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Time‑resolved microfluidics unravels 
individual cellular fates during double‑strand 
break repair
Nadia Vertti‑Quintero1, Ethan Levien2, Lucie Poggi3, Ariel Amir4, Guy‑Franck Richard3*   and 
Charles N. Baroud1,5* 

Abstract 

Background: Double‑strand break repair (DSBR) is a highly regulated process involving dozens of proteins acting in 
a defined order to repair a DNA lesion that is fatal for any living cell. Model organisms such as Saccharomyces cerevisiae 
have been used to study the mechanisms underlying DSBR, including factors influencing its efficiency such as the 
presence of distinct combinations of microsatellites and endonucleases, mainly by bulk analysis of millions of cells 
undergoing repair of a broken chromosome. Here, we use a microfluidic device to demonstrate in yeast that DSBR 
may be studied at a single‑cell level in a time‑resolved manner, on a large number of independent lineages undergo‑
ing repair.

Results: We used engineered S. cerevisiae cells in which GFP is expressed following the successful repair of a DSB 
induced by Cas9 or Cpf1 endonucleases, and different genetic backgrounds were screened to detect key events 
leading to the DSBR efficiency. Per condition, the progenies of 80–150 individual cells were analyzed over 24 h. The 
observed DSBR dynamics, which revealed heterogeneity of individual cell fates and their contributions to global repair 
efficacy, was confronted with a coupled differential equation model to obtain repair process rates. Good agreement 
was found between the mathematical model and experimental results at different scales, and quantitative compari‑
sons of the different experimental conditions with image analysis of cell shape enabled the identification of three 
types of DSB repair events previously not recognized: high‑efficacy error‑free, low‑efficacy error‑free, and low‑efficacy 
error‑prone repair.

Conclusions: Our analysis paves the way to a significant advance in understanding the complex molecular mecha‑
nism of DSB repair, with potential implications beyond yeast cell biology. This multiscale and multidisciplinary 
approach more generally allows unique insights into the relation between in vivo microscopic processes within each 
cell and their impact on the population dynamics, which were inaccessible by previous approaches using molecular 
genetics tools alone.
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Background
Microsatellites are simple sequence repeats, very com-
mon in eukaryotic genomes. They represent 3% of the 
human genome sequence [1]. Their high mutation rate 
leads to frequent polymorphisms in the human popula-
tion [2]. Recurrently, they expand or contract following 
replication, DNA repair, or homologous recombination 
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(reviewed in [3]). In some unfortunate cases, very large 
trinucleotide repeat expansions lead to human neurode-
generative disorders such as Huntington disease, myo-
tonic dystrophy type 1, or Friedreich ataxia (reviewed 
in [4]). The precise molecular mechanism that causes 
these large expansions is not totally understood but it 
has been proposed that the propensity of these repeats 
to form stable secondary structures could trigger such 
expansion [5, 6].

Shortening expanded repeats to non-pathological 
lengths—or their complete removal—using highly spe-
cific DNA endonucleases has been envisioned as a ther-
apeutic approach [7, 8]. In this context, it is essential to 
understand the mechanisms and limitations of process-
ing and repairing a double-strand break (DSB) within a 
repeated and structured DNA sequence.

Given the complexity of genetically manipulating 
human cells, the budding yeast Saccharomyces cerevi-
siae has been widely adopted as a model suitable for the 
understanding of cellular processes and protein function 
in higher eukaryotes. Particularly, budding yeast has been 
used for decades to study homologous recombination 
and the fate of a single double-strand break made in its 
genome using highly specific DNA endonucleases such 
as HO or I-Sce I [9, 10]. More recently, the CRISPR-Cas9 
system has stood out because of its favorable properties: 
it is fast, cheap, accurate, and efficacious in making a DSB 
at any DNA locus. In such assays, target sequence recog-
nition is based on a complementary guide RNA (gRNA) 
and on a short sequence called protospacer adjacent 
motif (PAM), where DSB is induced by an endonuclease 
associated to this gRNA (reviewed in [11]).

In order to assess double-strand break repair (DSBR) 
efficacy on repeated and structured DNA, an experimen-
tal system was previously designed in S. cerevisiae, rely-
ing on a bipartite green fluorescent protein gene (GFP) 
interrupted by different microsatellites [12]. Upon tar-
geted DSB induction, both GFP moities can recombine 
with each other to reconstitute a functional GFP gene 
(and thus make correct DSBR), subsequently detectable 
by in  vivo fluorescence of yeast cells. Analysis of whole 
populations of yeast cells showed that DSBR efficacy was 
highly variable among microsatellites and endonucleases 
used to induce the DSB [12]. In this context, essential 
aspects of a successful DSBR are yet to be fully under-
stood, including the rates of the critical steps in the pro-
cess, as well as cell-to-cell heterogeneity, which cannot be 
studied in traditional bulk experiments. Indeed, single-
cell assays are required to study individual behaviors of 
yeast cells within a population, namely to understand 
whether a small proportion of cells are very efficacious at 
repairing the break and then propagate within the culture 
or if all cells are equally competent at repairing. Then, 

linking the single-cell scale with the dynamics at the scale 
of the population requires mathematical modeling to 
bridge them [13].

Previous work has addressed similar questions in yeast 
cells, using microfluidic devices and mathematical mod-
els. An elegant experimental system was setup in which 
young cells could be separated from older ones in a 
microfluidic chip [14], and this system was used to study 
DNA repair following a double-strand break induced 
by the I-SceI endonuclease. The authors showed that 
old yeast cells were less efficient to repair the DSB than 
young ones, indicating an age-associated decline in repair 
[15]. From a mathematical point of view, the dynamics of 
a yeast population over time was described using an ordi-
nary differential equation (ODE) model [16] or a stochas-
tic model [17]. In the former case, the model suggests 
that early repair of DNA damage during the cell life helps 
to counteract aging caused by damage retention, there-
fore increasing life span. In the latter case, a stochastic 
model was used to determine how damage accumulation 
as well as repair efficacy drastically influence senescence 
and population fitness. In addition, a stochastic model of 
genetic activity was presented by Song et al. [18], where 
changes in cell size, DNA replication, and cell division 
were taken into account for refining dynamic rate reac-
tions. All these efforts have built up a compendium of 
mathematical tools for better understanding phenomena 
in eukaryotic cells at different scales.

