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‘Candidatus Methanophagales’ (ANME-1) is an order-level clade of archaea

responsible for anaerobic methane oxidation in deep-sea sediments. The
diversity, ecology and evolution of ANME-1remain poorly understood.

In this study, we use metagenomics on deep-sea hydrothermal samples
to expand ANME-1diversity and uncover the effect of virus—host
dynamics. Phylogenetic analyses reveal a deep-branching, thermophilic
family, ‘Candidatus Methanospirareceae’, closely related to short-chain
alkane oxidizers. Global phylogeny and near-complete genomes show
that hydrogen metabolism within ANME-1is an ancient trait that was
vertically inherited but differentially lost during lineage diversification.
Metagenomics also uncovered 16 undescribed virus families so far
exclusively targeting ANME-1archaea, showing unique structural and
replicative signatures. The expansive ANME-1virome contains a metabolic
generepertoire that caninfluence host ecology and evolution through
virus-mediated gene displacement. Our results suggest an evolutionary
continuum between anaerobic methane and short-chain alkane oxidizers
and underscore the effects of viruses on the dynamics and evolution of
methane-driven ecosystems.

Anaerobic methanotrophic archaea (ANME) is a polyphyletic group of
archaeallineages that have independently evolved the ability of anaero-
bic oxidation of methane (AOM), a process that is estimated to remove
more than 80% of the methane produced globally in deep-sea sedi-
ments’ by reversing the methanogenesis pathway’. Whereas the ANME-2
and ANME-3 lineages share common ancestors with the present-day
methanogens of the Methanosarcinales order, ANME-1archaea form

their own order ‘Candidatus Methanophagales’, which is sister to the
non-methane alkane degraders ‘Candidatus Syntrophoarchaeales’ and
‘Candidatus Alkanophagales”. ANME-1 can grow beyond the cold and
temperate deep-sea habitats that they often share with other ANMEs,
uniquely thriving at higher temperatures within hydrothermal environ-
ments>*°. Inmarine sediments, ANMEs mostly form syntrophicassocia-
tions with sulfate-reducing bacteria® via direct interspecies electron
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transfer’®. However, some ANME-1 have been observed as single cells
or as monospecific consortia without partner bacteria®*™, and have
been proposed to perform hydrogenotrophic methanogenesis'® 2,
although physiological experiments have thus far failed to support
this hypothesis'". Overall, it remains largely unclear what factors
have contributed to the physiological and ecological diversification
of ANME-1 from their short-chain alkane relatives and other ANME
lineages.

Despite the dominance of ANME archaea in many methane-rich
ecosystems, viruses targeting ANME lineages are largely unex-
plored” ™. By exploiting and spilling host cellular resources through
their replication and lytic cycles, viruses play a major role in the eco-
logical dynamics and nutrient cycling in diverse microbial systems'®.
Indeep-seaecosystems, viral lysis has been estimated to cause annual
archaeal mortality that releases up to around 0.3-0.5 gigatons of car-
bonglobally"”. Characterizing the distributions and functions of viruses
of ANMEs is thus one of the most important tasks for quantitatively
linking ANME physiology to the elemental and energy flows in deep-sea
methane-driven ecosystems, and understanding the drivers of ANME
evolution.

Results

Aunique ANME-1 clade from hydrothermal vents

Inthis study, we recovered 13 metagenome-assembled genomes (MAGs)
of ANME-1lin native and laboratory-incubated mineral samples from the
Southern Pescadero Basin hydrothermal vent system” in the Gulf of
California, Mexico (Supplementary Tables 1 and 2). These samples
not only expanded the known diversity within the ANME-1a clade,
particularly the ANME-1G60 group, but also contained five MAGs
and one 1.6 Mb circular genome scaffold of a previously uncharacter-
ized deep-branching clade phylogenetically positioned at the base
of the ANME-1 order (Fig. 1, Extended Data Fig. 1and Supplementary
Tables2 and 3). We name this family-level clade ‘Candidatus Methano-
spirareceae’, or ANME-1c. Given its basal position, it is the phylo-
genetically closest ANME-1to the sister orders of non-methane alkane
degraders Alkanophagales and Syntrophoarchaeales®.

Our ANME-1c MAGs represent two different genera, ‘Candidatus
Methanoxibalbensis’ and ‘Candidatus Methanospirare’ within the
same family with an average nucleotide identity of 76%, represented
by species ‘Candidatus Methanoxibalbensis ujae’ (species 1) and
‘Candidatus Methanospirare jalkutatii’ (species 2, Methods). Based
on genome coverage, these two ANME-1 species were the most abun-
dant organismsinrock samples 12,019 and NA091.008, whereas they
were hardly detected in rocks 11,868 and 11,719 and in hydrothermal
sediments (Fig. 2a).

So far, all ANME-1c MAGs and 16S rRNA gene sequences from the
National Center for Biotechnology Information (NCBI; https://www.
ncbi.nlm.nih.gov/) and SILVA (https://www.arb-silva.de/) databases
have originated from hydrothermal environments, specifically the
sediments of Guaymas'** and Southern Pescadero basins®. These
hydrothermal habitats are 400 km apart along the same fault sys-
tem in the Gulf of California and exhibit 20% species-level overlap in
the microbial community?. This distribution suggests a strong ther-
mophilic physiological specialization of ANME-1c to hydrothermal
environments. Indeed, genome-based prediction** suggested a high
theoretical optimal growth temperature (OGT; Supplementary Table
4 and Extended Data Fig. 2) for both ANME-1c species (>70 °C) that
was higher than the average predicted OGT for both ANME-1a (62 °C)
and ANME-1b (52 °C). Such high temperature adaptation by ANME-1c
couldberelated to their reduced estimated genomessize (‘Candidatus
Methanoxibalbensis ujae’:1.81 Mb; ‘Candidatus Methanospirare jalku-
tatii’: 1.62 Mb) as previously observed in other thermophilic bacteria
and archaea®.

Using fluorescencein situ hybridization with an ANME-1-targeted
16S rRNA probe, we detected ANME-1 cells in rock NA091.008

(Fig. 2b), where ANME-1c were the dominant lineage according to
genome coverage (Fig. 2a). These putative ANME-1c cells exhibit the
typical cylindrical shape previously reported for other ANME-1 popula-
tions®and were loosely associated with bacterial cellsin an extracellular
polymeric substances matrix, or found as single cells.

