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Evolutionary diversification of 
methanotrophic ANME-1 archaea and their 
expansive virome

Rafael Laso-Pérez    1,8,10  , Fabai Wu    2,3,4,5,10  , Antoine Crémière    5, 
Daan R. Speth6,9, John S. Magyar    5, Kehan Zhao2, Mart Krupovic    7   & 
Victoria J. Orphan    5,6 

‘Candidatus Methanophagales’ (ANME-1) is an order-level clade of archaea 
responsible for anaerobic methane oxidation in deep-sea sediments. The 
diversity, ecology and evolution of ANME-1 remain poorly understood. 
In this study, we use metagenomics on deep-sea hydrothermal samples 
to expand ANME-1 diversity and uncover the effect of virus–host 
dynamics. Phylogenetic analyses reveal a deep-branching, thermophilic 
family, ‘Candidatus Methanospirareceae’, closely related to short-chain 
alkane oxidizers. Global phylogeny and near-complete genomes show 
that hydrogen metabolism within ANME-1 is an ancient trait that was 
vertically inherited but differentially lost during lineage diversification. 
Metagenomics also uncovered 16 undescribed virus families so far 
exclusively targeting ANME-1 archaea, showing unique structural and 
replicative signatures. The expansive ANME-1 virome contains a metabolic 
gene repertoire that can influence host ecology and evolution through 
virus-mediated gene displacement. Our results suggest an evolutionary 
continuum between anaerobic methane and short-chain alkane oxidizers 
and underscore the effects of viruses on the dynamics and evolution of 
methane-driven ecosystems.

Anaerobic methanotrophic archaea (ANME) is a polyphyletic group of 
archaeal lineages that have independently evolved the ability of anaero-
bic oxidation of methane (AOM), a process that is estimated to remove 
more than 80% of the methane produced globally in deep-sea sedi-
ments1 by reversing the methanogenesis pathway2. Whereas the ANME-2 
and ANME-3 lineages share common ancestors with the present-day 
methanogens of the Methanosarcinales order, ANME-1 archaea form 

their own order ‘Candidatus Methanophagales’, which is sister to the 
non-methane alkane degraders ‘Candidatus Syntrophoarchaeales’ and 
‘Candidatus Alkanophagales’3. ANME-1 can grow beyond the cold and 
temperate deep-sea habitats that they often share with other ANMEs, 
uniquely thriving at higher temperatures within hydrothermal environ-
ments2,4,5. In marine sediments, ANMEs mostly form syntrophic associa-
tions with sulfate-reducing bacteria6 via direct interspecies electron 
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(Fig. 2b), where ANME-1c were the dominant lineage according to 
genome coverage (Fig. 2a). These putative ANME-1c cells exhibit the 
typical cylindrical shape previously reported for other ANME-1 popula-
tions6 and were loosely associated with bacterial cells in an extracellular 
polymeric substances matrix, or found as single cells.

Physiological differentiation of diverse ANME-1 archaea
The deep-branching position of ANME-1c led us to examine the 
genomic patterns of emergence and differentiation of ANME-1 from 
the sister orders Alkanophagales and Syntrophoarchaeales. Like all 
ANME-1, ANME-1c encode a complete reverse methanogenesis path-
way including a single operon for the methyl coenzyme M reduc-
tase enzyme (MCR), responsible for the activation of methane, and 
the replacement of F420-dependent methylene-H4MPT reductase  
by 5,10-methylenetetrahydrofolate reductase characteristic for  
ANME-12,8. Similar to other ANME clades, ANME-1c encodes several 
multiheme cytochromes, which likely mediate the transfer of electrons 
during syntrophic AOM to sulfate-reducing bacteria2,7,8.

Notably, ANME-1c exhibit distinct features compared to the 
ANME-1a and ANME-1b in the operon encoding the MCR enzyme. 
This enzyme consists of six subunits with the structure α2β2ϒ2 and 
the unique nickel-containing cofactor coenzyme F430 (ref. 26). In the 
maturation of this cofactor, McrC and McrD, two additional pro-
teins encoded by the MCR operon in methanogens, are involved27,28. 
Although mcrD is not present in ANME-1a and ANME-1b, both genes 
are present in ANME-1c, where mcrD forms an operon with mcrABG 
(Fig. 1). Previous analysis suggested that ANME-1 acquired the mcr 
genes from distant H2-dependent methylotrophic methanogens of 
the class Methanofastidiosa2, whereas they lost the divergent MCRs 
present in Syntrophoarchaeales and Alkanophagales, which seem to 
use larger alkanes. Likewise, we found that the ANME-1c McrD is closely 
related to the McrD of Methanofastidiosa but only distantly related 
to the McrD of Syntrophoarchaeales and Alkanophagales that form 
a different cluster (Extended Data Fig. 3). These results suggest that 
during the emergence of ANME-1, a full operon of methane-cycling 
mcr (including mcrCD) was acquired by horizontal gene transfer from 
a Methanofastidiosa-related methylotrophic methanogen, and mcrD 
was later lost in both ANME-1a and ANME-1b clades. The ANME-1c also 
exhibit several additional genomic features that are distinct, high-
lighted in Fig. 1 and described in Supplementary Information and 
Supplementary Table 5.

Shared origin and differential loss of hydrogenases
Hydrogen was proposed as one of the first candidate intermediates in 
syntrophic AOM, but fell out of favour after several genomic studies 
showed that the majority of ANME genomes do not encode hydroge-
nases. However, recent studies have reported NiFe-hydrogenases in 
subclades of larger ANME groups, including an ANME-1b subclade 
‘Candidatus Methanoalium’ and from select ANME-1a genomes  
(Fig. 1)2,29. Interestingly, the genomes of the sister orders Syntropho-
archaeales and Alkanophagales encode a NiFe hydrogenase (Fig. 1), 
but physiological experiments did not support a role of this hydroge-
nase in syntrophic alkane oxidation21. Our expanded phylogenomic 
analysis of ANME-1 confirm that genomes associated with three distinct 
subclades of the ANME-1a, ANME-1b and now ANME-1c each encode a 
NiFe hydrogenase operon (Fig. 1). Phylogenetic analysis of the large 
subunit of these hydrogenases revealed a monophyletic group of 
ANME-1-affiliated hydrogenases clustering with those of Syntropho-
archaeales and Alkanophagales (Fig. 3a and Supplementary Table 6).  
Hence, the occurrence of hydrogenases appears to be an ancient 
trait of the class Syntrophoarchaeia that was vertically inherited by 
the common ancestor of ANME-1 and later differentially lost during 
ANME-1 clade diversification. Strikingly, the occurrence of hydroge-
nase has an apparent mosaic distribution among MAGs even within 
the hydrogenase-containing clades. For instance, within ANME-1c, 

transfer7,8. However, some ANME-1 have been observed as single cells 
or as monospecific consortia without partner bacteria5,9–11, and have 
been proposed to perform hydrogenotrophic methanogenesis10–12, 
although physiological experiments have thus far failed to support 
this hypothesis13,14. Overall, it remains largely unclear what factors 
have contributed to the physiological and ecological diversification 
of ANME-1 from their short-chain alkane relatives and other ANME 
lineages.

Despite the dominance of ANME archaea in many methane-rich 
ecosystems, viruses targeting ANME lineages are largely unex-
plored15–17. By exploiting and spilling host cellular resources through 
their replication and lytic cycles, viruses play a major role in the eco-
logical dynamics and nutrient cycling in diverse microbial systems18. 
In deep-sea ecosystems, viral lysis has been estimated to cause annual 
archaeal mortality that releases up to around 0.3–0.5 gigatons of car-
bon globally19. Characterizing the distributions and functions of viruses 
of ANMEs is thus one of the most important tasks for quantitatively 
linking ANME physiology to the elemental and energy flows in deep-sea 
methane-driven ecosystems, and understanding the drivers of ANME 
evolution.