In this work, we link the dynamics at the single-cell 
level with the population-scale efficacy of the gene-edit-
ing assay for DSBR in eukaryotic cells. In contrast with 
the existing literature on single-cell gene network activ-
ity, here, we present a simpler approach for screening dif-
ferent combinations of microsatellites and endonucleases 
for investigating their impact on DSBR efficacy, rather 
than for describing the single-cell dynamics in a cell lifes-
pan context. To this end, we use the S. cerevisae assay 
previously described, in which a bipartite GFP gene may 
recombine to form a functional gene, upon successful 
DSBR [12]. A microfluidic platform  [19], in which cells 
are trapped in an array of cubic compartments of 100 μm 
edges, enables the identification of successful DSBR in 
single cells and their follow-up over time. As a result, we 
obtain time-resolved quantitative observations of biolog-
ical phenomena happening on small populations stem-
ming from single yeast cells. Molecular measurements of 
the percentage of cells undergoing DSB after endonucle-
ase induction allow us to formulate an ODE model, cap-
turing the characteristic steps and time scales involved in 
such process, inferring the growth, breaking, and repair 
rate of cells. We find that population dynamics from the 
microfluidic experiments were generally in good agree-
ment with previously published results obtained with 
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whole cell populations [12] and with the prediction from 
our ODE model. In addition, the single-cell analysis elu-
cidates the trajectories of individual cells undergoing 
DSBR and their impact on the global population DSBR 
efficiency, ultimately leading to the identification of three 
categories of DSBR: high-efficacy error-free, low-efficacy 
error-free, and low-efficacy error-prone repair.

Results
Observing cells undergoing DSBR in microfluidic wells
The present work builds on a cellular assay for study-
ing DSBR in yeast cells. The assay relies on a bipartite 
overlapping GFP gene, inserted in a yeast chromosome 

whose two halves are separated by an intervening 100-bp 
sequence that contains (CGG)33, (GAA)33, (CTG)33 tri-
nucleotide repeats or a non-repeated sequence (NR) [12]. 
The different conditions will be hereafter referred to as 
CGG, GAA, CTG, or NR strains, respectively. A DSB is 
made within this intervening sequence by either Strep-
tococcus pyogenes Cas9 or Francisella novicida Cpf1 
endonucleases [22, 23] (Fig. 1a). Cas9 is a class 2 type II 
endonuclease, whereas Cpf1 is a class II type V enzyme 
[24]. They use different PAMs and different gRNAs 
and exhibit very different structures and biochemical 
properties. The endonucleases and gRNAs are carried 
by different plasmids in modified yeast cells, with the 

Fig. 1 GFP recombination assay and observation in microfluidic devices. a An inactive bipartite GFP gene contains different microsatellites. Upon 
endonuclease induction, a DSB is made within the repeat, processed and repaired to reassemble a functional GFP gene (yellow box). Subsequent 
downstream processes (blue box) happen until GFP is expressed and cells turn green. b Sketch of the microfluidic device containing 1032 
cubic traps (100‑μm edge). Yeast cells in suspension (concentration: 5 cells/nL) flow into the microfluidic device and sediment into the wells. c 
Cells trapped in wells are monitored over 24 h both in bright‑field and epifluorescence. The number of cells in each well and their level of GFP 
fluorescence are monitored using the plugin TrackMate [20] on ImageJ [21]. d Time series of the number of cells and number of GFP+ cells are 
obtained for one well
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endonuclease being under the control of a galactose-
regulatable promoter [25]. Endonuclease expression is 
induced by switching cells from glucose to a galactose-
containing medium. This change produces a meta-
bolic switch, slowing down cell division while switching 
metabolism to galactose utilization [26].

Once the DSB is induced, a series of events takes place, 
as shown in Fig. 1a, yellow box. DSB resection—follow-
ing the break—generates two single-stranded DNA ends 
whose overlapping halves may anneal with each other, 
thus reconstituting a functional GFP gene. Once the GFP 
gene is reassembled (i.e., completed DSBR), downstream 
processes are carried out (as shown in Fig. 1a, blue box), 
including transcription, mRNA export, and translation, 
until GFP is expressed and the cell becomes green. Due 
to checkpoint activation following DSB [27], the cell 
cycle is transiently halted, so that cells cannot divide with 
a broken chromosome. This assay is functional and has 
already shown different efficacies of endonucleases on 
trinucleotide repeats depending on the stability of sec-
ondary structures formed by the gRNA [12].

In vivo observations of single yeast cells undergo-
ing DSBR were envisioned to understand different cell 
aspects: how likely individual cells were to break and 
repair, and how these steps integrated within the broader 
cell cycle. This experiment was enabled by the use of a 
microfluidic device (Fig.  1b): by confining single cells 
within microfluidic wells, it was possible to observe indi-
vidual cell divisions and DSBR completion using time-
lapse microscopy (Fig. 1c, d). Moreover, by tracking the 
progeny of each cell, it was possible to link the emergence 
of these population dynamics with the scale of individual 
cellular events.

Microfluidic devices have been proposed before for 
studying individual yeast cells [28]. For example, Jo et al. 
[29] developed one for analyzing the replicative lifespan 
of single cells, while Charlebois and collaborators [30] 
used individual cell traps for observing the expression of 
a reporter gene on cells upon changes of temperature. In 
this study, a microfluidic device with similar geometry 
to the one presented by Amselem et al. [19] was adapted 
to observe the yeast cells undergoing DSBR in real time. 
It consisted of a long and wide chamber (6 ×  14 mm) 
of height h = 30 μm, with one inlet and one outlet. The 
chamber floor was patterned with a two-dimensional 
array of 1032 cubic wells of l = 100 μm edge length. 
Space between the wells was set to d = 120 μm (Fig. 1b).

A typical experiment started by suspending yeast 
cells at a concentration of 5 cells per nanoliter in a 
galactose-containing medium (at time t0 ), in order 
to express the endonuclease. This cell suspension was 
then rapidly introduced into the microfluidic chip, 

where the individual cells sedimented into the wells. 
The well occupancy did not have a homogeneous distri-
bution; wells typically contained from 0 to 5 cells. Only 
populations that started with a single cell were selected 
for our analysis in order to monitor the lineage of indi-
vidual cells. The growth of populations and their GFP 
expression over time was tracked by time-lapse micros-
copy (Fig.  1c). For each well, the total number of cells 
( N local

tot  ) and GFP+ cells ( N local
GFP  ) were counted at each 

time point, yielding a single growth curve per well, as 
described in the “Methods” section (Fig. 1d). Measure-
ments were collected on samples ranging from 80 to 
150 wells in each microfluidic experiment. We define 
tlag the moment at which cells start dividing after t0 and 
tGFP when they start expressing GFP (Fig. 1d).

