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Extracting multiple surfaces from 3D 
microscopy images in complex biological 
tissues with the Zellige software tool
Céline Trébeau1, Jacques Boutet de Monvel1, Gizem Altay1, Jean‑Yves Tinevez2* and Raphaël Etournay1*   

Abstract 

Background: Efficient tools allowing the extraction of 2D surfaces from 3D‑microscopy data are essential for studies 
aiming to decipher the complex cellular choreography through which epithelium morphogenesis takes place during 
development. Most existing methods allow for the extraction of a single and smooth manifold of sufficiently high 
signal intensity and contrast, and usually fail when the surface of interest has a rough topography or when its localiza‑
tion is hampered by other surrounding structures of higher contrast. Multiple surface segmentation entails laborious 
manual annotations of the various surfaces separately.

Results: As automating this task is critical in studies involving tissue‑tissue or tissue‑matrix interaction, we developed 
the Zellige software, which allows the extraction of a non‑prescribed number of surfaces of varying inclination, con‑
trast, and texture from a 3D image. The tool requires the adjustment of a small set of control parameters, for which we 
provide an intuitive interface implemented as a Fiji plugin.

Conclusions: As a proof of principle of the versatility of Zellige, we demonstrate its performance and robustness on 
synthetic images and on four different types of biological samples, covering a wide range of biological contexts.

Keywords: Image analysis, Morphology, 3D imaging, Tissue imaging, Image segmentation, Surface extraction, Fiji 
plugin
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Background
The interplay between gene regulatory networks and 
physical forces in driving collective cell behaviors is key 
to tissue morphogenesis during development and to 
tissue homeostasis throughout life. Recent quantita-
tive studies of epithelial morphogenesis have begun to 
unravel the basic cellular and physical principles of tissue 
development, by providing the tools to integrate multiple 
scales of tissue dynamics [1–4]. These tools are instru-
mental to quantify how cell shape changes, cell divisions, 

cell rearrangements, and cell extrusions contribute to tis-
sue remodeling, and to establish data-driven computa-
tional models of tissue morphogenesis.

Quantitative analysis of an epithelium starts with the 
extraction of its apical surface from 3D-microscopy 
images (z-stacks of xy-optical sections) encompassing 
the volume immediately surrounding the epithelium. To 
this end, the abovementioned studies relied on specific 
preparations of the specimen, allowing to expose the 
entire epithelial surface labeled with junctional fluores-
cent markers to reveal the network formed by epithelial 
cell-cell contacts. Once the epithelial surface has been 
extracted, automated cell segmentation and cell con-
tour tracking tools can be used to follow the dynamics 
of every cell within the epithelium. However, extracting 
the epithelial surface remains a difficult task because this 
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surface is usually not flat (it is best modelled as a curved 
surface, or 2D submanifold embedded in 3D space), and 
is often surrounded by other biological structures such 
as cell layers, acellular membranes, extracellular matrix, 
and vesicles that hamper its visualization and recon-
struction. Even more difficult situations occur when the 
epithelium surface cannot be readily exposed such as in 
epithelial organoids in which the epithelial surface faces 
the lumen inside the cyst. More generally, there is a need 
for efficient tools allowing one to discriminate a surface 
of interest from surrounding structures of high intensity 
and contrast. This is required to study how epithelial cell 
dynamics account for tissue shape changes in complex 
specimens, in a wide range of contexts including devel-
opmental biology, host-pathogen interaction, and tissue 
regeneration studies.

Another experimental limitation of previous studies is 
that some of the structures surrounding the epithelium 
exert external physical constraints that are known to crit-
ically affect epithelial morphogenesis by directing cellular 
dynamics and signalling pathways [1, 5–7]. To under-
stand the physical forces controlling tissue morpho-
genesis, it is thus essential to also characterize how the 
dynamics of these extra-epithelial surfaces relate to that 
of the epithelium (see [8] for review). This calls for the 
development of dedicated tools allowing the automated 
extraction of information from several surfaces of inter-
est in a given sample, since the sheer volume of the data 
challenges any attempt at a manual analysis [9].

Several surface extraction tools have been developed, 
some of which are available as open access software, 
such as PreMosa [10], FastSME [11], and LocalZProjec-
tor [12]. These tools focus on the extraction of a single, 
near-horizontal epithelial layer, which is assumed to (i) 
be sufficiently smooth, (ii) show enough contrast against 
surrounding background signals, and (iii) cover the entire 
image field-of-view. Specifically, it is assumed that the 
fluorescent marker used to label the epithelial cell net-
work should provide the highest contrast in the image 
and allow to select it out from autofluorescent extracellu-
lar structures such as the cuticle in flies, or other acellular 
membranes in mammalian epithelia. The surface is then 
localized using heuristic algorithms based on the detec-
tion of the voxels of maximum contrast and/or bright-
ness. However, applying these tools on more complex 
biological images with several epithelia of weaker con-
trast often leads to incorrect localization of the surface of 
interest, and its blending with the nearby unwanted bio-
logical structures.

MinCostZ on the other hand is the only available 
open-source tool that allows the extraction of up to two 
surfaces from a 3D stack, and imposes explicit continu-
ity constraints on the reconstructed surfaces. MinCostZ 

surface extraction relies on a previously developed for-
mulation of the problem as a graph-cut optimization 
[13]. It is implemented as an ImageJ plugin [14], taking 
as control parameters, the number of surfaces to extract, 
the maximum slope, and the range of distances allowed 
between the surfaces, as well as some user-defined cost 
function that should reflect the characteristics of the 
surfaces in term of signal intensity, contrast, and tex-
ture. Despite its interest, this approach remains compu-
tationally costly and difficult to apply in practice due to 
the non-trivial choice of the cost function and the need 
to know beforehand the relative positions of the surfaces 
to be extracted.

Alternatively, one can segment the surfaces of interest 
by using supervised machine learning tools such as the 
software solutions Weka [15] or Ilastik [16], as proposed 
in the ImSAnE surface reconstruction framework [17]. 
A deep learning approach, using a network of the U-net 
type to segment the voxels belonging to a single surface 
of interest, has also recently been reported [18]. While 
promising as they can provide state of the art segmenta-
tions of epithelial surfaces in difficult imaging conditions, 
machine learning approaches require the prior manual 
annotation of a sufficiently large set of surfaces to gener-
ate suitable training sets. This process can be very time 
consuming, often necessitating several rounds of trials 
and errors to obtain satisfactory results, without guar-
antees to be generic, i.e., to generalize to a wide range 
of datasets. So far, no solution to the multiple surface 
extraction problem has been proposed, which is satisfac-
tory both in terms of genericity and ease of use.

