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Abstract 
Cultural artefacts, such as dance and music, are characterized by temporal properties, broadly 
referred to as rhythms. The temporal structures that emerge when individuals synchronize their 
movements provide a sense of togetherness and common fate, even if individuals can readily tune 
in and out of this shared temporal space. In this chapter, we concisely discuss the endogenous and 
exogenous factors contributing to the emergence of brain rhythms and rhythmic behaviors, and 
how their interplay contributes to sophisticated forms of expressions in humans. The capacity for 
coupling and uncoupling voluntarily from external rhythms creates a potential tension between 
our environment (exogenously driven) and our internal state (endogenously driven) that can be 
exploited for artistic benefit, in the form of surprisal.  

 
 
Introduction 
 
Rhythms are everywhere: in the motion of planets that sets the pace of our day/night routines, 
in the rhymes that humans enjoy reading, in the music and dance they generate. At each scale of 
life, from molecules to flocks of birds, rhythms mark time and provide the metrics for 
information flow. In György Ligeti’s Poème Symphonique (1962), a hundred metronomes, each 
set to a distinct tempo, are launched as simultaneously as possible, marking time for a few 
minutes. This symphonic poem could be thought of as an idealized metaphor of brain rhythms: 
hundreds of neural populations can be rhythmically active at the same time, at the same or at 
different frequencies, in phase or out-of-phase with each other. The multiple time metrics, 
endogenous to brain function, may serve the coding, segmentation, regulation, and transmission 
of information. This chapter provides a broad neuroscientific view of the psychological and 
neural constraints of rhythms and rhythmic processing, leaving the subtleties of individual areas 
of expertise to the other chapters in this book. We first discuss the importance and definition of 
rhythms in human productions, then turn to the role of neural oscillations, illustrating specific 
roles of rhythms for prediction, attention, and anticipation—notions that are central to artistic 
productions. Finally, we highlight a tension inherent to biology and psychology, namely, the 
interfacing between exogenous temporalities and endogenous bodily rhythms that make 
individuals’ clocks relative. 
 
 
1 Rhythms 
 
In this chapter, rhythms are defined as periodic patterns in signals (e.g., sounds, body 
movements, or neural dynamics) over a wide range of time scales. Temporal patterns do not 
have to be strictly isochronous to qualify as rhythm; indeed, these rhythms can be very complex, 
such as the hierarchically nested structures in music, dance, or speech that humans readily 
produce. For this chapter, our case study will mostly be a quasi-isochronous single stream of 
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sounds (i.e., notes, syllables, or anything else). The accompanying constructs representing higher 
order temporal abstractions such as beat, tempo, and meter are thoroughly described in other 
chapters (e.g. London; Henry & Kotz; Hammerschmidt, this volume). Herein, we focus on the 
sequence itself, which unfolds chronologically, with the expectation of when the next note or 
gesture will occur given the preceding temporal context. To keep the scope of this chapter open 
to a variety of research areas, our focus will remain at this low-level definition of rhythm. 
 
1.1 Human production of rhythms 
 

Across cultures and eras, human activities and the artefacts generated by them, which we refer 
to as human productions, have been characterized by time constants that occur and re-occur as 
we create new works of art or complete menial tasks. For example, handwriting, a behavior not 
typically thought of as rhythmic, can be modeled as a coupled oscillator system, as if the pen 
were being pulled by two pendulums swinging in perpendicular directions (Gangadhar et al., 
2007; Hollerbach, 1981). Similar rhythmicity can be found in sweeping, painting, walking and 
swimming, and of course, in speech, dance, and music. These rhythmic sequences of behaviors 
tend to occur any time repetition is required. When a single act is not enough to accomplish the 
task, repeating it allows us to build on past actions, creating more complex structures. In 
performing similar acts repeatedly, we necessarily create rhythms. 
 
At first inspection, a behavior might only be considered rhythmic when the same temporal 
interval, or an exact integer multiple of it, is repeated precisely over a sequence. A metronome 
might come to mind as a possible example of a prototypical isochronous rhythm being used to 
dictate the tempo of a musical piece. Most human behaviors would fail by this definition, even 
ones that we would expect to succeed. Walking, for example, an undeniably rhythmic action, 
shows fractal variance over time (Hausdorff et al., 1996). Instead, by our definition, rhythms are 
sequences with temporal structures, whereby each event provides some – but not necessarily 
exact – information about when the next event will occur: a balance between predictability and 
complexity. 
 