The time evolution of DSBR dynamics was studied for 
8 different combinations, i.e., two endonucleases (Cas9 
and Cpf1) and four target sequences (NR, CGG, GAA, 
and CTG), using the above analysis pipeline (Fig. 2a and 
Additional Movie). Generally, individual cells started 
dividing ( tlag ) and expressing GFP ( tGFP ) a few hours 
after galactose induction ( t0 ). The data for all the condi-
tions are shown in Fig.  2b, where a variety of dynam-
ics is observed for the different target-endonuclease 
combinations. Here, the access to the absolute number 
of cells allowed us to point out some important differ-
ences between the different conditions, as observed by 
the bold curves for the mean behavior in Fig. 2b. To be 
noted that even in identical experimental conditions, 
cells started dividing at different tlag , started expressing 
GFP at different tGFP , and formed populations of differ-
ent sizes at t = 24 h, as can be seen in any subplot of 
Fig. 2b.

Strikingly, two cases (GAA-Cas9, CTG-Cas9) showed 
a strong slowing down of the exponential growth, while 
the cell numbers in most other cases grew exponen-
tially. This slowing down might indicate a loss of fitness 
that is associated with the DSBR. Another observation 
concerned the delay between the growth of the popu-
lation size and the detection of GFP+ cells. This time 
difference ( tGFP − tlag ) was in the range of 4–6 h for 
most conditions except for the condition CTG-Cpf1, 
where it was above 15 h, indicating different dynamics 
between the cell cycle and the DSBR process for these 
conditions. In the case of CGG-Cpf1, only one GFP+ 
cell was detected during the course of the experiment.

Compared with the diversity of DSBR efficacy that 
has been described previously  [12], the current meas-
urements highlight the variability of timing in the break 
and repair processes. This dynamic viewpoint moti-
vated the development of a time-dependent ordinary 
differential equation (ODE) model, as described next.
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ODE model built on molecular measurements provides 
rates of break and repair
Successful DSB induction and repair are the result of a 
series of molecular steps. In order to identify the rel-
evant time scales in the process, we utilized a model 
which assumes that, upon induction, an initial popu-
lation of “modified” cells (containing a specific micro-
satellite or a non-repeated sequence) has a constant 
per capita division rate α , while cells switch into a 

non-growing, broken state, at a rate β . The “broken” 
cells can then become repaired at a rate ρ and once 
again begin to grow at a rate α (Fig. 3a). All rates in the 
model can be understood as per unit time probabili-
ties, e.g., βdt is the chance for a modified cell to under 
the broken state in a time interval dt. The fact that the 
division rate for modified and repaired cells is the same 
is consistent with population observations that the 
repeat does not hinder yeast cell replication [12]. This 

Fig. 2 Microfluidic device yields growth and repair dynamics of populations starting from single cells. a Representative images of cells trapped in 
microfluidic wells at t = 0, 12, and 24 h after galactose induction, for the 8 experimental conditions: NR, CGG, GAA, or CTG target sequences with 
either Cas9 or Cpf1. The scale bar represents 50 μm. b Corresponding growth curves for individual wells in each condition. Blue lines represent the 
number of cells per time point and green lines the number of GFP+ cells. Bold lines correspond to the total number of cells and GFP+ cells at each 
time point, for each experimental condition
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model can be written in terms of a Master equation, as 
described in detail in the Section 5.

We may also write these processes in the form of 
three coupled equations to describe these dynam-
ics after a lag time τ . Before the lag time, we assume 
the cells undergo no growth, and therefore no DSBR. 
Letting m, b, and g be the number of “modified,” “bro-
ken” (with broken DNA after DSB), and “repaired” 

(GFP+) cells, we have the system of linear ODEs for the 
averages:

(1)
d

dt
�m� =(α − β)�m�,

(2)
d

dt
�b� =β�m� − ρ�b�,

Fig. 3 ODE model captures the characteristic steps in DSBR. a Sketch of the parameters of our ODE model that describe the whole DNA repair 
process, as already illustrated in Fig. 1a: “modified” cells (m) are submitted to metabolism change upon DNA repair induction (for a time period τ ) 
and DSB (at the rate β ) and thus becoming “broken” cells (b); they do DSBR (at the rate ρ ) and express GFP (after a time period γ ), thus becoming 
GFP+ cells (g); and they divide (at the rate α ). b Molecular measurements are performed by Southern blotting at regular time intervals (2 h) on 
samples from a bulk cell culture. They provide information on the fraction of cells in a population that have done DSB, but not yet repaired, and 
the fraction of cells that have completed repair. c Prior and posterior parameter distributions of metabolism change ( τ ), DSB rate ( β ), DSBR rate ( ρ ), 
and cell division rate ( α ). d Comparison of ODE model predictions with molecular data for the case NR‑Cas9. In plots, the black dots represent the 
molecular data, while the solid lines represent the simulations from the ODE model
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Importantly, due to the linearity of the model, the aver-
age �·� can be understood either as an ensemble average 
over many experiments each consisting of a small num-
ber of cells or as the large population size limit of a single 
experiment.

Upon DSBR induction, since all events happen at dif-
ferent moments for different cells in the culture, a sam-
ple of the cell population should contain a mixture of 
the different states: intact cells, cells displaying a broken 
chromosome, and cells harboring a repaired chromo-
some. The dynamics of each of these sub-populations 
can be quantified by molecular analysis on cells sam-
pled at different times in a growing culture, as shown 
in Fig.  3b. To that end, cells were collected every 2 h 
after galactose induction and whole genomic DNA was 
extracted (see Section  5). Hybridization with a probe 
specific for the GFP locus revealed three different types 
of signals on a Southern blot: a 3544-bp band corre-
sponding to uncut DNA, a 2912-bp band representing 
the DSB, and a 3162-bp band representing the repaired 
and functional GFP gene (Fig.  3b). Values of the rela-
tive abundance of broken and repaired chromosomes 
are shown in Additional file  1: Fig. S1 and were taken 
from Poggi et  al. [12], except for NR-Cpf1 which was 
redone here. The fraction of cells that are in the broken 
state remains low over the 12 h that the measurement is 
done, since it is a transient state. In contrast, the fraction 
of cells that have completed DSBR increases over time 
for almost all conditions, with the notable exception 
of CGG-Cpf1 and CTG-Cpf1. Note that the NR-Cpf1 
case starts already with a comparatively large number 
of cells that have completed DSBR (40% in comparison 
to less than 20% for other cases). This is probably due to 
the leakiness of the Gal promoter that has a more pro-
nounced effect in this strain background [25].