Results
A unique ANME-1 clade from hydrothermal vents
In this study, we recovered 13 metagenome-assembled genomes (MAGs) 
of ANME-1 in native and laboratory-incubated mineral samples from the 
Southern Pescadero Basin hydrothermal vent system20 in the Gulf of  
California, Mexico (Supplementary Tables 1 and 2). These samples 
not only expanded the known diversity within the ANME-1a clade, 
particularly the ANME-1 G60 group, but also contained five MAGs 
and one 1.6 Mb circular genome scaffold of a previously uncharacter-
ized deep-branching clade phylogenetically positioned at the base 
of the ANME-1 order (Fig. 1, Extended Data Fig. 1 and Supplementary 
Tables 2 and 3). We name this family-level clade ‘Candidatus Methano
spirareceae’, or ANME-1c. Given its basal position, it is the phylo
genetically closest ANME-1 to the sister orders of non-methane alkane 
degraders Alkanophagales and Syntrophoarchaeales21.

Our ANME-1c MAGs represent two different genera, ‘Candidatus 
Methanoxibalbensis’ and ‘Candidatus Methanospirare’ within the 
same family with an average nucleotide identity of 76%, represented 
by species ‘Candidatus Methanoxibalbensis ujae’ (species 1) and  
‘Candidatus Methanospirare jalkutatii’ (species 2, Methods). Based 
on genome coverage, these two ANME-1 species were the most abun-
dant organisms in rock samples 12,019 and NA091.008, whereas they  
were hardly detected in rocks 11,868 and 11,719 and in hydrothermal 
sediments (Fig. 2a).

So far, all ANME-1c MAGs and 16S rRNA gene sequences from the 
National Center for Biotechnology Information (NCBI; https://www.
ncbi.nlm.nih.gov/) and SILVA (https://www.arb-silva.de/) databases 
have originated from hydrothermal environments, specifically the 
sediments of Guaymas11,22 and Southern Pescadero basins23. These 
hydrothermal habitats are 400 km apart along the same fault sys-
tem in the Gulf of California and exhibit 20% species-level overlap in 
the microbial community23. This distribution suggests a strong ther-
mophilic physiological specialization of ANME-1c to hydrothermal 
environments. Indeed, genome-based prediction24 suggested a high 
theoretical optimal growth temperature (OGT; Supplementary Table 
4 and Extended Data Fig. 2) for both ANME-1c species (>70 °C) that 
was higher than the average predicted OGT for both ANME-1a (62 °C) 
and ANME-1b (52 °C). Such high temperature adaptation by ANME-1c 
could be related to their reduced estimated genome size (‘Candidatus 
Methanoxibalbensis ujae’: 1.81 Mb; ‘Candidatus Methanospirare jalku-
tatii’: 1.62 Mb) as previously observed in other thermophilic bacteria 
and archaea25.

Using fluorescence in situ hybridization with an ANME-1-targeted 
16S rRNA probe, we detected ANME-1 cells in rock NA091.008  
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only two out of five MAGs of ‘Candidatus Methanospirare jalkutatii’ 
(FW4382_bin126 and NA091.008_bin1) encode hydrogenases, whereas 
the complete ‘Candidatus Methanospirare jalkutatii’ MAG FWG175, 
assembled into a single scaffold, does not contain them. To verify that 
this distribution is caused by the intraspecies variation rather than 
incomplete genome assembly, we conducted independent metagen-
omic analyses that confirmed the differential presence of hydrogenase 
genes within ANME strains of different rock samples (Fig. 3b, Extended 
Data Fig. 4 and Supplementary Information). Hydrogenases thus appear 
to be a part of the pangenomic repertoire of certain ANME-1 subclades 
and species, likely preserved in the ANME-1 pangenome as an envi-
ronmental adaptation rather than as an absolute requirement for the 
methanotrophic core metabolism.

The potential role of these hydrogenases in ANME-1 is still unclear. 
Their phylogenetic position, next to hydrogenotrophic enzymes30 of 
the NiFe groups 1g and 1h (Fig. 3a; only a few affiliated to NiFe Group 
3 and 4, Extended Data Fig. 5), suggest a possible involvement in 
hydrogenotrophic methanogenesis, as previously proposed based 

on biochemical31, environmental11,12, isotopic10 and metagenomic 
data29, although enrichment cultivation attempts with hydrogen 
have been unsuccessful13,14. Recently, the genomic analysis of the 
hydrogenase-encoding ANME-1b group ‘Candidatus Methanoalium’ 
showed the presence of distinct electron-cycling features (Rnf complex, 
cytochrome b) and the absence of multiheme cytochromes suggest-
ing a methanogenic metabolism for this group2. By contrast, ANME-1c 
encodes multiheme cytochromes and lacks these electron-cycling 
features. Hence, the physiological utility of hydrogenases may vary 
between lineages. Whereas hydrogen is likely not feasible as the sole 
intermediate for syntrophic AOM7,13, it could be produced by ANME-1c 
as an additional intermediate, as proposed in a mixed model involving 
direct electron transfer and metabolite exchange2,32.

CRISPR-based discovery of an expansive ANME-1 mobilome
ANME-1 genomes recovered in this study contained various CRISPR–Cas 
loci (Extended Data Fig. 6a), enabling the analysis of ANME-1-hosted 
mobile genetic elements (MGEs) through CRISPR spacer-based 
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sequence mapping33,34 with additional stringent filters (see Methods 
and Supplementary Information). Mapping 20,649 unique ANME-1 
CRISPR spacers to metagenomic assemblies from the Southern 
Pescadero and Guaymas Basins (Supplementary Table 7), and the 
metagenome-derived virus database IMG/VR v.335 captured 76, 69 and 
88 MGE contigs larger than 10 kb, respectively, totalling 233 ANME-1 
MGEs (Fig. 4a, Extended Data Fig. 6b, Supplementary Tables 8 and 9 
and Supplementary Data 1 and 2). Notably, all IMG/VR-derived ANME-1 
MGEs originated from various Guaymas Basin-derived metagenomes. 
As previously found for the Asgard archaeal mobilome34, an apparent 
cross-site spacer-mobilome mapping indicates a substantial fraction 
of the ANME-1 mobilome has migrated across these sediment-hosted 
hydrothermal vent ecosystems in the Gulf of California, along with their 
hosts23 (Fig. 4a). Due to the apparent overlap of CRISPR repeats across 
diverse ANME-1 lineages, these spacers, and thus the host-MGE inter-
actions, were not further assigned taxonomically to specific ANME-1 
subclades. All MGEs identified in this study are distant from all other 
known viruses (Extended Data Fig. 7). A large fraction of these ANME-1 
MGEs were found to be interconnected, forming one large complex 
gene-similarity network of 185 nodes and a medium-sized network of 
28 nodes (Fig. 4b). The remaining 22 MGEs fell into seven small groups 
of two to three nodes, and seven singletons.

Based on the conservation of signature genes encoding viral 
structural proteins, we concluded that these MGEs encompass 

double-stranded DNA viruses belonging to at least four widely differ-
ent virus assemblages characterized by different evolutionary histories 
and distinct virion morphologies (Fig. 4c). In particular, head-tailed 
viruses of the class Caudoviricetes (realm Duplodnaviria) encode char-
acteristic HK97-fold MCPs and the large subunit of the terminase and 
portal proteins36; tailless icosahedral viruses of the realm Varidnaviria 
are characterized by double jelly-roll (DJR) MCPs36; viruses of the realm 
Adnaviria encode unique α-helical MCPs, which form claw-like dimers 
that wrap around the viral DNA forming a helical, rod-shaped capsid37; 
and all spindle-shaped viruses encode unique, highly hydrophobic 
α-helical MCPs17 (Supplementary Tables 9 and 10). In total, 16 candidate 
viral families were discovered in this study, including five families with 
representative complete genomes (Fig. 4c). We named these candidate 
virus families after Mayan gods, owing to their discovery in the Gulf of 
California hydrothermal vents off the coast of Mexico (see Methods 
for the etymology of the virus family names).

