)
of λi values, by simply judging which bar the point falls inside. In the example
shown in Fig. 13, the point drawn, shown by the filled circle, belongs to Π2, so
we conclude that reaction channel 2 has produced the event. If the point does
not fall inside any bar (e.g., the triangle in Fig. 13), we then reject this point
and obtain another point by redrawing two new uniform random variates. In
practice, we find a putative reaction channel to produce the event by i = ⌊u3M⌋
and adopt it if Πi ≤ u4Πmax; we reject it otherwise. The steps of the CR algo-
rithm for general cases are shown in Box 7. These steps replace Step 2 of the
direct method in Box 3. We note that the meaning of the rejection here is the
same as that for the rejection sampling algorithm (see Section 2.8) but that the
two algorithms are otherwise different.
If the area of the bar graph, which is always equal to 1, is close to the area

of the rectangle, the CR algorithm is efficient. This is because rejection then
occurs with a small probability, and we only waste a small fraction of the ran-
dom variates u3 and u4, whose generation is typically the most costly part of
the algorithm. In Fig. 13, the rectangle has area of 4×0.4 = 1.6. Therefore, one
rejects 1 − 1/1.6 = 3/8 of the generated random points on average. If the area
of the box is much larger than one, which will generally happen when the event
rates are heterogeneous and a few rates are much larger than the majority, then
the CR algorithm is not efficient.
In Schulze (2008) and Slepoy et al. (2008), the authors went further to

improve the CR algorithm to reduce the rejection probability. The idea is
to organize the individual bars such that bars of similar heights are grouped
together into a small number of groups and then to draw a rectangle to bound
each group of bars. The probability for a group to generate the next event is pro-
portional to the sum of the areas of the individual bars in the group. Because
the number of groups is small, one can efficiently select the group that gener-
ates an event using a simple linear search. In many cases the number of groups
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1
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2 3 40

0.2

0.4
i

i

Figure 13 Bar graph for the composition and rejection algorithm. The height
of each bar represents Πi. Like in Fig. 8, we assume N = 4, Π1 = 0.1,
Π2 = 0.4, Π3 = 0.2, and Π4 = 0.3. The two points uniformly randomly
sampled from the dotted rectangle are shown by a circle and triangle.

Box 7 Composition and Rejection Algorithm

1. Generate two uniform random variates u3,u4 ∈ (0,1].
2. Set i = ⌊u3M⌋.
3. If u4Πmax ≤ Πi, we conclude that the ith reaction channel produces the

event. Otherwise, return to Step 1.

does not depend on M, and this step thus has constant time complexity, O(1).
We then apply the original CR algorithm, given in Box 7, inside this group to
select the individual reaction channel that generates the next event. This step is
necessarily efficient since the reaction channels were grouped to have similar
rates, so the area of the box corresponding to the group is not much larger than
one. This implementation of the CR algorithm conserves its O(1) time com-
plexity. It makes the rejection step more efficient at the cost of requiring an
additional random variate and having to iterate through the list of groups to
select the one that generates the event.
In both the original and improvedCR algorithms, the time to determine i does

not depend onM, so it has O(1) time complexity in terms ofM. In practice, the
efficiency of the algorithm depends on the probability of rejection and on the
complexity of regrouping the bars in the case of the improved CR algorithm.

4.6 Recycling Pseudorandom Numbers in the Direct Method
Each iteration of the direct method requires the generation of two uniform ran-
dom variates, u1 and u2; one for generating the waiting time, and another for
selecting the reaction channel that produces an event. Generating a pseudo-
random number is generally more costly than simple arithmetic operations.
However, as we mentioned in Section 4.4, recent pseudorandom number gen-
erators have substantially reduced the computational cost of generating random
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numbers. Nevertheless, there may be situations where it is preferable to gener-
ate as few random numbers as possible. Yates and Klingbeil (2013) proposes
a method to recycle a single pseudorandom number to generate both u1 and u2
(see also Masuda and Rocha [2018]). The method works as follows.
First, we generate a uniform random variate on (0,Λ] denoted by u2, where
Λ =

∑M
j=1 λj. Second, we determine the reaction channel i that produces the

event, which satisfies
∑i−1

j=1 λj < u2 ≤ ∑i
j=1 λj (see Step 2 in Box 3). These

steps are the same as those of the direct method. Now, we exploit the fact that
u2 −

∑i−1
j=1 λj is uniformly distributed on (0, λi] given that the reaction channel i

has been selected. This is because u2 is uniformly distributed between
∑i−1

j=1 λj

and
∑i

j=1 λj (which is equal to λi +
∑i−1

j=1 λj). Therefore, we set

u1 =
u2 −

∑i−1
j=1 λj

λi
, (4.11)

which is a uniform random variate on (0,1]. Then, we generate the waiting time
by τ = − ln u1/Λ (see Step 1 in Box 3).
There are two remarks. First, we need to determine i and then determine

τ with this method. In contrast, one can first determine either i or τ as one
likes in the original direct method. Second, by generating two pseudorandom
numbers from a one pseudorandom number, one is trading speed for accuracy.
The variable u1 has a smaller number of significant digits (i.e., less accuracy)
compared to when one generates u1 directly using a pseudorandom number
generator as in the original direct method. However, this omission probably
does not cause serious problems in typical cases as long asM is not extremely
large because the u1 generated by the recycling direct method and the original
direct method differ only slightly in the numerical value.

4.7 Network Considerations
In networks, where different nodes may have different degrees, and the number
of infectious neighbors may be different even for same-degree nodes, it may
be difficult to bookkeep, select, and update the λj values efficiently. So, we
need careful consideration of these steps when simulating stochastic processes
in networks (Kiss et al., 2017a; St-Onge et al., 2019). A particular problem that
arises in dense networks or for dynamic processes in heterogeneous networks
that are close to a critical point is that the average number of reaction channels
that are affected by each event can become extremely large. Concretely, it may
be proportional to the number of reaction channels, M. In this case updating
the event rates λj (Step 4 in Boxes 2 and 6 and Step 5 in Boxes 3 and 4) no
longer has an O(1) time complexity but O(M). Because none of the methods
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just discussed improves this step, they then cannot improve the time complexity
of the classic Gillespie algorithms in this situation.
Carefully designed event-based simulations, which are similar in spirit to the

first reaction method, can significantly accelerate exact simulations of coupled
jump processes, even for dense or heterogeneous networks and including the
case of coupled non-Poissonian renewal processes (see also Section 5.5). An
important assumption underlying this approach is that, once a node is infected,
it will recover at a time that is drawn according to the distribution of recovery
times regardless of what is going to happen elsewhere in the network. In this
way, one can generate and store the recovery time of this node in a priority
queue to be retrieved when the time comes. Codes for the SIR model and the
susceptible-infectious-susceptible (SIS) model (i.e., individuals may get rein-
fected after a recovery) as well as for generating animation and snapshot figures
are available at Kiss, Miller, and Simon (2017b). The corresponding pseudo-
code and explanation are available in Appendix A of Kiss, Miller, and Simon
(2017a).
Another idea that can be used for speeding up simulations in this case is

that of phantom processes, which is to assign a positive event rate to types of
events that actually cannot occur. For example, an infectious node attempts to
infect an already infectious or recovered node. If such an event is selected in a
single step of the Gillespie algorithm, nothing actually occurs, and so the event
is wasted. However, by designing such phantom processes carefully, one can
simplify the updating of the list of all possible events upon the occurrence of
events, leading to overall saving of computation time (Cota & Ferreira, 2017).
St-Onge and colleagues have advanced related simulation methods in three

main aspects (St-Onge et al., 2019). First, they noted the fact that, in the case
of the SIR and SIS models, any event, namely either the infection or the recov-
ery event, involves an infectious individual. Therefore, we can reorganize the
set of possible events such that they are grouped according to the individual
infectious nodes. In other words, an infectious node either recovers with rate
µ or infects one of its susceptible neighbors with rate β. Therefore, the total
event rate associated to an infectious node vi is equal to ki,Sβ + µ, where ki,S
is the number of susceptible neighbors of vi. In this manner, one only has to
monitor NI reaction channels during the process. Their second idea is to use
the CR algorithm (Section 4.5). We have

Πi =
ki,Sβ + µ∑

j;vj is infected
(
kj,Sβ + µ

) (4.12)

for infectious nodes vi. Because infected nodes tend to be large-degree nodes
(Barrat et al., 2008; Pastor-Satorras et al., 2015; Pastor-Satorras & Vespignani,
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2001), some Πi’s tend to be much larger than other Πi’s. To accelerate the sam-
pling of the event i that occurs in each step in this situation, they employed the
improved CR algorithm of Slepoy and colleagues (2008). Third, they employed
phantom processes, corresponding to infections of already infectious nodes.
Their algorithm has a time complexity ofO(log logM) and is thus efficient in

many cases. Their code, whose computational part is implemented in C++ for
efficiency and whose interface is in Python, is available on Github (St-Onge,
2019).

4.8 Tau-Leaping Method
There are various other algorithms that are related to the Gillespie algorithms
and introduce some approximations to speed up the simulations. We briefly
review just one such method here, the tau-leaping method, which Gillespie
proposed in 2001. Themethodworks by discretizing time into intervals of some
chosen length, ∆t. In a given interval, the method draws a random variate to
determine how many events have happened for each process i, denoted by ni,
and then updates the state of the system (Gillespie, 2001). For example, in a
chemical reaction system, ni is the increment in the number of molecules of the
ith species. Under the assumption that each λi stays constant between [t, t+∆t],
where t is the current time, ni obeys a Poisson distribution with mean λi∆t. In
other words, the number is equal to ni with probability (λi∆t)nie−λi∆t/ni!. It is
desirable to make ∆t large enough to reduce the computation time as much as
possible. On the other hand,∆t should be small enough to guarantee that λi stays
approximately constant in each time window of length ∆t in order to assure the
accuracy of the simulation. In simulations of social dynamics, the tap-leaping
methods are probably not relevant in most cases because a single event on the
ith reaction channel typically produces the state change of, for example, the ith
individual. Then, one needs to renew the λi value. If this is the case, we cannot
use the same λi to produce multiple events on the ith reaction channel.
For other methods to accelerate the Gillespie algorithm or related algorithms,

we refer to the review paper by Goutsias and Jenkinson (2013).