To illustrate the point further, consider audition, in which rhythmic human production leads to 
rhythmic sensory stimuli. In speech and music, each unit of action (e.g., articulating a syllable or 
singing a note) is similar to each other unit—for example, in the opening and closing of the vocal 
tract - as they occur within similar temporal constraints. Still, despite their similarity, each unit 
is intentionally distinguished from one another to form the building blocks of complex concepts 
for listeners. These differences create variety not only in the actions generated, but also in the 
time it takes to execute them. These signals are therefore rhythmic, in the sense that they 
maintain temporal regularities and structure without being isochronous. Furthermore, the 
timing of speech, dance, or music is not passive; instead, it actively nuances communication. 
Consider the slowing down of the syllabic rate to indicate the end of a thought (Local et al., 
1986), or the expressive timing of a musician to give a performance greater feeling (Clarke, 
1989; Todd, 1985). Herein, “rhythms” refer to repetitive temporal structures that do not 
precisely match isochrony although they rely on periodic processes. While human productions 
like speech, music, or dance are sourced from the rhythmic tools provided to us by our biology, 
we must also appreciate the complexity of our timing, which is added to accommodate the 
semantic and emotional processes that these signals are intended for.  
 
Evidence for rhythmicity in human productions comes often from corpus analyses, which 
analyze large databases of audio signals to investigate their temporal properties. Using the 
Fourier Transform (Figure 1), we can glean whether a signal contains high or low frequency 
content. The presence of rhythmicity depends on finding a peak in the spectrum, noting for 
example that there is a dominance of power in the 5 Hz range i.e., at a periodicity of 200 
milliseconds (ms). The width of the spectral peak will vary with how precise or isochronous a 



Doelling et al. 3 

 

rhythm is. For instance, in Ligeti’s Poème Symphonique the rhythmic complexity is apparent in 
the number of spectral peaks that also overlap (Figure 1A) or as “spiderwebs of rhythm 
emerg[ing] from the cloud of ticks” as  Alex Ross put it (2007, pp. 508). Ding and colleagues 
(2017) used this method to investigate a wide array of recordings for speech and music. The 
languages they analyzed showed an average peak frequency of 5 Hz with a variance of about ±1 
Hz and the music they analyzed, an average peak around 2 Hz (a periodicity of 500 ms) across a 
wide array of instruments (single or ensemble pieces) and musical styles. The authors suggest 
that the observed spectral peaks may reflect the beat rate with their metrical subdivisions, such 
as those typically reported in Western music (London, 2012) and readily tracked by cortical 
activity (Nozaradan et al., 2011, 2012, discussed below). While the presence of rhythm in music 
is uncontroversial, how these rhythms compare across cultures is less clear. Recent work 
(Jacoby & McDermott, 2017; Polak et al., 2018) has taken an innovative, iterative tapping 
approach to find which rhythmic patterns are endemic to particular cultures. They found that 
while each culture had a different pattern seemingly typical of their own culture (e.g., Balkan 
Folk Music contains 3 - 3 - 2, a pattern that was more heavily represented in people from that 
region), they also reported a universal preference for rhythms with low integer ratio 
relationships between them. 
 

Figure 1: Signal processing of time series. A) Example of an audio recording of Ligeti’s Poème 
Symphonique for 100 metronomes (left) and B) a resting-state data acquired with 
magnetoencephalography (MEG). The Fourier decomposition provides a quantitative description 
of signals as a sum of sinusoids. The power spectral density or spectrum is characterized by a 1/f 
spectrum in all physical systems so that the lower frequencies display a higher power than 
higher frequencies. Peaks in the spectrum indicate the most prominent periodicities. In Ligeti’s 
spectrum, each peak is a metronome. In the brain’s spectrum, alpha band (α, 8-12 Hz) is a 
spontaneous neural oscillation seen during resting-state. We also see peaks of activity at 4-7 Hz 
in the theta (θ) band, and 20-30 Hz in the beta (β) band. Time-frequency analyses result in 
spectrograms preserving the temporal dimension of spectral fluctuations, which a spectral 
representation dismisses. The extreme regularities of Ligeti’s symphonic poem become evident 
(bottom left panel; yellow pattern) in contrast to the abrupt increases in a specific part of the 

https://www.zotero.org/google-docs/?iNFCS7
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spectrum in brain activity (bottom right panel, red). C) The outcome of Fourier decomposition 
helps characterizing the periodic components of signals by their frequencies (f), period (T), 
amplitudes (A) and relative phases (𝜙), (left panel). The middle panel illustrates two sinusoids 
with the same frequency but different phases (top) or with different frequencies and amplitudes 
(bottom). The full range of phase differences between two signals sharing the same frequency or 
period is illustrated on the unit circle (right panel). The in-phase and out-of-phase relation of the 
two sinusoids (0 and π, respectively) illustrate that sharing the same frequency does not equate 
synchrony or shared temporal alignment. 
 