Using the Southern blot measurements (Fig.  3b), we 
performed Bayesian inference (see the review article [31]) 
of the parameters α,β , and ρ , which yielded a posterior 
distribution P(θ |X) . The posterior distribution is defined 
as the distribution of the model parameters θ conditioned 
on the observed data X:

Here, the likelihood function P(X|θ) gives the distri-
bution of the data given our parameters, where the 
data consist of the observed population fractions, 
X = (m/N , b/N , g/N ) where N is the total number 
of cells. For each measurement, we assume that the 
observed fraction is true fraction plus some Gauss-
ian error. The predicted fraction is obtained by solving 

(3)
d

dt
�g� =α�g� + ρ�b�.

(4)P(θ |X) ∝ P(X|θ)P(θ).

Eqs.  (1), (2), and (3). We further assume that the meas-
urement errors are uncorrelated between different cell 
states and times. This assumption is, strictly speaking, 
false, since even if the measurements of m and b are 
uncorrelated, the measurement errors in their fractions 
would be correlated. However, numerical experiments 
with simulated data revealed that the results were robust 
to this assumption (see Section 5.4 and Figs. S2 and S3).

The distribution P(θ) represents our priors on both the 
parameters of the ODE model, as well as the measure-
ment error and lag time ( τ ). With the exception of τ , we 
place so-called weakly informative priors on all param-
eters, that is, priors that only constrain the parameters 
to a physically reasonable range, rather than incorporat-
ing specific information from previous experiments. The 
same priors are used for β and ρ , as not to favor either 
breaking or repair as the limiting process. In the case of τ , 
the prior is chosen to have a narrow distribution around 
the known value of the lag. The priors are described in 
detail in the Section 5.4.

The posterior distributions for the NR-Cas9 condition 
are shown in Fig. 3b. Comparing the posterior distribu-
tion to the prior indicates how much new information 
about the parameters is obtained from the data. In the 
case of β and ρ , it can be seen that the data strongly con-
strain parameter values for many experiments, as evi-
denced by the fact that the posterior is much narrower 
than the prior. The value of α however is less-well deter-
mined. This may be expected since the measurements 
provide ratios of the number of cell types, and not abso-
lute numbers. This selectivity on β and ρ is reproducible 
for all cases, as shown in Additional file 1: Figs. S4 and S5 
for all experimental conditions.

Next, the model predictions for the population frac-
tions in the broken or repaired states can be compared 
with the experimental measurements, as shown in 
Fig. 3c for the NR-Cas9 case. Good agreement is found 
for most cases (Fig. S6), where the ODE model gives 
good predictions of the trends and resolves the time 
scales of broken and repaired fractions. These observa-
tions show that the low time-resolution molecular data 
are sufficient to estimate the parameters of the proposed 
ODE model, thus predicting the dynamic behavior of 
DSB induction and repair.

The posterior values of the breaking rate β and the 
repair rate ρ are displayed in Fig.  S5, for the eight dif-
ferent conditions. From these data, it emerges that the 
breaking step is rate-limiting for most cases, with the 
repair happening at a higher rate for all cases. Besides 
the two very inefficient conditions (CGG-Cpf1 and CTG-
Cpf1), three conditions could be described as efficient 
(NR-Cas9, CGG-Cas9, and NR-Cpf1), with mean values 
of β > 0.1 1/h and a final fraction of repaired cells above 
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0.6 (Additional file 1: Figs. S5a and S6). The three remain-
ing conditions had intermediate breaking rates β ≃ 0.09 
and a final fraction of repaired cells not exceeding 0.4. In 
contrast with the breaking rates, which did not show a 
strong difference between the two nucleases, the repair 
rates ρ were always faster to repair in the case of Cas9 
with respect to Cpf1 (Additional file 1: Fig. S5b).

Global behavior
It is informative to begin by comparing the global behav-
ior in the microfluidic device with the bulk measure-
ments, before studying the lineages of individual cells. 
This is done by summing the time evolution in each of 
the individual wells and defining the global measures 
N

global
tot  and N

global
GFP  , for the total number of cells and 

the total number of GFP+ cells in each microfluidic 
experiment. From these two numbers, a global fraction 
Rglobal = N

global
GFP /N

global
tot  can be computed. This global 

fraction can be compared with the predictions of the 
ODE model using the parameter values obtained from 
the Bayesian fit of the molecular data described above.

The dynamics of Rglobal , obtained by pooling the differ-
ent cell positions on a single chip, can then be compared 
with the predictions of the ODE model. The comparison 
for all eight experimental conditions is shown in Fig.  4, 
where the black dots show the experimental measure-
ments while the group of cyan lines show the predictions 
from the ODE model. In this figure, the measurements 
previously obtained by flow cytometry [12] are indicated 
with yellow circles, showing mostly a good agreement 
with the microfluidic and numerical results. Although 
the values of the parameters α,β , ρ , and τ are obtained 
from the fitting molecular data from a very different 
setting, the simulated time evolution of the emergence 
of GFP+ cells matches the microfluidics experiments 
in most cases. A table containing the root mean square 
error (RMSE) between the simulated and experimen-
tal data is shown in Additional file 1: Table S1, where a 
higher RMSE value indicates a larger difference between 
experimental and simulated data.

In these comparisons, two conditions stand out as 
matching poorly with the ODE model, as can be seen 
in the Additional file 1: Table S1. The first concerns the 
NR-Cpf1 case, which grows faster in the experiments 
compared with the simulations. This is likely due to a 
leaky induction of Cpf1, which results in DSB induction 
before the switch to galactose media at t0 . This mismatch 
between the beginning of the metabolic switch and the 
break and repair leads to a reduced delay between tlag 
and tGFP compared with other conditions, as observed 
by the early onset of the green curves in Fig.  2b. From 
a modeling point of view, this complexity would add 
an additional time scale that is not accounted for in 

the equations. The other case with a poor fit between 
the microfluidic experiments and the ODE model is 
CTG-Cas9. This case corresponds to a condition that 
has a reduced fitness at later times, as evidenced by the 
slowed growth of the population numbers. In this case 
(and also on GAA-Cas9 which poorly matches with the 
flow cytometry results), some individual cells show an 
abnormal growth in cell size and atypical shapes mostly 
correlated with being GFP+, as seen in Fig.  2a and in 
the Additional Movie. The relation between these mor-
phological changes and their impact on the growth of 
the populations will be studied in detail below where we 
study the temporal evolution in individual wells.