4.9 Pseudorandom Number Generation
All stochastic simulation algorithms including the Gillespie algorithms rely on
the generation of random numbers. We here give a brief and practical introduc-
tion to computer generation of random numbers for application to Monte Carlo
simulations.Wewill not address the technical workings of random number gen-
erators here. An authoritative introduction to the subject is found in Chapter 7
of Press and colleagues (2007).
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A pseudorandom number generator (PRNG) is a deterministic computer
algorithm that generates a sequence of approximately random numbers. Such
numbers are not truly random. So, we refer to them as pseudorandom (i.e.,
seemingly random) to distinguish them from numbers generated by a truly ran-
dom physical process. However, the numbers need not be truly random in most
applications. They just need to be random enough. In the context of Monte
Carlo simulations, a working criterion for what constitutes a good PRNG is that
simulation results based on it are indistinguishable from those obtained with a
truly random source (Jones, 2010).8 Not all PRNGs satisfy this requirement.
In fact, many standard PRNG algorithms still in use today have been shown to
have serious flaws. To make this volume self-contained, we here explain some
simple good practices to be followed and pitfalls to be avoided to ensure that
the pseudorandom numbers that our simulations rely on are of sufficient qual-
ity. For a more detailed, yet not too technical, introduction to good and bad
practices in pseudorandom number generation, we recommend Jones (2010).
What constitutes a good PRNG depends on the application. For example,

good PRNGs for Monte Carlo simulations are generally not random enough for
cryptography applications. Conversely, while cryptographically secure PRNGs
produce high-quality random sequences, they are generally much slower and
are thus not optimal for Monte Carlo simulations. As this example suggests,
the choice of PRNG involves a trade-off between the statistical quality of the
generated sequence and the speed of generation. Nevertheless, many PRNGs
now exist that are both fast and produce sequences that are sufficiently random
for anyMonte Carlo simulation. Ensuring that you use a good PRNGessentially
boils down to checking two simple points: (1) do not use your programming
language’s standard PRNG, and (2) properly seed the PRNG.
First, the most important rule to follow when choosing a PRNG is to

never use your programming language’s standard PRNG! To ensure back-
wards compatibility, the standard random number generators in many pro-
gramming languages are based on historical algorithms that do not produce
good pseudorandom number sequences. (A nonexhaustive list of languages
with bad PRNGs is found in Jones [2010].) Extensive test suites such as
TestU01 (L’Ecuyer & Simard, 2007) and Dieharder (Brown, Eddelbuettel, &
Bauer, 2021) have been developed for testing the statistical quality of PRNGs.
Several fast and high-quality PRNGs are implemented in standard scientific

computing libraries. So, using a good PRNG is as simple as importing it from

8 An entirely equivalent definition is that any two (good) PRNGs should lead to statistically the
same results as the simulations (Press et al., 2007).
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one of these libraries.9 For example, we obtained all simulations performed
in Python that are shown in this tutorial using the 64-bit Permuted Congru-
ential Generator (PCG64) (O’Neill, 2014), which is available in the standard
NumPy library. For C++ code (see Section 4.10), we used theMersenne Twister
19937 algorithm with improved initialization,10 namely mt19937ar (Mat-
sumoto, 2021; Matsumoto & Nishimura, 1998), which is available as part of
the Boost and Libstdc++ libraries.
Second, we should properly seed the PRNG. PRNGs rely on an internal state,

which they use to generate the next output in the random number sequence.
The internal state is updated at each step of the algorithm. At the first use of the
PRNG, one must initialize, or seed, the internal state. Proper initialization is
crucial for the performance of a PRNG. In particular, earlier PRNGs suffered
from high sensitivity to the seed value. For example, the original implementa-
tion of the Mersenne Twister algorithm is hard to seed due to its slow mixing
time. This means that, if the bitstring corresponding to the initial state is not
random enough (e.g., if it contains mostly zeros), up to the first one million
generated numbers can be nonrandom. Recently proposed PRNGs generally
do not show the same pathologies. So, as long as one uses a recently proposed,
good PRNG, seeding the generator is not a problem except when one runs sim-
ulations in parallel. The initial seeding problems of the Mersenne Twister have
been fixed in the mt19937ar version in 2002 (Matsumoto, 2021). As another
example, the PCG64 PRNG is easy to seed.
We need to be more careful on how to seed each instance of the PRNG when

running simulations in parallel. An often used method to select the seed for
a PRNG is to generate it automatically based on the system clock. However,
this is a bad idea for launching many (e.g., thousands or more) simulations

9 Many sources advise to implement the PNRG for oneself in one’s code. While this is
instructive, we do not believe that it is necessary for starting your work with Monte Carlo
simulations.

10 The Mersenne Twister 19937 algorithm (MT19937) has long been the reference for Monte
Carlo simulations. (It has now been surpassed by the last generation of PRNGs, both in terms
of speed and memory requirement, and in terms of its performance on statistical randomness
tests.) MT19937 passes almost all tests in the test suites (e.g., Dieharder and TestU01), but it
fails a few of themore rigorous tests of randomness which recent PRNGs, such as PCG64, pass.
However, these are very rigorous tests, and this nonrandomness is unlikely to pose any problem
in Monte Carlo simulations (Jones, 2010). While MT19937 is a bit slower than PCG64, the
speed difference is generally too small to matter much in practice. (Tests show that PCG64 is
around twice as fast as MT19937 when generating 64-bit random numbers (O’Neill, 2014).)
Finally, MT19937 has a much larger memory footprint than other PRNGs; it keeps a 20 032-bit
internal state compared to PCG64’s 128-bit state, for example. This could pose a problemwhen
running massively parallel simulations, for example, on a graphics processing unit (GPU) with
a relatively small amount of memory. However, it will not be a problem when running a single
or a few parallel simulations on a desktop computer.
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in parallel because many simulations will then tend to be initialized with the
same or nearly the same seed. Any simulations launched with the same seed
will produce exactly the same results, and those launched with close seeds may
produce correlated results depending on the mixing properties of the PRNG.
In both cases, this is wasteful. What is worse, if we are not aware that the
simulation results are correlated, we will overestimate the precision of the
obtained results. The safest way to seed the PRNG for parallel simulation is
to use a jump-ahead operation that allows us to advance the internal state of
the PRNG by an arbitrary amount of steps. With this method, one can initialize
the PRNG of individual simulations with states that are sufficiently far from
each other such that the pseudorandom number sequences generated by the
different simulations are dissimilar. Methods for parallel seeding exist for both
the Mersenne Twister (Haramoto et al., 2008) and PCG64 (O’Neill, 2014). If
one wants to use a PRNG for which no efficient jump-ahead method exists,
a better source of randomness than the system time should be used. On Unix
machines, /dev/urandom is a choice. Note, however, that all PRNGs have a
fixed cycle length, after which it will repeat itself deterministically. Therefore,
one should use a PRNG with a sufficiently large cycle length (at least 264) and
a seed with a sufficient number of bits (at least 64) to avoid overlap between
the pseudorandom number sequences generated by the PRNG.

4.10 Codes
Here we showcase some example simulations of event-based stochastic pro-
cesses using the Gillespie algorithms. In practice, in scientific research in which
the Gillespie algorithms are used, we often need to exactly run coupled jump
processes on a large scale. For example, you may need to simulate a system
composed of many agents, or you may have to repeat the same set of simula-
tions for various parameter values to investigate the dependence of the results
on the parameter values of your model. In such a situation, we often want to
implement the Gillespie algorithms in a program language faster than Python.
Therefore, we implemented the SIR model and three other dynamics in C/C++,
which is typically much faster than in Python. We use the Mersenne Twister as
the PRNG and only implement the direct method. Our C/C++ codes and the
list of edges of the networks used in our demonstrations are available at Github
(https://github.com/naokimas/gillespie-tutorial).

4.10.1 SIR Model

We provide codes for simulating the SIR model in well-mixed popula-
tions (sir-wellmixed.cc), for general networks using Gillespie’s original

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
23

91
58

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://github.com/naokimas/gillespie-tutorial
https://doi.org/10.1017/9781009239158


Gillespie Algorithms for Stochastic Multiagent Dynamics 59

Figure 14 Time courses of the fraction of the susceptible, infectious, and
recovered nodes obtained from two runs of the SIR model. We set β = 0.6 and
µ = 3. We used a regular random graph with N = 1000 nodes and the nodes’
degree equal to five. In other words, each node has degree 5, and apart from
that, we connect the nodes uniformly at random according to the configuration
model (Fosdick et al., 2018). The network is the same for the two runs shown
in (a) and (b). Each run started from the same initial condition in which a
particular node was infectious and the other N − 1 nodes were susceptible.

direct method (sir-net.cc), and for general networks using the binary
search tree (see Section 4.3) to speed up the selection of the events
(sir-net-binary-tree.cc). Time courses of the fractions of the suscep-
tible, infectious, and recovered nodes from two runs of the SIR model with
β = 0.6 and µ = 3 on a regular random graph with N = 1000 nodes are shown
in Fig. 14. We started both runs from the same initial condition in which just
one node, which was the same node in both runs, was infectious and the other
N−1 nodes were susceptible. The figure illustrates the variability of the results
due to stochasticity, which is lacking in the ODE version of the SIR model
(Section 2.7).