Tailless icosahedral ANME-1 viruses
Tailless icosahedral viruses (Varidnaviria) infecting ANME-1 are dis-
tinguished from known viruses, with all 32 representatives unique 
to this study. They form three disconnected modules and, based  
on gene similarity analysis, represent three unreported viral fami-
lies (Fig. 4c–f). Members of the Huracanviridae group encode single 
jelly-roll MCPs related to those conserved in the kingdom Helvetiavirae, 
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Fig. 3 | Vertical inheritance and differential loss of hydrogenases across 
ANME-1. a, Phylogenetic tree of the large subunit of the NiFe hydrogenase 
present in ANME-1 genomes (left) and the corresponding phylogenomic tree of 
those genomes (right). A few NiFe hydrogenases of ANME-1 genomes were also 
affiliated with NiFe Group 3 and 4 (not shown, see Extended Data Fig. 5). Colour 
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interest. Black circles indicate bootstrap support values over 70% (left) and equal 
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per site. b, Read coverage distribution of the hydrogenase operon of ANME-1c 
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of tailless icosahedral viruses targeting ANME-1. Different colours indicate 83 
different protein groups. Grey shading denotes singletons. The scale bar and 
precent identity shading are indicated in (f). g, Alphafold2-predicted structures 
of DJR MCPs in ANME-1 viruses shown in (d) and (e). Blue indicates β barrels, 
and red α helices. h, Maximum-likelihood analysis of proposed MCP families 
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whereas Chaacviridae and Ixchelviridae were unified within the order 
that we name Coyopavirales and do not encode MCPs with sequence 
homology to other known viruses. However, structural modelling of the 
candidate MCPs conserved in ‘Chaacviridae’ and ‘Ixchelviridae’ using 
AlphaFold238 and RoseTTAFold39 revealed unambiguous similarity 
to the MCPs with a DJR fold (Fig. 4g). Phylogenetic analysis revealed 
that these DJR MCPs form three highly divergent groups, MCP-1–3 
(Fig. 4g and h), with MCP-2 and MCP-3 containing an additional small 
beta-barrel that is predicted to point outwards from the capsid surface 
and likely mediate virus–host interactions.

Chaacviruses have linear dsDNA genomes with inverted termi-
nal repeats and, accordingly, encode protein-primed family B DNA 
polymerases (pPolB). Chaacviruses display a remarkable genome 
plasticity; not only do these viruses encode two different variants of 
the DJR MCPs, MCP-1 and MCP-2, but their pPolBs belong to two widely 
distinct clades. Notably, the two MCP and two pPolB variants do not 
strictly coincide, suggesting multiple cases of recombination and 
gene replacement within the replicative and morphogenetic modules 
(Fig. 4d). Maximum-likelihood analysis of these divergent groups 
of pPolB sequences revealed relatedness to two separate clades of 
pPolBs encoded by Wyrdviruses, spindle-shaped viruses that target 
Asgard archaea40 (Fig. 4i). In addition to pPolB, upstream of the MCP 
gene, all chaacviruses encode a functionally uncharacterized protein 
with homologues in Asgard archaeal viruses of the Huginnvirus group, 
where they are also encoded upstream of the MCP genes41. This observa-
tion suggests a remarkable evolutionary entanglement between these 
ANME-1 and Asgard archaeal viruses, potentially facilitated by the 
ecological (that is, deep-sea vent ecosystems) rather than evolutionary 
proximity of the respective hosts.

Viruses with unique structural and replicative features
The head-tailed viruses targeting ANME-1 encode the typical morpho-
genetic toolkit shared between all members of the Caudoviricetes, 
including the HK97-fold MCP, portal protein, large subunit of the ter-
minase and various tail proteins42. MCP phylogeny indicates a shared 
ancestry for the structural components of the viruses of ANME-1 and 
haloarchaea, which are related at the phylum level (Extended Data Fig. 
8). However, global proteome-based phylogeny43 revealed a clear divi-
sion between ANME-1 and haloarchaeal head-tailed viruses (Fig. 5a). 
This result suggests that although these viruses encode related core 
proteins for virion formation, as suggested by their interspersed MCP 
phylogenetic positions (Extended Data Fig. 8), the overall proteome 
contents of ANME-1 and haloarchaeal viruses differ considerably, likely 
reflecting the adaptation to their respective hosts and ecological con-
texts. Based on the minimum genetic distances between halovirus fami-
lies and cross-genome comparisons (Extended Data Fig. 9), we propose 
nine candidate Caudoviricetes families. Viruses in these families exhibit 
little proteome overlap with each other (Extended Data Fig. 9), further 
illustrating the vast genetic diversity of ANME-1 head-tailed viruses.

Ekchuahviridae and Ahpuchviridae are represented by ANME-1 
viruses with complete 70–80 kb genomes and in the proteomic tree 
form sister clades outside of the three orders of haloviruses, forming 

an independent order that we name Nakonvirales (Fig. 5a). The ahpuch-
viruses PBV299 (70.9 kb, complete, Fig. 5b) and IMGVR0573778 
(74.8 kb, near complete) each encode one copy of MCP, whereas the 
two ekchuahviruses GBV302 (80.6 kb, complete, Fig. 5c) and GBV301 
(71.8 kb, complete)35,44 each encode two MCP copies. This is unique 
among other known Caudoviricetes targeting haloarchaea and ANME-1. 
We can exclude an assembly artefact, because the initial assemblies of 
the two ekchuahviruses were found to have a circular alignment with 
each other (Fig. 5d). Both MCP genes are accompanied by cognate 
capsid maturation protease genes, whereas all other virion morphoge-
netic proteins are encoded as single copy genes (Fig. 5c). MCP-1 is likely 
ancestrally conserved, whereas MCP-2 appears horizontally transferred 
from haloferuviruses. Their large phylogenetic distance suggests a long 
coexistence and coevolution in ekchuahviruses.

The coexistence of two divergent MCP genes is also found in 
members of putative rod-shaped viruses within the family ‘Ahmun-
viridae’, which we propose including into the class Tokiviricetes (realm 
Adnaviria)37 within a monotypic order ‘Maximonvirales’ (Fig. 5e), and 
viruses with predicted spindle-shaped morphology, the ‘Itzamnaviri-
dae’ (Fig. 5f–g). These two previously undescribed clades of viruses 
are represented by complete linear genomes with inverted terminal 
repeats and circular genomes, respectively. This contrasts another 
spindle-shaped ANME-1 virus, the tepeuvirus PBV144, which has the 
largest genome (72.6 kb, not yet circularized) but only one MCP. The 
coexistence of divergent MCPs is unusual among Caudoviricetes, but 
has been previously documented for the head-tailed T4 phage, whose 
MCPs respectively form hexameric and pentameric capsomers, with 
the latter occupying the fivefold icosahedral vertices45. Dual-MCP 
rod-shaped viruses either form a functional MCP heterodimer37,46 or use 
only one copy for virion formation47. It is thus yet unclear how coexist-
ing MCP genes contribute to the capsid architecture of ANME-1 viruses.

Viral auxiliary functions and virus-driven ANME-1 evolution
The large genomes of head-tailed and spindle-shaped viruses of 
ANME-1 exhibit strong clustering of functionally related genes: one 
half of the viral genome contains all structural genes, whereas the other 
half encodes diverse enzymes involved in DNA synthesis and modifi-
cation and various metabolic and defence functions (Fig. 5b–d,f,g). 
Notably, the entire approximately 20 kb replicative and metabolism 
module is missing from the circular genomes of demiitzamnaviruses. 
Cross-genome alignments revealed a larger variation in gene con-
tent for the enzymatic arms in both head-tailed and spindle-shaped 
viruses, frequently in the form of multigene cluster insertions (Fig. 5f 
and Extended Data Fig. 9). Head-tailed Ekchuahviridae and Ahpuchviri-
dae and spindle-shaped Pletoitzamnavirus and Tepeuviridae encode 
RNA-primed family B DNA polymerases, which are commonly encoded 
by dsDNA viruses with larger genomes48. The structural-enzymatic arm 
split thus resembles the core- and pan-genomes of microbes, allowing 
versatile interactions between these viruses and their ANME-1 hosts 
(Supplementary Table 10). For example, head-tailed and spindle-shaped 
viruses contain auxiliary metabolic genes involved in nucleotide and 
amino acid metabolisms (NrdD, QueCDEF and asparagine synthase), 