However, such a tool is highly desirable for modern 
biology studies. Indeed, tissue organization in the con-
text of developmental biology emerges from the inter-
action of several neighboring structures [8] through the 
interplay of molecular signals [19, 20], as well as electri-
cal [21, 22], hydraulic [23, 24], and mechanical contact 
interactions [25, 26]. The importance of such interaction 
is exemplified in embryonic explanted tissue cultures that 
develop abnormally when separated from their neigh-
boring structures [27]. Similarly, in the context of tissue 
engineering, stem cell-derived aggregates harbor various 
types of tissues surrounding the genuine organoid, and 
these tissues presumably influence organoid shape, fate, 
and differentiation (see [28] for review). The ability to 
simultaneously study the dynamics of neighboring struc-
tures together with the structure of interest is therefore 
essential for an integrated understanding of tissue devel-
opment, and for any attempt to harness tissue self-organ-
ization in vitro.

Here, we introduce Zellige, a tool based on a novel 
constructive approach that allows the automatic extrac-
tion of a non-prescribed number of surfaces from a 3D 
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image. Unlike most other tools, Zellige does not rely on 
the localization of voxels of highest contrast or bright-
ness. Rather, it performs the surface reconstruction in 
two steps: it first classifies voxels most likely belonging 
to surface structures by a combination of maxima detec-
tion along the z-axis and the application of two bright-
ness and contrast classifiers; it then extracts each surface 
present in the image volume with an assembly algorithm 
implementing explicit continuity constraints. This two-
step approach allows the reconstruction of multiple sur-
faces of different contrast characteristics to be selectively 
reconstructed.

To do this, the user is only required to adjust a small set 
of intuitive control parameters, a task largely facilitated 
by a user-friendly interface implemented as a plugin for 
the open-source Fiji platform [29]. We tested the per-
formance and robustness of Zellige for multiple surface 
extraction by applying it to synthetic and 3D microscopy 
images containing multiple surfaces of interest of widely 
varying texture and contrast. Among the four biological 
samples we considered, three previously required labori-
ous manual extraction of the epithelial surface (fly pupa 
histoblast, mouse cochlea, and inner ear organoid) there-
fore greatly challenging the study of the cellular mecha-
nisms involved in the development of these large organs 
[9]. We also  analyzed a bronchial epithelium specimen 
that highlights the use of Zellige in a recent study to 
address how SARS-CoV-2 infection interferes with the 
epithelial function [30]. These experiments demonstrate 
the ability of the approach to extract several surfaces 
of potentially very low contrast, selectively from other 
highly contrasted and complex structures, with a single 
set of reconstruction parameters. A sensitivity analysis 
also reveals a high robustness of Zellige against small 
variations of these parameters. This will make it a tool of 
choice in terms of versatility and ease of use for the inves-
tigation of biological surfaces.

Implementation
Zellige was devised with the goal of achieving accurate 
segmentation of multiple biological surfaces from 3D 
confocal images. Unlike other existing surface extraction 
tools, it makes no assumption on the number of surfaces 
to be extracted and does not require the surfaces of inter-
est to be the structures of highest contrast in the image. 
Zellige is written in Java, relying on the ImgLib2 library 
[31] and is distributed as a Fiji plugin, with a graphical 
user interface (GUI) designed to allow users to quickly 
find a good set of extraction parameters for a given 
image.

Zellige extracts each surface present in the image in 
the form of a height map (or z-map), that is, a mapping 
z=h(x,y), which associates to each point (x,y) over which 

the surface projects, the z-coordinate of the unique voxel 
(x,y,z) belonging to the surface. Each extracted height 
map is then used to produce a 2D projection of the 3D 
stack restricted to a small subvolume (of user-selected 
width) centered around the corresponding surface. To 
achieve a robust extraction, Zellige proceeds in two algo-
rithmic steps, which are only outlined below (see Addi-
tional file  1: Supplementary Note 1 for implementation 
details) [32].

In the first step, or surface voxel selection step, a seg-
mentation is applied to the 3D image to select voxels that 
likely belong to a surface of interest (Fig.  1 and Addi-
tional file  2: Figure S1A). These putative surface voxels 
are detected as local maxima of image intensity along the 
z-axis, after applying a 3D Gaussian filter to the image 
to reduce noise artifacts, followed by two independent 
binary classifiers, one based on voxel contrast and the 
other one on voxel intensity (see Additional file  1: Sup-
plementary Note 1 for details). Five adjustable param-
eters control the selection step: two threshold parameters 
(TA and Totsu) control the strength of the binary classifiers 
applied on contrast and intensity, respectively, and three 
parameters (Smin, σxy, and σz) control clean-up operations 
applied at the end of the classification (removal of small 
isolated spots, and local averaging along the xy plane and 
the z-axis, respectively).

In the second step, or surface assembly step, an iterative 
algorithm is used to extract the height maps of each of the 
surfaces present in the image (Fig. 1 and Additional file 2: 
Figure S1A). The assembly starts by grouping together 
contiguous chains of putative surface voxels within each 
orthogonal xz section (alternatively, within each yz section) 
of the 3D image, in order to form a set of building blocks 
referred to as orthogonal surface elements (OSEs). These 
building blocks are then used to assemble the surfaces, in 
a process analogous to jigsaw puzzles, where OSEs adja-
cent to the surface boundary are added if they match this 
boundary, and rejected otherwise, according to matching 
criteria that impose explicit continuity constraints to the 
surface under construction. (See Additional file 1: Supple-
mentary Note 1 for details on these matching criteria and 
on the construction of the OSEs.) The surface assembly 
proceeds until no matching OSE can be found (Additional 
file 2: Figure S1). In order to increase the robustness of the 
surface assembly step, Zellige applies it in two rounds, con-
structing the OSEs within yz sections only and performing 
the assembly along the x-axis during the first round, and 
constructing OSEs within the xz sections and proceeding 
along the y-axis during the second round (see Additional 
file 1: Supplementary Note 1). Each round is controlled by 
3 adjustable parameters: a threshold parameter (0 ≤ TOSE 
≤1) sets a minimum size for the building blocks that can 
be used as seeds to initiate the assembly of a surface; and 
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two other parameters (0 ≤ R ≤ 50 and 0 ≤ C ≤ 1) set the 
matching constraints used to accept or reject the addition 
of OSEs to a surface. The assembly step is thus controlled 
overall by 6 parameters, i.e., two groups of 3 parameters 
(TOSE1, R1, C1) and (TOSE2, R2, C2) controlling the first and 
second assembly rounds, respectively.

Finally, the height maps of each of the reconstructed 
surfaces are used to obtain a corresponding 2D projection 
(Fig. 1). In practice, a maximum projection restricted to a 
subvolume of width δz (δz being a user-defined parameter) 
centered around the surface of interest is performed.