4.10.2 Metapopulation Model with SIR Epidemic Dynamics

Another example system that the Gillespie algorithms can be used for is the
SIRmodel in a metapopulation network. Mobility may induce different contact
patterns at different times. For example, we typically contact family members
in the morning and evening, while we may contact workmates or schoolmates
in the day time. The metapopulation model provides a succinct way to model
network changes induced by mobility (Anderson & May, 1991; Colizza et al.,
2006; Colizza, Pastor-Satorras, Vespignani, 2007; Diekmann & Heesterbeek,
2000; Hanski, 1998; Hufnagel, Brockmann, & Geisel, 2004). We consider a
network, where a node is a patch, also called a subpopulation, which is a con-
tainer of individuals, modeling for example, a home, a workplace, a sports team
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vi

Figure 15 A metapopulation model network with Ñ = 6 patches and N = 25
individuals. As in the previous similar figures, the blue, red, and brown circles
represent susceptible, infectious, and recovered individuals, respectively.

meeting, or a pub. A network of patches is distinct from a network in which
a node is an individual. In Fig. 15, there are Ñ = 6 patches connected as a
network. Each individual is in either the S, I, or R state and is assumed to be
situated in one patch; there are N = 25 individuals in Fig. 15. An infectious
individual infects each susceptible individual in the same patch with rate β.
Crucially, an infectious individual does not infect susceptible individuals in
other patches. An infectious individual recovers with rate µ regardless of who
are in the same patch.
In addition, the individuals move from a patch to another. There are vari-

ous mobility rules used in the metapopulation model (Masuda & Lambiotte,
2020), but a simple one is the so-called continuous-time random walk. In its
simplest variant, each individual moves with constant rate D, which is often
called the diffusion rate. In other words, each individual stays in the currently
visited patch for a sojourn time τ, which follows the exponential distribution,
ψ stay(τ) = De−Dτ , before it moves to a neighboring patch. When the individual
moves, it selects each neighboring patch with equal probability. For example,
the infectious individual vi in Fig. 15moves to either of the neighboring patches
with probability 1/2 when it moves. The movements of different individuals
are independent of each other, and the moving events occur independently of
the infection or recovery events. Because we assumed that the time to the next
move of each individual obeys an exponential distribution, we can use the Gil-
lespie algorithms to simulate the SIR plus mobility dynamics as described by
the standard metapopulation model.
We provide a code (sir-metapop.cc) for simulating the SIR model in the

metapopulation model to which one can feed an arbitrary network structure.
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opinion A

opinion B

vi

vj

Figure 16 Schematic of the voter model on a network.

Time courses of the numbers of S, I, and R individuals are qualitatively
similar to those for the standard SIR model in well-mixed populations and
networks.

4.10.3 Voter Model

Another typical example of collective dynamics is the voter model (Barrat
et al., 2008; Castellano, Fortunato, & Loreto, 2009; Holley & Liggett, 1975;
Krapivsky, Redner, & Ben-Naim, 2010; Liggett, 1999). Suppose again that the
individuals are nodes of a network. Each individual is a voter and takes either of
the two states A and B, referred to as opinions (see Fig. 16). If two individuals
adjacent on the network have the opposite opinions, the A individual, denoted
by vi, tries to convince the B individual, denoted by vj, into supporting opinion
A, in the same manner as an infectious individual infects a susceptible individ-
ual in the SIR model. This event occurs with rate βB→A. At the same time, vj
tries to convince vi, who currently supports opinion A, into supporting opin-
ion B, which occurs with rate βA→B. Clearly, the two opinions compete with
each other. The time before vj flips its opinion from B to A due to vi obeys an
exponential distribution given by ψB→A(τB→A) = βB→Ae−βB→AτB→A . Likewise,
the time before vi flips its opinion from A to B due to vj obeys an exponential
distribution given by ψA→B(τA→B) = βA→Be−βA→BτA→B . If τB→A < τA→B and
nothing else occurs on the network for time τB→A from now, vj flips its opinion
from B to A. This implies that vj loses the chance to convince vi to take opinion
B because vj itself now supports opinion A.
Such a competition occurs on every edge of the network that connects two

nodes with the opposite opinions. The dynamics stop when the unanimity of
opinion A or that of opinion B has been reached. Then, there is no opinion con-
flict in the entire population. Note that opinion B does not emerge if everybody
in the network has opinion A, and vice versa. For this and other reasons, the
voter model is not a very realistic model of voting or collective opinion forma-
tion. However, the model has been extensively studied since its inception in the
1970s. The most usual setting is to assume βA→B = βB→A (i.e., both opinions
are equally influential) and ask questions such as the time until consensus (i.e.,
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Figure 17 Time courses of the fraction of the nodes with opinion A in the
voter model in three different simulations. We use a regular random graph

with nodes’ degree equal to five. We set (a) N = 100 and (b) N = 1000. We set
βA→B = βB→A = 1. Each run started from the initial condition in which half
the nodes were in opinion A and the other half were in opinion B. The results

for three runs are shown in different colors in each panel.

unanimity) and which opinion is likely to win depending on the initial condi-
tions. When βA→B , βB→A, the model is called the biased voter model, and
an additional question to be asked is which opinion is likely to win depending
on the imbalance between βA→B and βB→A. Because there are only two types
of events, associated with βA→B and βB→A, and they occur with exponentially
distributed waiting times, one can simulate the voter models, including biased
ones, using the standard Gillespie algorithms.
We provide codes for simulating the voter model in well-mixed populations

(voter-wellmixed.cc), for general networks usingGillespie’s original direct
method (voter-net.cc), and for general networks using a binary search tree
(voter-net-binary-tree.cc). Time courses of the fraction of the nodes in
opinion A from three runs of the unbiased voter model on a regular random
graph withN = 100 andN = 1000 nodes are shown in Fig. 17(a) and Fig. 17(b),
respectively. All the runs for each network started from the same initial con-
dition in which half the nodes are in opinion A and the other half in opinion
B. The figure indicates that some runs terminate with the consensus of opinion
A and the others with the consensus of opinion B. It takes much longer time
before a consensus is reached with N = 1000 (Fig. 17(b)) than with N = 100
(Fig. 17(a)), which is expected. Results for well-mixed populations (which
one can produce with voter-wellmixed.cc) are similar to those shown in
Fig. 17.

4.10.4 Lotka–Volterra Model

The Lotka–Volterra model describes dynamics of the numbers of prey and
of predators under predator–prey interaction. It is common to formulate and
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prey

predator

predation death

µ

birth

none

Figure 18 Rules of the stochastic Lotla–Volterra model with one prey species
and one predator species.

analyze this dynamics as a system of ODEs, where the dependent variables
represent the numbers of the prey and predators, and the independent variable
is time. The ODE approach to the Lotka–Volterra model and its variants have
been particularly useful in revealing mathematical underpinnings of oscilla-
tory time courses of the numbers of prey and predators (Hofbauer & Sigmund,
1988; Murray, 2002). However, it is indispensable to consider stochastic ver-
sions of the Lotka–Volterra models (Dobrinevski & Frey, 2012; Gokhale et al.,
2013; Parker & Kamenev, 2009) when the number of prey or of predators is
small. (See Section 2.7 for a general discussion of the problems with ODE
models.)
Consider a system composed of a single species of prey (which we call rab-

bits) and a single species of predator (which we call foxes). We denote the
number of rabbits and that of foxes by Nrab and Nfox, respectively. The rules of
how Nrab and Nfox change stochastically are shown schematically in Fig. 18. A
rabbit gives birth to another rabbit with rate α. A fox dies with rate µ. A fox
consumes a rabbit with rate β, which by definition results in an increment of
Nfox by one. This assumption is probably unrealistic because a fox would not
give birth to its cub only by consuming one rabbit. (A fox probably has to eat
many rabbits to be able to bear a cub.) The model furthermore ignores natu-
ral deaths of the rabbits. These omissions are for simplicity. Because the three
types of events occur as Poisson processes with their respective rates and we
also assume that different types of events occur independently of each other,
one can simulate the stochastic Lotka–Volterra dynamics using the Gillespie
algorithms.
The extension of the Lotka–Volterra system to the case of many species is

straightforward. In this scenario, a species i may act as prey toward some spe-
cies and as predator toward some other species. A version of the Lotka–Volterra
model for more than two species can be described by the birth rate of species i,
denoted by αi (with which one individual of species i bears another individual
of the same species); the natural death rate of species i, denoted by µi; and the
rate of consumption of individuals of species j by one individual of species i,
denoted by βij (i.e., an individual of species i consumes an individual of species
j with rate βij).
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Figure 19 Number of rabbits and foxes for two different runs of the
stochastic Lotka–Volterra model in a well-mixed population. In both (a) and
(b), we set α = 30, β = 0.1, µ = 30, and there are initially Nrab = 80 rabbits

and Nfox = 20 foxes.

We provide a code (lotka-volterra-wellmixed.cc) for simulating the
stochastic single-prey single-predator Lotka–Volterra dynamics in a well-
mixed population. Two sample time courses of the number of rabbits and that of
foxes are shown in Fig. 19. In both runs, the initial condition was the same (i.e.,
Nrab = 80 rabbits and Nfox = 20 foxes). We see oscillatory behavior of both
species with time lags, which is well known to appear in the Lotka–Volterra
model. In Fig. 19(a), the simulation terminated when the rabbits went extinct
after two cycles of wax and wane. By contrast, in Fig. 19(b), the simulation ter-
minated when the foxes went extinct after many cycles of wax and wane. The
apparent randomness in the sequence of the height of the peaks in Fig. 19(b) is
due to the stochasticity of the model.
The results shown in Fig. 19 are in stark contrast with those that the ODE

version of the Lotka–Volterra model would produce in two aspects. First, the
two time courses from the present stochastic simulations look very different
from each other due to the stochasticity of the model. The ODE version will
produce the same result every time if the simulation starts from the same initial
conditions and one can safely ignore rounding errors. Second, the ODE version
does not predict the extinction of one species; Nrab or Nfox can become tiny in
the course of the dynamics, but it never hits zero in finite time. By contrast,
the stochastic-process version always ends up in extinction of either species,
although it may take long time before the extinction occurs. Once rabbits go
extinct, the foxes will necessarily go extinct because there is no prey for the
foxes to consume. With our code, a run terminates once rabbits go extinct in
this case. On the contrary, if foxes go extinct first, then the number of rabbits
will grow indefinitely because the predators are gone. In either case, there is
no room for foxes to survive.
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5 Gillespie Algorithms for Temporal Networks and
Non-Poissonian Jump Processes

Until now we have assumed that all events occur according to Poisson pro-
cesses and that the interaction network, including the case of the well-mixed
population, stays the same over the duration of the simulation. However, both of
these assumptions are often violated in empirical social systems. In this section,
we present algorithms that relax these assumptions and allow us to simulate
processes with non-Poissonian dynamics and on networks whose structure
evolves over time.