DSBR dynamics at the single‑lineage scale
The above description treats the microfluidic device as 
a single population. Further insight can be obtained by 
looking at the dynamics of the progeny of each one of 
the yeast cells, which shows individual transition events 
from the initial state (modified, GFP−) to the repaired 
state (GFP+). By the same token, studying the individ-
ual curves gives access to the heterogeneity that exists 
between different cells within a single experiment.

Typical measurements from three conditions are 
shown in Fig. 5. By looking at a few individual traces in 
the case of NR-Cas9 (A.a–e), two situations are domi-
nant: In some wells, the initial cell divides without any 
of its daughters becoming GFP+ (Fig.  5A.a). The cell 
proliferation in locations where the repair does not take 
place tends to slow down after a few initial divisions, as 
shown by the slower increase of the blue dots. In other 
wells, the cells turn green some time after the initial 
division. The time delay between the initial division and 
the first detection of a GFP+ cell in each well ( tGFP-tlag ) 
is well-distributed around a mean at 5.6 h, as shown in 
Fig. 5A.b. This delay is consistent with the time required 
for the cells to translate the new gene and express suffi-
cient GFP molecules to make it detectable. The number 
of cells turning green after the first detection of a GFP+ 
cell increases rapidly until it covers all cells within the 
particular well. This typical behavior is summarized by 
plotting a few representative curves of the local fraction 
Rlocal = (N local

GFP /N
local
tot ) , as shown in Fig. 5A.c. Here, again 

some lineages remain with a value of Rlocal = 0 until the 
end of the experiment but when Rlocal becomes positive it 
rapidly rises to a value near 1.

Taken together, the measurements of Fig. 5A.a–c indi-
cate that DSB and DSBR take place very early in the 
lineage tree, possibly in the mother cell or its very first 
daughters, which explains the low value of the delay 
and the rapid increase in the number of GFP+ cells. As 
a result of these dynamics, the distribution of values of 
Rlocal at the end of the experiment ( t = 24 h) is strongly 
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bimodal. The statistics are dominated by the extreme 
values of Rlocal = 0 and Rlocal ≃ 1 (Fig. 5A.d). The inter-
mediate values of Rlocal correspond to curves that are in 
the transition between zero and one at the end of the 
experiment.

The experimental measurements can be compared with 
values computed from the stochastic version of the ODE 
model (see Section 5.5 ), using the same parameter values 
obtained from the Bayesian fitting in Section 2.2. A sam-
ple of the simulated trajectories is shown in Additional 

file 1: Fig. S7, while the distribution of final values of Rlocal 
is shown in Fig. 5A.e. These simulations reproduce well 
the tendency of the case NR-Cas9 towards Rlocal = 1 , as 
seen by the peak in the histogram. Nevertheless, the sim-
ulations fail to reproduce the peak at Rlocal.

The discrepancy between the model and experiments 
is due to the biological origin of the peak at Rlocal = 0 , 
which corresponds either to cells totally escaping DSB 
or to broken cells unable to repair the DSB and there-
fore maintaining cell cycle arrest. This behavior does not 

Fig. 4 Population experimental data vs ODE predictions. Comparing Bayesian model predictions (cyan lines) with experimental measurements for 
the fraction of GFP+ cells to the total number of cells. The black dots represent the measurement obtained with the microfluidic setup, while the 
yellow dots represent the bulk measurements with flow cytometry ([12])
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correspond to different values of the parameters ( α,β , ρ ) 
but rather to some dynamics that are not included in the 
theoretical model. Although the unbroken/unrepaired 
trajectories correspond to about 30% of the wells in the 
NR-Cas9 case, these positions contribute a small number 

to the total sum of cells in the experiment since these 
cells only go through a few division cycles. As a result, 
they are difficult to observe in the population-scale meas-
urements, which explains the good agreement between 
the ODE model and global measurements in Fig. 4.

Fig. 5 Dynamics and statistics of individual lineages. A NR‑Cas9. a Dynamics of Nlocal
tot  (blue) and Nlocal

GFP  (green) from six randomly selected wells. Note 
the diverse dynamics from different positions. b Distribution of delay times between first division and first detection of GFP+ cell. c Local fraction 
R
local = N

local
GFP /N

local
tot

 for 9 randomly selected positions. The transitions from 
R
local = 0 happen at different instants and quickly rise towards Rlocal ≃ 1 . 

Note that in some cases Rlocal remains zero. d Distribution of values of Rlocal at the end of the experiment. e Distribution of Rlocal at the end of the 
simulation obtained from the stochastic model using the same parameter values as above. B CTG‑Cpf1. C CTG‑Cas9. Same graphs as above
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When the same analysis is made for CTG-Cpf1, 
very different dynamics and statistics are observed (in 
Fig.  5B.a–e). While the growth of individual lineages 
from single cells is generally similar to the previous 
case, the GFP+ cells appear less frequently and much 
later during the experiment (Fig.  5B.a, b). Indeed, the 
delay between the first division and the first GFP+ 
event, when it does occur, is broadly distributed 
between 5 and 20 h (Fig.  5B.c, Additional file  1: Fig. 
S7). Moreover, the traces of Rlocal do not rise sharply 
after the first GFP+ cells. Instead, in both experiments 
and in simulations, they show a much more gradual 
increase and only reach a small value at the end of the 
experiment (Fig.  5B.d, e). In this case, the computed 
growth curves and histogram of final values of Rlocal are 
in good agreement with the experimental measure-
ments (Fig. 5B.e). These observations indicate that DSB 
and DSBR take place in cells long after the first divi-
sion. As such, these events only affect a fraction of the 
progeny of the initial cell, which explains the slow rise 
of Rlocal , while most of the lineage tree maintains an 
unbroken microsatellite.

Finally, a third type of behavior is observed when 
considering the CTG-Cas9 condition, as shown in 
Fig. 5C.a–e. Here, the GFP+ cells appear early after the 
first division (mean time delay is 6 h) but the increase 
in the number of GFP+ cells is irregular (Fig. 5C.b, c, 
Additional file 1: Fig. S7). However, this condition cor-
responds to more complex biological processes, since 
GFP+ cells display reduced fitness and division arrest 
after becoming GFP+ (Fig. 5C.a and Additional Movie). 
If this arrest occurs after the complete population is 
repaired, it leads to a value of Rlocal = 1 but on a static 
population of cells. In other cases, only some of the 
cells are repaired and slow down their divisions, which 
leads to a value of Rlocal that initially increases before 
decreasing again (Fig.  5C.c, Additional file  1: Fig.  S7). 
These dynamics yield a large variety of outcomes for 
the final value of Rlocal , which covers the whole range 
between zero and one (Fig. 5C.d, e).