Results and discussion
Proof of concept of multiple surface extraction 
on a synthetic image
Figure 2 shows the results produced by Zellige on a phan-
tom 3D image [33] containing three distinct synthetic 

surfaces generated as described in Additional file 1: Sup-
plementary Note 2 [34]. The three surfaces are extracted 
with little errors. We assessed the quality of the recon-
struction by comparing each of the height maps produced 
by Zellige to the corresponding ground truth (GT) height 
map, which is exactly known in this case (Fig. 2A–C, and 
Additional file  1: Supplementary Note 3) [12, 35]. For 
the three surfaces, the absolute value |h(x,y) – hGT(x,y)| 
of the difference between the reconstructed and the GT 
height maps is ≤ 1 (in pixel units) over >99% of the GT 
pixels (Fig.  2D–E), with a root mean square error value 
(RMSE; defined over the pixels common to the recon-
structed and the GT height maps, see Eq. 1 in Additional 
file  1: Supplementary Note 3) of ≤ 0.6 in pixel units, 
showing that the surface localization is highly accurate. 
In addition, the coverage, which measures the proportion 
of the reconstructed surface relative to the GT, is near 
100% for the three surfaces. To achieve these results, the 

Fig. 1 Flowchart of Zellige’s algorithmic steps. Surface voxel selection (step 1), surface assembly in the form of a height map (step 2), and 
subsequent projection localized to the height map, are schematically depicted in the case of a 3D image containing 4 surfaces of interest
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control parameters of the two steps of the surface extrac-
tion were adjusted manually to some adequate reference 
values (see Additional file  1: Supplementary Table  S1) 
using the Zellige Fiji interface. Only the parameters con-
trolling the voxel classification step (amplitude and Otsu 
threshold parameters TA and Totsu, minimal island size 
Smin, and smoothing parameters σxy and σz) did actually 
require a modest adjustment. The parameters of the sur-
face assembly step (parameters TOSE1, R1, C1 and TOSE2, 
R2, C2 of the 1st and 2nd construction rounds, respec-
tively) were set to their default reference values (see 
Additional file 3: Figure S2 and Additional file 1: Supple-
mentary Note 4) and did not need to be adjusted.

Thus, using a single set of control parameters, Zellige 
can extract multiple surfaces of various shapes and tex-
tures with very little error, without requiring the user to 
provide information about their number or relative posi-
tion, nor about their shape or texture characteristics.

Performance of Zellige on biological samples
Example 1: extracting multiple surfaces from an image 
of a pupal fly specimen
Over the past few decades, the Drosophila model has 
been invaluable to decipher the molecular and cellular 
mechanisms underlying organ embryogenesis [36, 37]. 
Epithelium morphogenesis studies not only revealed 
the importance of mechanical stresses (including stress 
boundary conditions) and planar polarity signalling on 
cell dynamics to generate tissues of reproducible sizes 
and shapes, it also highlighted the importance of extra-
cellular matrix attachments in constraining the tis-
sue stresses that guide patterning [1, 38]. At the pupal 
stage, the fly undergoes dramatic remodeling of its larval 
organs into adult organs. Large-scale tissue flows initiate 
at a timing that coincides with molting, when the epithe-
lium contracts away from the overlaying cuticular sac, a 
protective acellular membrane that imposes mechanical 
constraints to the tissue.

Figure 3 shows the results of applying Zellige on a 3D 
image of a Drosophila pupa acquired with a spinning 
disk confocal microscope [39]. The sample expresses 
Ecadherin-GFP, a fluorescent marker of cell-cell junc-
tions, and encompasses a portion of the pupa’s abdomen 
and a small portion of its wing. Four surfaces of interest 

can be identified, with varying signal intensities, noise 
levels, and features (Fig. 3A,B). The abdomen is formed 
of an epithelium (surface S2) overlaid by a cuticle (sur-
face S1). Lying just beneath these two surfaces, one can 
observe globular structures showing in some places a 
higher intensity than the signal coming from the surfaces. 
The wing also consists of an epithelium of low-intensity 
signal (surface S4), and an overlying cuticle (surface S3). 
These two surfaces are relatively flat, except for surface 
S3 which is very steep near one of its edges.

Figure  3C shows a 3D graphical representation of the 
height maps reconstructed by Zellige (green) and those 
reconstructed by an expert biologist (blue), taken as 
ground truth (GT). While these height maps clearly show 
greater roughness than those of the synthetic surfaces 
presented earlier, they could again be obtained with a 
single set of control parameters that were adjusted manu-
ally with the Zellige interface (see Additional file 1: Sup-
plementary Table  S1). We observe an excellent match 
between the four reconstructed and corresponding GT 
height maps, despite the rather complex topography of 
surfaces S1 and S2 (with slopes reaching up to 45°), and 
the near-vertical inclination of surface S3 at its boundary. 
Yet, small deviations may be seen in the regions of high-
est slope of the surfaces. Some of these deviations are 
likely attributable to uncertainties in the definition of the 
GT height maps, whose accuracy depends on the expert.

Figure  3D shows the differences between the recon-
structed and GT height maps, plotted as color-coded 
error maps. These differences are <2 (in pixel units) 
for most pixels, while some regions of higher error 
values can be seen locally in surfaces S1 and S2, and 
at the boundary of surface S3. Note that for surfaces 
S2 and S4, which contain junctional epithelial meshes 
composed of larger and smaller cells, respectively, the 
GT height map encompass not only the mesh but also 
the interior of the cells, where no junctional signal is 
detected. The distance calculated inside the cells is thus 
more subjected to intensity fluctuations, especially for 
surface S2. Nonetheless, the RMSEs of surfaces S1, 
S2, and S4 are less than 1, showing that on average the 
reconstructed height maps match the corresponding 
ground truth with subpixel accuracy (i.e., RMSE < 1). 
The higher RMSE (1.25) of surface S3 is largely due to 

Fig. 2 Multiple surface extraction on a synthetic 3D image. A,B The image contains 3 phantom surfaces (S1, S2, S3) of different shapes (sinusoidal, 
flat, and paraboloidal, respectively), and different textures (surface S1 has constant intensity, while surfaces S2 and S3 are supported by Voronoi 
meshes of different cell sizes). C 3D representations of the height maps extracted by Zellige (in green) and of the ground truth (GT, in blue) height 
maps of surfaces S1, S2, and S3. D Error maps displaying the distance along the z‑axis between the reconstructed and GT height maps for surfaces 
S1, S2, and S3. E Projections of the 3D image localized to the different surfaces S1–S3 (maximum intensity projections over a subvolume of a width 
δz=1 pixel above or below the corresponding height maps). Upper and lower panels show the projections based on the GT and the reconstructed 
height maps, respectively

(See figure on next page.)
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Fig. 2 (See legend on previous page.)
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the region of steep slope at the edge of this surface (yel-
low region on the error map for this surface, Fig. 3D). 
The coverage of the reconstructed height maps is excel-
lent (≥ 96%) for surfaces S1 and S2, and slightly lower, 
but still very good (≥ 93%) for the smaller surfaces S3 
and S4. Figure  3E shows the 2D projections of the 3D 
image obtained for each of the reconstructed surfaces 
and for the corresponding ground truths. The inaccu-
racies visible on the error maps (see Fig.  3D) do not 
significantly impact these projections, which appear 
very similar to the projections obtained with the cor-
responding ground truths. Thus, while the biological 
sample contains significant noise and shows a much 
more variable contrast (especially with the presence 
of high-intensity globular structures underneath sur-
faces S1 and S2), Zellige makes it possible to segment 
these surfaces selectively, with a quality of segmenta-
tion comparable to that obtained by manual expert 
segmentation.