5.1 Temporal Networks
In general, interactions between individuals in a social system are not contin-
ually active, so the networks they define vary in time (Fig. 20). The statistics
of both the dynamics of empirical temporal networks and the dynamic pro-
cesses taking place on them are often strongly non-Poissonian, displaying both
nonexponential waiting times and temporal correlations. Both the dynamics of
empirical networks and of processes taking place on dynamic networks have
been studied under the umbrella term of temporal networks (Holme, 2015;
Holme & Saramäki, 2012, 2013, 2019; Masuda & Lambiotte, 2020). In the fol-
lowing subsections, we present several recent extensions of the direct method
to temporal network scenarios. Before that, let us clarify which situations we
want to extend it to.
First, empirical sequences of discrete events tend to strongly deviate from

Poisson processes. In a Poisson process, the distribution of interevent times
is an exponential distribution. By contrast, events in empirical human activity
data often do not exhibit exponential distributions. Figure 21 shows the distri-
bution of interevent times τ between face-to-face encounters for an individual
in a primary school. For reference, we also show an exponential distribution
whose mean is the same as that of the empirical data. The empirical and expo-
nential distributions do not resemble each other. In particular, the empirical
distribution is much more skewed than the exponential distribution. It thus has
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Figure 20 Schematic of a “switching” temporal network with N = 4 nodes.
The network switches from one static graph to another at discrete points in

time.
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Figure 21 Survival probability of interevent times between face-to-face
encounters. Solid black line: empirical data; dashed blue line: exponential

distribution having the same mean as that of the empirical data. The empirical
data come from the “Primary School” data set from the SocioPatterns project
(Isella et al., 2011). Events are face-to-face proximity relationships between
an individual and other individuals in the school. We show the survival
probability, that is, Ψ(τ) =

∫ ∞
τ
ψ(τ′)dτ′, instead of the distribution of

interevent times, ψ(τ), because Ψ(τ) is more robust to noise in data. In other
words, the vertical axis represents the fraction of the interevent times that are

larger than the value specified on the horizontal axis. We selected the
individual with the largest number of events and calculated all the interevent
times for the selected individual. We omitted the largest interevent time,

which is more than 10 times larger than the second largest one. The survival
probability of the exponential distribution is given by

Ψ(τ) =
∫ ∞
τ
λe−λτ′dτ′ = e−λτ .

a much larger chance of producing extreme values of τ, both small and large.
Typically, the right tail of the distribution (i.e., at large values of τ) is roughly
approximated by a power-law distribution ψ(τ) ∝ τ−α, where ∝ means pro-
portional to, and α is a constant, typically between 1 and 3. If one replaces
the exponential ψ(τ), which the Gillespie algorithm and the original stochastic
multiagent models assume, by a power-law ψ(τ), the results may considera-
bly change. For example, for given β and µ values, epidemic spreading may be
less likely to occur in the SIRmodel with interevent times τ following a power-
law distribution than with ones following an exponential distribution with the
same mean (Karsai et al., 2011; Kivelä et al., 2012; Masuda & Holme, 2013;
Miritello, Moro, & Lara, 2011). Therefore, we are interested in simulating sto-
chastic dynamics where the waiting times obey distributions that may differ
from the exponential distribution. Such processes are called renewal processes.
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A Poisson process is the simplest example of a renewal process. It generates
events at a constant rate irrespectively of the history of the events in the past and
is thus called memoryless, which is also referred to as the process beingMarko-
vian. General renewal processes are not memoryless and are often referred to
as being non-Markovian, especially in the physics literature. Note that, even in
general renewal processes, each waiting time is independent of the past ones.
However, the expected waiting time until the next event depends on the time
elapsed since the last event.11 In Sections 5.2 and 5.3, we will present two
algorithms that simulate stochastic dynamics when ψ(τ) can be nonexponential
distributions.
Second, we may be interested in simulating a dynamic process on an

empirically recorded temporal network (e.g., epidemic spread over a mobil-
ity network). We will here consider a representation of temporal networks in
which the network changes discontinuously in discrete time points (Fig. 20),
which we call switching networks. Such a representation is often practical since
empirical temporal networks are generally recorded with finite time resolution
and thus change only in discrete points in time. The Gillespie algorithms do not
directly apply in this second case either. This is because, in switching networks,
which events can occur and the rates at which they occur depend on time. In
contrast, the classic Gillespie algorithms assume that the event rates stay con-
stant in between events.Wewill present a temporal version of the direct method
that can treat switching networks in Section 5.4.
Both non-Poissonian statistics of event times and temporally changing event

rates can also occur in chemical reaction systems, for which the Gillespie algo-
rithmswere originally proposed. Several extensions have been developed in the
chemical physics and computational biology literature to deal with these issues.
Different from social systems, temporally changing event rates are often exter-
nally driven in such systems. For example, in cellular reaction systems the cell’s
volume may change over time owing to cell growth. Such a volume change
leads to changes in molecular concentrations and thus to temporally evolv-
ing reaction rates, similar to temporal networks. Extensions of the Gillespie
algorithms have enabled, for example, simulating chemical reaction systems
with time-varying volumes (Carletti & Filisetti, 2012; Kierzek, 2002; Lu et al.,
2004). There are also Gillespie algorithms for more generally fluctuating event
rates (Anderson, 2007). Another common phenomenon in chemical reaction
systems is delays due to, for example, diffusion-limited reactions. Such delays

11 For this reason, renewal processes are formally defined as a type of semi-Markov process. We
will not delve further into this distinction here. We will simply refer to processes that do not
have exponentially distributed interevent times as non-Poissonian.
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lead to nonexponential waiting times, and several approaches have been devel-
oped to deal with this case (Anderson, 2007; Barrio et al., 2006; Bratsun et al.,
2005; Cai, 2007). While these issues are similar to those encountered in tempo-
ral networks, each has its particularities. Delays in chemical reaction systems
lead to distributions of interevent times that are less skewed than the exponen-
tial distribution. In contrast, typical distributions of interevent times in social
networks are more skewed than exponential distributions. Another difference
is that external dynamics influencing chemical reaction systems are typically
much slower than the reaction dynamics, while social network dynamics typi-
cally occur on the same scale or faster than the dynamics wewant to simulate on
networks. These facts pose specific challenges for the simulation algorithms.
In fact, although some extensions of the Gillespie algorithms developed for
chemical reaction systems may also be suitable for simulating multiagent sys-
tems and temporal networks, algorithms focusing specifically on the temporal
network setting have emerged. We review them in this section.

5.2 Non-Markovian Gillespie Algorithm
The non-Markovian Gillespie algorithm is an extension of the direct method to
the case in which interevent times are not distributed according to exponential
distributions (Boguñá et al., 2014). It relaxes the assumption that the individ-
ual jump processes are Poisson processes and enables us to simulate general
renewal processes.
We denote by ψi the distribution of interevent times for the ith reaction chan-

nel (where i = 1, . . . ,M), which we assume is a renewal process. If ψi is an
exponential distribution, the ith renewal process is a Poisson process. If all
ψis are exponential distributions, we can use the original Gillespie algorithms.
When ψi is not an exponential distribution, we need to know the time t̃i since
the last event for the process i to be able to generate the time to the next event
for that process.
By definition, the interevent time τi between two successive events pro-

duced by the ith process is given by ψi(τi). We want to know the next event
time, tlasti + τi, where t

last
i is the time of the last event on the ith reaction chan-

nel. The calculation of tlasti + τi is not straightforward to implement using the
direct method because knowing the function ψi for each reaction channel is not
enough on its own to simulate coupled renewal processes. In fact, we must be
able to calculate not only the waiting time since the last event of the ith process,
but since an arbitrary time t at which another process may have generated an
event. Suppose that i has not produced an event for a time t̃i after its last event.
(The current time is thus tlasti + t̃i.)We denote by τ̃i the waiting time until the next
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tlasti

current
time

time of
the last event

time of
the next event

waiting time until the 
next event from now

time elapsed since 
the last event

interevent time

time

τi

t̃i τ̃i

tlasti + τitlasti + t̃i

Figure 22 Schematic definition of the different notions of times employed in
this section and the relations between them.

event starting from time tlasti + t̃i. See Fig. 22 for a schematic definition of the
different notions of times. The waiting time τ̃i does not obey ψi(τi). Instead, τ̃i
obeys the following conditional probability density with which the next event
occurs at time tlasti + t̃i + τ̃i given that no event has occurred between tlasti and
tlasti + t̃i:

ψw
i (τ̃i |̃ti) =

(Probability that the next event occurs at tlasti + t̃i + τ̃i)
(Probability of no event between ti and tlasti + t̃i)

=
ψi( t̃i + τ̃i)
Ψi( t̃i)

. (5.1)

Here

Ψi( t̃i) =
∫ ∞

t̃i
ψi(τ′)dτ′ (5.2)

is the survival probability, that is, the probability that the interevent time is
larger than t̃i. The preceding argument shows that the waiting time to the next
event for each process explicitly depends on t̃i. Therefore, we need to record
when the last event has happened (i.e, tlasti , which is t̃i before the current time)
to generate the waiting time.
As an example, we consider a power-law distribution of interevent times

given by

ψi(τi) =
α − 1

(1 + τi)α
. (5.3)

By substituting Eq. (5.3) into Eq. (5.1), we find the probability distribution for
the waiting time τ̃i until the ith renewal process generates its next event given
that a time t̃i has already elapsed since its last event:

ψw
i (τ̃i |̃ti) =

(α − 1)(1 + t̃i)α−1
(1 + t̃i + τ̃i)α

. (5.4)
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Due to the highly skewed shape of ψi, the expected waiting time until the next
event becomes longer if more time has already elapsed without an event; that
is, τ̃i tends to be longer than τi. One can show this counterintuitive result by
comparing the mean values of ⟨τ̃i⟩ and ⟨τi⟩. The former is equal to ⟨τ̃i⟩ =∫ ∞
0 τ′ψw

i (τ′ |̃ti)dτ′ = (1 + t̃i)/(α − 2). This is larger than the latter, which is
given by ⟨τi⟩ =

∫ ∞
0 τ′ψi(τ′)dτ′ = 1/(α − 2).

