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Abstract 

The protocadherin proteins are cell adhesion molecules at the crossroad of signaling pathways 

playing a major role in neuronal development. It is now understood that their role as signaling 

hubs is not only important for the normal physiology of cells but also for the regulation of 
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hallmarks of cancerogenesis. Importantly, protocadherins form a cluster of genes that is 

regulated by DNA methylation. We have identified for the first time that PCDHB15 gene is 

DNA hypermethylated on its unique exon in the metastatic melanoma-derived cell lines and 

patients’ metastases compared to primary tumors. This DNA hypermethylation silences the 

gene, and treatment with the DNA demethylating agent 5-aza-2’-deoxycytidine reinduces its 

expression. We explored the role of PCDHB15 in melanoma aggressiveness and showed that 

over-expression impairs invasiveness and aggregation of metastatic melanoma cells in vitro and 

formation of lung metastasis in vivo.  

These findings highlight important modifications of the methylation of the PCDH genes in 

melanoma and support a functional role of PCDHB15 silencing in melanoma aggressiveness. 

 

Introduction 

Melanoma is a type of cancer with increasing incidence 1 and, until recently, was often fatal 

once it metastasized to distant organs. New therapeutic approaches, including the molecular 

targeting of activated oncogenes and immune-based therapies, even in patients with advanced 

disease 2. Nevertheless, many patients develop therapy resistance or do not respond to 

treatment. Therefore, the identification of molecular traits underpinning melanoma 

aggressiveness remains an ongoing challenge not only to improve treatment, but also to 

improve diagnosis and prognosis 3.  

Besides the activating mutations in the BRAF and NRAS oncogenes, found in significant 

proportions of primary melanomas, important epigenetic changes occur in melanoma. These 

modifications include in particular aberrant DNA methylation of cytosine (5-methylcytosine 

(5mC)) at CpG sites - including both hyper- and hypomethylation-, loss of 5-

hydroxymethylcytosine (5hmC), histone modifications and ncRNA expression 4–6. Several 

studies have associated DNA methylation changes with melanoma initiation and progression 7–
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10 and genome-wide analysis correlated DNA methylation signatures and silenced genes to 

different melanoma stages 11–19. We have previously provided evidence supporting that aberrant 

DNA methylation regulates genes involved in melanoma progression and aggressiveness by 

identifying a microRNA, miR-199a-3p, regulated by DNA methylation and whose up-

regulation led to reduced tumor cell invasion in vitro and in vivo 20. Next, we used a multi-step 

strategy to identify the aberrant DNA methylation patterns that characterize human melanoma 

aggressiveness independently of the physiological background 21. Among the aberrant 

methylated CpGs pattern that mark melanoma aggressiveness in patient primary tumors, we 

found the PCDHB15 gene. This gene belongs to a cluster encoding for adhesion molecules, the 

protocadherins, related to the cadherin superfamily. Some protocadherins are predominantly 

expressed within the central nervous system during development, suggesting important 

neurobiological roles. Others, expressed in tissues at adult stages, seem to regulate cellular 

differentiation, tissue regeneration and maintenance. Interestingly, while their functional role 

remains mostly elusive, loss of protocadherins has been linked to several cancer types 22. In 

particular, a region of 800kb, which includes protocadherins  and  families, was reported to 

display long-range epigenetic silencing (LRES) in breast cancer 23, Wilm’s tumor 24 and 

colorectal cancer 25. In neuroblastoma, aberrant DNA methylation of the PCDHB family was 

proposed as part of the CpG island methylator phenotype (CIMP) 26 and was strongly associated 

with poor prognosis 27–29.  

Here, we show that PCDHB15, a member of this cluster of genes, marks melanoma 

aggressiveness and plays a functional role in regulating hallmarks of cancerogenesis. We 

observed that PCDHB15 is hypermethylated at the 5’ end of its unique exon and is not 

expressed in two metastatic melanoma-derived cell lines, WM266-4 and WM983A. TCGA data 

confirm that PCDHB15 hypermethylation is observed in patient metastasis samples compared 

to primary tumor samples. Interestingly, the expression of this gene was modulated upon 
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treatment with the DNA demethylating agent 5-aza-deoxycytidine (5azadC). In addition, over-

expression of PCDHB15 impaired metastatic melanoma cell invasiveness and aggregation in 

vitro, and metastasis formation in vivo. For the first time, our findings support a potential role 

of PCDHB15 silencing contributing to melanoma aggressiveness by important DNA 

methylation modifications of the gene. 