This possibility brings several perspectives that are 
not offered by single surface extraction algorithms. 
First, it opens the possibility to systematically study 
the tissue axial movements (along z) relative to the 
cuticle during molting, allowing for example to gain 
insights into the early tissue contraction of the wing 
hinge that acts as a mechanical inducer over the wing 
blade [8]. Second, Zellige makes it possible to automati-
cally extract structures such as the abdomen epithe-
lium, which is usually segmented manually [9], due to 
the difficulty to separate the large larval cells from the 
cuticle mesh and from other globular structures (such 
as fat bodies or macrophages) present underneath the 
epithelium. All these structures become intertwined 
when using other extracting tools. In this context, Zel-
lige opens new opportunities to study collective cell 
behavior during epithelial morphogenesis in  vivo, and 
to integrate in the analysis the surrounding surface-like 
structures involved in the mechanics of the system.

Example 2: extracting a thin cochlear epithelium surface 
from a multilayer dataset
As the first model in which planar cell polarity signal-
ling was shown to be conserved in vertebrates [40], the 
mammalian auditory organ, the cochlea, is arguably our 
most valuable model to study epithelial patterning and 
morphogenesis beyond the fly and zebrafish [41, 42]. 
Cochlear morphogenesis involves complex and tightly 
controlled patterning processes during which the coch-
lear sensory epithelium extends and develops its char-
acteristic coiled snail shape, while adopting a striking 
cellular mosaic organization, with graded changes of 
morphogenetic parameters along the cochlea [43, 44]. 
These morphogenetic processes are well recapitulated 
in organotypic cultures, on the condition that the mes-
enchyme that underlies the epithelium be preserved. The 
cultures are then amenable to live imaging [42, 45], phar-
macological [46], and genetic manipulations.

Figure  4A shows a confocal swept-field microscope 
acquisition of an embryonic mouse cochlea [47]. The 
sample contains only one surface of interest, the coch-
lear epithelium, but this surface lays on top of a thick 
tangled mesh of non-epithelial cells originating from the 
mesenchyme. The whole biological tissue is stained for 
filamentous actin (F-actin) using phalloidin. The epithe-
lium surface presents a non-uniform signal included in a 
small z-range (6 ≤ z ≤ 10), and a mesh of very hetero-
geneous size. Between sections z = 10 and z = 14, one 
can observe the basolateral region of the epithelial cells, 
also stained for F-actin. The particularity of this sample is 
that the mesenchyme presents an intense and contrasted 
signal over a wide range of z-values (14 ≤ z ≤ 43). This 
makes it challenging to extract the surface of the epithe-
lium, which is characterized by low intensity and low 
contrast.

Figure  4B shows a 3D representation of the height 
map reconstructed by Zellige and the corresponding GT 
height map (again reconstructed manually by an expert). 

(See figure on next page.)
Fig. 3 Fly specimen. A,B Volume rendering (A) and orthogonal sections (B) of a 3D image of fly embryo taken around 24 h after puparium 
formation, covering a portion of the abdomen (showing histoblast cells and larval cells), and a portion of the developing wing. Scale bar 50 μm. 
Four surfaces of interest may be identified in the dataset (of dimensions 1200 × 1200 × 51 voxels): surfaces S1 and S2 are relatively close to one 
another and located within overlapping z‑ranges (8 ≤ z ≤ 50 and 20 ≤ z ≤ 50, respectively). Surfaces S3 and S4 (located in the z‑ranges 42 ≤ z ≤ 
50 and 9 ≤ z ≤ 50, respectively) are relatively far from each other and can nearly be separated by a plane. C 3D representations of the height maps 
extracted by Zellige (in green) and of the ground truth height maps (GT, in blue) of surfaces S1–S4. The reconstructed height maps of all surfaces 
S1–S4 cover >93% of the area of the corresponding GT (cf. Additional file 3: Figure S2 and Additional file 1: Supplementary Table S1). To reduce the 
staircase artifacts (more or less visible depending on the surface) due to the digitization of the GT and reconstructed height maps, all height maps 
were smoothed with a 2D Gaussian filter with a standard radius of 5 pixels (cf. Additional file 1: Supplementary Note 1). D Error maps (color‑coded 
distance along the z‑axis between the reconstructed and the GT height maps) plotted for each of the reconstructed surfaces. The large majority of 
pixels on the reconstructed height maps (98%, 96%, 91%, and 99% for surfaces S1 to S4, respectively) display errors of <2 pixels. The height maps of 
surfaces S1, S2, S4 show subpixel accuracy on average (RMSE < 1), while that of surface S3 is slightly less accurate (RMSE = 1.25). E Projections of the 
3D image localized to the different surfaces S1–S4 (in this and all subsequent figures, these are maximum intensity projections over a subvolume 
of width δz=±1 pixel above or below the corresponding height maps). Upper and lower panels show the projections based on the GT and the 
reconstructed height maps, respectively. Scale bar 50 μm
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Fig. 3 (See legend on previous page.)
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On the corresponding error map (Fig. 4C), most (~83%) 
pixels of the reconstructed height map show subpixel 
accuracy (with distances < 1 to the corresponding pixels 
of the GT height map). The errors are greater in regions 
where the cell size is larger, as well as in the area where 
the signal intensity is very low. However, they remain 
smaller than 2 for > 95% of the pixels. This result is con-
sistent with the low value of the RMSE (1.1). The surface 
is also reconstructed with an excellent coverage (> 99%, 
Additional file 1: Supplementary Table S1).

As the sample contains a single epithelial surface of 
interest, we compared the performance of Zellige with 
three other software that can extract only a single sur-
face (Fig. 4D). The projections of PreMosa, FastSME, and 
LocalZProjector completely miss the epithelium, despite 
our attempts to find an optimal set of parameters using 
a multi-dimensional parameter screening (as done pre-
viously in Herbert et al. [12]). Only regions of high con-
trast corresponding to the mesenchyme are projected. In 
contrast, Zellige generates a projection very close to the 

ground truth. This demonstrates the efficiency of Zellige 
to selectively extract a low contrast surface, despite the 
presence of several structures of higher contrast. Indeed, 
Zellige detects every structure as a possible surface seed 
without any assumption on its contrast, and only extends 
this seed into a surface if enough spatial continuity is 
found in the surrounding signal. This feature allows to 
separate individual surfaces from other structures spa-
tially, which should greatly facilitate the analysis of live 
imaging experiments.