When i is a Poisson process, ψi is an exponential distribution, and such
a complication does not occur. The memoryless property of the exponential
distribution yields ψw

i (τ̃i |̃ti) = ψi(τ̃i), which we can verify by plugging the
exponential distribution into Eq. (5.1):

ψw
i (τ̃i |̃ti) =

λe−λ( t̃i+τ̃i)

e−λ̃ti
= λe−λτ̃i . (5.5)

Therefore, ψw
i (τ̃i |̃ti) does not depend on the time elapsed since the last event,

t̃i, and is the same as the original exponential distribution, ψi(τ̃i). The original
Gillespie algorithm fully exploits this property of Poisson processes.
To build a direct Gillespie method for simulating coupled renewal processes,

we need to calculate two quantities: (i) the time until the next event in the entire
population, τ, whichever process produces this event; (ii) the probability Πi

that the next event is produced by the ith process. We denote by ϕ(τ, i| {̃tj}) the
probability density for the ith process, and not any other process, to generate
the next event after a time τ conditioned on the time elapsed since the last event
of all processes in the population, {̃tj} ≡ {̃t1, . . . , t̃M}. It should be noted that
we need to condition on each t̃j. This is because ϕ(τ, i| {̃tj}) depends not only
on the ith renewal process generating an event after the waiting time τ but also
on all the other processes not generating any event during this time. By putting
all this together, we obtain

ϕ(τ, i| {̃tj}) = ψw
i (τ |̃ti)

M∏
j=1;j,i

Ψj(τ |̃tj), (5.6)

where Ψj(τ |̃tj) is the conditional survival probability for the waiting time of the
jth process if it were running in isolation, given that its last event occurred a
time t̃j ago.
Equation (5.6) is composed of two factors. The first factor is the probability

density for the ith process to generate the next event within a small timewindow
around τ (i.e., between τ and τ + dτ from now, where dτ is infinitesimally
small), corresponding to the probability density ψw

i (τ |̃ti). The other factor is
the probability that none of the otherM−1 processes generates an event within
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this time window, corresponding to the product of the survival probabilities
Ψj(τ |̃tj) over all j , i. Using Eq. (5.1), we obtain Ψj(τ |̃tj) as follows:

Ψj(τ |̃tj) =
∫ ∞

τ
ψw
j (τ′ |̃tj) dτ′ =

Ψj( t̃j + τ)
Ψj( t̃j)

. (5.7)

By substituting Eqs. (5.1) and (5.7) into Eq. (5.6), we obtain

ϕ(τ, i| {̃tj}) =
ψi( t̃i + τ)
Ψi( t̃i + τ)

Φ(τ | {̃tj}), (5.8)

where

Φ(τ | {̃tj}) =
M∏
j=1

Ψj( t̃j + τ)
Ψj( t̃j)

. (5.9)

We interpret Eq. (5.8) as follows.
First, Ψj( t̃j) is the probability that the jth renewal process has not gener-

ated any event for a time t̃j since its last event. The factor Ψj( t̃j + τ) is the
probability that the same process has not generated any event for time t̃j since
its last event and it does not generate any event for another time τ. Therefore,
Ψj( t̃j+τ)/Ψj( t̃j) is the conditional probability that the jth process does not gen-
erate any event during the next time τ given that a time t̃j has already elapsed
since it generated its last event. Equation (5.9) gives the probability that none
of theM processes produces an event for time τ. So, it is the survival probabil-
ity for the entire population. In other words, it is the probability that the next
event in the entire population occurs sometime after time τ from now.
Second, the factor ψi( t̃i + τ)/Ψi( t̃i + τ) on the right-hand side of Eq. (5.8) is

the probability density function that the ith process generates an event at a time
t̃i + τ since its last event given that it has not generated any event before this
time since the last event. Only this factor creates the dependence of ϕ(τ, i| {̃tj})
on i. Given this observation, we define

Πi ≡
ϕ(τ, i| {̃tj})∑M
j=1 ϕ(τ, j| {̃tj})

=
λi( t̃i + τ)∑M
j=1 λj( t̃j + τ)

, (5.10)

where

λi(t) =
ψi(t)
Ψi(t)

(5.11)

is the instantaneous rate of the ith process.
In the original Gillespie algorithm, we equated the survival probability of

the next event time for the entire population to u, a random variate obeying
a uniform density on (0,1], to produce τ using inverse sampling. Similarly,
a non-Markovian Gillespie algorithm can use inverse sampling to produce
τ based on Eq. (5.9). However, once a uniform random variate u is drawn,
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solving Φ(τ | {̃tj}) = u is time-consuming because one cannot explicitly solve
Φ(τ | {̃tj}) = u for τ in general, and thus one must solve it by numerical inte-
gration to produce each single event. This restriction does not prevent the
algorithm from working but makes it too slow to be of practical use in many
cases.
The non-Markovian Gillespie algorithm resolves this issue as follows. We

first rewrite Eq. (5.9) as

Φ(τ | {̃tj}) = exp
−

M∑
j=1

ln
Ψj( t̃j)
Ψj( t̃j + τ)

 . (5.12)

WhenM is large, it is unlikely that no process generates an event during a long
time interval. Therefore, the τ values realized as the solution of Φ(τ | {̃tj}) = u
will generally be small. This is equivalent to the situation in which Φ(τ | {̃tj}) is
tiny except for τ ≈ 0. Based on this observation, we approximate Eq. (5.12) by
a first-order cumulant expansion around τ = 0. This is done by the substitution
of the following Taylor expansion of Ψj( t̃j + τ):

Ψj( t̃j + τ) = Ψj( t̃j) − ψj( t̃j)τ + O(τ2), (5.13)

for j = 1, . . . ,M, into Eq. (5.12). This substitution leads to the following
simplified expression for Φ(τ | {̃tj}):

Φ(τ | {̃tj}) = exp
−

M∑
j=1

ln
Ψj( t̃j)

Ψj( t̃j) − ψj( t̃j)τ + O(τ2)


= exp

−
M∑
j=1

ln
[
1 +

ψj( t̃j)
Ψj( t̃j)

τ + O(τ2)
]

= exp
−

M∑
j=1

ψj( t̃j)
Ψj( t̃j)

τ + O(τ2)


≈ exp
[
−τMλ({̃tj})

]
, (5.14)

where

λ({̃tj}) =
∑M

j=1 λj( t̃j)
M

=
1
M

M∑
j=1

ψj( t̃j)
Ψj( t̃j)

. (5.15)

The variable λ({̃tj}) is the average instantaneous event rate. By instantaneous,
we mean that the event rate changes over time even if no event has happened,
which contrasts with the situation of the Poisson processes. The variant of a
Poisson process in which the event rate varies over time is called the nonho-
mogeneous Poisson process. However, the non-Markovian Gillespie algorithm
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assumes that the event rate λ({̃tj}) stays constant until the next event occurs
somewhere in the coupled renewal processes. This is justified because the time
to the next event, τ, is small when M is large, and therefore the change in
λ({̃tj}) should be negligible. See Legault and Melbourne (2019) for an appli-
cation of the same idea to stochastic population dynamics in ecology when the
environment is dynamically changing.
Note that the Taylor expansion given by Eq. (5.13) assumes that all Ψj( t̃j)

are analytical at t̃j = 0. This is not always the case in practice, which may
cause some terms to diverge in the Taylor expansion of Ψi( t̃i + τ), where i
is the process that has generated the last event. To deal with this, the authors
proposed to simply remove the renewal process that has generated the last event
from the summation in Eq. (5.15).
We determine the time to the next event by solvingΦ(τ | {̃tj}) = u for τ using

the approximation given by Eq. (5.14). By doing this, we obtain

τ = − ln u
Mλ({̃tj})

. (5.16)

Now, the computation of τ is as fast as that for the original Gillespie algorithm
except that the computation of λ({̃tj}) may be complicated to some extent.
Because τ should be small when M is large, one determines the process that
generates this event by setting τ = 0 in Eq. (5.10), that is,

Πi =
λi( t̃i)

Mλ({̃tj})
. (5.17)

Equations (5.16) and (5.17) define the non-Markovian Gillespie algorithm
(Boguñá et al., 2014). For Poisson processes, we have λi( t̃i) = λi, and we
recover the original direct method, which is given by Eqs. (3.8) and (3.9).
Because the non-Markovian Gillespie algorithm assumes largeM, its accuracy
is considered to be good for largeM.
By putting together these results we can define an extension of the direct

method of Gillespie to simulate coupled renewal processes. The algorithm is
described in Box 8. For simplicity, we have assumed so-called ordinary renewal
processes, in which all processes have had the last event at t = 0 (Cox, 1962;
Masuda & Lambiotte, 2020).
In the context of chemical reaction systems, Carletti and Filisetti (2012)

developed a second-order variant of the Gillespie algorithm for chemical reac-
tions in a dynamically varying volume, which one can also use to simulate more
general non-Markovian processes. The non-Markovian Gillespie algorithm we
presented in this section can be seen as a first-order algorithm in terms of τ
(see Eqs. (5.13) and (5.14)). The idea of the second-order variant is to use the
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Box 8 Non-Markovian Gillespie Algorithm

0. Initialization:
(a) Define the initial state of the system, and set t = 0.
(b) Initialize t̃j = 0 for all j ∈ {1, . . . ,M}.
(c) Calculate the rate λj( t̃j) for all j.
(d) Calculate λ({̃tj}) =

∑M
j=1 λj( t̃j)/M.

1. Draw a uniform random variate u1 from (0,1], and generate the waiting
time to the next event by τ = − ln u1

/
[Mλ({̃tj})].

2. Draw u2 from a uniform distribution on (0,Mλ({̃tj})]. Select the event
i to occur by iterating over i = 1, . . . ,M until we find the i for which∑i−1

j=1 λj( t̃j) < u2 ≤ ∑i
j=1 λj( t̃j).