In this last example, the comparison between experi-
mental measurements and simulations from the sto-
chastic model shows good agreement but care must 
be taken when comparing these two distributions. The 
peak at Rlocal = 0 is missing for the same reasons as in 
the NR-Cas9 case above. Moreover, cell cycle arrest 
of cells that become large is another particularity that 
is not included in the equations. As such, the model 
is missing two major specificities of the experiment. 
Contrary to the two examples discussed previously, the 
disagreement between the model and the experimen-
tal ingredients leads to a poor match in the global ratio 
(Fig. 4).

Relating the dynamics of individual lineages 
with the global population behavior
The information shown for three cases in Fig.  5 can be 
summarized for all conditions by plotting the time 
dynamics of cell populations as heat maps, as shown in 
Fig.  6. For each case, three quantities are represented 
by the color scheme: the number of cells over time 
( N local

tot  ), the number of GFP+ cells over time ( N
local
GFP  ), 

and the value of Rlocal . The heat maps are constructed as 
explained graphically in Additional file  1: Fig.  S8: each 
row represents the time evolution from a single well, with 
the wells ranked according to the total number of cells 
at t = 24  h. Therefore, rows near the top of the graphs 
represent small final colonies, while rows near the bot-
tom correspond to the largest colonies at the end of the 
experiment.

Analysis of these heat maps allows us to classify the 
behavior of DSB and DSBR according to three typical 
cases. 

1. High‑efficacy error‑free repair, normal cell growth. 
The four conditions labeled with the star in Fig.  6a 
follow a high-efficacy situation. These conditions dis-
play first a strong correlation between the moment of 
the first division and the size at t = 24  h, as shown 
by the sideways slant of the pink border describing 
N local
tot  . The second observation is the relatively nar-

row delay between the first division and the first 
GFP+ cell, as seen by the small distance between the 
black line and the left edge of the pink region in the 
middle heat map. This small delay indicates that the 
first repair takes place when there are only a few cells 
in the well. Finally, Rlocal ≃ 1 for the bottom part of 
the heat maps, indicating that the largest individual 
populations are also the best repaired. This type of 
behavior is observed in four conditions: NR-Cas9, 
NR-Cpf1, CGG-Cas9, and GAA-Cpf1, and their 
progeny trees would resemble the ones illustrated in 
Fig. 6b, first panel.

2. Low‑efficacy error‑free repair, normal cell growth. 
The two conditions labeled with a circle in Fig. 6a fol-
low a scenario that is consistent with a late breaking 
of the microsatellite. In both of these conditions, the 
cell division begins in a similar fashion to the high-
efficacy cases described above, with a strong correla-
tion between the first division event and the final size 
of the colony, as seen in the shape of the N local

tot  heat 
maps. However, the time for the first GFP+ detection 
is very long compared with the high-efficacy cases. 
This long delay is an indication that the break and 
repair events happen after several cell divisions, as 
shown schematically in the middle panel of each con-
dition. It is possible that the repair step is also poorly 
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performed by the cells, although it is not possible 
to confirm this from the current experiments. As a 
result of this long delay, the values of Rlocal all remain 
small at t = 24 h, in line with the low value of Rglobal 
(Fig. 4). CGG-Cpf1 and CTG-Cpf1 show this type of 
behavior, and their progeny tree would be similar to 
the one illustrated in Fig. 6b, second panel.

3. Error‑prone repair, impaired cell growth. Different 
dynamics are evidenced by the analysis on the final 
two conditions, marked with the square in Fig. 6a. The 
appearance of GFP+ cells here is followed by a loss of 
fitness, marked by the slowing down or stopping of cell 
division. A consequence of this behavior is the broad 
distribution of wells that reach Rlocal ≃ 1 , both for small 

Fig. 6 Identification of DSBR cases by capturing single‑cell variability. a Heat maps of individual wells per experimental condition: Each row per 
map represents data from an individual well, and the wells are ranked vertically in each map from those with least to most of cells at t = 24 h (see 
arrows on the left side). For each condition, from left to right: log10(N

local
tot  ), log10(N

local
GFP  ), and 

R
local . The color scales highlight extreme values near the 

10th and 90th percentiles. In N
GFP
local maps, the black line indicates the first division time tlag . b Cartoons of the three identified behaviors: high‑efficacy 

error‑free repair, normal cell growth (first panel); low‑efficacy error‑free repair, normal cell growth (middle panel); and low‑efficacy error‑prone repair, 
impaired cell growth (third panel)
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and large final colony sizes. In contrast with the previ-
ous cases, the well with a high value of Rlocal is distrib-
uted throughout the whole range of colony sizes. This 
is also the only condition for which the value of Rlocal is 
not monotonically increasing but sometimes decreases.

Discussion
Bulk experiments, traditionally used to study DSBR, 
provide the ratios of broken or repaired cells to the total 
number of cells within a population. Such measurements 
are sometimes repeated during the course of an experi-
ment to provide values at early, intermediate, and late time 
points, thus estimating the repair dynamics. It is neverthe-
less difficult to interpret the significance of the cell ratios. 
For example, it is not possible to know if the repaired cells 
at any time point constitute the progeny of a small num-
ber of efficient mother cells or if they are the result of a 
large number of independent repair events. Moreover, in 
the case of poor efficacy, it is not possible to determine if 
that is due to poor breaking, poor repair, or loss of fitness. 
Here, we addressed these issues by combining traditional 
molecular measurements with a dynamical ODE model 
and with time-resolved microfluidic imaging experiments.

From the ODE model, we were able to estimate the 
break and repair rates ( β and ρ , respectively) and show 
that their distributions vary among conditions. Remark-
ably, the values of ρ are larger when Cas9 is induced than 
when Cpf1 is induced (Additional file 1: Fig. S5), suggest-
ing that Cas9 DSB are repaired more quickly than Cpf1 
DNA breaks. This difference may be related to the nature 
of the breaks produced by each of the nucleases: Cas9 
makes blunt DSB [32], whereas Cpf1 makes staggered cuts, 
leaving 4–5 nucleotides 5′ overhangs [23, 33], that need to 
be resected for processing and repair of the break [34]. It is 
therefore possible that blunt DSB left by Cas9 are correctly 
processed by the cell, whereas 5′ overhangs left by Cpf1 
are poorly resected, hindering effective DSBR. This would 
explain the longer repair time observed with Cpf1.