Fig. 5 | ANME-1 viral genomes encode complex structures. a, Evolutionary 
division between head-tailed viruses targeting ANME-1 and haloarchaea 
revealed by global proteome-based phylogenetic analyses. ANME-1 viruses with 
complete circular genomes are highlighted in purple, those with unconfirmed 
completeness are in blue. b,c, Genome organization and gene content of 
the complete genomes representing two families of ANME-1 head-tailed 
viruses Ahpuchviridae (b) and Ekchuahviridae (c). Blue and purple shading 
represents forward and reverse strands, respectively. MCP, PolB and ThyX 
genes are highlighted in pink and red. d, Circular alignment of the two genomes 
of ekchuahviruses. Black arrowheads indicate the original contig start/end 
sites in each assembly. e, Gene content of the complete linear genome of a 
representative of the rod-shaped virus familyAhmunviridae. f, Gene synteny 

of three families of spindle-shaped viruses targeting ANME-1, where complete, 
circularized genomes of Itzamnaviridae were found to occur in two genome 
sizes, where Demiitzamnavirus representatives align with a section of the larger 
Pletoitzamnavirus genomes (illustrated on the top right). Different colours 
indicate 76 different protein groups. Grey shading denotes singletons. The 
scale bar and percent identity shading are indicated in the bottom right. g, Gene 
content of the complete linear genome of a representative of the spindle-shaped 
virus family Itzamnaviridae. Dashed red box in (f) and (g) highlights an example 
of a multigene cluster insertion. In (d) and (f), the structural arm denotes the 
genome fraction where all viral structural genes reside; the enzymatic arm 
denotes the fraction where there are no structural genes and only enzyme-
encoding genes reside.
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carbon anabolism (PEPCK and GntT) and phosphate and sulfur anabo-
lism (PhoU and PAPS) (see Supplementary Table 11 and Supplementary 
Information).

Our analysis of viral auxiliary metabolic genes also suggested the 
involvement of viruses in the ancestral metabolic diversification of 
ANME-1. Specifically, the detection of genes encoding ThyX49, which 
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catalyses dUMP methylation into dTMP and likely boosts host thymi-
dine synthesis during viral production, in head-tailed ahpuchviruses 
and ekchuahviruses and in spindle-shaped pletoitzamnaviruses (Fig. 
5b,f). This coincides with the presence of thyX in the ANME-1 host, which 
unlike other ANME lineages and short-chain alkane-oxidizing archaea, 
do not encode the non-homologous thymidylate synthase gene, thyA2 
(Fig. 1). The dichotomous distribution of the functional analogues thyA/
thyX is prevalent across microbes and, notably, in itzamnaviruses, thyX 
and thyA may exist in different members (Fig. 5f,g). Phylogenetic analy-
sis of the ThyX show it was encoded by ANME-1 and their viruses form 
a distinct clade distant from those encoded by bacteria, archaea and 
other Caudoviricetes (Fig. 6 and Extended Data Fig. 10a,b). Strikingly, 
ThyX encoded by itzamnaviruses form a well-supported monophyl-
etic group at the base of this divergent clade and the deep-branching 
ANME-1c encode ThyX that belong to the second deepest branch. Nota-
bly, the Guaymas Basin ANME-1c bin (B22_G9) contains both a genomic 
thyX, and thyX encoded by a partial itzamnavirus-derived contig (Fig. 6 
and Extended Data Fig. 10). Ekchuahviruses and ahpuchviruses likely 
acquired thyX independently at a later stage.

The above analyses suggest thyX was first acquired by 
spindle-shaped ANME-1 viruses, then transmitted into the common 
ancestors of ANME-1, displacing thyA. Due to higher promiscuity of 
viral DNA polymerases and the intense arms race, viral genes are known 
to evolve rapidly50, which is in line with the extreme divergence of the 
ANME-1/viral thyX from the canonical clade.

Discussion
In this study, metagenomic characterization of a recently discovered 
hydrothermal vent environment in the Southern Pescadero Basin led 
to the expansion of the known ANME-1 diversity to include ANME-1c 
and their viruses. ANME-1c is a deep-branching family that so far has 
only been detected in high temperature hydrothermal environments. 
Comparative genomics indicates an evolutionary continuum within 
the class Syntrophoarchaeia, because ANME-1c retained various ances-
tral features also found in Syntrophoarchaeales and Alkanophagales, 
including hydrogenases. The phylogeny of these hydrogenases is con-
gruent with the genome phylogeny indicating an apparent vertical 
inheritance and differential loss of these genes in ANME-1, suggesting 
these hydrogenases have a nonobligatory physiological role, but may 
confer a longstanding selective advantage.

Our study also uncovered a putative viral source of the 
ANME-1-specific thymidylate synthase gene thyX that replaced the 
functional analogue thyA gene. ThyX differs from ThyA in its use of 

NADPH as the electron donor when transferring the methyl group 
from the C1 intermediate H4MPT = CH2 to dUMP to yield dTMP, with-
out oxidizing the H4MPT moiety2. H4MPT is a core cofactor constantly 
recycled through the Wood-Ljungdahl pathway that fuels ANME-1 
anabolism2; NADPH abundance is highly dependent on the type of 
host energy metabolism and redox state51. The virus-induced ThyA to 
ThyX transition may have played a role in the metabolic diversification 
and subsequent ecological expansion of the ANME-1 ancestors. C1 
anabolism appears to be more divergent across ANME lineages than 
C1 energy metabolism2, which may have also originated from viruses 
and other MGEs.

The expansive virome of ANME-1, as discovered by this study, is dis-
tant from all known viruses, forming 16 previously undescribed families 
and at least three unreported orders. They are characterized by many 
unique structural and replicative features, substantially expanding our 
appreciation of the archaeal virus diversity and their ecological impor-
tance. These findings open the door for targeted culture-dependent 
and culture-independent exploration of ANME virus–host interactions 
that are expected to play a critical role in the biogeochemical cycling19 
in these productive methane-driven ecosystems1.

While this paper was in review, a paper describing the enrichment 
of a strain of ‘Candidatus Methanoxibalbensis ujae’ under thermophilic 
methanotrophic conditions was published52.

Methods
Sampling and incubation
Four rock samples were collected from the 3.7 km-deep Auka vent 
field in the Southern Pescadero Basin (23.956094N, 108.86192W)20,23. 
Sample NA091.008 was collected in 2017 on cruise NA091 with the 
Eexploration vessle Nautilus and incubated as described previously34. 
Samples 12,019 (S0200-R1), 11,719 (S0193-R2) and 11,868 (S0197-PC1), 
the latter representing a lithified nodule recovered from a sediment 
push core, were collected with Remotely operated vehicle SuBastian 
and Research vessel Falkor on cruise FK181031 in November 2018. 
These samples were processed shipboard and stored under anoxic 
conditions at 4 °C for subsequent incubation in the laboratory. In the 
laboratory, rock samples 12,019 and 11,719 were broken into smaller 
pieces under sterile conditions, immersed in N2-sparged sterilized arti-
ficial sea water and incubated under anoxic conditions with methane, 
as described previously for NA091.008 (ref. 34). Additional sampling 
information can be found in Supplementary Table 1. Mineralogical 
analysis by X-ray Powder Diffraction (XRD) identified barite in sev-
eral of these samples, collected from two locations in the Auka vent 
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field, including on the western side of the Matterhorn vent (11,719, 
NA091.008), and one oil-saturated sample (12,019) recovered from the 
sedimented flanks from the southern side of Z vent. Our analysis also 
includes metagenomic data from two sediment cores from the Auka 
vent field (DR750-PC67 and DR750-PC80) collected in April 2015 with 
the ROV Doc Ricketts and R/V Western Flyer (MBARI2015), previously 
published (ref. 23).