Physiological differentiation of diverse ANME-1archaea

The deep-branching position of ANME-1c led us to examine the
genomic patterns of emergence and differentiation of ANME-1from
the sister orders Alkanophagales and Syntrophoarchaeales. Like all
ANME-1, ANME-1c encode a complete reverse methanogenesis path-
way including a single operon for the methyl coenzyme M reduc-
tase enzyme (MCR), responsible for the activation of methane, and
the replacement of F,,,-dependent methylene-H,MPT reductase
by 5,10-methylenetetrahydrofolate reductase characteristic for
ANME-1*%, Similar to other ANME clades, ANME-1c encodes several
multiheme cytochromes, which likely mediate the transfer of electrons
during syntrophic AOM to sulfate-reducing bacteria>”®,

Notably, ANME-1c exhibit distinct features compared to the
ANME-1a and ANME-1b in the operon encoding the MCR enzyme.
This enzyme consists of six subunits with the structure o,3,Y, and
the unique nickel-containing cofactor coenzyme F;, (ref. 26). In the
maturation of this cofactor, McrC and McrD, two additional pro-
teins encoded by the MCR operon in methanogens, are involved” s,
Although mcrD is not present in ANME-1a and ANME-1b, both genes
are present in ANME-1c, where mcrD forms an operon with mcrABG
(Fig. 1). Previous analysis suggested that ANME-1 acquired the mcr
genes from distant H,-dependent methylotrophic methanogens of
the class Methanofastidiosa?, whereas they lost the divergent MCRs
present in Syntrophoarchaeales and Alkanophagales, which seem to
use larger alkanes. Likewise, we found that the ANME-1c McrD is closely
related to the McrD of Methanofastidiosa but only distantly related
to the McrD of Syntrophoarchaeales and Alkanophagales that form
a different cluster (Extended Data Fig. 3). These results suggest that
during the emergence of ANME-1, a full operon of methane-cycling
mcr (including mcrCD) was acquired by horizontal gene transfer from
aMethanofastidiosa-related methylotrophic methanogen, and mcrD
was later lostin both ANME-1aand ANME-1b clades. The ANME-1calso
exhibit several additional genomic features that are distinct, high-
lighted in Fig. 1 and described in Supplementary Information and
Supplementary Table 5.

Shared origin and differential loss of hydrogenases

Hydrogenwas proposed as one of the first candidate intermediatesin
syntrophic AOM, but fell out of favour after several genomic studies
showed that the majority of ANME genomes do not encode hydroge-
nases. However, recent studies have reported NiFe-hydrogenases in
subclades of larger ANME groups, including an ANME-1b subclade
‘Candidatus Methanoalium’ and from select ANME-1a genomes
(Fig. 1)>”. Interestingly, the genomes of the sister orders Syntropho-
archaeales and Alkanophagales encode a NiFe hydrogenase (Fig. 1),
but physiological experiments did not support arole of this hydroge-
nase in syntrophic alkane oxidation®. Our expanded phylogenomic
analysis of ANME-1confirm that genomes associated with three distinct
subclades of the ANME-1a, ANME-1b and now ANME-1c each encode a
NiFe hydrogenase operon (Fig. 1). Phylogenetic analysis of the large
subunit of these hydrogenases revealed a monophyletic group of
ANME-1-affiliated hydrogenases clustering with those of Syntropho-
archaeales and Alkanophagales (Fig. 3a and Supplementary Table 6).
Hence, the occurrence of hydrogenases appears to be an ancient
trait of the class Syntrophoarchaeia that was vertically inherited by
the common ancestor of ANME-1 and later differentially lost during
ANME-1 clade diversification. Strikingly, the occurrence of hydroge-
nase has an apparent mosaic distribution among MAGs even within
the hydrogenase-containing clades. For instance, within ANME-1c,
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only two out of five MAGs of ‘Candidatus Methanospirare jalkutatii’
(FW4382_bin126 and NA091.008_binl) encode hydrogenases, whereas
the complete ‘Candidatus Methanospirare jalkutatii’ MAG FWG175,
assembled into asingle scaffold, does not contain them. To verify that
this distribution is caused by the intraspecies variation rather than
incomplete genome assembly, we conducted independent metagen-
omic analyses that confirmed the differential presence of hydrogenase
genes within ANME strains of different rock samples (Fig. 3b, Extended
DataFig.4 and Supplementary Information). Hydrogenases thus appear
tobeapartofthe pangenomicrepertoire of certain ANME-1subclades
and species, likely preserved in the ANME-1 pangenome as an envi-
ronmental adaptation rather than as an absolute requirement for the
methanotrophic core metabolism.

The potential role of these hydrogenasesin ANME-1is still unclear.
Their phylogenetic position, next to hydrogenotrophic enzymes® of
the NiFe groups 1g and 1h (Fig. 3a; only a few affiliated to NiFe Group
3 and 4, Extended Data Fig. 5), suggest a possible involvement in
hydrogenotrophic methanogenesis, as previously proposed based

on biochemical®, environmental’", isotopic'® and metagenomic
data”, although enrichment cultivation attempts with hydrogen
have been unsuccessful'*. Recently, the genomic analysis of the
hydrogenase-encoding ANME-1b group ‘Candidatus Methanoalium’
showed the presence of distinct electron-cycling features (Rnfcomplex,
cytochrome b) and the absence of multiheme cytochromes suggest-
ing amethanogenic metabolism for this group” By contrast, ANME-1c
encodes multiheme cytochromes and lacks these electron-cycling
features. Hence, the physiological utility of hydrogenases may vary
between lineages. Whereas hydrogen is likely not feasible as the sole
intermediate for syntrophic AOM”", it could be produced by ANME-1c
asanadditionalintermediate, as proposed in amixed model involving
direct electron transfer and metabolite exchange®**.

CRISPR-based discovery of an expansive ANME-1 mobilome

ANME-1genomesrecoveredin this study contained various CRISPR-Cas
loci (Extended Data Fig. 6a), enabling the analysis of ANME-1-hosted
mobile genetic elements (MGEs) through CRISPR spacer-based
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sequence mapping®** with additional stringent filters (see Methods

and Supplementary Information). Mapping 20,649 unique ANME-1
CRISPR spacers to metagenomic assemblies from the Southern
Pescadero and Guaymas Basins (Supplementary Table 7), and the
metagenome-derived virus database IMG/VR v.3* captured 76, 69 and
88 MGE contigs larger than 10 kb, respectively, totalling 233 ANME-1
MGEs (Fig. 4a, Extended Data Fig. 6b, Supplementary Tables 8 and 9
and Supplementary Dataland 2). Notably, all IMG/VR-derived ANME-1
MGEs originated from various Guaymas Basin-derived metagenomes.
Aspreviously found for the Asgard archaeal mobilome?*, anapparent
cross-site spacer-mobilome mapping indicates a substantial fraction
of the ANME-1mobilome has migrated across these sediment-hosted
hydrothermal vent ecosystems in the Gulf of California, along with their
hosts* (Fig. 4a). Due to the apparent overlap of CRISPR repeats across
diverse ANME-1lineages, these spacers, and thus the host-MGE inter-
actions, were not further assigned taxonomically to specific ANME-1
subclades. All MGEs identified in this study are distant from all other
known viruses (Extended DataFig. 7). Alarge fraction of these ANME-1
MGEs were found to be interconnected, forming one large complex
gene-similarity network of 185 nodes and a medium-sized network of
28 nodes (Fig. 4b). The remaining 22 MGEs fell into seven small groups
of two to three nodes, and seven singletons.