 
The preference for rhythmicity in speech and music (and likely dance) results from temporal 
constraints of at least two types: the temporal constraints of our body effectors and those of our 
neural architecture. With regards to the effectors, successful musical performance requires the 
manipulation of a wide range of articulators to dynamically control the timing and quality of the 
final outcome. For example, playing the piano requires both the fine-grained movement of the 
fingers as well as more large-scale arm, shoulder and core movements. The requirement for 
coordination between our articulators creates temporal constraints on its movement. There are 
limits to how fast and how slow we can reliably control these movements. On the other hand, the 
nature of our neural architecture requires time for processing as well. An artificially highly sped-
up melody will create the perception of blurred individual notes and groupings not present at 
the intended tempo. To borrow an example from language, while both speech and sign 
languages are produced by vastly different effectors, their units of information move at nearly 
the same speed (Wilbur & Nolkn, 1986). That such remarkably different effectors have similar 
time constants suggests these actions are constrained by a third component, the neural time 
constraints of the listener. 
 
As members of the same species, humans share similar neural and effector constraints. Our 
ability to enjoy and generate music that others can contribute to depends on creating a stimulus 
that behaves in a manner that is coherent with these shared constraints. It is possible then that 
these shared temporal properties can help explain the universal features of rhythmicity at the 
cultural level; still, why do humans exhibit a universal tendency to synchronize and embody 
auditory rhythms, as they do, for example, in dance? 
 
 
1.2 Embodied time in a predictive brain 

 

Rhythmicity yields the capacity to predict the timing of future events, which in turn has the 
potential to enhance perception and facilitate action. Internalizing and forming abstract 
representations of external temporal regularities (music or seeing others dancing), confers 
considerable evolutionary advantages by enabling adaptive and proactive behaviors. The 
temporal scales of spontaneous human productions are distributed around tens to hundreds of 
milliseconds (see also Hammerschmidt, this volume). Many phenomena related to perception 
and action occur at this scale, which likely accounts for the human propensity to synchronize 
movements to rhythms (Patel & Iversen, 2014).  
 
At these time scales, the motor system is often recruited during the processing of rhythmic 
sequences, and it aligns its ongoing activity to anticipated and unattended events (Arnal & 
Giraud, 2012; Fujioka et al., 2009, 2012). This predictive alignment increases with sensorimotor 
expertise (Doelling & Poeppel, 2015) and improves with periodic motor priming (vocally) or 
auditory motor training (Cason et al., 2015). The relationship between the motor system and the 
perceptual processing of rhythmic sequences supports behavioral findings that temporal 
prediction in perception and action might rely on similar systems (Wöllner & Cañal-Bruland, 
2010), and computational/neurophysiological mechanisms (Schubotz, 2007). 
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Whether the recruitment of the motor system is necessary for perception or merely useful in 
noisy or unfavorable listening or viewing conditions remains a matter of debate (Stokes et al., 
2019). Many cerebral regions, for instance, the cerebellum (Bareš et al., 2019) can internalize 
implicit or explicit knowledge about the timing of sensory environments. This can arguably 
contribute to the anticipation of upcoming sensorimotor events, as well as control temporal 
predictions and expectations in sensory regions. It is also noteworthy that sensorimotor 
feedback loops create rhythmic behaviors even in the absence of external signals: postural 
control is generally viewed as a feedback loop in which the alternation between the sensory 
detection of the body’s current position (proprioception) and its stabilization by motor 
correction creates perceptible cyclic behaviors (Massion, 1994).  
 