Fluorescence in situ hybridization
Samples were fixed shipboard using freshly prepared paraformalde-
hyde (2 vol% in 3× Phosphate Buffer Solution (PBS), EMS15713) at 4 °C 
overnight, rinsed twice using 3× PBS, and stored in ethanol (50% in 
1× PBS) at −20 °C until processing. Small pieces (<1 cm3) of the mineral 
sample NA091.008 were gently crushed in a sterile agate mortar and 
pestle in a freshly prepared, filter sterilized 80% ethanol – 1× PBS solu-
tion. About 500 μl of the resulting mixture was sonicated three times in 
15 second bursts on a Branson Sonifier W-150 ultrasonic cell disruptor 
(level 3) on ice with a sterile remote-tapered microtip probe inserted 
into the liquid. Cells were separated from the mineral matrix using an 
adapted protocol of density separation using Percoll (Sigma P4937)7. 
The density-separated cells were filtered on 25 mm polycarbonate 
filters with a pore size of 0.22 μm (Millipore GTTP2500), and rinsed 
using 1× PBS. Fluorescence in situ hybridizations were carried out as 
described previously7 using a 1:1 mixture of an ANME-1 targeted probe 
(ANME-1-3509 labelled with Cy3) and the general bacterial probe mix 
EUB338 I-III (https://probebase.csb.univie.ac.at/), labelled with Alexa-
488 in a 35% formamide solution (VWR EM-FX0420-8). Hybridized sam-
ples were imaged using a ×100 objective using a Zeiss Elyra structured 
illumination microscope with the Zen Black software.

DNA extraction and sequencing
DNA extraction from the mineral samples followed previously pub-
lished protocols34. Metagenomic analysis from the extracted genomic 
DNA was outsourced to Quick Biology (Pasadena, CA) for library prepa-
ration and sequencing. Libraries were prepared with the KAPA Hyper 
plus kit using 10 ng of DNA as input. This input was subjected to enzy-
matic fragmentation at 37 °C for 10 min. After end repair and A-tailing, 
the DNA was ligated with an IDT adaptor (Integrated DNA Technologies 
Inc.). Ligated DNA was amplified with KAPA HiFi HotStart ReadyMix (2×) 
for 11 cycles. Post-amplification cleanup was performed with 1× KAPA 
pure beads. The final library quality and quantity were analysed and 
measured by Agilent Bioanalyzer 2100 (Agilent Technologies) and Life 
Technologies Qubit 3.0 Fluorometer (Life Technologies), respectively. 
Finally, the libraries were sequenced using 150 bp paired-end reads 
on Illumina HiSeq4000 Sequencer (Illumina Inc.). After sequencing, 
primers and adaptors were removed from all libraries using bbduk 
(https://sourceforge.net/projects/bbmap/) with mink = 6 and hdist = 1 
as trimming parameters, and establishing a minimum quality value of 
20 and a minimal length of 50 bp. For nanopore sequencing of incu-
bated samples, DNA was amplified using multiple displacement ampli-
fication with the QIAGEN REPLI-g Midi kit before library preparation. 
Oxford Nanopore sequencing libraries were constructed using the 
PCR-free barcoding kit and were sequenced on PromethION platform 
by Novogene Inc.

Metagenomic analysis
The sequencing reads from unincubated rocks were assembled indi-
vidually and in a coassembly using SPAdes v.3.12.0 (ref. 53). From the 
de-novo assemblies, we performed manual binning using Anvio v.6 
(ref. 54). We assessed the quality and taxonomy affiliation from the 
obtained bins using GTDB-tk v.1.5.0 (ref. 55) and checkM v.1.13 (ref. 
56). Genomes affiliated to ANME-1 and Syntrophoarchaeales were 
further refined via a targeted-reassembly pipeline. In this pipeline, 
the original reads were mapped to the bin of interest using bbmap 
(https://sourceforge.net/projects/bbmap/), then the mapped reads 

were assembled using SPAdes and the resulting assembly was filtered 
discarding contigs below 1,500 bp. This procedure was repeated during 
several rounds (between 11 and 50) for each bin, until we could not see 
an improvement in the bin quality. Bin quality was assessed using the 
checkM and considering the completeness, contamination (<5%), N50 
value and number of scaffolds. The resulting bins were considered as 
MAGs. The sequencing reads for the incubated rocks 12,019 and 11,719 
were assembled as described previously for NA091.R00834. Addition-
ally, the assembly of 12,019 was then scaffolded using Nanopore reads 
through two iterations of LRScaf v.1.1.10 (ref. 57). The final assemblies 
were binned using metabat2 v.2.15 (ref. 58) using the default setting. 
Automatic metabolic prediction of the MAGs was performed using 
prokka v.1.14.6 (ref. 59) and curated with the identification of PFAM and 
TIGRFAM profiles using HMMER v.3.3 (hmmer.org), KEGG orthologs 
with Kofamscan60 and of COGs and arCOGs motifs61. To identify mul-
tiheme cytochromes in our genomes, we searched the motif CXXCH 
across the amino acid sequences predicted for each MAG. Similar 
metabolic predictions were carried out with publicly available ANME-1 
and Syntrophoarchaeales genomes to compare the metabolic potential 
of the whole ANME-1 order. A list of the genomes used in this study can 
be found in Supplementary Table 2. For the comparison of different 
genomic features among the ANME-1 genomes, we searched for spe-
cific proteins using the assigned COGs, arCOGs and KEGG identifiers 
(Supplementary Table 5).

Genomic relative abundance analysis
We used the software coverM v.0.5 (https://github.com/wwood/Cov-
erM) to calculate the genomic relative abundance of the different 
organisms of our samples, using all the MAGs we have extracted from 
our metagenomic analysis. We ran the software with the following 
additional parameters for dereplication (‘–dereplication-ani 95–
dereplication-prethreshold-ani 90–dereplication-precluster-method 
finch’). Results were visualized in R v.4.2.1.

OGT analysis
We calculated the OGT for all ANME-1 and Syntrophoarchaeales MAGs 
included in our analysis (Supplementary Table 2) using the OGT_predic-
tion tool described in Sauer and Wang24 with the regression models for 
Archaea excluding rRNA features and genome size.

Analysis of hydrogenase operons
Because only two of the five genomes of ‘Candidatus Methanospirare 
jalkutatii’ have an operon encoding a hydrogenase, we performed 
additional analysis to better understand this intraspecies distribu-
tion. On the one hand, we mapped the metagenomic reads from sam-
ples with genomes of ‘Candidatus Methanospirare jalkutatii’ (12019, 
FW4382_bin126, NA091.008, PR1007, PR1031B) to the MAGs containing 
the hydrogenase operon (FW4382_bin126, NA091.008_bin1) to check if 
reads mapping this operon are also present in samples from where the 
MAGs without the hydrogenase were recovered. For mapping the reads, 
we used bowtie2 v.2.4.2 (ref. 62) then transformed the sam files to bam 
using samtools (http://www.htslib.org/) and extracted the coverage 
depth for each position. Additionally, we performed a genomic com-
parison of the genomes with a hydrogenase operon (FW4382_bin126, 
NA091.008_bin1) with the genome FWG175 that was assembled into a 
single scaffold. For this, we used the genome-to-genome aligner Sibe-
lia v.3.0.7 (ref. 63) and we visualized the results using Circos (http://
circos.ca/).

Phylogenetic analysis
For the phylogenomic tree of the ANME-1 MAGs, we used the list 
of genomes present in Supplementary Table 2. As marker genes, 
we used 31 single copy genes (Supplementary Table 5) that we 
extracted and aligned from the corresponding genomes using 
anvi-get-sequences-for-hmm-hits from Anvio v.6 (ref. 54) with the 
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parameters ‘–return-best-hit–max-num-genes-missing-from-bin 7–
partition-file’. Seven genomes missed more than seven marker genes 
and were not used for the phylogenomic reconstruction present in Fig. 
1 (ANME-1 UWMA-0191, Syntrophoarchaeum GoM_oil, ANME-1 ERB7, 
ANME-1 Co_bin174, ANME-1 Agg-C03, PB_MBMC_218, FW4382_bin035). 
The concatenated aligned marker gene set was then used to calculate 
a phylogenomic tree with RAxML v.8.2.12 (ref. 64) using a partition file 
to calculate differential models for each gene the following param-
eters ‘-m PROTGAMMAAUTO -f a -N autoMRE -k.’ The tree was then 
visualized using iTol65. For the clustering of the MAGs into different 
species, we dereplicated the ANME-1 MAGs using dRep v.2.6.2 with 
the parameter ‘-S_ani 0.95’ (ref. 66). A smaller phylogenomic tree was 
calculated with the genomes containing hydrogenase genes (Fig. 3). 
For this tree we also used Anvio v.6 and RAxML v.8.2.12 with the same 
parameters but excluding the flag ‘—max-num-genes-missing-from-bin’ 
from the anvi-get-sequences-for-hmm-hits command to include in the 
analysis those genomes with a lower number of marker genes that still 
contain hydrogenase genes (PB_MBMC_218, FW4382_bin035, ANME-1 
UWMA-0191).