3. Perform the event on reaction channel i.
4. Advance the time according to t → t + τ.
5. (a) Update the list of times since the last event as t̃j → t̃j + τ for all

j , i, and set t̃i = 0.
(b) If there are processes j whose distribution of interevent times has

changed upon the event, update ψj(τ) for the affected j values, and
reset t̃j = 0 if necessary.

(c) Update λj( t̃j) for all j ∈ {1, . . . ,M} as well as λ({̃tj})=∑M
j=1 λj( t̃j)/M.

6. Return to Step 1.

Taylor expansion of Ψj( t̃j + τ) up to the second order, namely

Ψj( t̃j + τ) = Ψj( t̃j) − ψj( t̃j)τ −
ψ ′
j ( t̃j)τ2

2
+ O(τ3), (5.18)

instead of Eq. (5.13). Then, one obtains

u = Φ(τ | {̃tj}) ≈ exp
[
−τMλ({̃tj}) + cτ2

]
, (5.19)

where c is a constant. We refer to Carletti and Filisetti (2012) for its precise
form. Therefore, we set τ by solving the quadratic equation in terms of τ:

cτ2 −Mλ({̃tj})τ − ln u = 0. (5.20)

This second-order approximation should generally be a more accurate
approximation than the first-order one. However, it comes at an increased com-
putational cost for calculating c. Furthermore, it still relies on an assumption
of largeM, which breaks down whenM is of the order of 1. For contagion pro-
cesses, for example, M is typically of the order of 1 at the start or near the end
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of a simulation where it is often the case that only one or a few individuals are
infectious.

5.3 Laplace Gillespie Algorithm
In spite of the approximations made by the non-Markovian Gillespie algorithm
to make it fast enough for practical applications, the algorithm still requires
that we update the instantaneous event rates of all processes whenever an event
occurs (Step 5(c) in Box 8). Thismakes its runtime linear in terms of the number
of reaction channels M. Note that we cannot lessen the time complexity by
using any of the advanced methods discussed in Section 4. This is because
these advanced methods only improve the efficiency of selecting the reaction
channel in Step 2 in Box 8 and leave the overall time complexity of the entire
algorithm to be linear. Note that using the binary search tree (Section 4.3)makes
the algorithm less efficient because all nodes in the binary tree then need to
be updated after each event, resulting in an algorithm with O(M log M) time
complexity.
In this section, we explain an alternative generalization of the direct method

to simulate non-Poissonian renewal processes. The algorithm, which we
call the Laplace Gillespie algorithm, exploits mathematical properties of the
Laplace transform (Masuda & Rocha, 2018) to allow exact and fast simulation
of non-Poissonian renewal processes with fat-tailed waiting-time distributions.
It takes advantage of the fact that a fat-tailed distribution often can be expressed
as a mixture of exponential distributions. In other words, an appropriately
weighted average of λe−λτ over different values of λ approximates a desired
fat-tailed distribution well. This situation is schematically shown in Fig. 23.
As nothing ever comes for free, the Laplace Gillespie algorithm does not work
for simulating arbitrary renewal processes. It only works for renewal processes
whose distribution of interevent times satisfies a condition known as complete
monotocity, which we discuss in detail at the end of this section. Luckily, fat-
tailed distributions of interevent times that are ubiquitous in human interaction
dynamics are often well modeled by completely monotone functions, so that
the Laplace Gillespie algorithm is broadly applicable to social systems.
To explain the Laplace Gillespie algorithm, we first consider a single renewal

process, which has an associated probability density function of interevent
times ψ(τ). Our aim is to (repeatedly) produce interevent times, τ, that obey
the probability density ψ(τ). To this end, we first draw a rate of a Poisson proc-
ess, denoted by λ, from a fixed probability density p(λ). Second, we draw the
next value of τ from the exponential distribution λe−λτ as if we were running a
Poisson process with rate λ. Third, we advance the clock by τ and produce the
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Figure 23 Schematic showing a mixture of exponential distributions and the
mechanism of the Laplace Gillespie algorithm. One draws λ1, λ2, and so forth
from p(λ). The probability density function p(λ) is called the mixing weight
distribution, representing how probable each value of λ is to be drawn. Once a
λ value is drawn, one generates the time to the next time, τ, according to the

exponential distribution λe−λτ . As a result, one mixes exponential
distributions with mixing weights p(λ) to obtain the distribution of interevent

times, ψ(τ). Although each component distribution is an exponential
distribution, the mixture may yield a fat-tailed distribution.

event. Fourth, we repeat the procedure to determine the time to the next event.
In other words, we redraw the rate, which we denote by λ′ to avoid confusion,
from the probability density p(λ) and generate the time to the next event from
the exponential distribution λ′e−λ′τ .
If the λ value drawn from p(λ) happens to be large, then, τ tends to be small,

and vice versa. Because there is diversity in the value of λ, the eventual dis-
tribution of interevent times, ψ(τ), is more dispersed than a single exponential
distribution (Yannaros, 1994).
For a given p(λ), the process generated by this algorithm is a renewal process.

By construction, ψ(τ) is the mixture of exponential distributions given by

ψ(τ) =
∫ ∞

0
p(λ)λe−λτdλ. (5.21)

For example, if there are only two possible values of λ, namely λlow and λhigh
(> λlow), one obtains

p(λ) = qδ(λ − λlow) + (1 − q)δ(λ − λhigh), (5.22)
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where δ is the Dirac delta function. Equation (5.22) just says that λ = λlow

occurs with probability q and λ = λhigh occurs with probability 1− q. Inserting
Eq. (5.22) in Eq. (5.21) yields

ψ(τ) = qλlowe−λlowτ + (1 − q)λhighe−λhighτ, (5.23)

namely a mixture of two exponential distributions. (See Fonseca dos Reis
et al. [2020]; Jiang et al. [2016]; Masuda and Holme [2020]; and Okada,
Yamanishi, and Masuda [2020] for analysis of interevent times with a mixture
of two exponential distributions.)
As another example, let us consider the gamma distribution for the distribu-

tion of mixing weights, that is,

p(λ) = λα−1e−λ/κ

Γ(α)κα , (5.24)

where α and κ are the shape and scale parameters of the gamma distribution,
respectively, and

Γ(α) =
∫ ∞

0
xα−1e−xdx (5.25)

is the gamma function. Inserting Eq. (5.24) in Eq. (5.21) yields

ψ(τ) = κα

(1 + κτ)α+1
, (5.26)

which is a power-law distribution (see the solid line in Fig. 24 for an example).
Crucially, this example shows that one can create a power-law distribution,
which is fat-tailed, by appropriately mixing exponential distributions, which
are not fat-tailed.
What we want to really simulate is an ensemble of M simultaneously ongo-

ing renewal processes that are governed by given distributions of interevent
times, ψi(τ) (i = 1, . . . ,M). We suppose that we can realize each ψi(τ) as a
mixture of exponential distributions by appropriately setting a distribution of
mixing weights pi(λ). In other words, we assume that we can find pi(λ) satisfy-
ing ψi(τ) =

∫ ∞
0 pi(λ)λe−λτdλ. The Laplace Gillespie algorithm for simulating

such a system is described in Box 9.
In contrast to the non-Markovian Gillespie algorithm, the Laplace Gillespie

algorithm is exact for arbitrary values of M. Figure 25 shows an example in
which the Laplace Gillespie algorithm is considerably more accurate than the
non-Markovian Gillespie algorithm when M = 10 (Fig. 25(a)), whereas both
algorithms are sufficiently accurate whenM = 100 (Fig. 25(b)). In addition, the
LaplaceGillespie algorithm tends to be faster than the non-MarkovianGillespie
algorithm (Masuda & Rocha, 2018) because it does not need to update all the λi
values (with i = 1, . . . ,M) after each event. Used together with the binary tree
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Figure 24 Three power-law distributions: the distribution given by Eq. (5.26)
with α = 1 and κ = 1, a Pareto distribution with α = 1 and τ0 = 1, and a
half-Cauchy distribution. Note that the three distributions follow the same

asymptotic power law, ψ(τ) ∝ τ−2, as τ → ∞.
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Figure 25 Comparison between the non-Markovian Gillespie algorithm and
the Laplace Gillespie algorithm. We use a power-law distribution of

interevent times ψ(τ) = α/(1 + τ)α+1 with α = 1.5. (a)M = 10. (b) M = 100.
For each algorithm, the survival function of the interevent time distribution is
plotted for just one of theM processes and compared against the ground truth,

that is, Ψ(τ) = 1/(1 + τ)α.

structure (Section 4.3) or the composition and rejection method (Section 4.5),
the Laplace Gillespie algorithm can thus simulate coupled renewal processes
in O(logM) or O(1) time.
Not all functional forms for ψi(λ) can be generated as a mixture of exponen-

tials. In these cases we cannot use the Laplace Gillespie algorithm. By contrast,
one can use the non-Markovian Gillespie algorithm for any ψi(τ) in principle.
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Box 9 Laplace Gillespie Algorithm

0. Initialization:
(a) Define the initial state of the system, and set t = 0.
(b) Initialize each of theM renewal processes by drawing the rate λj of

the jth Poisson process from pj(λj) for all j ∈ {1, . . . ,M}.
(c) Calculate the total event rate Λ =

∑M
j=1 λj.

(1) Draw a random variate u from a uniform distribution on (0, 1], and
generate the waiting time to the next event by τ = − ln u/Λ.

(2) Select the process that generates the next event with probability Πi =

λi/Λ.
(3) Implement the event taking place on the ith renewal process.
(4) Advance the clock according to t → t + τ.
(5) (a) Update pi(λi) if it has changed following the event.

(b) Redraw a rate λi according to pi(λi).
(c) If there are other processes j whose distribution of interevent times

has changed following the event on the ith process, update each
affected pj(λj) and redraw λj from the new pj(λj). The event rates
of the other processes remain unchanged.

(d) Update the total event rate Λ =
∑M

j=1 λj.
6. Return to Step (1).