Based on the conservation of signature genes encoding viral
structural proteins, we concluded that these MGEs encompass

double-stranded DNA viruses belonging to at least four widely differ-
entvirus assemblages characterized by different evolutionary histories
and distinct virion morphologies (Fig. 4¢). In particular, head-tailed
viruses of the class Caudoviricetes (realm Duplodnaviria) encode char-
acteristic HK97-fold MCPs and the large subunit of the terminase and
portal proteins®; tailless icosahedral viruses of the realm Varidnaviria
are characterized by double jelly-roll (DJR) MCPs*; viruses of the realm
Adnaviriaencode unique a-helical MCPs, which form claw-like dimers
that wrap around the viral DNA forming a helical, rod-shaped capsid®’;
and all spindle-shaped viruses encode unique, highly hydrophobic
a-helical MCPs" (Supplementary Tables 9 and 10). In total, 16 candidate
viral families were discovered in this study, including five families with
representative complete genomes (Fig. 4c). We named these candidate
virus families after Mayan gods, owing to their discovery in the Gulf of
California hydrothermal vents off the coast of Mexico (see Methods
for the etymology of the virus family names).

Tailless icosahedral ANME-1 viruses

Tailless icosahedral viruses (Varidnaviria) infecting ANME-1 are dis-
tinguished from known viruses, with all 32 representatives unique
to this study. They form three disconnected modules and, based
on gene similarity analysis, represent three unreported viral fami-
lies (Fig. 4c-f). Members of the Huracanviridae group encode single
jelly-rollMCPs related to those conserved in the kingdom Helvetiavirae,
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whereas Chaacviridae and Ixchelviridae were unified within the order
that we name Coyopavirales and do not encode MCPs with sequence
homology to other known viruses. However, structural modelling of the
candidate MCPs conserved in ‘Chaacviridae’ and ‘Ixchelviridae’ using
AlphaFold2* and RoseTTAFold* revealed unambiguous similarity
to the MCPs with a DJR fold (Fig. 4g). Phylogenetic analysis revealed
that these DJR MCPs form three highly divergent groups, MCP-1-3
(Fig. 4g and h), with MCP-2 and MCP-3 containing an additional small
beta-barrel thatis predicted to point outwards from the capsid surface
and likely mediate virus-hostinteractions.

Chaacviruses have linear dsDNA genomes with inverted termi-
nal repeats and, accordingly, encode protein-primed family B DNA
polymerases (pPolB). Chaacviruses display a remarkable genome
plasticity; not only do these viruses encode two different variants of
the DJRMCPs, MCP-1and MCP-2, but their pPolBs belong to two widely
distinct clades. Notably, the two MCP and two pPolB variants do not
strictly coincide, suggesting multiple cases of recombination and
genereplacement within the replicative and morphogenetic modules
(Fig. 4d). Maximum-likelihood analysis of these divergent groups
of pPolB sequences revealed relatedness to two separate clades of
pPolBs encoded by Wyrdviruses, spindle-shaped viruses that target
Asgard archaea*’ (Fig. 4i). In addition to pPolB, upstream of the MCP
gene, all chaacviruses encode a functionally uncharacterized protein
with homologuesin Asgard archaeal viruses of the Huginnvirus group,
where they are also encoded upstream of the MCP genes*.. This observa-
tion suggests aremarkable evolutionary entanglement between these
ANME-1 and Asgard archaeal viruses, potentially facilitated by the
ecological (thatis, deep-seavent ecosystems) rather than evolutionary
proximity of the respective hosts.

Viruses with unique structural and replicative features
The head-tailed viruses targeting ANME-1encode the typical morpho-
genetic toolkit shared between all members of the Caudoviricetes,
including the HK97-fold MCP, portal protein, large subunit of the ter-
minase and various tail proteins*>. MCP phylogeny indicates a shared
ancestry for the structural components of the viruses of ANME-1and
haloarchaea, which are related at the phylum level (Extended DataFig.
8).However, global proteome-based phylogeny* revealed a clear divi-
sion between ANME-1and haloarchaeal head-tailed viruses (Fig. 5a).
This result suggests that although these viruses encode related core
proteins for virion formation, as suggested by their interspersed MCP
phylogenetic positions (Extended Data Fig. 8), the overall proteome
contents of ANME-1and haloarchaeal viruses differ considerably, likely
reflecting the adaptation to their respective hosts and ecological con-
texts. Based on the minimum genetic distances between halovirus fami-
lies and cross-genome comparisons (Extended DataFig. 9), we propose
nine candidate Caudoviricetes families. Viruses in these families exhibit
little proteome overlap witheach other (Extended DataFig. 9), further
illustrating the vast genetic diversity of ANME-1 head-tailed viruses.
Ekchuahviridae and Ahpuchviridae are represented by ANME-1
viruses with complete 70-80 kb genomes and in the proteomic tree
formsister clades outside of the three orders of haloviruses, forming

anindependent order that we name Nakonvirales (Fig. 5a). The ahpuch-
viruses PBV299 (70.9 kb, complete, Fig. 5b) and IMGVR0573778
(74.8 kb, near complete) each encode one copy of MCP, whereas the
two ekchuahviruses GBV302 (80.6 kb, complete, Fig. 5¢) and GBV301
(71.8 kb, complete)*** each encode two MCP copies. This is unique
amongother known Caudoviricetes targeting haloarchaeaand ANME-1.
We canexclude anassembly artefact, because the initial assemblies of
the two ekchuahviruses were found to have a circular alignment with
each other (Fig. 5d). Both MCP genes are accompanied by cognate
capsid maturation protease genes, whereas all other virion morphoge-
netic proteins are encoded as single copy genes (Fig. 5¢). MCP-1is likely
ancestrally conserved, whereas MCP-2 appears horizontally transferred
from haloferuviruses. Their large phylogenetic distance suggests along
coexistence and coevolution in ekchuahviruses.

The coexistence of two divergent MCP genes is also found in
members of putative rod-shaped viruses within the family ‘Ahmun-
viridae’, whichwe propose including into the class Tokiviricetes (realm
Adnaviria)” within amonotypic order ‘Maximonvirales’ (Fig. 5e), and
viruses with predicted spindle-shaped morphology, the ‘Itzamnaviri-
dae’ (Fig. 5f-g). These two previously undescribed clades of viruses
are represented by complete linear genomes with inverted terminal
repeats and circular genomes, respectively. This contrasts another
spindle-shaped ANME-1 virus, the tepeuvirus PBV144, which has the
largest genome (72.6 kb, not yet circularized) but only one MCP. The
coexistence of divergent MCPs is unusual among Caudoviricetes, but
has been previously documented for the head-tailed T4 phage, whose
MCPs respectively form hexameric and pentameric capsomers, with
the latter occupying the fivefold icosahedral vertices*. Dual-MCP
rod-shaped viruses either formafunctional MCP heterodimer®*¢ or use
only one copy for virion formation®. It is thus yet unclear how coexist-
ing MCP genes contribute to the capsid architecture of ANME-1viruses.