 

Material and methods 

 

Cell Culture   

The WM115 and WM266-4 cells, as well as WM983A and WM983B cells, were established 

from a primary VGP melanoma and a metastasis from a same patient, respectively30. In vitro, 

the cell lines with metastatic origin (WM266-4, WM983B) displayed a higher invasive potency, 

compared to cells from primary melanomas (WM115, WM983A), as assessed in 3D spheroids 

invasion assays31 and human reconstructed skin models 32–34. 

The WM266-4 and WM115 cells (obtained from the American Type Culture Collection) were 

grown in DMEM (Invitrogen, France) supplemented with 10% fetal bovine serum (Sigma, 

France), 2 mM glutamine, 100 UI/mL penicillin-streptomycin, and in a 5% CO2 atmosphere. 

The WM983A and WM983B cells (purchased from the Coriell Institute) were grown in 

MCDB153 medium with 20% Leibovitz L-15 medium (v/v), 2% FBS heat-inactivated (v/v), 5 

μg/mL insulin and 1.68 mM CaCl2. The numerations of viable cells were performed using an 

Automated Cell Viability Analyzer (Beckman Coulter Vi-Cell). 

 

Establishment of stable cell lines 

WM266-4 cells were seeded at 6x105
 cells in 60 mm dishes and transfected 24h later using 

Lipofectamine 2000 (Invitrogen) with 1 µg of the pCMV6-PCDHB15 plasmid (DDK-tagged 
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PCDHB15, RC207719, Clinisciences) or the pCMV6-MOCK plasmid corresponding to the 

same plasmid without the PCDHB15 cDNA sequence (obtained from the pCMV6-PCDHB15 

plasmid by digestion with by EcoRI and XhoI, and self-ligation with a linker). The selection of 

transfected cells was performed in a medium containing 0.8 mg/mL of geneticin (Gibco). Cell 

lines expressing PCDHB15 were established from 3 of 15 isolated clones. PCDHB15 

expression was characterized by RT-qPCR . The control cell line (WM266-4 MOCK) is a pool 

of transfected cells with the pCMV6-MOCK plasmid. Transfected cells were maintained in 

culture in a medium containing 0.6 mg/mL geneticin for 10 passages. These modifications did 

not impact morphology proliferation and viability. All experiments were conducted under 20 

cell passages in culture.  

 

Tumor samples 

Tumor samples from four melanoma patients were retrieved from the tumor tissue bank at the 

Department of Pathology, IUCT-O Toulouse Hospital (France). The study was carried out in 

accordance with the institutional review board-approved protocols (CRB, AC-2013-1955), and 

the procedures followed the Helsinki Declaration. Pathological specimens consisted of frozen 

samples from primary (n=13) and metastasis samples (n=9). Additional frozen primary 

melanoma samples (n = 5) were provided by the Department of Experimental Oncology, 

European Institute of Oncology, Milan (Italy). 

 

Cells treatment with 5-aza-2’-deoxycytidine (5azadC) 

5-aza-2’-deoxycytidine (5azadC, decitabine) was bought from Sigma-Aldrich (France) and 

dissolved in acidic water at 10mM and stored in single-use aliquots at -20°C. 

WM-266-4 cells were seeded at the density of 6 x106 cells per 75 cm² flasks (day 0) and treated 

with 5azadC after a 12 h period to allow cell attachment and synchronization in G0/G1 phase. 
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Cells were treated daily for 72h (day 1, 2, 3) at the indicated concentration of 5azadC. They 

were collected at day 4 for analysis of DNA methylation patterns by pyrosequencing and day 7 

for expression analyses.  

 

Genomic DNA isolation  

Genomic DNA from cell lines was isolated using the DNeasy Tissue kit (Qiagen, France). 

Genomic DNA from patients’ samples was isolated using the QiaAmp kit (Qiagen, France).  

` 

Bisulfite pyrosequencing 

Quantitative DNA methylation analysis was performed by pyrosequencing of bisulfite-treated 

DNA as previously described 35. Sequences including CpGs were amplified using 20 ng of 

bisulfite-treated human genomic DNA and 5–7.5 pmol of forward and reverse primer, one being 

biotinylated. Two pairs of PCR primers were designed for PCR1 (CpG 1, 2, 3 and 4) and PCR2 

(CpG 5 and 6) (Figure 1A). PCR were designed around the hypermethylated probes from 

previous Illumination 450k Bead Chip analysis 21.  

PCR1:  Biotin-TTTAGAGTTGGTGTTGGATATAGAA (Forward) and 

CCAAAACCAAAATAAAAATCTAAAC (Reverse); 

PCR2: TTTAGATTTTTATTTTGGTTTTGGA (Forward) and Biotin-

TATAATATCTCTCCATTTATCCCAATATCT (Reverse). 