Example 3: extracting a single bronchial epithelial surface 
rendered abnormally rough by SARS‑CoV‑2
Recently, we used Zellige to extract the surface of a pri-
mary culture of bronchial epithelial cells following 
infection by the SARS-CoV-2 virus [30]. The infection 
causes the surface of the epithelium to become abnor-
mally rough due to cell damages as seen from disconti-
nuities within the cell layer. The sample we chose from 
this study is a 3D confocal image of the epithelium 

Fig. 4 Cochlea specimen. A Volume rendering of a 3D confocal swept‑field image of the mouse cochlear embryo on embryonic day E14.5. 
The dataset (of dimensions 1024 × 1024 × 45 voxels) shows a portion of the sensory epithelium (at the topmost sections of the stack) and the 
underlying non‑cellular layer of mesenchyme on which the organ develops. Both structures are stained with phalloidin to reveal F‑actin. The 
surface of interest is the epithelium surface, harboring the sensory and supporting cells under differentiation. The mesenchyme layer is not 
(strictly speaking) assimilable to a surface, but it produces a strong background signal nearby the surface of interest, hampering its extraction. B 
3D representations of the height map extracted by Zellige (in green) and the GT height map (in blue), of the epithelium surface. C Color‑coded 
error map of the reconstructed height map, which shows subpixel accuracy (errors <1) over a large majority (83%) of pixels, while being close to 
1 pixel on average (RMSE ~ 1.1). D Projections localized to the GT height map of the epithelium surface (left most panel), and to the height maps 
extracted with the four different algorithms: FastSME, LocalZProjector, PreMosa, and Zellige. Only Zellige correctly extracts the surface of the 
epithelium in this example. Scale bar 40 μm
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responding to SARS-CoV-2 infection [48] (Fig. 5A). The 
surface of interest in this image corresponds to the layer 
of epithelial cells stained for the tight junction protein 
Zona Occludens-1 (ZO-1). The surface roughness causes 
the network of junctions to extend over the height of 
the z-stack, with a signal of varying intensity (Fig.  5A). 
In addition, the junctional network remains non-pla-
nar even at the level of a single cell, hence violating the 
smoothness condition commonly assumed to hold in the 
context of epithelial surface extraction. We also observe 
the presence of nearby punctiform structures of high 
contrast that are mainly located outside of the epithelium 
surface. This sample therefore provides an example of a 
surface with a complex landscape, interspersed with a 
constellation of signals which may interfere with the sur-
face segmentation.

The 3D representation of the reconstructed and corre-
sponding GT height maps (Fig. 5B) makes it possible to 
appreciate the roughness of the surface of interest. The 
two height maps overlap quite satisfactorily. As shown on 
the error map (Fig. 5C), a large majority (71.1%) of pix-
els of the reconstructed height map show errors smaller 
than 1 pixel (~ 96% of them showing errors smaller than 

2 pixels). The error is however larger in regions where the 
cell size is larger, as well as in areas where the ZO-1 signal 
intensity is very low, preventing a complete reconstruc-
tion of the junctions. Nevertheless, the overall RMSE 
remains small, with a value of 0.81 (Fig. 5). The coverage 
of the reconstructed surface is also excellent (98% of the 
GT height map), despite the abovementioned discontinu-
ities. Figure 5D shows the comparison of the projection 
generated by Zellige by manually adjusting parameters to 
those produced by PreMosa, FastSME, and LocalZPro-
jector after a search of an optimal set of parameters (see 
Herbert et  al. [12]). The projection generated by Pre-
Mosa misses many junctions of the epithelial network, 
but it removes quite well the punctiform signal originat-
ing from other optical sections. FastSME performs better 
than PreMosa in reconstructing the junctions, but it pro-
duces a projection where the punctiform signal remains 
strong. In contrast, Zellige and LocalZProjector manage 
to both reconstruct the surface well and to filter out the 
punctiform signal quite effectively. This result demon-
strates the efficiency of Zellige to extract a surface with 
complex topography by excluding intense and contrasted 
spurious signals away from the epithelium surface.

Fig. 5 Human bronchial epithelial cells infected by SARS‑CoV‑2. A Volume rendering and individual sections of a confocal 3D image of a primary 
culture of bronchial epithelial cells 4 days after it was infected by the SARS‑CoV‑2 virus. The dataset (of dimensions 1024 × 1024 × 15 voxels) covers 
a portion of the epithelium immunostained for the tight junction protein ZO‑1. Notice the roughness of the epithelium surface and the presence 
of anomalous bulges resulting from the SARS‑CoV‑2 infection. Scale bar 10 μm. B 3D representations of the height map extracted by Zellige (in 
green) and the GT height map (in blue), of the epithelium surface. C Color‑coded error map of the reconstructed height map. Despite its roughness, 
the surface of interest is reconstructed with subpixel accuracy over the majority (71%) of pixels, as well as on average (RMSE ~ 0.81). D Projections 
localized to the GT height map of the epithelium surface (leftmost panel), and the height maps extracted with the four different algorithms: 
FastSME, LocalZProjector, PreMosa, and Zellige. Scale bar 30 μm
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Example 4: extracting the apical and basal layers 
of a dome‑shaped epithelium (developing inner ear 
organoid)
Organoids are stem cell-derived and self-organizing 3D 
tissue structures that can mimic certain organ struc-
tures. They have emerged as promising in  vitro models 
for developmental biology research, as well as biomedi-
cal translational research applications. Here we take the 
example of mouse stem cell-derived inner ear organoids 
that form vesicular structures composed of an epithe-
lium harboring sensory cells. These organoids are part of 
a cellular aggregate that also contains other tissues such 
as the mesenchyme [49] adjacent to the organoids. The 
epithelial cells of the forming inner ear organoids acquire 
a basal-apical polarity, with their apical side facing the 
lumen of the organoid, and their basal side facing out-
wards. The apical junctional network of the epithelium 
is difficult to visualize in microscopy images as it is seen 
from below, through the basal layer. Another difficulty 
is the spherical geometry of the vesicle system, which 
makes the epithelial surface of interest difficult to extract 
in regions of high inclination relative to the focal plane.

Figure  6 shows the result of applying Zellige on a 3D 
confocal microscopy image of half of a developing inner 
ear organoid at 14 days of culture, a stage at which 
markers characteristic of the mouse otic vesicle can 
be detected [50]. The sample was fixed and stained for 
F-actin to visualize all cellular structures including the 
epithelium. Two surfaces of interest can be identified, 
namely the basal side of the epithelium and the apical 
junctional network (Fig. 6A,B). Both surfaces are mesh-
like structures of high inclination, high signal intensity, 
and high contrast. The vesicle lumen also contains cell 
debris of high intensity and contrast that are not part of 
any surface of interest.

Figure  6C shows a 3D graphical representation of the 
height maps reconstructed by Zellige and those recon-
structed by an expert biologist, taken as ground truth 
(GT). Due to their dome-shaped topography, the manual 

segmentation of these surfaces was rather laborious and 
is more likely prone to errors in the regions of high incli-
nation. Figure  6D shows that the distance between the 
two height maps is <2 for the large majority (> 92%) of 
pixels, while larger error values occur locally in regions 
of near-vertical inclination of the surfaces. The RMSEs 
of both apical and basal surfaces are close to 1, showing 
that on average the reconstructed height maps match 
the corresponding GT with about 1  pixel of  accuracy. 
The coverage of the reconstructed height map is nearly 
100% for the basal surface, and ~88% for the apical sur-
face. Figure  6E shows the 2D projections of the 3D 
image obtained for each of the reconstructed surfaces, 
as compared to the projected GT height maps. Thus, for 
the extraction for these highly inclined surfaces, Zellige 
produces height maps of a quality comparable to those 
obtained from manual expert segmentation.