The 16S rRNA gene phylogenetic tree was calculated for the 16S 
rRNA genes predicted from our genome dataset that were full length. 
We included these full-length 16S rRNA genes in the SILVA_132_SSURef_
NR99 database67 and with ARB v.6.1 (ref. 68) we calculated a 16S phy-
logenetic tree using the maximum-likelihood algorithm RAxML with 
GTRGAMMA as the model and a 50% similarity filter. In total, 1,000 
bootstrap analyses were performed to calculate branch support values. 
The tree with the best likelihood score was selected.

For the construction of the hydrogenase phylogenetic tree (Sup-
plementary Table 6), we used the predicted protein sequence for the 
large subunit of the NiFe hydrogenase present in the genomes of our 
dataset (Supplementary Table 2), a subset of the large subunit hydroge-
nases present in the HydDB database30 and the predicted hydrogenases 
present in an archaeal database using the COG motif for the large NiFe 
hydrogenase (COG0374) with the Anvio v.6 software. For the mcrD gene 
phylogeny, we used the predicted protein sequences of mcrD in the 
ANME-1c genomes and in the previously mentioned archaeal database 
with the TIGR motif TIGR03260.1 using also the Anvio v.6 software. The 
list of genomes from the archaeal database used in the analysis can be 
found in Supplementary Table 6. For both phylogenies, the protein 
sequences for the analysis were aligned using clustalw v.2.1 with default 
settings69. The aligned file was used to calculate a phylogenetic tree 
using RAxML v.8.2.12 (ref. 64) with the following parameters ‘-m PROT-
GAMMAAUTO -f a -N 100 –k’. The tree was then visualized using iTol65.

For the distribution and phylogenetic analysis of MCP and pPolB, 
known sequences encoded by various bacterial and archaeal viruses 
were used to build a Hidden Markov Model (HMM) via hmmer v.3.3.2. 
The HMM was then used to capture the corresponding components 
in proteomes of ANME-1 viruses and other MGEs. All sequences were 
then aligned using MAFFT v.7.475 (ref. 70) option linsi and trimmed 
using trimAl v1.4.1 (ref. 71) option gappyout for pPolB and 20% gap 
removal option for MCP. Maximum-likelihood analyses were carried 
out through IQtree v.2.1.12 (ref. 72) using model finder and ultrafast 
bootstrap with 2,000 replicates. The phylogenetic tree was visualized 
and prepared using iTol65.

For the distribution and phylogenetic analysis of ThyX, all ThyX 
sequences annotated by EggNOG mapper73 v.2 in the genomes of 
ANME-1 and their MGEs were used to create a HMM as described above, 
and used to search for close homologues in the GTDB202 database, 
IMGVR V.3 database and again in the proteomes and ANME-1 and their 
MGEs in this study. This yielded 261 sequences, which was then aligned 
and phylogenetically analysed as for pPolB.

CRISPR analysis
The CRISPR–Cas systems from the ANME-1 genomes and various 
metagenomic assemblies were annotated using CRISPRCasTyper v.1 

(ref. 33). CRISPR spacer mapping on MGEs was carried out as previ-
ously described34 with the following modifications. To filter out unre-
liable sequences that may have arisen during MAG binning, we took a 
conservative measure of only retaining CRISPR repeats identified in 
at least three ANME-1 contigs. We additionally analysed the CRISPR 
repeats found in the Alkanophagales sister clade to ANME-1 using the 
same approach, which were found to have no overlap with the ANME-1 
CRISPR repeats. To avoid accidental mapping to unrelated MGEs, we 
applied a second stringent criteria of only retaining MGEs with at least 
three ANME-1 protospacers. MGEs larger than 10 kb were retained for 
further analyses in this study.

MGE network analysis and evaluation
Open reading frames in all CRISPR-mapped MGE contigs were identi-
fied using the PATRIC package74. Gene similarity network analyses 
were done using vCONTACT v.2.0 (ref. 75) using the default reference 
(RefSeq202), with head-tailed viruses targeting haloarchaea and 
methanogens added as extra references42. Inverted and direct termi-
nal repeats were detected using CheckV v.1.01. and the PATRIC pack-
age to determine genome completeness. Clustering confidence were 
obtained with default setting as described in ref. 75, where the P value 
was obtained via a one-sided Mann–Whitney U test and the topology 
confidence is obtained by multiplying the quality score of the subclus-
ter and the P value.

MGE annotation and virus identification
MGE proteomes are annotated using sensitive HMM profile-profile 
comparisons with HHsearch v.3.3.2 (ref. 76) against the following pub-
licly available databases: Pfam 33.1, Protein Data Bank (25 March 2021), 
CDD v.3.18, PHROG and uniprot_sprot_vir70 (9 February 2021)77. Puta-
tive MCP of Chaacviridae and Ixchelviridae could not be identified 
using sequence similarity-based approaches. Thus, the candidate 
proteins were subjected to structural modelling using AlphaFold2 
(ref. 38) and RoseTTAFold v.1.1.0 (ref. 39). The obtained models were 
visualized using ChimeraX78 and compared with the reference structure 
of the MCP of corticovirus PM2 (PDB id: 2vvf). The contigs containing 
identifiable viral structural proteins are described as viruses. The 
remaining contigs are described as unclassified MGEs, including cir-
cular elements that are most likely plasmids of ANME-1 and possible 
viruses enveloped by yet unknown structural proteins.

Genome-scale virus comparisons
The viral genomes were annotated using Prokka v.1.14.6 (ref. 59) to 
produce genbank files. Select genbank files were then analysed using 
Clinker v.0.0.23 (ref. 79) to produce the protein sequence clustering 
and alignments. Proteome-scale phylogeny for the head-tailed viruses 
were carried out via the VipTree server43.

Etymology
Descriptions of proposed ANME-1c family and species. Family 
‘Candidatus Methanospirareceae’. N.L. neut. n. methanum methane; 
N.L. pref. methano-, pertaining to methane; L.v. spirare, to breathe. 
Proposed classification: class Methanomicrobia, order ‘Candidatus 
Methanophagales’. The type species and strain is ‘Candidatus Metha-
nospirare jalkutatii’ FWG175.

‘Candidatus Methanoxibalbensis ujae’. N.L. neut. n. metha-
num methane; N.L. pref. methano-, pertaining to methane; N.L. adj. 
xibalbensis, from the place called Xibalba, the Mayan word for the 
underworld; N.L. neut. n. Methanoxibalbensis methane-cycling organ-
ism present in deep-sea hydrothermal sediments; N.L. neut. adj. ujae, 
from the word ujá, meaning rock in Kiliwa, an indigenous language of 
the native peoples of Baja California, referring to the high abundance 
of this species in rock samples. Proposed classification: class Metha-
nomicrobia, order ‘Candidatus Methanophagales’, family ‘Candidatus 
Methanoxibalbaceae’, genus ‘Candidatus Methanoxibalbensis’.
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The material type is the genome designated NA091.008_bin2 
(GCA_026134085.1), a MAG comprising 1.99 Mbp in 86 scaffolds. The 
MAG was recovered from mineral sample (NA091.008) from the hydro-
thermal environment of South Pescadero Basin.

‘Candidatus Methanospirare jalkutatii’. N.L. neut. n. methanum 
methane; N.L. pref. methano-, pertaining to methane; L.v. spirare, to 
breathe; N.L. neut. n. Methanospirare methane-breathing organism; 
N.L. masc. n. jalkutatii, a mythical dragon from stories of the indigenous 
Pa ipai people from Northern Baja, California. This dragon inhabited 
a beautiful place made of rocks and water similar to the Auka hydro-
thermal vent site. Proposed classification: class Methanomicrobia, 
order ‘Candidatus Methanophagales’, family ‘Candidatus Methanox-
ibalbaceae’, genus ‘Candidatus Methanospirare’.