Reaction conditions were 1 × HotStar® Taq buffer (Qiagen) supplemented with 1.6 mM MgCl2, 

100 μM dNTPs and 2.0 U HotStar Taq polymerase (Qiagen) in a 25 μL volume. The PCR 

program consisted of a denaturing step of 15 min at 95°C, followed by 50 cycles of 30 s at 

95°C, 30 s at 60°C and 20 s at 72°C, with a final extension of 5 min at 72°C. A total of 10 μL 

of PCR product was rendered single-stranded as previously described and 4 pmol of the 

respective sequencing primers were used for analysis. Quantitative DNA methylation analysis 
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was carried out on a PSQ 96MD system with the PyroGold SQA Reagent Kit (Qiagen) and 

results were analyzed using the PyroMark software (V.1.0, Qiagen).  

 

TCGA DNA methylation data analysis 

The TCGA-SKCM DNA methylation data was downloaded from GDAC Firehose Broad 36 on 

February 2021. Normalized beta values for the Illumina probes nearby the PCDHB15 gene 

were selected for comparative analyses. DNA methylation for primary melanoma (PRM), 

lymph node metastasis (LNM), and distant organ metastasis (DOM) was summarized using the 

mean value and the standard error of the mean. Differential DNA methylation was assessed by 

the Wilcoxon Rank-Sum test in R. All p-values from multiple comparisons (>50 tests) were 

corrected using the False discovery rate (FDR) method. The R/ggplot2 package was used for 

data visualization. 

 

mRNA quantification 

RNA was purified using the RNeasy Mini Kit (Qiagen, France) and quantified on a 

NanoDrop2000 (ThermoScientific). 

Quantification of PCDHB15 mRNA was performed by RT-qPCR. Total RNA (2 µg) was 

reverse transcribed into cDNA with the iScript cDNA Synthesis Kit (BioRad, USA). Real-time 

PCR was performed according to the manufacturer's recommendations, using SsoAdvanced™ 

SYBR® Green supermix (Bio-Rad). The primers were: AGCAGGCCGAGCTCAGATTA 

(forward) and ATTGGCGTCCAAGACCAAGA (reverse). A CFX384 Touch™ Real-Time 

PCR Detection System from Biorad (Marnes-la-Coquette, France) was used to run the 

following PCR program: 95°C 10 min followed by 40 cycles of 15 sec at 95°C, 30 sec at 65°C 

for elongation, ended with a fusion cycle to determine the Tm of each amplification product.  
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The PCR data were analyzed with the CFX Manager v3.0 software (Biorad) to generate the Ct 

values. The following quality controls were applied: amplification of a single product, no 

amplification in the NRT (No reverse transcription) condition, efficiency close to 100%, R2 > 

0.98 and SD between technical triplicates <0.3. The 2−ΔΔCt method was used to generate the 

gene expression ratios by amplification of TBP (TATA box binding protein) 

TTGACCTAAAGACCATTGCACTTCGT (Forward) and TTACCGCAGCAAACCGCTTG 

(reverse) as normalizing control and data were presented as mRNA fold change of target RNA. 

 

Western-blot analysis 

Total protein extract was obtained from confluent cells grown in 75 cm2 flasks. The cells were 

lysed in protein extraction buffer (10mM Tris HCl, 120mM NaCl, 1% NP40, 1mM EDTA, 

1mM DTT and 1X proteases inhibitor (Complete™, EDTA-free Protease Inhibitor Cocktail, 

Sigma Aldrich)). Samples were separated on 10% SDS-PAGE gels and transferred onto 

polyvinylidene difluoride membranes. After saturation with 5% dry milk in Tris NaCl 1% 

Tween 20, membranes were incubated with either anti-PCDHB15 antibody (NBP1-87322, 

Novus Biologicals), anti-DDK antibody (4C5, TA50011, Origene) (1/1000 diluted in 5% dry 

milk in Tris NaCl 1% Tween 20) or anti-β actin antibody (MAB1501, Millipore, 1/1000 in 5% 

dry milk). After washes, the membranes were revealed with secondary HRP-coupled antibodies 

(Sigma Aldrich). The signals were detected by ECL for -actin (GE Healthcare) and Immobilon 

Western HRP Substrate (Millipore) for PCDHB15 and DDK. The chemoluminescent signals 

were acquired with a G:box imaging system (Syngene). 

 

PCDHB15 cell surface expression 

The expression of PCDHB15 at the cell surface was analyzed by flow cytometry. Cells were 

detached with 2 mM EDTA in PBS and incubated for 45 min at 4°C with 1µg/mL of anti-
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PCDHB15 antibody (NBP1-87322, Novus Biologicals) in PBS supplemented with 1% BSA. 