Even though the values of β and ρ were estimated from 
molecular measurements on populations of cells, the 
dynamics predicted by the ODE model matched remarka-
bly well with the microfluidic measurements in most cases. 
Cases for which the match between model and experiment 
was not good yielded insights into additional biological 
mechanisms that were not suspected in advance. In par-
ticular, the microscopy enabled the detection of changes in 
cell morphology for the GAA-Cas9 and CTG-Cas9 condi-
tions. Both of these conditions exhibited non-exponential 
growth after DSBR, suggesting that deleterious off-target 
mutations could have been induced by the Cas9 endonu-
clease. Poggi et al. [12] showed that Cas9 indeed induced 
frequent off-target mutations in the LEO1 gene and less 

frequent ones in the CLB5 gene when GAA were targeted 
and in the YMR124w gene when CTG were targeted. LEO1 
is involved in general transcription elongation whereas 
CLB5 is a B-type cyclin involved in DNA replication. A 
null mutation causes slow growth, delayed progression 
through S and G1 phases of the cell cycle, and increased 
cell size, phenotypes that are recapitulated in the present 
experiments. YMR124w (also called EPO1) is involved in 
endoplasmic reticulum metabolism and interacts with 
CRM1, an essential gene encoding a nuclear export factor. 
The defects observed in our experiments could therefore 
be a direct or indirect effect of mutations in YMR124w.

Conclusions
In summary, we show here how to detect the DSBR dynam-
ics at the single-cell level, by combining genetically modi-
fied cells with microfluidics and time-lapse microscopy. 
Then, by following the progeny of hundreds of individual 
cells, we provide a new framework to bridge the scales 
between the single-cell behavior and population dynam-
ics. The link between these scales is further strengthened 
by a three-state coupled ODE model that coarse-grains this 
highly regulated process, involving dozens of proteins act-
ing in a defined successive order. The mathematical model 
provides a quantitative basis to compare the dynamics 
observed in microfluidics with molecular and bulk meas-
urements. The remarkable agreement between these differ-
ent experimental approaches confirms that the microfluidic 
format does not introduce any artifactual bias. Instead, the 
ability to observe departures from the quantitative agree-
ment, in combination with single-cell imaging, serves as 
a basis to distinguish between different repair scenarios: 
low-efficacy error-free and error-prone repair cases. Even 
though these scenarios are difficult to distinguish in bulk 
experiments, they correspond to widely different cellular 
histories and distribution of cell states. Ongoing work will 
then use this multiscale platform to identify specific events 
during the break and repair processes, which will help deci-
pher differences in cell-to-cell response to DNA damage.

Methods
Biological protocols
Yeast plasmids and strains are described in Poggi et al. [12].

Time courses of DSB inductions Cells were transformed 
using standard lithium-acetate protocol [35] with both 
sgRNA and endonuclease and selected on 2 % glucose 
synthetic complete, uracyl, leucine (SC-UR-LEU) plates 
and grown for 36 h. Each colony was seeded into 2 mL of 
2 % glucose SC-URA-LEU for 24 h and then diluted into 
10 mL of 2 % glucose SC-URA-LEU for 24 h as a pre-cul-
ture step. Cells were washed twice in water and diluted 
at ca. 7 × 106 cells/mL in 2 % galactose SC-URA-LEU, 
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before being harvested at each time point (0h, 2h, 4h, 6h, 
8h, 10h, 12h) for subsequent DNA extractions. The same 
cultures were used for cytometry analyses.

Southern blots For each Southern blot, 3–5 μg of 
genomic DNA digested with Eco RV and Ssp I were loaded 
on a 1 % agarose gel and electrophoresis was performed 
overnight at 1 V/cm. The gel was manually transferred 
overnight in 20X SSC, on a Hybond-XL nylon membrane 
(GE Healthcare), according to manufacturer recom-
mendations. Hybridization was performed with a 302 bp 
32P-randomly labeled CAN1 probe amplified from primers 
CAN133 and CAN135 [36]. Each probe was purified on a 
G50 column (ProbeQuant G50 microcolumn, GE Health-
care) and specific activities were verified to be above 2.4 
×  108 cpm/μg. The membrane was exposed 3 days on a 
phosphor screen and quantifications were performed on 
a FujiFilm FLA-9000 phosphorimager, using the Multi 
Gauge (v. 3.0) software. Percentages of DSB and recombi-
nant molecules were calculated as the amount of each cor-
responding band divided by the total amount of signal in 
the lane, after background subtraction. Note that DSB and 
repaired values were taken from Poggi et al. [12] for each 
strain, except for NR-Cpf1 for which two additional time 
courses and Southern blots were run.

Microfluidics and microfabrication
Master molds for the microfluidic devices were created 
using photolitography techniques by adapting the meth-
ods described in Ref. [37]: Briefly, designs were created 
with CleWin software and printed onto high-resolution 
polymer photomasks. Master molds were then fabri-
cated with negative photoresist SU8 onto silicon wafers, 
following a double-layer procedure in order to obtain 
different specific heights for the wells and the chamber. 
Microfluidic devices were created using two pieces of 
polydimethylsiloxane (PDMS): one thin ( ∼ 300 μm) layer 
patterned by the master mold described before and a 
second blank thick ( ∼ 8 mm) slab where inlet and out-
lets were forged. The whole device was assembled, using 
plasma oxygen, as follows (from bottom to top): a glass 
slide, the patterned PDMS layer facing up, and the blank 
PDMS slab closing the microfluidic chamber.

In each experiment, cells were introduced into the 
microfluidic chip, at 5 μL/min, controlled by a syringe 
pump system (Nemesys cetoni) and were allowed to settle 
on the bottom of the device for 5 min. Subsequently, the 
culture medium was supplied at 10 μL/min for at least 10 
min in order to remove non-trapped cells. The well occu-
pancy did not follow a homogeneous distribution: wells 
typically contained from 0 to 5 cells. Only populations 

that started with a single cell were selected for our analy-
sis in order to monitor the lineage of individual cells. In 
this context, wells that were contaminated by cells that 
were not stemming from the original trapped cells were 
discarded, as well as wells disturbed by air bubbles at 
some point of the time lapse. Cells were cultured inside 
the microfluidic device with a culture medium continu-
ously supplied at low flow rates (0.1 μL/min) over 24 h in 
order to ensure viability and favorable growth conditions. 
The chip and the syringe pump were maintained at 30° on 
a temperature-controlled box (Oko lab) mounted on top 
of an inverted microscope (Nikon eclipse) for 24 h.