The material type is the genome designated FWG175 (CP110382.1), 
a single-scaffolded MAG comprising 1.62 Mbp in one circular scaffold. 
This MAG was recovered from a methane-fed incubation of the mineral 
sample 12,019 retrieved from the hydrothermal environment of South 
Pescadero Basin.

Proposed classification of ANME-1 viruses
The order Coyopavirales is proposed within the existing class Tec-
tiliviricetes, after Coyopa, the god of thunder in Mayan mythology. It 
contains tailless icosahedral viruses with previously unreported class 
of DJR MCPs and little proteome overlap with known viruses. The fam-
ily Chaacviridae is proposed within Coyopavirales, after Chaac, the 
god of death in the Mayan mythology. It is characterized by a uniform 
10–11 kb genome and a gene encoding protein-primed family B DNA 
polymerase (pPolB). We propose the genus names Homochaacvirus and 
Antichaacvirus (from homo, for same in Greek, and anti, for opposed in 
Greek, to emphasize the inversion of a gene module including the pPolB 
gene). Six complete genomes of chaacviruses have been obtained: 
Methanophagales virus PBV304 (OP548099) within sepcies Homo-
chaacvirus pescaderoense, Methanophagales virus PBV305 (OP548100) 
within species Homochaacvirus californiaense, Methanophagales virus 
GBV261, Methanophagales virus GBV265, Methanophagales virus 
GBV275 and Methanophagales virus PBV266 (OP413841) within species 
Antichaacvirus pescaderoense. The candidate family Ixchelviridae is 
proposed within Coyopavirales, after Ix Chel, goddess of midwifery 
and medicine in the Mayan mythology. Ixchelviridae is represented 
by Pescadero Basin viruses PBV176 and PBV180, with assembly com-
pleteness unknown.

Candidate family Huracanviridae is proposed without higher-level 
ranking classification, after Hurancan, god of wind, storm and fire in 
Mayan mythology. It contains tailless icosahedral viruses with single 
jelly-roll MCPs. It is represented by Pescadero Basin viruses PBV264 
and PBV238, with assembly completeness undetermined.

The order Nakonvirales is proposed within Caudoviricetes, after 
Nakon, the most powerful god of war in Mayan mythology. It contains 
head-tailed viruses with around 80 kb genomes and HK97-fold MCPs. 
The family Ahpuchviridae (after Ah Puch, the god of death in the Mayan 
mythology) includes one genus, Kisinvirus, (after Kisin, another Mayan 
god of death) and is represented by a single virus, Methanophagales 
virus PBV299 (OP413838) within species Kisinvirus pescaderoense. The 
family Ekchuahviridae (after Ek Chuah, the patron god of warriors and 
merchants in Mayan mythology), is represented by one genus, Kukul-
kanvirus (after Kukulkan, the war serpent in the Mayan mythology). It 
includes Methanophagales virus GBV301 (OP880252) within species 
Kukulkanvirus guaymasense and Methanophagales virus GBV302 
(OP880253) within species Kukulkanvirus mexicoense, each encod-
ing two divergent HK97-fold MCPs with their own capsid maturation 
proteases.

Seven other candidate families of head-tailed viruses are proposed 
without complete genome representatives. They form a phylogenetic 
cluster sister to Haloviruses (Fig. 5a), and according to the phylogenetic 
classifications of the latter, likely form multiple unclassified order-level 

clades. These candidate families are Acanviridae, Alomviridae, Baca-
bviridae, Baalhamviridae, Cabrakanviridae, Cacochviridae and Chic-
canviridae, all named after gods in Mayan mythology.

The order Maximonvirales is proposed within Tokiviricetes, after 
Maximon, a god of travellers, merchants, medicine men/women, mis-
chief and fertility in Mayan mythology. It contains rod-shaped viruses 
of a single family Ahmunviridae (after Ah Mun, the god of agriculture 
in Mayan mythology) with a single genus Yumkaaxvirus (after Yum 
Kaax, the god of the woods, the wild nature and the hunt in Mayan 
mythology). It is represented by the complete linear genome of Metha-
nophagales virus PBV300 (OP413840) within species Yumkaaxvirus 
pescaderoense.

The family Itzamnaviridae is named after Itzamna, lord of the heav-
ens and night and day in Mayan mythology. It contains spindle-shaped 
viruses that differ in genome sizes and are subdivided into two genera, 
which we propose naming Demiitzamnavirus and Pletoitzamnavirus 
(after demi- for half or partial, derived via French from Latin dime-
dius and pleto for full in Latin). They are respectively represented by 
complete genomes of Methanophagales virus GBV170 within species 
Demiitzamnavirus guaymasense, Methanophagales virus GBV303 
(OP880254) within species Demiitzamnavirus mexicoense and Metha-
nophagales virus PBV082 (OP413839) within species Pletoitzamnavirus 
pescaderoense.

Candidate families Tepeuviridae and Votanviridae, named after 
a skye god Tepeu and a legendary ancestral deity Votan, respectively, 
are proposed for two additional new clades of spindle-shaped viruses. 
Their genome representatives Tepeuvirus PBV144 and Votanvirus 
IMGVR0294848 are not yet circularized and are thus incomplete.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Raw metagenome reads, assembled metagenome bins and virus 
sequence data are available in the NCBI database under BioProject 
accession numbers PRJNA875076 and PRJNA721962. Complete ANME-1 
virus genomes representing new viral taxa can be found on GenBank 
under accession numbers OP413838, OP413839, OP413840, OP413841, 
OP548099, OP548100, OP880252, OP880253 and OP880254. CRISPR 
spacer sequences of ANME-1 and all genomic sequences of ANME-1 
MGEs are also provided as supplementary data. For virus genomic 
analysis the following databases were used in this study: Protein Data 
Bank (namely, the major capsid protein of phage PM2, PDB id: 2vvf; 
https://www.rcsb.org/structure/2vvf), CDD v3.18, PHROG (https://
phrogs.lmge.uca.fr/) and uniprot_sprot_vir70 (09/02/2021).
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Extended Data Fig. 1 | 16S rRNA gene phylogeny for the ANME-1 clade 
(Methanophagales). Color shading highlights the three main groups of ANME-1 
archaea. The purple bars note 16S rRNA gene sequences retrieved from MAGs 

shown in Fig. 1. Sequences retrieved from Pescadero MAGs are in bold. Bootstrap 
values over 50% are indicated with a black circle. Scale bar indicates the number 
of nucleotide substitutions per site.
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Extended Data Fig. 2 | Correlation between estimated genome size (in Mb 
and after calculation considering contamination and completeness see 
Material and Methods) and the predicted optimum growth temperature 
(°C). Each point and number represents the average values for one ANME genera/

species (see Supplementary Table 2), except in the case of Syntrophoarchaeales 
and Alkanophagales where the point represent the average values for the whole 
clade. Color indicates the corresponding taxonomy. Dotted line indicates the 
regression model (R2 = 0.3858).
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Extended Data Fig. 3 | Phylogenetic tree of McrD genes from archaea, including the McrD in ANME-1 genomes (only found in ANME-1c). Black circles indicate 
bootstrap support values over 70%. Scale bar represents the number of amino acid substitutions per site.
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Extended Data Fig. 4 | Circos plot comparing homologous regions of 
the ANME-1c genomes, NA091.008_bin1 and FW4382_bin126 (both with 
hydrogenase operons) to the predicted completed genome FWG175 that was 
assembled as a single contiguous scaffold and belongs to the same species. 
Contigs corresponding to the query genomes (NA091.008, FW4382_bin126) are 

marked in green and the genome scaffold of FWG175 are in orange. The contig 
containing the hydrogenase operon is shown in purple and the corresponding 
homology sections between the reference and query genomes are highlighted 
in blue. The region between these homology sections corresponds to the 
hydrogenase operon that was not detected in genome FWG175.
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Extended Data Fig. 5 | Phylogenetic tree of the large subunit of the NiFe 
hydrogenase present in ANME-1 genomes associated with NiFe Groups 
3 and 4. The green and blue shading indicates the taxonomic identity of the 