In this example, Zellige could be combined with a 2D 
cell tracking framework such as TissueMiner [3] to per-
form cell shape and topology analysis. Note that, using 
complementary tools such as DeProj [12], geometric dis-
tortions introduced in the projected surfaces by the epi-
thelium inclination could be corrected for (Fig. 6F). This 
approach could provide a means to quantitatively address 
how an inner ear organoid epithelium patterns at the cel-
lular and organoid scales, while quantifying the epithe-
lial thickness changes due to cellular intercalation or cell 
shape changes in the depth of the epithelium. This would 
also permit to better characterize the variability of inner 
ear organoids within a given aggregate, and it could allow 
one to explore how the organoid interacts with surround-
ing tissues and how these interactions influence the dif-
ferentiation of their constituent sensory cells.

A sensitivity analysis reveals the robustness of Zellige 
in extracting surfaces from biological images
To evaluate further the quality and robustness of the seg-
mentation obtained by Zellige, we carried out a sensitivity 

Fig. 6 Organoid specimen. A,B Volume rendering (A) and orthogonal sections (B) of a confocal 3D image of a (half of ) inner ear organoid, which 
has been fixed and stained with phalloidin to reveal F‑actin. The dataset (of dimensions 520 × 465 × 35 voxels) includes two dome‑shaped 
epithelial surfaces of interest, forming the apical (inward) and basal (outward) sides of the organoid. C 3D representations of the height map 
extracted by Zellige (in green) and the GT height map (in blue), of the epithelium surface. D Color‑coded error maps of the reconstructed height 
maps for the apical (left) and basal (right) epithelial surfaces of the organoid. The surfaces of interest are reconstructed with an error of < 2 pixels 
over a large majority (96% and 93% for the apical and basal surfaces, respectively) of pixels, as well as on average (RMSE ~ 0.8 and 1.1 for the 
apical and the basal surfaces, respectively). E Projections localized to the GT height maps of the epithelium surface (panels on the left), and the 
height maps extracted by Zellige (panels on the right). F Using the DeProj tool (Herbert et al. [12]) to generate cell morphology measurements 
corrected for the projection factor associated with the local surface slope. Cells of the surface S2, which represents the epithelial apical surface, 
were segmented using the TissueAnalyzer tool (Etournay et al. [3]). The height map obtained from Zellige and the segmentation mask were used to 
calculate geometrical parameters of the surface and its constituent cells. From left to right: the local slope, the local mean curvature, the projection 
error on cell area due to the local slope, and the corrected cell area in a 3D representation (axis ratio 1:1:3), for the reconstructed surface S2. Scale 
bar 100 μm

(See figure on next page.)
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analysis of the reconstruction on each of the samples 
tested. This analysis consisted in varying one control 
parameter at a time (Additional files 3, 4, 5, 6 and 7: Fig-
ure S2-S6, Fig. 7, Additional file 1: Supplementary Note 
4), while keeping the other parameters fixed at a nomi-
nal value (Additional file 1: Supplementary Table S1). The 
RMSE and coverage of each of the reconstructed surfaces 

were evaluated and plotted as a function of the value of 
the parameter that was varied.

Additional file 4: Figure S3 shows the results of the sen-
sitivity analysis carried out on the image of Fig. 3 (Exam-
ple 1, pupal fly specimen), when varying the parameters 
controlling step 1, i.e., the selection of putative surface 
voxels (parameters TA, Totsu, Smin, σxy, and σz). As can be 

Fig. 6 (See legend on previous page.)
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seen, the variations of the two classification threshold 
parameters TA, Totsu, and of the minimum island size Smin 
in their respective intervals do not substantially modify 
the RMSE and the coverage of the reconstructed surfaces, 
whose values remain roughly constant for TA ≤ 8, Totsu 
≤ 12, and over the entire Smin interval (Additional file 4: 
Figure S3A). Within these intervals, the RMSEs of all the 
reconstructed surfaces remain ≤1.5, while the coverage 
values are >95% for surfaces S1 and S2, and >85% for sur-
faces S3 and S4. The surfaces S1 and S3 show lower sig-
nal intensity and lower contrast than surfaces S2 and S3, 
making them more difficult to extract. Surface S4 has the 
lowest contrast and fails to be reconstructed if the clas-
sification threshold values are too stringent (namely for 
Totsu > 12, or TA > 8). Nevertheless, the intervals of sta-
bility of TA and Totsu (that is, the intervals of values over 
which a high-quality extraction of all surfaces is obtained) 
remain relatively wide (cf. Fig. 7). The smoothing param-
eters σxy and σz also have some effect on the reconstruc-
tion of the surfaces. When σxy is less than 3, the RMSE 
is higher for the mesh-like epithelial surfaces S2 and S4 
(formed by the junctional network of the epithelium). 
A minimal smoothing along the axial direction is also 
important to ensure that the reconstructed surfaces are 
not too fragmented, preventing their complete recon-
struction. Yet, σz should not be chosen too large either, 

to avoid merging nearby surfaces along the z-axis. In this 
case, the closely positioned surfaces S1 and S2 are well-
separated if setting σz close to 1, but they become merged 
when σz > 2. In general, the surface construction param-
eters have little effect on RMSE and coverage (Additional 
file  4: Figure S3B). The sensitivity analysis on this chal-
lenging specimen shows a good robustness of Zellige to 
extract the four surfaces with a single set of parameters, 
each of which can be chosen in a reasonably wide interval 
considering the other fixed.

The results of the sensitivity analyses performed with 
the other biological image stacks (examples 2, 3, and 4 
described above) are shown in Additional files 5-7: Fig-
ures  S4-S6 (Additional file  1: Supplementary Note 4). 
These results are summarized in Fig. 7, which show the 
stability intervals over which the extracted height maps 
satisfy the criteria RMSE ≤ 1.5 and coverage ≥ 85%, 
for which the reconstruction can be considered of high 
quality. Overall, the stability intervals for the two clas-
sification threshold parameters (TA and Totsu) are nar-
rower for specimens containing a surface of low signal 
intensity and low contrast relatively to other structure 
of higher signal, as in examples 2 and 3. The graphi-
cal user interface of Zellige allows the user to adjust TA 
and Totsu interactively, making it intuitive to search for 
reasonable values. We found that 2 ≤ σxy ≤ 3 and σz = 1 

Fig. 7 Summary of the sensitivity analysis. The intervals indicated in gray for each parameter and each of the images tested correspond to the 
parameter values for which the reconstruction satisfies high‑quality criteria defined by RMSE ≤ 1.5 and coverage ≥ 85%. Black marks indicate the 
reference value obtained by manual adjustment for each image (cf. Additional file 1: Supplementary Note 2). A Parameters of the surface selection 
step. B Parameters of the surface assembly step
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generally give high-quality results for all tested specimens 
(Fig. 7A). We therefore expect only little adjustment to be 
required by the user on the smoothing parameters from 
their default permissive values (set to σxy = 1 and σz = 
1). Values of σz that are too large may lead to the merg-
ing of surfaces with a nearby structure of high contrast 
(surface or else), as it happens for the epithelium surface 
in the cochlea specimen, which merges with the underly-
ing mesenchyme signal when σz is greater than 2 (Fig. 4 
and Additional file 5: Figure S4). The effect is even more 
pronounced for closely positioned surfaces (Figs. 2 and 6 
and Additional files 3, 7: Figures S2, S6).