Cells were washed, counterstained with Alexa-647-conjugated goat anti-rabbit Ig antibodies 

(Invitrogen) and incubated with 0.5 mg/mL DAPI (Sigma). PCDHB15 expression was 

monitored on live cells (gated as DAPI-negative cells) on a LSRII flow cytometer using the 

Diva software (both from BD Biosciences, Le Pont-De-Claix, France).  

 

3D cell invasion assay 

WM-266-4 cells were seeded in 96-well plates coated with agarose 1% (Sigma-Aldrich) in PBS 

(3000 cells in 100 µL medium per well). After 2 days at 37°C in a 5% CO2 atmosphere, cells 

from one spheroid with a diameter of approximately 300 µm. For each condition, six spheroids 

were individually embedded in EMEM media (Lonza) containing 1% of bovin collagen I (BD 

Biosciences) and 2% SVF. Bright field images from the initial spheroids were acquired with an 

Axiovert 200M device (5X Plan-Neofluor objective, Carl Zeiss, Germany). After 24h at 37°C, 

spheroids were labelled 1h with 2.5 µM calcein (calcein AM, BD Pharmingen) in PBS and 

fluorescent 6 z-stack images with 20 µm intervals were acquired. The fluorescent pictures were 

stacked and the total sizes of the spheroids were measured using the Image J (NIH) software. 

Invasion areas were obtained by subtracting the initial size of the spheroid. The invasion index 

represents the invasion area at 24h normalized to the initial spheroid area. If cytotoxic effects 

appear, the initial spheroid area decrease and the data are not considered. 

 

Aggregation assay 

Cells were dissociated with 2mM EDTA in PBS and seeded in a CELLSTAR® Cell-Repellent 

surface 96-well plate (Greiner Bio-One) (500 cells in 100µL medium per well), then centrifuged 

at 200g for 8 min and left at rest for 45 min before time-lapse experiments. Time-lapse video 

microscopy images were acquired over 20h (1 acquisition/15min), by using an inverted 
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widefield Zeiss Axio Observer Z1 microscope fitted with a 0.3 N.A 10x objective and a 

CoolSNAP CDD camera (Roper scientific). At each time point and position, 5-µm spaced z-

stacks in brightfield were acquired using the Meta-Morph software. At each time point, and for 

each aggregate, areas of the cell aggregates were quantified using an algorithm developed on 

MATLAB software 37. The aggregate areas were normalized to the calculated area at the 

beginning of time-lapse microscopy. 

 

In vivo metastasis experiments 

The animals were handled and cared for in accordance with the Guide for the Care and Use of 

Laboratory Animals (National Research Council, 1996) and European Directive EEC/86/609, 

under the supervision of the authorized investigators. Un-anesthetized 7-week-old female SCID 

mice (ENVIGO RMS SARL, Gannat, France) were injected into the tail vein with 3×106  viable 

cells in 200-μL PBS (WM266-4 WT, WM266-4-pCMV mock or each stable clone 

overexpressing the PCDHB15 gene). Groups were constituted of n=15 animals for injection 

with mock, clone 8 and clone 12; n=14 for clone 13. Twenty-one days after injection, mice were 

dissected and the organs (except brain) were visually inspected. Lungs only presented 

detectable metastases. They were recovered, formalin-fixed and paraffin-embedded. Sections 

were stained with hematoxylin and eosin (H&E). The number and area of metastasis were 

measured in whole lung sections by immunostaining with Tyrosinase antibody Mob299–05 

(1/500) (Diagnostic BioSystem, Pleasanton, CA-USA). 3DHistech (Panoramic 250) was used 

to scan sections and measure metastases area. Statistics were performed using the Mann-

Whitney test.  

 

Results  

PCDHB15 is hypermethylated in aggressive melanoma cells and patient samples. 

By comparing the DNA methylation profile of three highly aggressive metastatic melanoma 

cell lines (WM-266-4, M4BeS2 and TW12) to their less-aggressive counterpart derived from 

the same patient (WM115 and M4Be, respectively) by genome-wide DNA methylation analysis 

(BeadChip Illumina 450K, deposited as GSE155856), we identified hypermethylated genes 
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located in gene clusters 21. Among them, we focused our analysis on PCDHB15, which belongs 

to the protocadherin beta family cluster located on chromosome 5 (5q31.3). In WM115 and 

WM266-4 cells which are derived, respectively, from the primary tumor and the cutaneous 

metastasis of the same patient, PCDHB15 showed differential methylation above 40% in at 

least two CpGs positions located at +566 and +610 pb from the TSS, respectively (Figure 1A). 