In fact, the motor system can exploit a rich repertoire of actions (head nodding, tapping with the 
feet, dancing) in which the associated temporal trajectories of effectors can be internally 
emulated in the temporal dynamics of brain activity to predict the sensory consequences of 
actions. In doing so, the motor system uses top-down signals (i.e., volition) to tune the ongoing 
activity (and, specifically, the phase of ongoing oscillations) in sensory regions. This top-down 
control of the motor system over sensory activity enables the fine-tuning and temporal 
calibration of sensory regions to the impending sensory consequences. Owing to its expertise in 
exerting motor trajectories with sensorimotor control at the millisecond timescale, the motor 
system is particularly well-suited for time-related anticipatory computations, including the 
estimation of one’s timing errors (Kononowicz et al., 2019). In this sense, the performance of 
dance (the realization of these motor trajectories) may serve as a physical instantiation of our 
own internal anticipation of time.   
 
The experimental evidence showing that the motor system automatically synchronizes with 
external temporal patterns (periodic or aperiodic) suggests that top-down signals proactively 
track temporal patterns to facilitate their processing. In this view, temporal predictions in the 
auditory domain correspond to a covert form of active inference (Adams et al., 2013) in which 
top-down signals that are generated to dynamically control the production of audible actions are 
also generated during the perception of predictable auditory streams. By comparing simulated 
and real sensory outcomes, prediction errors can be computed, and used to learn, correct, and 
improve temporal predictions in the system. 
 
Anticipation in time is essential to theories of brain function which propose that the brain 
generates internal models of the sensory world to predict the future (Bar, 2011). Brain theories 
like predictive coding or active inference provide a unified perspective on perception and action 
(Adams et al., 2013; Brown et al., 2011; Friston, 2005, 2018). Internal models use the same 
computational strategies to predict external events and the sensory consequences of our own 
actions, suggesting that the brain exploits all available sources of internal knowledge to reduce 
external and internal noise. The predictive and anticipatory exploration of the environment 
often requires several repetitions of basic movements (visual saccades, sniffing) to accumulate 
sufficient evidence and capture the full picture of a scene or of a scent. This sensory exploration, 
or active sensing (Schroeder et al., 2010), does not only occur in modalities that possess 
moveable motor effectors; it is also seen in audition and in somatosensation. Although humans 
cannot move their ears, exploring an acoustic scene is not a passive continuous process, but a 
discrete and repetitive one involving multiple looks in time (Viemeister & Wakefield, 1991). 
Empirical support for active sensing and the sampling of sensory evidence in the brain can be 
found in rhythmic patterns of neural activity, often referred to as neural oscillations.  
 
 
1.3 Brain rhythms in perception, action, and cognition 

 

https://www.zotero.org/google-docs/?365r7n
https://www.zotero.org/google-docs/?yehPht
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Neural oscillations and oscillatory dynamics are a prominent feature of neural activity (Buzsáki, 
2006; Wang, 2010). In the last decades, the field of neuroscience has shifted its opinion on the 
utility of neural oscillations: from epiphenomenal “fumes of computation” to functional 
implementation of binding, predicting, and orchestrating neural information, both locally and 
globally, in the networks (e.g. the “communication-through-coherence hypothesis”; Engel et al., 
2001).   
 
The origins of rhythmic and oscillatory neural activity depend on the scale of observation 
(Wang, 2010). Microscopic membrane fluctuations and the intrinsic properties of single neurons 
display resonant properties so that neuronal spikes are elicited at a preferred frequency (Llinás, 
1988; Whittingstall & Logothetis, 2009). At the mesoscopic scale, neural oscillations reflect the 
mean activity of local neural assemblies; at the macroscopic scale, rhythmic fluctuations capture 
inter-areal synchronizations over time and space (Varela et al., 2001; Wang, 2010). Brain 
rhythms reflect the tendency of single neurons (and groups of neurons) to act as self-sustained 
oscillators, resonating in restricted frequency ranges. Neural oscillations display specific 
temporal periodicities (Figure 1B): delta (δ) occurs at 1-3 Hz, theta (θ) at 4 -7 Hz (i.e., periodicity 
of about 250 ms), and the most prominent alpha (α) at 7-12 Hz (i.e., periodicity of about 100 
ms). Strikingly, these characteristic temporal scales or frequencies are preserved across 
species—independent, even, of brain sizes (Buzsáki et al., 2013). Therefore, these temporal 
scales reflect biophysically relevant time scales for behaviors across species, which may provide 
universal constants for cognition. 
 