Regarding the control parameters of step 2 (the assem-
bly step), for the four examples presented except for 
example 1, the quality of the reconstructed surfaces is 
stable and high over the main part of their respective 
intervals of variation, deteriorating occasionally only 
when extreme values are used for these parameters (see 
Additional files 3, 4, 5, 6 and 7: Figures  S2-S6, Fig.  7B 
and Additional file  1: Supplementary Note 4). Example 
1 poses particularly stringent constraints on the control 
parameters of the reconstruction due to the requirement 
of reconstructing the 4 surfaces of different contrast 
and texture present in this sample using the same set of 
parameters.

Finally, the computation times for running Zellige on a 
given dataset ranged between a few seconds and a minute 
on a standard PC computer (see Additional file 8: Figure 
S7 and Additional file 1: Supplementary Note 5), except 
in a few exceptional cases corresponding to extreme 
values of the control parameters (not shown). As a safe-
guard, a stopping criterion could be implemented so as to 
exit the run (declaring the current parameter values inva-
lid) if the surface assembly computation exceeds a user-
prescribed duration.

Overall, the sensitivity analysis indicates that the sur-
face extraction performed by Zellige is robust to vari-
ations of the control parameters of step 1 (surface voxel 
selection step). In general, the reconstruction is more 
sensitive to the amplitude threshold parameter (TA), and 
the Otsu threshold parameter (Totsu) should be kept suf-
ficiently low for samples containing surfaces of intensity 
close to the background. However, in some cases such 
as in our example 3, the opposite is true. Thus, the two 
threshold parameters play somewhat complementary 
roles, and the possibility to adjust them independently 
is useful in practice to be able to cover as many cases as 
possible. A smoothing along xy appears necessary to cor-
rectly reconstruct the surfaces supported by a junctional 
mesh. Not surprisingly, best results are obtained when 
the radius of the Gaussian filter used for this (param-
eter σxy) is adapted to the mesh (or cell) size. Likewise, 

a smoothing along z is beneficial, but the extent of this 
smoothing (parameter σz) should not be too large to 
avoid causing the fusion of nearby surfaces. With a few 
exceptions, the values of the RMSE and coverage show 
little sensitivity to the values of the parameters control-
ling step 2 (surface assembly step), at least once puta-
tive surface voxels have been properly selected. In the 
presence of several surfaces of potentially very different 
sizes, the parameter controlling the fraction of OSE sizes 
allowed for OSE seeds (parameter TOSE1) should be rela-
tively large (≥0.5 or greater, i.e., allowing more than 50% 
of the largest OSE sizes for seeds) to allow the extraction 
of a surface of small size (for example, to extract the sur-
face S4 of example 1, which covers less than 20% of the 
xy-field of view, TOSE1 must be larger than 0.6). Extreme 
values (close to 1) for the connectivity rates (C1 and C2) 
are too stringent and lead to a drop in the coverage of the 
reconstructed surfaces. To sum up, we see that the most 
critical parameters for a satisfactory extraction of the 
different surfaces are those controlling step 1. In most 
cases, the parameters controlling step 2 do not need to 
be adjusted and can be fixed to their default reference 
values.

Conclusion
We have developed Zellige, a new tool to extract multi-
ple surfaces from 3D fluorescence microscopy images. 
Zellige automatically finds surfaces by first identify-
ing putative voxels that are likely to belong to a biologi-
cal surface, and second by assembling a surface through 
connection of adjacent voxels satisfying natural proxim-
ity constraints. By using Zellige on synthetic epithelium 
images, we have shown that it accurately reconstructs a 
surface with excellent performances in terms of both the 
distance to the ground truth height map and the surface 
coverage (Fig.  2). Zellige can deal with complex images 
containing multiple surfaces, with computation times not 
exceeding a few tens of seconds on a standard computer. 
Importantly, the user is not required to specify the num-
ber of surfaces to be extracted. In the Drosophila speci-
men (Fig. 3), the software readily extracts the 4 surfaces 
of interest that could be identified. Since Zellige detects 
putative surface voxels in the first step by combining 
local and global thresholds, it can discriminate between a 
surface of low intensity and some nearby surface or other 
structures of higher contrast, as is the case in the mouse 
cochlear embryo (Fig.  4). With this difficult dataset, we 
could also confirm Zellige’s robustness against very 
low signal-to-noise levels. The constructive approach 
of surface region growing used by Zellige in its second 
step enables it to circumvent the surface smoothness 
requirement that is classically assumed by other surface 
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extraction tools. For instance, it could reconstruct the 
highly irregular surface of a bronchial tissue infected by 
SARS-CoV-2 (Fig. 5).

The robustness and flexibility of Zellige come at a 
price, namely, the requirement to specify 12 parameters 
when running the surface extraction. However, the sen-
sitivity analysis we performed shows that adjusting only 
4 of these parameters is enough in practice to handle a 
wide range of image types. These parameters correspond 
to intuitive notions (e.g., thresholding and smoothing), 
which makes Zellige particularly easy to use. The Fiji 
interface that we implemented to perform this adjust-
ment should make Zellige even more user-friendly and 
effective for biological applications.

To our knowledge, Zellige is the only open-source tool 
that can extract an unspecified number of epithelial sur-
faces from a 3D volume, possibly larger than two. This 
unique feature is especially useful in complex images that 
could be processed only by specialized tools before. For 
instance, Zellige can extract surfaces with projections on 
the xy plane that completely overlap, such as the basal 
and apical epithelia in the organoid image of Fig. 6. Pre-
viously, such an image could be processed only by tools 
that relied on segmenting a mesh around the object sur-
face, such as MorphoGraphX or ImSAnE [17, 51].

The flexibility and robustness of Zellige should allow 
to considerably relax the constraints that were previ-
ously imposed on the sample preparation and the image 
acquisition steps by the subsequent analysis. Indeed, 
Zellige can accommodate any number of surfaces in the 
acquired volume, overlapping or not, and of different 
contrast features. Zellige also showed excellent robust-
ness against image noise. This should make it particularly 
useful in imaging contexts that are not easily amenable 
to automated analysis, such as intravital imaging. Finally, 
it is worth noting that Zellige is a generalist and modu-
lar method. With some adaptation of the surface voxel 
selection step, it could be used with imaging modalities 
beyond the scope of this article, for instance, in extract-
ing the irregular and noisy surfaces of biological objects 
imaged with 3D electron microscopy images.