The differential methylation status in this region was confirmed by pyrosequencing after 

bisulfite conversion and PCR amplification of six close CpGs, in WM115 and WM266 cells, 

as well as in the cell line pair WM983A and WM983B derived from the same patient but with 

different aggressiveness status (Figure 1B). The boxplots indicate that the DNA methylation 

median for PCDHB15 in this region was higher in WM266-4 and WM983B (metastatic) cells 

compared to WM115 and WM983A (primary) cells, respectively. Interestingly, higher DNA 

methylation levels were also found in nine patient metastasis samples compared to 18 primary 

melanoma samples (Figure 1C). We also investigated the DNA methylation of this gene in The 

Cancer Genome Atlas database (Figure 1D), showing a statistically non-significant increase in 

DNA methylation in lymph node (LNM) and distant organ metastasis (DOM) compared to 

primary melanomas (PRM). Furthermore, a CpG (probe cg24941075) located close to the 

PCDHB15 promoter region in a transcription factor region (CTCF) was found to be 

hypermethylated in several DOM patients, leading to a significant difference between DOM 

versus PRM and LNM groups (Figure 1D).  

DNA hypermethylation of PCDHB15 is associated with decreased gene expression that is 

reversed upon 5azadC treatment. 

We then investigated whether the DNA hypermethylation of PCDHB15 gene 5’-end was 

associated with gene silencing. The methylation status and expression in WM115 versus 

WM266-4 cells were inversely correlated: WM115 cells, in which PCDHB15 5’-end was less 

methylated than in WM266-4 cells, expressed a two-fold higher amount of PCDHB15 mRNA 

(Figure 1E). Treatment of WM266-4 cells with increasing concentrations of the DNA 

demethylating agent 5azadC for 3 days induced a decrease in DNA methylation of PCDHB15 

in a dose-dependent manner with a plateau at 55% (Figure 1E). Concomitantly, its expression 

increased significantly upon treatment with 0.1 µM to 0.32µM of 5azadC, resulting in a 2-fold 

increase compared to the level observed in WM115 cells (Figure 1F).  
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These results indicated a potential role for DNA methylation in the silencing of PCDHB15 

correlating with the aggressiveness of metastatic melanoma. We next investigated this 

hypothesis. 

 

PCDHB15 overexpression impairs melanoma cells 3D aggregation. 

PCDHB15 was overexpressed with a C-terminal DDK-tagged construct in the metastatic 

WM266-4 cells, in which PCDHB15 is silenced (Figure 2A). Three clones overexpressing 

PCDHB15 were selected and characterized (clone 8, 12 and 13, figure 2B). All three clones 

produced high levels of PCDHB15 mRNA compared to mock-transfected and wild type 

WM266-4 cells (Figure 2C), but displayed different content of the full-length protein (Figure 

2B). In addition, a significant amount of protein was detected at the cell surface by cell surface 

labeling with an anti-PCDHB15 antibody directed against the N-terminal portion of the protein 

and flow cytometry measurement (Figure 2D).  

Next, we studied the effect of the overexpression of PCDHB15 on the aggregation of melanoma 

cells by monitoring the spontaneous formation of spheroids in the metastatic WM266-4 cell 

line and the three clones. The size and kinetics of the formation of the spheroids were studied 

by brightfield video-microscopy. As early as 2 hours after seeding, WM266-4 cells gathered 

and formed round aggregates with cell-to-cell interaction that strengthened with time (Figure 

3A). In contrast, cells overexpressing PCDHB15 formed loose aggregates with different 

kinetics and maintained irregular shapes over time, suggesting a reluctance to engage straight 

contacts (figure 3A and B). 

 

PCDHB15 overexpression impairs melanoma cells 3D invasion. 

Another feature of the metastatic WM266-4 cell line is its 3D invasion ability, as we 

demonstrated previously 20. After 72h of culture in non-adherent conditions, WM266-4 cells 
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spontaneously formed spheroids that were included in a collagen matrix (figure 4A). Invasion 

in the collagen matrix was measured after 24h (figure 4B). Noteworthy, WM115 cells formed 

highly cohesive spheroids, but had no invasion capacity under these conditions. After collagen 

inclusion, the overexpression of PCDHB15 had little effect on the spheroid size (figure 4C), 

but significantly reduced the invasive properties of WM266-4 cells (figure 4D). Interestingly, 

the greatest effect was observed with the two cell lines (#8 and #12) producing intermediate 

protein levels. 