To examine more formally to which cases the Laplace Gillespie algorithm is
applicable, we integrate both sides of Eq. (5.21) to obtain

Ψ(τ) =
∫ ∞

τ
ψ(τ′)dτ′ =

∫ ∞

0
p(λ)e−λτdλ. (5.27)

Equation (5.27) indicates that the survival probability of interevent times,Ψ(τ),
is the Laplace transform of p(λ). Therefore, the Laplace Gillespie algorithm
can simulate a renewal process if and only if Ψ(τ) is the Laplace transform of
a probability density function on non-negative values.
It is mathematically known that a necessary and sufficient condition for the

existence of p(λ) is that Ψ(τ) is completely monotone (Feller, 1971) and that
Ψ(0) = 1. A function Ψ(τ) is said to be completely monotone if

(−1)n d
n
Ψ(τ)
dτn

≥ 0 (τ ≥ 0,n = 0,1, . . .). (5.28)

The condition Ψ(0) =
∫ ∞
0 ψ(τ)dτ = 1 is always satisfied since Ψ is a survival

function. Equations (5.28) with n = 0 and n = 1 read Ψ(τ) ≥ 0 and ψ(τ) ≥ 0,
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respectively. These two inequalities are also always satisfied. Equation (5.28)
offers nontrivial conditions when n ≥ 2. For example, the condition with n = 2
reads

(−1)2 d
2
Ψ(τ)
dτ2

= −dψ(τ)
dτ

≥ 0, (5.29)

that is, dψ(τ)/dτ ≤ 0. Therefore, ψ(τ) must monotonically decrease with
respect to τ. This condition excludes the Pareto distribution, which is a popular
form of power-law distribution,

ψ(τ) =


α
τ0

( τ0
τ

)α+1 (τ ≥ τ0),
0 (τ < τ0),

(5.30)

where α > 0 and τ0 > 0. We show the Pareto distribution with α = 1 and τ0 = 1
by the dashed line in Fig. 24. Note that ψ(τ) discontinuously increases as τ
increases across τ = τ0; note that the Pareto distribution is defined for τ ≥ 0
(and ψ(τ) = 0 for 0 ≤ τ < τ0). Therefore, one cannot use the Laplace Gillespie
algorithm when any ψi(τ) is a Pareto distribution.
To show another example of disqualified ψ(τ), consider Eq. (5.28) for n = 3,

that is, dψ2(τ)/dτ2 ≥ 0. The half-Cauchy distribution, which is another form
of power-law distribution, defined by

ψ(τ) = 2
π(τ2 + 1)

, (5.31)

where τ ≥ 0, violates this condition. (See the red dotted line in Fig. 24 for
a plot.) This is because d2ψ(τ)/dτ2 = 4(3τ2 − 1)/

[
π(τ2 + 1)3

]
, whose sign

depends on the value of τ. Specifically, the half-Cauchy distribution has an
inflection point at τ = 1/

√
3. Note that the half-Cauchy distribution satisfies

the condition for n = 2 (Eq. (5.29)) because dψ(τ)/dτ = −4τ/
[
π(τ2 + 1)

]
< 0.
Complete monotonicity implies that the coefficient of variation (CV),

defined by the standard deviation divided by the mean, of ψ(τ) is larger than
or equal to 1 (Yannaros, 1994). This is natural because an exponential dis-
tribution, λe−λτ , has a CV equal to one. Because we are mixing exponential
distributions with different λ values, the CV for the mixture of exponential
distributions must be at least 1. This necessary condition for complete mon-
otonicity excludes some distributions having less dispersion (i.e., standard
deviation) than exponential distributions.
We stated various negative scenarios, but there are many distributions of

interevent times, ψ(τ), for which the Laplace Gillespie algorithm works. The
power-law distribution given by Eq. (5.26) is qualified because one can find the
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corresponding distribution of mixing weights, which is given by Eq. (5.24). In
fact, using Eq. (5.26), we obtain

Ψ(τ) =
∫ ∞

τ
ψ(τ′)dτ′ = 1

(1 + κτ)α . (5.32)

It is easy to verify that this Ψ(τ) is a completely monotone function.
As a second example, assume that p(λ) is a uniform density on [λmin, λmax]

(Hidalgo, 2006). By Laplace transforming p(λ) using Eq. (5.27), we obtain

Ψ(τ) = e−λminτ − e−λmaxτ

τ (λmax − λmin)
, (5.33)

which yields

ψ(τ) = −dΨ(τ)
dτ

=
λmine−λminτ − λmaxe−λmaxτ

(λmax − λmin) τ
+
e−λminτ − e−λmaxτ

(λmax − λmin) τ2
. (5.34)

Assume that λmin ≪ λmax. If λmin > 0, then ψ(τ) ∝ e−λminτ/τ as τ → ∞,
which is a power-law distribution with an exponential cutoff, often resembling
empirical data. If λmin = 0, then ψ(τ) ∝ 1/τ2 as τ → ∞.
A third example is when the interevent time obeys a gamma distribution:

ψ(τ) = τα−1e−τ/κ

Γ(α)κα . (5.35)

For this ψ(τ), we can express Ψ(τ) as the Laplace transform of p(λ) if and only
if 0 < α ≤ 1, and p(λ) is given by

p(λ) =

0 (0 < λ < κ−1),

1
Γ(α)Γ(1 − α)λ(κλ − 1)α (λ ≥ κ−1).

(5.36)

It is easy to verify that one obtains the exponential distribution by setting α = 1
in Eq. (5.35). We refer to Masuda and Rocha (2018) for more examples of
renewal processes that the Laplace Gillespie algorithm can simulate.

5.4 Temporal Gillespie Algorithm
The temporal Gillespie algorithm (Vestergaard & Génois, 2015) is an adapta-
tion of the direct method to simulate coupled jump processes taking place on
switching temporal networks, namely networks whose structure changes dis-
continuously in discrete points in time (Fig. 20). For simplicity in the following
presentation, and without loss of generality, we furthermore assume that both
the network’s dynamics and the dynamical process start at time t = 0.
The starting point for developing a temporal Gillespie algorithm is a single

isolated jump process i, which has a time-varying event rate λi(t, t̃i). Note that
λi(t, t̃i) may depend on both the “wall clock” time, t, and the time since the last
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event, t̃i. The explicit dependence on time t is not a property of the renewal
processes considered in Sections 5.2 and 5.3, for which the event rate depends
only on t̃i. Conversely, if λi depends on t but not on t̃i, the process is a nonhomo-
geneous Poisson process. In this Element we will only treat nonhomogeneous
Poisson processes because they are simpler than the full problem in which the
λi depends on both t and t̃i. The derivation of the temporal Gillespie algorithm
for the general case follows the same reasoning as for the algorithm for non-
homogeneous Poisson processes, but the mathematics is a bit more involved.
We thus do not show the details here but refer interested readers to Vestergaard
and Génois (2015).
Similar to how we calculated the waiting-time distribution for a Poisson

process in Section 2.4, we first consider a discrete-time process and then take
the continuous-time limit. More precisely, we want to know the probability that
the ith process does not generate an event in a given time window [t, t+ τ) (i.e.,
its survival probability), which we denote by Ψi(τ; t). We approximate Ψi(τ; t)
by subdividing the interval into r small time-steps of size δt = τ/r as follows:

Ψi(τ; t) ≈
r−1∏
r′=0

[1 − λi(t + r′ δt)δt] . (5.37)

Taking the limit δt → 0, we find the following exact expression for the survival
probability using the exponential identity (Appendix):

Ψi(τ; t) = exp
(
−

∫ τ

0
λi(t + τ′) dτ′

)
= exp

(
−

∫ t+τ

t
λi(τ′) dτ′

)
. (5.38)

Equation (5.38) does not reduce to a simple exponential, except in the spe-
cial case of a constant λi. It does not even reduce to an analytical expression in
general. For example, in the SIR process on a predefined switching temporal
network, the infection rate for a given susceptible node i changes whenever an
edge appears or disappears between i and an infectious node. Say, if a suscep-
tible node i has two infectious neighbors and now gets connected to another
infectious neighbor, the rate with which i gets infected changes from 2β to 3β,
where β is the infection rate per contact. This means that one cannot in gen-
eral solve Eq. (5.38) analytically even for a simple constant-rate SIR process
in a temporal network. Nevertheless, owing to the conditional independence
property of the jump processes (see Section 2.5), we can still find a formal
expression for the waiting time for the superposition of a set of M processes.
The survival function for a set of M processes is simply the product of the
individual survival functions. Let tlast be the time of the last event amongst all
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M processes. The survival function for the waiting time τ until the next event
amongst all the processes is

Ψ(τ; tlast) =
M∏
i=1
Ψi(τ; tlast)

=

M∏
i=1

exp

(
−

∫ tlast+τ

tlast
λi(τ′) dτ′

)
= exp

(
−

∫ tlast+τ

tlast

M∑
i=1

λi(τ′) dτ′
)

= exp

(
−

∫ tlast+τ

tlast
Λ(τ′) dτ′

)
, (5.39)

where we have defined the total instantaneous rate as

Λ(t) ≡
M∑
i=1

λi(t). (5.40)

Note that Λ(t) is simplyM times the average instantaneous rate, namely Λ(t) =
M λ(t) (see Section 5.2).
Due to the lack of an analytic expression for Λ(t), we need to numerically

integrate Eq. (5.39) to evaluate it. However, inverting Eq. (5.39) to directly
draw the waiting time is computationally too expensive. To overcome this,
the temporal Gillespie algorithm works instead with unitless, normalized wait-
ing times. Given the waiting time, τ, we define the normalized waiting time,
denoted by τ, as

τ =

∫ tlast+τ

tlast
Λ(τ′) dτ′. (5.41)

The normalized waiting time follows an exponential distribution with an
expected value of one. Therefore, it is easy to generate it using inverse sam-
pling, that is, by τ = − ln u, where u is a uniform random variate on (0,1]. The
(wall-clock) waiting time τ is found as the solution to Eq. (5.41) given the τ
value that we have generated.
In fact, all we have done for the moment is to exchange one implicit equa-

tion (Eq. (5.39)) for another (Eq. (5.41)). However, Eq. (5.41) is linear in Λ,
which makes it easier to solve and approximate numerically. This is, in par-
ticular, the case because we assumed that the temporal network changes only
in discrete points in time, as schematically shown in Fig. 20. We let tnet0 = 0,
and we denote by tnet1 , tnet2 , . . . the subsequent time points at which the temporal
network changes. Then, [tnetn−1, t

net
n ) is the nth interval between network changes.