Viral auxiliary functions and virus-driven ANME-1 evolution

The large genomes of head-tailed and spindle-shaped viruses of
ANME-1 exhibit strong clustering of functionally related genes: one
half of the viral genome contains all structural genes, whereas the other
half encodes diverse enzymes involved in DNA synthesis and modifi-
cation and various metabolic and defence functions (Fig. 5b-d,f,g).
Notably, the entire approximately 20 kb replicative and metabolism
moduleis missing from the circular genomes of demiitzamnaviruses.
Cross-genome alignments revealed a larger variation in gene con-
tent for the enzymatic arms in both head-tailed and spindle-shaped
viruses, frequently in the form of multigene cluster insertions (Fig. 5f
and Extended DataFig. 9). Head-tailed Ekchuahviridae and Ahpuchviri-
dae and spindle-shaped Pletoitzamnavirus and Tepeuviridae encode
RNA-primed family BDNA polymerases, which are commonly encoded
by dsDNA viruses with larger genomes*®. The structural-enzymatic arm
splitthus resembles the core- and pan-genomes of microbes, allowing
versatile interactions between these viruses and their ANME-1 hosts
(Supplementary Table10). For example, head-tailed and spindle-shaped
viruses contain auxiliary metabolic genes involved in nucleotide and
amino acid metabolisms (NrdD, QueCDEF and asparagine synthase),

Fig. 5| ANME-1viral genomes encode complex structures. a, Evolutionary
division between head-tailed viruses targeting ANME-1and haloarchaea
revealed by global proteome-based phylogenetic analyses. ANME-1viruses with
complete circular genomes are highlighted in purple, those with unconfirmed
completeness are in blue. b,c, Genome organization and gene content of

the complete genomes representing two families of ANME-1 head-tailed
viruses Ahpuchviridae (b) and Ekchuahviridae (c). Blue and purple shading
represents forward and reverse strands, respectively. MCP, PolB and ThyX
genesare highlighted in pinkand red. d, Circular alignment of the two genomes
of ekchuahviruses. Black arrowheads indicate the original contig start/end
sitesin each assembly. e, Gene content of the complete linear genome of a
representative of the rod-shaped virus familyAhmunviridae. f, Gene synteny

of three families of spindle-shaped viruses targeting ANME-1, where complete,
circularized genomes of Itzamnaviridae were found to occur in two genome
sizes, where Demiitzamnavirus representatives align with asection of the larger
Pletoitzamnavirus genomes (illustrated on the top right). Different colours
indicate 76 different protein groups. Grey shading denotes singletons. The
scale bar and percent identity shading are indicated in the bottom right. g, Gene
content of the complete linear genome of a representative of the spindle-shaped
virus family /tzamnaviridae. Dashed red box in (f) and (g) highlights an example
of amultigene cluster insertion. In (d) and (), the structural arm denotes the
genome fraction where all viral structural genes reside; the enzymatic arm
denotes the fraction where there are no structural genes and only enzyme-
encoding genes reside.
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carbon anabolism (PEPCK and GntT) and phosphate and sulfur anabo-
lism (PhoU and PAPS) (see Supplementary Table 11and Supplementary
Information).

Our analysis of viral auxiliary metabolic genes also suggested the
involvement of viruses in the ancestral metabolic diversification of
ANME-1. Specifically, the detection of genes encoding ThyX*’, which
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phylogenetic tree.

catalyses dUMP methylation into dTMP and likely boosts host thymi-
dine synthesis during viral production, in head-tailed ahpuchviruses
and ekchuahviruses and in spindle-shaped pletoitzamnaviruses (Fig.
5b,f). This coincides with the presence of thyXinthe ANME-1host, which
unlike other ANME lineages and short-chain alkane-oxidizing archaea,
donotencode the non-homologous thymidylate synthase gene, thyA*
(Fig.1). The dichotomous distribution of the functional analogues thyA/
thyXis prevalent across microbes and, notably, in itzamnaviruses, thyX
and thyA may exist in different members (Fig. 5f,g). Phylogenetic analy-
sis of the ThyX show it was encoded by ANME-1and their viruses form
adistinct clade distant from those encoded by bacteria, archaea and
other Caudoviricetes (Fig. 6 and Extended Data Fig.10a,b). Strikingly,
ThyX encoded by itzamnaviruses form a well-supported monophyl-
etic group at the base of this divergent clade and the deep-branching
ANME-1cencode ThyX that belongto the second deepest branch. Nota-
bly, the Guaymas Basin ANME-1c bin (B22_G9) contains both a genomic
thyX, and thyXencoded by a partial itzamnavirus-derived contig (Fig. 6
and Extended Data Fig. 10). Ekchuahviruses and ahpuchviruses likely
acquired thyXindependently at a later stage.

The above analyses suggest thyX was first acquired by
spindle-shaped ANME-1 viruses, then transmitted into the common
ancestors of ANME-1, displacing thyA. Due to higher promiscuity of
viral DNA polymerases and the intense arms race, viral genes are known
to evolve rapidly*®, which s in line with the extreme divergence of the
ANME-1/viral thyX from the canonical clade.

Discussion
In this study, metagenomic characterization of a recently discovered
hydrothermal vent environment in the Southern Pescadero Basin led
to the expansion of the known ANME-1 diversity to include ANME-1c
and their viruses. ANME-1c is a deep-branching family that so far has
only been detected in high temperature hydrothermal environments.
Comparative genomics indicates an evolutionary continuum within
the class Syntrophoarchaeia, because ANME-1cretained various ances-
tral features also found in Syntrophoarchaeales and Alkanophagales,
including hydrogenases. The phylogeny of these hydrogenases is con-
gruent with the genome phylogeny indicating an apparent vertical
inheritance and differential loss of these genesin ANME-1, suggesting
these hydrogenases have anonobligatory physiological role, but may
confer alongstanding selective advantage.

Our study also uncovered a putative viral source of the
ANME-1-specific thymidylate synthase gene thyX that replaced the
functional analogue thyA gene. ThyX differs from ThyA in its use of

NADPH as the electron donor when transferring the methyl group
from the C, intermediate H,MPT = CH, to dUMP to yield dTMP, with-
out oxidizing the H,MPT moiety*. H,MPT is a core cofactor constantly
recycled through the Wood-Ljungdahl pathway that fuels ANME-1
anabolism? NADPH abundance is highly dependent on the type of
host energy metabolism and redox state®. The virus-induced ThyA to
ThyX transition may have played arole in the metabolic diversification
and subsequent ecological expansion of the ANME-1 ancestors. C,
anabolism appears to be more divergent across ANME lineages than
C, energy metabolism?, which may have also originated from viruses
and other MGEs.

The expansive virome of ANME-1, as discovered by this study, is dis-
tantfromallknown viruses, forming 16 previously undescribed families
and at least three unreported orders. They are characterized by many
uniquestructural and replicative features, substantially expanding our
appreciation of thearchaeal virus diversity and their ecological impor-
tance. These findings open the door for targeted culture-dependent
and culture-independent exploration of ANME virus—-hostinteractions
thatare expected to play a critical role in the biogeochemical cycling®
in these productive methane-driven ecosystems'.

While this paper wasinreview, a paper describing the enrichment
ofastrain of ‘Candidatus Methanoxibalbensis ujae’ under thermophilic
methanotrophic conditions was published™.