 

PCDHB15 overexpression impairs lung metastasis formation in mice.  

The inhibitory effect of PCDHB15 overexpression on in vitro melanoma cell aggregation and 

invasion led us to investigate the capacity of PCDHB15 expressing melanoma cells to form 

lung metastasis in mice after intravenous injection as does the metastatic WM266-4 cell line 20. 

We compared the effect of the three WM266-4 clones overexpressing PCDHB15 to cells stably 

transfected with a void construct (mock cells). Immunohistochemical analysis of lungs 21 days 

after injection showed a dramatic decrease in lung metastasis formation with cells 

overexpressing PCDHB15 compared to mock control WM266-4 cells (figure 5A). This result 

was confirmed by statistical analysis of the number (Figure 5B) and size (Figure 5C) of 

metastases, showing that the overexpression of PCDHB15 reduces in vivo the invasion 

capacities of metastatic melanoma cells. 

 

Discussion  

Melanoma generally evolves in a stepwise manner from initial benign or dysplastic naevi to 

metastatic melanoma, via two intermediate phases, the radial (RGP) and the vertical growth 

(VGP) phases 38,39. To characterize the extent and nature of DNA methylation modifications 

through melanoma progression, we have compared the DNA methylation profiles of melanoma 
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cell lines representative of different aggressiveness status and focused our interest on genes that 

were hypermethylated in the most aggressive cell lines. This revealed the role of DNA 

methylation in the regulation of the mir199-A2 which down-regulation confers invasive traits 

in melanoma 20. More recently, by comparing the genomic repartition of  DNA methylation in 

cell lines of different aggressiveness status, we identified clusters of DNA hypermethylation 

that characterizes melanoma aggressiveness and, in particular, the gene PCDHB15 21.  

PCDHB15 belongs to the protocadherin  gene cluster located on chromosome 5q31. The 

clustered protocadherins α, β, and γ were mostly studied as putative neural receptors 40–42 that 

mediate the synaptic adhesive code between neurons in synaptogenesis. Stochastic single-

neuron expression of clustered protocadherin protein isoforms by a mechanism involving 

alternative promoter choice 43 generated distinct cell-surface identities 44,45. In the human 

central nervous system, the expression patterns of the PCDH-β genes are similar to those of the 

PCDH-α and PCDH-γ genes and contain 16 genes and 3 pseudogenes 42. Each sequence 

corresponds to a single variable region exon encoding an extracellular domain with six 

characteristic cadherin ectodomain repeats (EC1-6), a transmembrane domain and an 

intracellular domain. All three types of protocadherins -, -, - can engage in isoform-specific 

trans-homophilic interactions 46. They mediate neural self-recognition and non self-

discrimination. Interestingly, although classified as adhesion molecules, protocadherin 

homophilic interactions trigger neurite self-avoidance 47 that prevents interactions of axons and 

dendrites from the same neuron during development. However, the functional role of PCDH 

genes in tissues other than the brain is poorly explored. Several reports in the literature pointed 

towards a potential role of protocadherins as tumor suppressors in several cancers 48. 

Considering that neurons and melanocytes are derived from the same embryonic tissue, these 

findings prompted us to characterize the functional role of PCDHB15 in cutaneous melanoma 

cells. 
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We showed that PCDHB15 is strongly DNA hypermethylated at the 5’end of its single exon, 

in the most aggressive melanoma cell lines compared to the less aggressive ones, as well as in 

the metastases compared to the corresponding primary melanomas. In cell lines, DNA 

hypermethylation of PCDHB15 was associated with lower expression, which was reversed 

upon treatment with the demethylating drug 5azadC. Of note, the demethylation by 5azadC 

reached a plateau at 55%, probably meaning that all the accessible cytosines in the DNA 

sequence were replaced by 5azadC. Interestingly, a negative correlation between PCDHB15 

promoter methylation and PCDHB15 expression was also reported in breast cancer49. 

Nevertheless, whereas these data strongly pointed out the role of DNA methylation in the 

regulation of PCDHB15 expression, the direct involvement of the methylation in the regulatory 

regions at the 5’end of the gene remains to be confirmed. To study the correlation, several  

approaches can be uses as a CpG-free luciferase reporter vector system 50 or CRISPR/Cas9-

mediated epigenetic edition51. Here, we evaluated whether the treatment with the demethylation 

agent, 5azadC, at low doses reverts PCDHB15 silencing, as we have shown that 5azadC 

treatment at low doses reverted melanoma cell invasion in 3D-invasion assays and in vivo 

metastasis formation 20. We observed that PCDHB15 expression was up-regulated by 5azadC 

treatment, in support of a regulatory role of DNA methylation at its promoter. 