Since the temporal network only changes in discrete steps, Λ(t) is piecewise
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constant. Therefore, one can solve Eq. (5.41) iteratively as follows. Suppose
that we are given the time of the last event, tlast, and we want to find the time
of the next event denoted by tnext = tlast + τ. If there is no event yet, and we
want to find the time of the first event, then we regard that tlast = 0 = tnet0 .
We start from the time interval [tnetn∗−1, t

net
n∗ ) between two successive switches of

the network in which the last event took place, namely the interval that sat-
isfies t netn∗−1 ≤ tlast < tnetn∗ . We then sequentially check for each time interval
[tlast, tnetn∗ ), [t netn∗ , t

net
n∗+1), [t

net
n∗+1, t

net
n∗+2), . . ., to determine in which interval t

next falls.
In practice, we compare at each step the generated value of τ to the value of
the integral

∫ tnetn
tlast Λ(t) dt. The latter is efficiently calculated as the sum∫ tnetn

tlast
Λ(t) dt = (tnetn∗ − t last)Λn∗ +

n∑
ℓ=n∗+1

∆ℓΛℓ, (5.42)

where ∆ℓ = tnet
ℓ

− tnet
ℓ−1 is the length of the ℓth interval between successive

changes of the network, and Λℓ is the value of Λ(t) in this interval. If n = n∗,
the sum in the second term on the right-hand side of Eq. (5.42) is the empty
sum, that is, it has no summands and thus evaluates to zero, and the equation
reduces to

∫ tnetn∗
tlast Λ(t) dt = (tnetn∗ − t last)Λn∗ .

The smallest value of n that satisfies
∫ tnetn
tlast Λ(t) dt > τ determines the time

interval in which the next event takes place. With that n value, the precise time
of the next event is given by

tnext = tn−1 +
τ −

∫ tnetn−1
tlast Λ(t) dt
Λn

. (5.43)

Finally, we draw the Poisson process i that produces the event at time tnext

with probability

Πi(tnext) =
λi(tnext)
Λ(tnext) . (5.44)

The steps of the temporal Gillespie algorithm are described in Box 10. It
works by iterating over the list of times at which the network changes. Within
each interval between the network’s switches, it compares the normalized wait-
ing time, τ, to the total instantaneous rate integrated over the time interval,
Λn∆n (see Step 2). If τ is larger than or equal to Λn∆n, then nothing hap-
pens, and one subtracts Λn∆n from τ and advances to the next interval, n + 1
(see Step 2(a)). Alternatively, if τ is smaller than Λn∆n, then an event occurs
within the nth time window [tnetn−1, t

net
n ) (see Step 2(b)). Then, the algorithm

determines the timing of the event and selects the reaction channel to produce
the event using any of the appropriate selection methods discussed earlier (see
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Box 10 Temporal Gillespie algorithm.

0. Initialization:
(a) Define the initial state of the system, and set t = 0.
(b) Set n = 1 and ∆ = tnet1 − tnet0 .
(c) Initialize the rates λj for all j ∈ {1, . . . ,M}.
(d) Calculate the total rate Λ =

∑M
j=1 λj.

1. Draw a normalizedwaiting time τ = − ln u, where u is a uniform random
variate on (0,1].

2. Compare Λ∆ to τ:
(a) If Λ∆ ≤ τ, then no reaction takes place in the nth time window.

i. Set τ → τ − Λ∆.
ii. Advance to the next time window by setting t → tnetn and ∆ →

tnetn+1 − tnetn ; update n → n + 1.
iii. Update all λj affected by changes in the temporal network, and

update Λ accordingly.
iv. Return to Step 2.

(b) If Λ∆ > τ, then an event takes place at time tnext = t + τ/Λ.
i. Select the reaction channel i that produces the event with prob-
ability Πi = λi/Λ.

ii. Update the time as t → tnext. Also update the remaining length
of the present time window as ∆→ ∆ − τ/Λ.

iii. Update the rates λj that are affected by the event, and update Λ
accordingly.

iv. Return to Step 1.

Sections 3.3, 4.3, and 4.5). It then updates the system, draws a new normalized
waiting time, and repeats the procedure.
Vestergaard & Génois (2015) furthermore proposed to adapt the temporal

Gillespie algorithm to simulate non-Markovian processes in temporal net-
works. To make the algorithm computationally efficient, they proposed two
approximations to solve Eq. (5.41) by simply iterating over the times tnetn at
which the network changes, as we did for nonhomogeneous Poisson processes.
These approximations avoid having to use numerical integration to solve the
implicit equation, which would make the algorithm slow for large systems.
The first approximation is to regard the total instantaneous rate Λ(t, {̃tj}),

which in the non-Markovian case can depend on the times since the last events
for all M processes, as constant during each interval [tnetn−1, t

net
n ) between the
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consecutive changes in the network. This approximation is accurate when the
network changes much faster than the total rate Λ(t, {̃tj}) does, namely when

Λ(tnetn+1, {̃tj}) − Λ(t
net
n , {̃tj})

Λ(tnetn , {̃tj})
≪ 1, (5.45)

where Λ(tnetn+1, {̃tj})−Λ(t
net
n , {̃tj}) is the change of Λ(t, {̃tj}) between two succes-

sive intervals. When simulating spreading processes in temporal networks, the
network dynamics are often much faster than the spreading dynamics in prac-
tice. For example, the timescale of recordings of physical proximity networks
is typically of the order of seconds to minutes while the infection and recovery
of flu-like diseases occur in the order of hours to days (Vestergaard & Génois,
2015). With this first approximation, one can directly apply Eq. (5.42) and use
the same procedure as for the Poissonian case.
The second approximation is to use a first-order cumulant expansion, simi-

lar to the non-Markovian Gillespie algorithm (Section 5.2), in addition to the
first approximation. It amounts to assuming that each λi is constant as long
as no event takes place and no change of the network that directly affects the
λi value takes place. One thus avoids having to update all the λi values each
time we go to the next time window (i.e., from [tnetn−1, t

net
n ) to [tnetn , tnetn+1)), and the

algorithm runs much faster. To increase the accuracy of the algorithm when
the number of reaction channels M is small and the cumulant expansion is not
accurate (e.g., at the start or near the end of an SIR process where only a few
nodes are typically infectious), they proposed a heuristic approach, in which
one updates λi only if the time elapsed since the last update of λi exceeds a
given threshold δ. They proposed to choose the value of δ as a given fraction
of the expected waiting time of a single reaction channel. Therefore, when M
is large, the waiting time between events will almost never exceed δ, and the
algorithm will be similar to the non-Markovian Gillespie algorithm. When M
is small, the algorithm updates the λi more frequently, making it more accurate
at an added computational cost.
With the above approximations, the application of the temporal Gillespie

algorithm to general non-Markovian processes only slightly changes the imple-
mentation from that for the nonhomogeneous Poisson processes described in
Box 10. We refer interested readers to Vestergaard and Génois (2015) for
details.

5.5 Event-Driven Simulation of the SIR Process
Holme proposed another efficient event-based algorithm, related to the first
reaction method, when the time-stamped contact events are given as data
(Holme, 2021). Although the timing of the event is no longer stochastic, the
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overall dynamics are still stochastic. This is because, in the SIR model for
example, infection upon each contact event occurs with a certain probability
and recovery occurs as a Poisson process with rate µ. The efficiency of the
Holme’s algorithm comes from multiple factors. Suppose that the ith node is
infected and its neighboring node, j, is susceptible. First, the algorithm tacti-
cally avoids searching all the contact events between i and j when determining
the event with which i successfully infects j. Second, it uses the binary heap
to maintain a carefully limited set of times of the events with which infection
may occur between pairs of nodes. The corresponding code for simulating the
SIR model, implemented in C with a Python wrapper, is available on Github
(Holme, 2021).

6 Conclusions
The aim of this article has been twofold: to provide a tutorial of the standardGil-
lespie algorithms and to review recent Gillespie algorithms that improve upon
their computational efficiency and extend their scope. While our emphasis and
examples lean toward social multiagent dynamics in populations and networks,
the applicability of the Gillespie algorithms and their variants is extensive. We
believe that the present article is useful for students and researchers in various
fields, such as epidemiology, ecology, control theory, artificial life, complexity
sciences, and so on.
In fact, many models of adaptive networks, where the network change is

induced by the change of the status of, for example, nodes, have been mostly
described by ODEs and assume that the interaction strength between pairs of
nodes varies in response to changes in individuals’ behavior (Gross & Blasius,
2008; Gross & Sayama, 2009; Wang et al., 2015). If such changes occur in
an event-driven manner, Gillespie algorithms are readily applicable. How to
deploy and develop Gillespie algorithms and their variants to adaptive network
scenarios is a practical concern.
We briefly discussed simulations on empirical time-stamped contact event

data (Sections 5.4 and 5.5). In this setting, it is the given data that determines the
times and edges (i.e., node pairs) of the events, which is contrary to the assump-
tion of the Gillespie algorithms that jump-process models generate events.
Despite the increasing demand of simulations on the given time-stamped con-
tact event data, this is still an underexplored area of research. Vestergaard and
Génois (2015) and Holme (2021) showed that ideas and techniques from the
Gillespie algorithms are useful for such simulations although the developed
algorithms are distinct from the historical Gillespie algorithms. This is another
interesting area of future research.
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Appendix
Exponential Identity

In this appendix, we prove the identity

lim
x→0

(1 + x)1/x = e. (A.1)

Because ex is continuous in x, we obtain

lim
x→0

(1 + x)1/x = elimx→0 ln(1+x)/x. (A.2)

Thus, we can prove Eq. (A.1) by showing that limx→0 ln(1 + x)/x = 1. We do
this using l’Hôpital’s rule as follows:

lim
x→0

ln(1 + x)
x

=
limx→0

1
1+x

limx→0 1
= 1. (A.3)
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