Methods

Sampling and incubation

Four rock samples were collected from the 3.7 km-deep Auka vent
field in the Southern Pescadero Basin (23.956094N, 108.86192W)***>,
Sample NA091.008 was collected in 2017 on cruise NAO91 with the
Eexploration vessle Nautilus and incubated as described previously™*.
Samples12,019 (50200-R1),11,719 (S0193-R2) and 11,868 (S0197-PC1),
the latter representing a lithified nodule recovered from a sediment
push core, were collected with Remotely operated vehicle SuBastian
and Research vessel Falkor on cruise FK181031 in November 2018.
These samples were processed shipboard and stored under anoxic
conditions at 4 °C for subsequent incubation in the laboratory. In the
laboratory, rock samples 12,019 and 11,719 were broken into smaller
pieces under sterile conditions,immersedin N,-sparged sterilized arti-
ficial seawater and incubated under anoxic conditions with methane,
as described previously for NA091.008 (ref. 34). Additional sampling
information can be found in Supplementary Table 1. Mineralogical
analysis by X-ray Powder Diffraction (XRD) identified barite in sev-
eral of these samples, collected from two locations in the Auka vent
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field, including on the western side of the Matterhorn vent (11,719,
NA091.008), and one oil-saturated sample (12,019) recovered from the
sedimented flanks from the southern side of Z vent. Our analysis also
includes metagenomic data from two sediment cores from the Auka
vent field (DR750-PC67 and DR750-PC80) collected in April 2015 with
the ROV Doc Ricketts and R/V Western Flyer (MBARI2015), previously
published (ref. 23).

Fluorescence insitu hybridization

Samples were fixed shipboard using freshly prepared paraformalde-
hyde (2 vol%in 3x Phosphate Buffer Solution (PBS), EMS15713) at 4 °C
overnight, rinsed twice using 3x PBS, and stored in ethanol (50% in
1x PBS) at —20 °C until processing. Small pieces (<1 cm®) of the mineral
sample NA091.008 were gently crushed in a sterile agate mortar and
pestleinafreshly prepared, filter sterilized 80% ethanol - 1x PBS solu-
tion. About 500 pl of the resulting mixture was sonicated three times in
15 second bursts on a Branson Sonifier W-150 ultrasonic cell disruptor
(level 3) onice with a sterile remote-tapered microtip probe inserted
into theliquid. Cells were separated from the mineral matrix using an
adapted protocol of density separation using Percoll (Sigma P4937)’.
The density-separated cells were filtered on 25 mm polycarbonate
filters with a pore size of 0.22 um (Millipore GTTP2500), and rinsed
using 1x PBS. Fluorescence in situ hybridizations were carried out as
described previously’ using al:1 mixture of an ANME-1targeted probe
(ANME-1-350° labelled with Cy3) and the general bacterial probe mix
EUB338I-1ll (https://probebase.csb.univie.ac.at/), labelled with Alexa-
488ina35%formamide solution (VWR EM-FX0420-8). Hybridized sam-
ples wereimaged using a x100 objective usingaZeiss Elyra structured
illumination microscope with the Zen Black software.

DNA extraction and sequencing

DNA extraction from the mineral samples followed previously pub-
lished protocols®. Metagenomic analysis from the extracted genomic
DNA was outsourced to Quick Biology (Pasadena, CA) for library prepa-
ration and sequencing. Libraries were prepared with the KAPA Hyper
plus kit using 10 ng of DNA as input. This input was subjected to enzy-
matic fragmentationat37 °Cfor10 min. After end repair and A-tailing,
the DNA wasligated withan IDT adaptor (Integrated DNA Technologies
Inc.). Ligated DNA was amplified with KAPA HiFi HotStart ReadyMix (2x)
for1lcycles. Post-amplification cleanup was performed with 1x KAPA
pure beads. The final library quality and quantity were analysed and
measured by Agilent Bioanalyzer 2100 (Agilent Technologies) and Life
Technologies Qubit 3.0 Fluorometer (Life Technologies), respectively.
Finally, the libraries were sequenced using 150 bp paired-end reads
on Illlumina HiSeq4000 Sequencer (lllumina Inc.). After sequencing,
primers and adaptors were removed from all libraries using bbduk
(https://sourceforge.net/projects/bbmap/) withmink = 6 and hdist =1
as trimming parameters, and establishing a minimum quality value of
20 and a minimal length of 50 bp. For nanopore sequencing of incu-
bated samples, DNA was amplified using multiple displacement ampli-
fication with the QIAGEN REPLI-g Midi kit before library preparation.
Oxford Nanopore sequencing libraries were constructed using the
PCR-freebarcoding kit and were sequenced on PromethlON platform
by Novogene Inc.

Metagenomic analysis

The sequencing reads from unincubated rocks were assembled indi-
vidually and in a coassembly using SPAdes v.3.12.0 (ref. 53). From the
de-novo assemblies, we performed manual binning using Anvio v.6
(ref. 54). We assessed the quality and taxonomy affiliation from the
obtained bins using GTDB-tk v.1.5.0 (ref. 55) and checkM v.1.13 (ref.
56). Genomes affiliated to ANME-1 and Syntrophoarchaeales were
further refined via a targeted-reassembly pipeline. In this pipeline,
the original reads were mapped to the bin of interest using bbmap
(https://sourceforge.net/projects/bbmap/), then the mapped reads

were assembled using SPAdes and the resulting assembly was filtered
discarding contigs below1,500 bp. This procedure was repeated during
several rounds (between 11 and 50) for each bin, until we could not see
animprovement in the bin quality. Bin quality was assessed using the
checkM and considering the completeness, contamination (<5%), N50
value and number of scaffolds. The resulting bins were considered as
MAGs. The sequencing reads for theincubated rocks 12,019 and 11,719
were assembled as described previously for NAO91.R00834. Addition-
ally, the assembly of 12,019 was then scaffolded using Nanopore reads
through twoiterations of LRScafv.1.1.10 (ref. 57). The final assemblies
were binned using metabat2 v.2.15 (ref. 58) using the default setting.
Automatic metabolic prediction of the MAGs was performed using
prokkav.1.14.6 (ref. 59) and curated with the identification of PFAM and
TIGRFAM profiles using HMMER v.3.3 (hmmer.org), KEGG orthologs
with Kofamscan®® and of COGs and arCOGs motifs®'. To identify mul-
tiheme cytochromes in our genomes, we searched the motif CXXCH
across the amino acid sequences predicted for each MAG. Similar
metabolic predictions were carried out with publicly available ANME-1
and Syntrophoarchaeales genomes to compare the metabolic potential
ofthe whole ANME-1order. Alist of the genomes used in this study can
be found in Supplementary Table 2. For the comparison of different
genomic features among the ANME-1 genomes, we searched for spe-
cific proteins using the assigned COGs, arCOGs and KEGG identifiers
(Supplementary Table 5).

Genomic relative abundance analysis

We used the software coverM v.0.5 (https://github.com/wwood/Cov-
erM) to calculate the genomic relative abundance of the different
organisms of our samples, using all the MAGs we have extracted from
our metagenomic analysis. We ran the software with the following
additional parameters for dereplication (‘~dereplication-ani 95-
dereplication-prethreshold-ani 90-dereplication-precluster-method
finch’). Results were visualized in R v.4.2.1.