The stable overexpression of PCDHB15 in cells, in which PCDHB15 is silenced by DNA 

hypermethylation, dramatically impaired their aggregation capacity suggesting a non-adhesive 

role for PCDHB15 in agreement with a self-avoidance process as described for neurons 47. 

Protocadherins  harbor extracellular cadherin motifs able to interact homophilically in trans, 

but how their truncated intracytoplasmic domain translate in the alteration of cellular adhesion 

remains to be understood 22. Lower aggregation upon PCDHB15 overexpression is associated 

with impaired 3D invasiveness, suggesting the potential importance of an aggregative behavior 

in the invasive abilities of melanoma cells. This is in agreement with the reported lower cancer 
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cell dissemination when tumor cells migrate as individual cells compared to aggregated cells 

52. Taken together, these in vitro effects suggest that silencing of PCDHB15 in melanoma cells 

participates in the fine-tuning of the aggregative behavior of melanoma cells during melanoma 

progression and favors specific metastatic properties. The in vivo experiment confirmed the in 

vitro findings, showing that the overexpression of PCDHB15 impairs the formation of lung 

metastases in mice. Of note, whereas the three PCDHB15-expressing cell lines showed similar 

tendencies in the different functional assays, they did not highlight a strict correlation between 

the levels of PCDHB15 expression and their inhibitory effects, compared to the parental cell 

line. One cannot exclude that high expression levels of the protein could alter its proper 

processing as well as its cellular function. Nevertheless, the obtained data parallel what has 

been observed in breast cancer cell lines, in which overexpression of other members of the 

PCDH-β gene family (PCDHB4 and PCDHB19) inhibited anchorage-independent cell growth 

in soft agar, colony formation ability and in vivo tumor growth in NOD/SCID mice 53.  

In concordance with our findings, PCDHB15 was identified as a part of a specific 

methylation signature across breast and colon cancer 54, as PCDHB13 in Non-Small Cell Lung 

Cancer55. A functional role for the hypermethylation and gene silencing of PCDHαβγ family 

genes (PCDHAC2, PCDHB7, PCDHB15, PCDHGA1, and PCDHGA6) was also identified 

recently in colorectal cancer influencing the WNT/B-catenin pathway implicated in 

proliferation, survival and migration56. More recently, PCDHB15 was proposed has a potential 

tumor suppressor in breast cancer, based on the observation of a positive correlation between 

PCDHB15 expression and relapse-free survival 49. Interestingly, ectopic expression of 

PCDHB15, which is down-regulated by DNA methylation in the MDA-MB-231 breast cell 

line, suppressed colony formation. 

 

Conclusions 
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In this study, we demonstrate an epigenetic regulation of the expression of the PCDHB15 gene 

in melanoma cell lines. This gene is silenced in metastatic cells and its stable overexpression 

reduced cell aggregation and invasion capacity in vitro and in vivo. Taken together, our data 

suggest for the first time a potential role of tumor suppressor for PCDHB15 in melanoma. 

Mechanisms by which PCDHB15 may play a role in aggregation and invasion are to be further 

studied. In accordance with findings in other cancers, we propose that the role of the 

protocadherin genes and their interactions in cancer progression will be an area of interest to 

investigate in the future. 
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Figure Legends. 

Figure 1. Analysis of CpG methylation of PCDBH15 in melanoma cell lines and 

patient samples and re-expression after 5azadC treatment of WM266-4 cell line.  

(A) The percentage of DNA methylation of each CpG in PCDHB15 was analysed by 

bisulfite conversion followed by pyrosequencing of the CpGs indicated as black dots. 

CpGs on the sequence but not amplified in pyrosequencing are indicated as dotted lines. 

The CpGs of the Illumina 450K array are indicated by an asterisk: for PCDHB15, 

cg27328673, cg23974473 and cg09135656 at +566, +610 and +664pb from the TSS, 

respectively.  

(B-C) The DNA methylation mean level of PCDHB15 (B) was measured in two pairs 

of cell lines originating from two different patients, WM115/WM266-4 cells and 

WM983A/WM983B (B), as well as in genomic DNA obtained from 27 patient 

samples, primary (n=18) or metastases (n= 9) (C). Data are presented as boxplot of the 

median DNA methylation percentage of CpGs in black (6 CpGs for PCDHB15). The 
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median values for primary and metastasis samples are 61.5% and 71.6%, respectively, 

Jarque-Bera’s test to analyse normality, Fisher’s test to analyse variances and Student 

t-test were performed, n.s= not significant, *=p<0.05, ** = p<0.01, *** = p<0.001.  