Methods
Human bronchial epithelium imaging
The data used in Fig. 5 were taken from the recent study 
[30] to which we refer for the preparation and imaging 
of human bronchial epithelium cultures. In brief, Muci-
lAirTM were purchased from Epithelix (Saint-Julien-en-
Genevois, France) and cultured for at least 4 weeks to 
reconstruct a differentiated human bronchial epithelium 
in  vitro and stained as previously described. Images of 
the cultures were acquired using an inverted Zeiss LSM 

710 confocal microscope controlled by the ZEN pro 2.3 
software. Z-stack images of whole-mount samples were 
acquired with a Zeiss Plan Apochromat ×63 oil immer-
sion lens (NA=1.4). The image used here was published 
in Robinot et al. [30] under the CC-BY-4 license.

Drosophila imaging
Flies were raised at 25°C under standard conditions. 
Pupae were collected for imaging as described previ-
ously [52]. Ecad::GFP flies [53] were used for live imag-
ing as previously described [1]. In brief, images were 
acquired with a spinning disk microscope from Gataca 
Systems driven by the MetaMorph software. The system 
is equipped with an inverted Nikon TI2E stand, a motor-
ized XYZ stage, and a Nikon Plan Apo ×60 oil immersion 
(NA=1.4) lens and with a Prime95B camera.

Cochlea imaging
The inner ears from wild-type (C57BL/6) mice were rap-
idly dissected from temporal bones at embryonic stages 
E14.5 in HEPES-buffered (10 mM, pH 7.4) Hanks’ bal-
anced salt solution and fixed in 4% paraformaldehyde, 1 
h at room temperature. Specimens were permeabilized 
and stained for phalloidin-Atto 565 (Sigma) as previ-
ously described [44]. Fluorescence images were obtained 
with a swept-field confocal microscope (Opterra II) from 
Brucker. This system is equipped with a Nikon Plan Fluor 
×60 oil immersion lens (NA=1.4).

Inner ear organoid imaging
ESCs derived from blastocyst-stage embryos of R1 
mice (mESCs) (ATCC, SCRC-1036) were maintained in 
feeder-free culture on 0.1% w/v gelatin (Sigma) coated 
substrates using LIF-2i medium as established previ-
ously [54]. The organoids were generated following the 
previously published protocol [49, 54]. Aggregates were 
harvested at day 14 and fixed in 4% v/v PFA (Electron 
Microscopy Sciences) overnight at 4 °C. After block-
ing (PBS; 10% v/v normal goat serum; 0.1% v/v Triton 
X-100), the aggregates were stained for phalloidin Atto 
565 (1:1000) (Sigma) overnight at RT on a shaker and 
washed three times with PBS containing 0.1% v/v Triton 
X-100 for 1 h each at RT. Prior to imaging, the aggregates 
were incubated in a modified version of ScaleS solu-
tion containing 4 M Urea (Sigma), 40% w/v D-Sorbitol 
(Sigma), and 0.1% v/v Triton X-100, for 3–5 days to clar-
ify the tissue. Finally, the aggregates were whole-mounted 
using the ScaleS solution and imaged using a confocal 
laser scanning microscope (A1R HD25, Nikon) equipped 
with a Nikon ×25 silicon oil immersion lens (NA=1.05).
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Additional file 1: Supplementary Notes 1-5. Note 1. Overview of Zel‑
lige implementation. Note 2. Generation of phantom 3D images. Note 
3. Comparing the reconstructed and ground truth height maps. Note 4. 
Sensitivity Analysis. Note 5. Computational/processing time of Zellige. 
Table S1. Zellige parameters.

Additional file 2: Figure S1. Zellige implementation. (A) The two main 
algorithmic steps of Zellige. Upper part: Surface voxel selection step (step 
1). Lower part: Surface assembly step (step 2). (B) Determination of the 
amplitude A(p) of some local maximum p along the z‑axis, relative to its 
two closest local minima p1 and p2. (C,D) Connectivity rules used to con‑
nect putative surface voxels together for the construction of orthogonal 
surface elements (OSEs). These rules are based on a 6‑connectivity rela‑
tionship defined within each orthogonal (xz or yz) section as shown in (C). 
This relationship is extended to allow the presence of single straight gaps, 
while being constrained to forbid the occurrence of forking points. The 
allowed local neighborhood configurations along an OSE are illustrated in 
(D) in the case of a construction within xz sections. The OSEs are formally 
defined as the connected components of the graph GOSE defined by these 
rules within each orthogonal section. (E) Compatibility rules used in the 
surface assembly step, illustrated here in the case where OSEs have been 
constructed within xz sections, and assembly proceeds along the y‑axis. To 
validate the addition of a new OSE σ constructed within section y+1 (in 
blue) to the surface S under construction, whose intersection with section 
y is shown (surface line ly, in green), two quantities are computed: the 
overlap R(S,σ) is defined as the number of pixels of σ that share the x coor‑
dinate of some pixel of ly. The connectivity C(S,σ) is defined as the fraction 
of the overlapping pixels of σ that are 6‑connected, in their respective yz 
section, to the corresponding point of ly (according to the 6‑connectivity 
relationship shown in C, middle panel). In the depicted example, there are 
2 OSEs (in green) with, for both of them, R(S,σ)=3 and C(S,σ)=3/3=1. The 
OSE will be added to S if R(S,σ) ≥ R0 and C(S,σ) ≥ C0, where R0 and C0 are 
tunable thresholds that set the stringency of the matching condition.

Additional file 3: Figure S2. Sensitivity analysis of Zellige on the phan‑
tom image. (A) Surface voxel selection parameters. (B) Surface assembly 
parameters. Reference values are indicated by the dashed line.

Additional file 4: Figure S3. Sensitivity analysis of Zellige on the pupal 
fly image. (A) Surface voxel selection parameters. (B) Surface assembly 
parameters. Reference values are indicated by the dashed line. (C) RMSE 
and coverage results obtained for different values of the σxy blur taken 
within and outside the interval defined by the parameter sweep in (A, 
“σxy” panel). (D) Visualization of the projections on the extracted surfaces 
obtained for the different σxy blur values shown in (C).

Additional file 5: Figure S4. Sensitivity analysis of Zellige on the cochlear 
epithelium image. (A) Surface voxel selection parameters. (B) Surface 
assembly parameters. Reference values are indicated by the dashed line.

Additional file 6: Figure S5. Sensitivity analysis of Zellige on the primary 
epithelium culture image. (A) Surface voxel selection parameters. (B) 
Surface assembly parameters. Reference values are indicated by the 
dashed line.

Additional file 7: Figure S6. Sensitivity analysis of Zellige on the inner ear 
organoid image. (A) Surface voxel selection parameters. (B) Surface assem‑
bly parameters. Reference values are indicated by the dashed line.

Additional file 8: Figure S7. Computational time analysis of Zellige. (A) 
Computation times (step 1 in blue, step 2 in brown) for processing the 
various images tested on a PC notebook computer with (processor Intel 
Core i9 2,4 GHz with 32 Gb of Ram). Apart for the case of a highly rough 
surface (culture specimen) the computation time is largely dominated by 
the surface voxel selection step (step 1). (B) The same computation times 
are re‑plotted as a function of image size N (number of voxels). Note the 
linear growth of the computational time of step 1 as a function of N, while 
that of step 2 shows much slower growth.
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