OGT analysis

We calculated the OGT for all ANME-1and Syntrophoarchaeales MAGs
includedin our analysis (Supplementary Table 2) using the OGT_predic-
tion tool described in Sauer and Wang** with the regression models for
Archaea excluding rRNA features and genome size.

Analysis of hydrogenase operons

Because only two of the five genomes of ‘Candidatus Methanospirare
jalkutatii’ have an operon encoding a hydrogenase, we performed
additional analysis to better understand this intraspecies distribu-
tion. On the one hand, we mapped the metagenomic reads from sam-
ples with genomes of ‘Candidatus Methanospirare jalkutatii’ (12019,
FW4382_bin126, NA091.008, PR1007, PR1031B) to the MAGs containing
the hydrogenase operon (FW4382_bin126, NA091.008_binl) to checkif
reads mapping this operon are also presentin samples fromwhere the
MAGs without the hydrogenase were recovered. For mapping thereads,
weused bowtie2v.2.4.2 (ref. 62) then transformed the sam files tobam
using samtools (http://www.htslib.org/) and extracted the coverage
depth for each position. Additionally, we performed a genomic com-
parison of the genomes with a hydrogenase operon (FW4382_bin126,
NA091.008 binl) with the genome FWG175 that was assembled into a
single scaffold. For this, we used the genome-to-genome aligner Sibe-
lia v.3.0.7 (ref. 63) and we visualized the results using Circos (http://
circos.ca/).

Phylogenetic analysis

For the phylogenomic tree of the ANME-1 MAGs, we used the list
of genomes present in Supplementary Table 2. As marker genes,
we used 31 single copy genes (Supplementary Table 5) that we
extracted and aligned from the corresponding genomes using
anvi-get-sequences-for-hmme-hits from Anvio v.6 (ref. 54) with the
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parameters ‘~return-best-hit-max-num-genes-missing-from-bin 7-
partition-file’. Seven genomes missed more than seven marker genes
and were not used for the phylogenomic reconstruction presentin Fig.
1 (ANME-1UWMA-0191, Syntrophoarchaeum GoM_oil, ANME-1 ERB7,
ANME-1Co_bin174, ANME-1Agg-C03, PB_MBMC 218, FW4382_bin035).
The concatenated aligned marker gene set was then used to calculate
aphylogenomictree with RAXML v.8.2.12 (ref. 64) using a partition file
to calculate differential models for each gene the following param-
eters -m PROTGAMMAAUTO -f a -N autoMRE -k. The tree was then
visualized using iTol®. For the clustering of the MAGs into different
species, we dereplicated the ANME-1 MAGs using dRep v.2.6.2 with
the parameter -S_ani 0.95' (ref. 66). A smaller phylogenomic tree was
calculated with the genomes containing hydrogenase genes (Fig. 3).
For this tree we also used Anvio v.6 and RAXML v.8.2.12 with the same
parameters but excluding the flag ‘—max-num-genes-missing-from-bin’
from the anvi-get-sequences-for-hmm-hits command toincludein the
analysis those genomes with alower number of marker genes that still
contain hydrogenase genes (PB_.MBMC_218, FW4382_bin035, ANME-1
UWMA-0191).

The 16S rRNA gene phylogenetic tree was calculated for the 16S
rRNA genes predicted from our genome dataset that were full length.
Weincluded these full-length16S rRNA genes in the SILVA_132_SSURef_
NR99 database® and with ARB v.6.1 (ref. 68) we calculated a 16S phy-
logenetic tree using the maximume-likelihood algorithm RAXML with
GTRGAMMA as the model and a 50% similarity filter. In total, 1,000
bootstrap analyses were performed to calculate branch support values.
The tree with the best likelihood score was selected.

For the construction of the hydrogenase phylogenetic tree (Sup-
plementary Table 6), we used the predicted protein sequence for the
large subunit of the NiFe hydrogenase present in the genomes of our
dataset (Supplementary Table 2), asubset of the large subunit hydroge-
nases presentinthe HydDB database® and the predicted hydrogenases
presentinanarchaeal database using the COG motif for the large NiFe
hydrogenase (COG0374) with the Anvio v.6 software. For the mcrD gene
phylogeny, we used the predicted protein sequences of mcrD in the
ANME-1c genomes and inthe previously mentioned archaeal database
with the TIGR motif TIGR03260.1usingalso the Anvio v.6 software. The
list of genomes from the archaeal database used in the analysis can be
found in Supplementary Table 6. For both phylogenies, the protein
sequences for the analysis were aligned using clustalw v.2.1with default
settings®. The aligned file was used to calculate a phylogenetic tree
using RAXML v.8.2.12 (ref. 64) with the following parameters -m PROT-
GAMMAAUTO -fa-N100 -k’ The tree was then visualized using iTol®.

For the distribution and phylogenetic analysis of MCP and pPolB,
known sequences encoded by various bacterial and archaeal viruses
were used to build a Hidden Markov Model (HMM) viahmmer v.3.3.2.
The HMM was then used to capture the corresponding components
in proteomes of ANME-1 viruses and other MGEs. All sequences were
then aligned using MAFFT v.7.475 (ref. 70) option linsi and trimmed
using trimAl v1.4.1 (ref. 71) option gappyout for pPolB and 20% gap
removal option for MCP. Maximum-likelihood analyses were carried
out through IQtree v.2.1.12 (ref. 72) using model finder and ultrafast
bootstrap with2,000 replicates. The phylogenetic tree was visualized
and prepared usingiTol®.

For the distribution and phylogenetic analysis of ThyX, all ThyX
sequences annotated by EggNOG mapper” v.2 in the genomes of
ANME-1and their MGEs were used to createa HMM as described above,
and used to search for close homologues in the GTDB202 database,
IMGVR V.3 database and againin the proteomes and ANME-1and their
MGEsinthis study. Thisyielded 261 sequences, whichwas thenaaligned
and phylogenetically analysed as for pPolB.

CRISPR analysis
The CRISPR-Cas systems from the ANME-1 genomes and various
metagenomic assemblies were annotated using CRISPRCasTyper v.1

(ref. 33). CRISPR spacer mapping on MGEs was carried out as previ-
ously described* with the following modifications. To filter out unre-
liable sequences that may have arisen during MAG binning, we took a
conservative measure of only retaining CRISPR repeats identified in
at least three ANME-1 contigs. We additionally analysed the CRISPR
repeats found in the Alkanophagales sister clade to ANME-1using the
same approach, whichwere found to have no overlap with the ANME-1
CRISPR repeats. To avoid accidental mapping to unrelated MGEs, we
applied asecond stringent criteria of only retaining MGEs with at least
three ANME-1protospacers. MGEs larger than 10 kb were retained for
further analyses in this study.