ANME-1 MAG containing the corresponding hydrogenase. Black circles indicate 
bootstrap support values over 70%. The scale bar represents the number of 
amino acid substitutions per site.
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Extended Data Fig. 6 | Features of ANME-1 CRISPR/Cas and spacer-mobilome 
mapping. (a) CRISPR/Cas features in the two most contiguous ANME-1c MAGs 
characterized using CCtyper. Black bars indicate CRISPR arrays. (b) Contig 
lengths of all ANME-1 mobile genetic elements (MGEs) found in this study. Note 
that contig length does not necessarily indicate completeness as IMG/VR v.3 is 

more enriched with head-tailed viruses (with genomes sized up 80 kb) whereas 
the contigs obtained directly from Pescadero/Guaymas basin metagenomic 
assemblies contain many tailless icosahedral viruses whose genomes are 
sized around 10 kb. (c) Distribution of protospacers within the ANME-1 mobile 
elements found in S. Pescadero and Guaymas basins.
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Extended Data Fig. 7 | Gene-sharing networks produced via vCONTACT2 indicate that all ANME-1 mobile genetic elements (magenta) are well distinguished 
from the known haloarchaeal viruses, or Haloviruses, (blue) and other viruses with known hosts (orange).
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Extended Data Fig. 8 | Maximum-likelihood analyses of MCPs encoded by head-tailed viruses. On the right: Blue, ANME-1 virus families; black, haloarchaeal virus 
families. MCPs from complete genomes of ANME-1 viruses are indicated in blue, and their respective families in bold.
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Extended Data Fig. 9 | Sequence alignment of representatives of ANME-1 
viruses. Colors indicates protein families encoded by at least 2 representative 
viral genomes here. Gray indicates singleton proteins without apparent 

homologs. Scale bars for protein identity scores and genome sizes are indicated 
at the bottom. Viral contig names and sizes are indicated on the left side and their 
respective family names are indicated on the right.

http://www.nature.com/naturemicrobiology


Nature Microbiology

Article https://doi.org/10.1038/s41564-022-01297-4

Extended Data Fig. 10 | Spindle-shaped viruses encode ThyX at the root of 
ANME-1 ThyX. a, unrooted phylogeny suggests that ANME-1 thyX may have 
evolved from thyX genes originated in ANME-1 viruses. The two versions of of 
ThyX in the ANME-1c bin B22_G9 are highlighted. b, Distribution of ThyX gene  

in various spindle-shaped viruses indicated on the gene-sharing network.  
c, Sequence alignment showing the conservation and variation of gene  
content around the thyX gene in the genomes of spindle-shaped viruses.

http://www.nature.com/naturemicrobiology
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Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Zen black version ELYRA was used for the acquisition of fluorescent images on Zeiss microscope.

Data analysis SPAdes v. 3.12.0; Anvio v. 6; GTDB-tk v.1.5.0; checkM v.1.1.3; LRScaf v1.1.10; metabat2 v2.15; prokka v. 1.14.6; HMMER v.3.3.2; Kofamscan; 
coverM v. 0.5; OGT_prediction (https://github.com/DavidBSauer/OGT_prediction); bbmap (https://sourceforge.net/projects/bbmap/); 
samtools (http://www.htslib.org/); Sibelia v.3.0.7; Circos v.0.69-8; RAxML v. 8.2.12; dRep v. 2.6.2; ARB v.6.1; clustalw v.2.1; MAFFT v7.475; iTol 
(webserver); trimAl v1.4.1; IQtree v2.1.12; EggNOG mapper v.2;  CRISPRCasTyper v.1; PATRIC package; AlphaFold2; RoseTTAFold5 v.1.1.0; 
ChimeraX; vCONTACT v.2.0; CheckV v.1.0.1; Clinker v. 0.0.23; R v.4.2.1; bowtie2 v.2.4.2

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

Raw metagenome reads, assembled metagenome bins and virus sequence data are available in GenBank under BioProject accession numbers PRJNA875076 and 
PRJNA721962. Complete ANME-1 virus genomes from Pescadero basin can be found on GenBank under accession numbers OP413838, OP413839, OP413840, 
OP413841, OP548099, and OP548100. CRISPR spacer sequences of ANME-1 and all genomic sequences of ANME-1 MGEs are also provided in the supplementary 
material. For virus genomic analysis the following databases were used in this study: Protein Data Bank (concretely the protein PM2, PDB id: 2vvf; https://
www.rcsb.org/structure/2vvf), CDD v3.18, PHROG (https://phrogs.lmge.uca.fr/) and uniprot_sprot_vir70 (09/02/2021).

Human research participants
Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender Not applicable for this study

Population characteristics Not applicable for this study

Recruitment Not applicable for this study

Ethics oversight Not applicable for this study

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description Metagenomic analysis of hydrothermal vent rocks 

Research sample Sediment and Rocks collected from hydrothermal vents. The samples were chosen due to their geographical proximity to the vents 
with diffusive venting, which provide nutrients that fuel the local ecosystem. Some of the rocks were incubated under anoxic 
conditions. 

Sampling strategy Samples were collected in the field and preserved until DNA extraction in the laboratory. Sample sizes were empirically determined, 
typically 5 g, to allow extraction of sufficient amount of DNA. For incubated samples, sample sizes were also empirical determined, 
typically 1ml in volume, to allow extraction of sufficient amount of DNA while causing the least amount of disturbance to the existing 
microbiome.

Data collection Metagenomic sequencing data via Illumina HiSeq4000 were collected by QuickBiology (Pasadena, CA, USA). Metagenomic 
sequencing data for incubated samples was conducted via Oxford Nanopore PromethION by Novogene Inc.

Timing and spatial scale The sampling of the initial rock and sediment samples were carried out at the Auka vent field, Pescadero basin, Baja California Mexico 
on October 2017 and November 2018 (see Supplementary Table 1 for details).The sampling of rock incubations were sampled inside 
of the anaerobic chamber at Caltech between November 8, 2018 and December 15, 2019 with an increasing interval from 3 weeks to 
8 months.

Data exclusions All sequencing data were used for analyses without exclusion.

Reproducibility The paper focuses on bioinformatics analyses, and all analyses can be reproduced using publicly available software packages 
provided in the Methods section. No specific incubation conditions had experimental replicates.
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Randomization The experiments were designed to discover novel organisms from any possible condition. The work does not focus on the effect of 

environmental parameters.

Blinding We do not carry out randomized testing on experimental subjects, as the experiments were designed to discover novel organisms 
from any possible condition. There is no visual link between the samples and the microbes of interest, and there are usually 2 months 
between the time of sampling and the time of sequencing data output, blinding neither increase nor decrease bias.

Did the study involve field work? Yes No

Field work, collection and transport

Field conditions Field sites are 3.6 km below sea level, collected at natural conditions on the dates and location provided in the Methods section and 
Supplementary Table 1.

Location [23.956094 N 108.86192 W][23.954036 N 108.86296 W][23.942356 N 108.855825 W][23.954027 N 108.863324 W]

Access & import/export Sample collection permits for FK181031 (25/07/2018) were granted by la Dirección General de Ordenamiento Pesquero y Acuícola, 
Comisión Nacional de Acuacultura y Pesca (CONAPESCA: Permiso de Pesca de Fomento No. PPFE/DGOPA-200/18) and la Dirección 
General de Geografía y Medio Ambiente, Instituto Nacional de Estadística y Geografía (INEGI: Autorización EG0122018), with the 
associated Diplomatic Note number 18-2083 (CTC/07345/18) from la Secretaría de Relaciones Exteriores - Agencia Mexicana de 
Cooperación Internacional para el Desarrollo / Dirección General de Cooperación Técnica y Científica. Sample collection permit for 
cruise NA091 (18/04/2017) was obtained by the Ocean Exploration Trust under permit number EG0072017.

Disturbance Samples were collected outside the major chimney area to result in minimal influence on the macrofauna and the structural integrity 
of the chimneys.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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