(D) Normalized beta values for the Illumina probes of DNA methylation for primary 

melanoma (PRM), lymph node metastasis (LNM) and distant organ metastasis (DOM) 

from TCGA-SKCM DNA methylation data of PCDHB15 were summarized as a 

heatmap. A violin plot was used to highlight CpGs identified as hypermethylated in 

metastatic cell lines in our previous study. Differential DNA methylation was assessed 

by the Wilcoxon Rank-Sum test. All p-values from multiple comparisons (>50 tests) 

were corrected using the False discovery rate (FDR) method. *=p<0.05. Transcription 

factor clusters from Transcription Factor ChIP-seq Clusters (340 factors, 129 cell 

types) from ENCODE 3 were indicated as black/grey scale. 

WM266-4 cells were treated with increasing concentrations of 5azadC daily during 72h 

(d1, d2, d3). (E) At day 4, DNA methylation of PCDHB15 at exon 1 was measured by 

pyrosequencing (n=2 for WM266-4 and WM115 cells; n=3 for 5azadC-treated cells). 

The box plots show the percentage of DNA methylation of the analyzed CpGs (from 

panel A). (F) The mRNA quantification of PCDHB15 by RT-qPCR was performed at 

day 7, using the TBP gene as reference gene and normalized according to the 

expression level found in the WM266-4 cells (n=4, SEM are shown). Fisher’s test to 

analyse variances and Student t-test were performed , ns = not significant, * = p< 0.05, 

** = p<0.01, *** = p<0.001.  

 

Figure 2. Characterization of PCDHB15 overexpressing clones. 

(A) Western blot analysis of endogenous PCDHB15 in WM115 and WM266-4 cells 

and (B) of the overexpression of the PCDHB15 construct in WM266-4 cells, mock 

(transfected with the empty pCMV6 vector), clone 8, 12 and 13, revealed by the 

antibody against PCDHB15 or against DDK (for the constructs only). The Western blot 

is representative of n=3. Beta-actin was used as loading control (bottom). 

(C) PCDHB15 mRNA quantification by RT-qPCR (on n=3 biologically independent 

experiments, ANOVA test, *: p < 0,05; **:p < 0,01. ***: p < 0,001). The value in 

WM266-4 cells was considered as 1.  

(D) Cell surface expression of PCDHB15 measured by immunolabeling and flow 

cytometry. Black and white histograms display the cell surface fluorescence associated 

with PCDHB15 and isotypic control labeling, respectively. 
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Figure 3. 3D aggregation of WM266-4 cells is impaired by PCDHB15 

overexpression. 

The formation of aggregates of WM266-4 cells (WT), control cells (mock) and 

PCDHB15 overexpressing cells (clones 8, 12 and 13) was monitored by brightfield 

time-lapse videomicroscopy. (A) The images show representative aggregates at 0, 5, 

15 and 20 h after the experiment onset. Pink lines delineate the maximal aggregate 

areas. Green lines delineate empty areas that are subtracted in the total area calculation. 

(B) The normalized area of the aggregates is reported at each time. The reported values 

are the mean of at least 6 individual aggregates analyzed in three independent 

experiments.  

Figure 4. PCDHB15 overexpression in WM266-4 cells impairs 3D cell invasion. 

The invasion ability of WM266-4 cells (WT), control cells (mock) and PCDHB15-

overexpressing cells (clones 8, 12 and 13) was measured using a 3D-invasion assay in 

collagen matrix. Images are representative of at least 6 spheroids per condition before 

(A) and after (B) 24h invasion. The initial sizes of each spheroid (C) and their invasion 

index at 24h (D) are reported as histograms. Means and SEM were calculated from 6 

spheroids measured in three independent experiments. Jarque-Bera’s test to analyse 

normality, Fisher’s test to analyse variances and Student t-test were performed; P-

value<0.05, **: P-value<0.01. ***: P-value<0.001. 

 

Figure 5. PCDHB15 overexpression impairs WM266-4 lung metastasis formation 

in vivo. 

WM-266-4 overexpressing PCDHB15 (clone 8, 12, 13) or mock cells (with void 

vector) were injected in the tail vein (IV) of SCID mice. Lungs were recovered for 

immunohistochemical analysis 21 days after injection. (A) A representative image of 

the stained lung is shown for each group. Black arrows indicate metastases. Plots 

representing the median of number (B) and size (C) of metastases on one slice for each 

mouse are shown. n=15 for mock, clone 8, clone 12; n=14 for clone 13. Medians and 

SEM are shown. Mann-Whitney test; **P value < 0.01, ***P value < 0.001.  
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