MGE network analysis and evaluation

Openreading frames in all CRISPR-mapped MGE contigs were identi-
fied using the PATRIC package’. Gene similarity network analyses
were done using VCONTACT v.2.0 (ref. 75) using the default reference
(RefSeq202), with head-tailed viruses targeting haloarchaea and
methanogens added as extra references*. Inverted and direct termi-
nal repeats were detected using CheckV v.1.01. and the PATRIC pack-
age to determine genome completeness. Clustering confidence were
obtained with default setting as described in ref. 75, where the Pvalue
was obtained via a one-sided Mann-Whitney U test and the topology
confidenceis obtained by multiplying the quality score of the subclus-
ter and the Pvalue.

MGE annotation and virus identification

MGE proteomes are annotated using sensitive HMM profile-profile
comparisons with HHsearch v.3.3.2 (ref. 76) against the following pub-
licly available databases: Pfam 33.1, Protein Data Bank (25March 2021),
CDDV.3.18, PHROG and uniprot_sprot_vir70 (9 February 2021)”". Puta-
tive MCP of Chaacviridae and Ixchelviridae could not be identified
using sequence similarity-based approaches. Thus, the candidate
proteins were subjected to structural modelling using AlphaFold2
(ref. 38) and RoseTTAFold v.1.1.0 (ref. 39). The obtained models were
visualized using ChimeraX”®and compared with the reference structure
ofthe MCP of corticovirus PM2 (PDBid: 2vvf). The contigs containing
identifiable viral structural proteins are described as viruses. The
remaining contigs are described as unclassified MGEs, including cir-
cular elements that are most likely plasmids of ANME-1 and possible
viruses enveloped by yet unknown structural proteins.

Genome-scale virus comparisons

The viral genomes were annotated using Prokka v.1.14.6 (ref. 59) to
produce genbank files. Select genbank files were then analysed using
Clinker v.0.0.23 (ref. 79) to produce the protein sequence clustering
and alignments. Proteome-scale phylogeny for the head-tailed viruses
were carried out via the VipTree server®.

Etymology

Descriptions of proposed ANME-1c family and species. Family
‘Candidatus Methanospirareceae’. N.L. neut. n.methanum methane;
N.L. pref. methano-, pertaining to methane; L.v. spirare, to breathe.
Proposed classification: class Methanomicrobia, order ‘Candidatus
Methanophagales’. The type species and strain is ‘Candidatus Metha-
nospirare jalkutatii’ FWG175.

‘Candidatus Methanoxibalbensis ujae’. N.L. neut. n. metha-
num methane; N.L. pref. methano-, pertaining to methane; N.L. adj.
xibalbensis, from the place called Xibalba, the Mayan word for the
underworld; N.L. neut. n. Methanoxibalbensis methane-cycling organ-
ism present in deep-sea hydrothermal sediments; N.L. neut. adj. ujae,
from the word uja, meaning rock in Kiliwa, an indigenous language of
the native peoples of Baja California, referring to the high abundance
of this species in rock samples. Proposed classification: class Metha-
nomicrobia, order ‘Candidatus Methanophagales’, family ‘Candidatus
Methanoxibalbaceae’, genus ‘Candidatus Methanoxibalbensis’.
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The material type is the genome designated NA091.008_bin2
(GCA_026134085.1), a MAG comprising 1.99 Mbp in 86 scaffolds. The
MAG wasrecovered from mineral sample (NA091.008) from the hydro-
thermal environment of South Pescadero Basin.

‘Candidatus Methanospirarejalkutatii’. N.L. neut. n. methanum
methane; N.L. pref. methano-, pertaining to methane; L.v. spirare, to
breathe; N.L. neut. n. Methanospirare methane-breathing organism;
N.L.masc. n.jalkutatii,amythical dragon fromstories of the indigenous
Paipai people from Northern Baja, California. This dragon inhabited
a beautiful place made of rocks and water similar to the Auka hydro-
thermal vent site. Proposed classification: class Methanomicrobia,
order ‘Candidatus Methanophagales’, family ‘Candidatus Methanox-
ibalbaceae’, genus ‘Candidatus Methanospirare’.

The material typeis the genome designated FWG175 (CP110382.1),
asingle-scaffolded MAG comprising 1.62 Mbp in one circular scaffold.
This MAG was recovered from a methane-fed incubation of the mineral
sample 12,019 retrieved from the hydrothermal environment of South
Pescadero Basin.

Proposed classification of ANME-1viruses

The order Coyopavirales is proposed within the existing class Tec-
tiliviricetes, after Coyopa, the god of thunder in Mayan mythology. It
contains taillessicosahedral viruses with previously unreported class
of DJRMCPs and little proteome overlap with known viruses. The fam-
ily Chaacviridae is proposed within Coyopavirales, after Chaac, the
god of death inthe Mayan mythology. It is characterized by a uniform
10-11 kb genome and a gene encoding protein-primed family B DNA
polymerase (pPolB). We propose the genus names Homochaacvirus and
Antichaacvirus (fromhomo, for samein Greek, and anti, for opposed in
Greek, toemphasize the inversion of agene moduleincluding the pPolB
gene). Six complete genomes of chaacviruses have been obtained:
Methanophagales virus PBV304 (OP548099) within sepcies Homo-
chaacvirus pescaderoense, Methanophagales virus PBV305 (OP548100)
within species Homochaacvirus californiaense, Methanophagales virus
GBV261, Methanophagales virus GBV265, Methanophagales virus
GBV275and Methanophagales virus PBV266 (OP413841) within species
Antichaacvirus pescaderoense. The candidate family Ixchelviridae is
proposed within Coyopavirales, after Ix Chel, goddess of midwifery
and medicine in the Mayan mythology. Ixchelviridae is represented
by Pescadero Basin viruses PBV176 and PBV180, with assembly com-
pleteness unknown.

Candidate family Huracanviridae is proposed without higher-level
ranking classification, after Hurancan, god of wind, storm and fire in
Mayan mythology. It contains tailless icosahedral viruses with single
jelly-roll MCPs. It is represented by Pescadero Basin viruses PBV264
and PBV238, with assembly completeness undetermined.

The order Nakonvirales is proposed within Caudoviricetes, after
Nakon, the most powerful god of war in Mayan mythology. It contains
head-tailed viruses with around 80 kb genomes and HK97-fold MCPs.
The family Ahpuchviridae (after Ah Puch, the god of deathin the Mayan
mythology) includes one genus, Kisinvirus, (after Kisin, another Mayan
god of death) and is represented by a single virus, Methanophagales
virus PBV299 (OP413838) within species Kisinvirus pescaderoense. The
family Ekchuahviridae (after Ek Chuah, the patron god of warriors and
merchantsin Mayan mythology), is represented by one genus, Kukul-
kanvirus (after Kukulkan, the war serpent in the Mayan mythology). It
includes Methanophagales virus GBV301 (OP880252) within species
Kukulkanvirus guaymasense and Methanophagales virus GBV302
(OP880253) within species Kukulkanvirus mexicoense, each encod-
ing two divergent HK97-fold MCPs with their own capsid maturation
proteases.

Seven other candidate families of head-tailed viruses are proposed
without complete genome representatives. They formaphylogenetic
cluster sister to Haloviruses (Fig. 5a), and according to the phylogenetic
classifications of the latter, likely form multiple unclassified order-level

clades. These candidate families are Acanviridae, Alomviridae, Baca-
bviridae, Baalhamviridae, Cabrakanviridae, Cacochviridae and Chic-
canviridae, all named after gods in Mayan mythology.