Image acquisition and analysis
The whole microfluidic chip was imaged with a 20× objec-
tive, every 20 min both in bright-field and in green epi fluo-
rescence. On such an imaging routine, a rectangular lattice 
was followed by the motorized stage in order to obtain 176 
(22 × 8) fields of view (each 600 μm × 600 μm). The images 
were processed with the open-source software ImageJ [21]. 
First, only those image sets with wells that contain one sin-
gle cell at the beginning of the experiment were selected 
and cropped. Such image sets were structured into hyper-
stacks of 73 (73 time points) per two (two color channels: 
bright-field and green fluorescence) images. Using the 
ImageJ plugin TrackMate [20], the number of cells at every 
experimental time point both in bright-field and green flu-
orescence channels was computed: Using the bright-field 
channel in each time point, round elements (with a specific 
size ∼ 3.5 μm diameter) inside the region of interest (ROI) 
were detected and segmented. Such selection was then 
applied to both channels in order to measure the mean 
intensity value in the selected circles. In this manner, we 
could determine if a cell (contained in the circle selection) 
was expressing GFP (GFP+) by comparing its mean inten-
sity value (measured in the green fluorescence channel) to 
the background mean intensity value. If the measured value 
of green fluorescence in the cell was more than 1.5× the 
background level, then the cell was considered GFP+. This 
method provided a time-resolved quantification of both 
proliferation of cells and their GFP expression upon DNA 
repair, as shown in Fig. 1c, d.

The delay between recent repaired GFP gene and the 
GFP detection on single yeast cells was estimated to be 3 
h. This value was estimated by comparing Southern blot 
data and expression curves obtained with the microflu-
idic setup and the image processing here explained. This 
delayed would correspond to the parameter γ on Fig. 3a.

Bayesian inference
Prior selection
Bayesian inference of the ODE model parameters 
from the Southern blot measurements was performed 
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in Julia using Markov Chain Monte Carlo simulations 
using the Turing.jl library [38]. Our prior distribu-
tions were independent gamma distributions for each 
parameter. The gamma distribution is parameterized by 
a shape and scale parameters, denoted α and θ , respec-
tively. The mean and coefficient of the gamma distribu-
tion are given by µ = αθ and CV = 1/

√
α , respectively. 

For each parameter, we selected a mean and a CV 
which constrained the parameters within some physical 
reasonable range. In particular, we know that the time 
scale for double-strand breaks to appear in the popula-
tion is less than the length of the experiment, so β is 
not likely less than ln(2)/12 h−1 . On the other hand, 
broken cells do not appear instantly, so it is not likely to 
be more than ln(2) h−1 . Similarly, for α , we know that 
the doubling time is on the order of 3 h, but it could be 
as large as 6 or as small as 1; thus, we take priors with 
a mean of ln(2) and CV of 1. We believe that τ is the 
same for each experiment; thus, we infer τ from a single 
condition and used an approximation of the resulting 
posterior as priors for all other experiments. Table  1 
lists the mean and variance we used for each parameter. 

These are so-called weakly informative priors, meaning 
they are not meant to incorporate specific information 
we have, e.g., from a previous experiment, but rather 
make parameter values which are physically implausi-
ble highly unlikely.

Diagnostics on simulated data
We first tested the Bayesian inference on simulated 
data from the ODE model, with uncorrelated Gaussian 
errors added to the species fractions. Additional file 1: 
Fig.  S2 shows a pair plot with the joint posterior dis-
tribution of each parameter pair, along with the true 

parameter values used to generate the simulated data 
for the fraction of modified, broken, and repaired cells.

In order for the parameters extracted from the 
Bayesian inference to be biologically meaningful, the 
inference should be robust to violations in the model 
assumptions. Thus, we next tested that the Bayesian 
inference can still resolve the parameters when the 
Gaussian error model is incorrect. To generate non-
Gaussian errors, we assumed that the Southern blot 
measurements themselves, rather than the fractions, 
are corrupted by Gaussian noise. Additional file  1: 
Fig. S3 shows a pair plot for this simulated data. Code 
to reproduce the Bayesian inference can be found at 
https:// github. com/ elevi en/ yeast_ dna_ repair.

Stochastic model
The ODE model describes the evolution of cell num-
bers when there is a sufficiently large number of 
cells to neglect small number, or demographic, fluc-
tuations. Invalid for the microfluidic experiments, 
however, we must consider a stochastic model which 
treats the events of cell division, DNA break, and 
repair probabilistically. There are many ways to do 
this, but we adapt a simple approach of assuming all 
events occur at exponentially distributed times with 
rate parameters α,β , and ρ , respectively. As a result 
of this assumption, the stochastic process for (m, g, r) 
is Markovian, meaning that it is not necessary to have 
knowledge of how long each of the cells has been in a 
given state to predict the future evolution. The prob-
ability distribution P(m,  g,  r) can be shown to obey 
the Master equation [39]

In our stochastic simulation samples, paths of the process 
(m, g, r) are generated using the Gillespie Algorithm [39].

It should be noted that while the assumption that events 
occur with a constant probability per unit time is strictly 
speaking false, as we know, cell division does not happen 
at a constant rate per unit time, but for making qualitative 
predictions about the fluctuations, it is sufficient.

Abbreviations
DSBR: Double‑strand break repair; GFP: Green fluorescent protein; DSB: 
Double‑strand break; PAM: Protospacer adjacent motif; ODE: Ordinary differen‑
tial equation; PDMS: Polydimethylsiloxane; RMSE: Root mean square error; SC: 
Synthetic complete; URA : Uracyl; LEU: Leucine.

(5)

d

dt
P(m, g , r, t) =α(m− 1)P(m− 1, g , r, t)+ β(m+ 1)P(m+ 1, g − 1, r, t)

+ ρ(g + 1)P(m, g + 1, r − 1, t)+ α(r − 1)P(m, g , r − 1, t)

− P(m, g , r, t)[α(m+ r)+ βm+ ρg].

Table 1 ODE model parameters

Parameter Description Prior mean Prior CV

α Growth rate of cells ln(2)/3 h−1  1

β DNA break rate ln(2)/6 h−1  2

ρ DNA repair rate ln(2)/6 h−1  2

τ Lag time 4 h  0.1

σ Measurement noise ln(2)/3 2

https://github.com/elevien/yeast_dna_repair
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