The order Maximonviralesis proposed within Tokiviricetes, after
Maximon, agod of travellers, merchants, medicine men/women, mis-
chiefand fertility in Mayan mythology. It contains rod-shaped viruses
of asingle family Ahmunviridae (after Ah Mun, the god of agriculture
in Mayan mythology) with a single genus Yumkaaxuvirus (after Yum
Kaax, the god of the woods, the wild nature and the hunt in Mayan
mythology). Itisrepresented by the complete linear genome of Metha-
nophagales virus PBV300 (OP413840) within species Yumkaaxvirus
pescaderoense.

The family Itzamnaviridae is named after Itzamna, lord of the heav-
ensand nightand day in Mayan mythology. It contains spindle-shaped
viruses that differ in genome sizes and are subdivided into two genera,
which we propose naming Demiitzamnavirus and Pletoitzamnavirus
(after demi- for half or partial, derived via French from Latin dime-
dius and pleto for full in Latin). They are respectively represented by
complete genomes of Methanophagales virus GBV170 within species
Demiitzamnavirus guaymasense, Methanophagales virus GBV303
(OP880254) within species Demiitzamnavirus mexicoense and Metha-
nophagales virus PBV082 (OP413839) within species Pletoitzamnavirus
pescaderoense.

Candidate families Tepeuviridae and Votanviridae, named after
askye god Tepeu and alegendary ancestral deity Votan, respectively,
are proposed for two additional new clades of spindle-shaped viruses.
Their genome representatives Tepeuvirus PBV144 and Votanvirus
IMGVR0294848 are not yet circularized and are thus incomplete.

Reporting summary
Furtherinformation onresearch designis availablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

Raw metagenome reads, assembled metagenome bins and virus
sequence data are available in the NCBI database under BioProject
accession numbers PRINA875076 and PRJINA721962. Complete ANME-1
virus genomes representing new viral taxa can be found on GenBank
under accession numbers OP413838, OP413839, 0P413840, OP413841,
0OP548099,0P548100,0P880252,0P880253 and OP880254. CRISPR
spacer sequences of ANME-1 and all genomic sequences of ANME-1
MGEs are also provided as supplementary data. For virus genomic
analysis the following databases were used in this study: Protein Data
Bank (namely, the major capsid protein of phage PM2, PDB id: 2vvf;
https://www.rcsb.org/structure/2vvf), CDD v3.18, PHROG (https://
phrogs.Imge.uca.fr/) and uniprot_sprot_vir70 (09/02/2021).
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Extended Data Fig. 6 | Features of ANME-1CRISPR/Cas and spacer-mobilome
mapping. (a) CRISPR/Cas features in the two most contiguous ANME-1c MAGs
characterized using CCtyper. Black bars indicate CRISPR arrays. (b) Contig
lengths of all ANME-1 mobile genetic elements (MGEs) found in this study. Note
that contig length does not necessarily indicate completeness as IMG/VR v.3 is
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more enriched with head-tailed viruses (with genomes sized up 80 kb) whereas
the contigs obtained directly from Pescadero/Guaymas basin metagenomic
assemblies contain many tailless icosahedral viruses whose genomes are

sized around 10 kb. (¢) Distribution of protospacers within the ANME-1 mobile
elements found in S. Pescadero and Guaymas basins.
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W

Extended Data Fig. 7| Gene-sharing networks produced via vCONTACT2 indicate that all ANME-1 mobile genetic elements (magenta) are well distinguished
from the known haloarchaeal viruses, or Haloviruses, (blue) and other viruses with known hosts (orange).
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Study description Metagenomic analysis of hydrothermal vent rocks

Research sample Sediment and Rocks collected from hydrothermal vents. The samples were chosen due to their geographical proximity to the vents
with diffusive venting, which provide nutrients that fuel the local ecosystem. Some of the rocks were incubated under anoxic
conditions.

Sampling strategy Samples were collected in the field and preserved until DNA extraction in the laboratory. Sample sizes were empirically determined,

typically 5 g, to allow extraction of sufficient amount of DNA. For incubated samples, sample sizes were also empirical determined,
typically 1ml in volume, to allow extraction of sufficient amount of DNA while causing the least amount of disturbance to the existing
microbiome.

Data collection Metagenomic sequencing data via lllumina HiSeq4000 were collected by QuickBiology (Pasadena, CA, USA). Metagenomic
sequencing data for incubated samples was conducted via Oxford Nanopore PromethlON by Novogene Inc.

Timing and spatial scale  The sampling of the initial rock and sediment samples were carried out at the Auka vent field, Pescadero basin, Baja California Mexico
on October 2017 and November 2018 (see Supplementary Table 1 for details).The sampling of rock incubations were sampled inside
of the anaerobic chamber at Caltech between November 8, 2018 and December 15, 2019 with an increasing interval from 3 weeks to

8 months.
Data exclusions All sequencing data were used for analyses without exclusion.
Reproducibility The paper focuses on bioinformatics analyses, and all analyses can be reproduced using publicly available software packages

provided in the Methods section. No specific incubation conditions had experimental replicates.

>
Q
Q
(e
=
)
o
o)
=
o
=
_
D)
§o)
o)
=
>
Q@
w
c
=
3
Q
<L




Randomization The experiments were designed to discover novel organisms from any possible condition. The work does not focus on the effect of
environmental parameters.

Blinding We do not carry out randomized testing on experimental subjects, as the experiments were designed to discover novel organisms
from any possible condition. There is no visual link between the samples and the microbes of interest, and there are usually 2 months
between the time of sampling and the time of sequencing data output, blinding neither increase nor decrease bias.

Did the study involve field work? |X| Yes |:| No

Field work, collection and transport

Field conditions Field sites are 3.6 km below sea level, collected at natural conditions on the dates and location provided in the Methods section and
Supplementary Table 1.
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Location [23.956094 N 108.86192 W][23.954036 N 108.86296 W][23.942356 N 108.855825 W][23.954027 N 108.863324 W]

Access & import/export  Sample collection permits for FK181031 (25/07/2018) were granted by la Direccién General de Ordenamiento Pesquero y Acuicola,
Comisién Nacional de Acuacultura y Pesca (CONAPESCA: Permiso de Pesca de Fomento No. PPFE/DGOPA-200/18) and la Direccion
General de Geografia y Medio Ambiente, Instituto Nacional de Estadistica y Geografia (INEGI: Autorizacién EG0122018), with the
associated Diplomatic Note number 18-2083 (CTC/07345/18) from la Secretaria de Relaciones Exteriores - Agencia Mexicana de
Cooperacion Internacional para el Desarrollo / Direccién General de Cooperacién Técnica y Cientifica. Sample collection permit for
cruise NA0O91 (18/04/2017) was obtained by the Ocean Exploration Trust under permit number EG0072017.

Disturbance Samples were collected outside the major chimney area to result in minimal influence on the macrofauna and the structural integrity
of the chimneys.
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