Neural oscillations can be identified in the spectral domain through a peak amplitude emerging 
at a restricted frequency (Donoghue et al., 2020). The identification often uses the Fourier 
Transform (Figure 1), which assumes a sinusoidal shape of the underlying neural signals. This is 
a strictly signal processing approach, one that can be readily applied to any time-varying signals 
(Figure 1A: Ligeti’s symphonic poem; Figure 1B: an individual’s brain activity in quiet 
wakefulness). The “Fourier fallacy” (Jasper, 1948) over-simplifies the characterizations of neural 
rhythms by neglecting their morphology (Cole & Voytek, 2017). This concern has prompted 
novel approaches to assess oscillatory activity more accurately, for instance by trying to 
preserve the dynamic spectral properties of the signals (Cole & Voytek, 2019) or using a 
statistical modeling approach (Dupré la Tour et al., 2017). Rhythmic activity depicted as a 
sinusoid is largely acknowledged as an oversimplification, although it is useful for conveying 
basic ideas.  
 
Neural oscillations provide the temporal dimensions of how the mind works (Jones, 1976; 
Pöppel, 1971; Varela, 1999) and rely on a parsimonious account of brain functions. Neural 
oscillations and recurrent neural activity provide natural temporal structures with which 
information can be sampled in (perception) and out (action), likely forming a structural basis of 
cognition in the time domain. In the context of the predictive brain theories discussed above, 
neural oscillations embody the temporal metrics of predictions. In her early theoretical 
formalization of attentional processes, Jones (1976) described attention as a hierarchy of 
temporal metrics (rhythms) so that the loci of attention in time could occur at multiple time 
scales. The Dynamic Attending Theory, or DAT (Jones, 1976) was proposed to be implemented 
through neural oscillations, to account for sampling and the postulated “attentional pulses” 
(Large & Jones, 1999; Figure 2A). DAT postulates that the temporal structure of sensory inputs is 
internalized by endogenous rhythms, to improve sensory analysis and facilitate reaction times at 
rhythmically expected time points (Rimmele et al., 2018). In agreement with the rhythmic 
attentional regulation proposed in the DAT, behavioral performance has been shown to fluctuate 
in discrete, rhythmic sampling patterns, rather than according to a continuous attentional 
spotlight (Fiebelkorn et al., 2013; Ho et al., 2017; Landau & Fries, 2012).  
 
The facilitation of processing rhythmically predicted inputs is rendered possible by 
neurophysiology: neuronal spiking activity tends to occur at preferred moments (or phases of 
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oscillatory activity) so that attentional or sensorimotor alignment of ongoing oscillations in time 
regulate the encoding of sensory information. This mechanism consists mainly in low-frequency 
neural oscillations (up to about 14 Hz) which synchronize to phasically defining windows of 
opportunity for neuronal spiking (Buzsáki, 2006; Panzeri et al., 2010; Wang, 2010; Figure 2B). In 
the following section, we will more thoroughly discuss the phase alignment of neural oscillations 
to external stimulation optimizes the encoding of sensory information (Lakatos et al., 2008; 
Panzeri et al., 2010; Schroeder et al., 2010; Whittingstall & Logothetis, 2009).  
 
 
 

 
Figure 2: Rhythmic sampling. A) Dynamic Attending Theory (DAT), adapted from Large & Jones 
(1999). Selective attention (depicted by the gray cone) is aligned to a particular phase of an 
ongoing oscillation represented here by the phase cycle. The frequency of the oscillation defines 
the sampling rate, the phase aligns with the moment at which attention is highest. B) Simulating 
an implementation of rhythmic attention by oscillatory dynamics. Bottom, a rhythmic sequence 
of notes that stimulates oscillatory activity. Top, examples of ongoing oscillations as simulated 
by a Wilson-Cowan Model (Wilson & Cowan, 1972). Before the notes begin, oscillatory activity is 
at a random phase (rest period). The rhythmic stimulation elicits a series of phase shifts, which 
yields convergence to a specific phase over time, allowing for attention to unfold at the optimal 
phase. Middle, neuronal spikes biased by the excitability of the oscillation. Spikes are initially 
random but become locked to an optimal phase when the oscillation is synchronized. 
 
 
2 Prediction, attention, and anticipation in time 
 
Temporal predictions can be conveyed by (quasi-) isochronous rhythms (e.g., a musical beat 
occurring every 0.5 seconds), or isolated time intervals that tend to recur (e.g., the time from 
pushing the start button on your computer to opening your inbox). In the context of periodic 
sequences, the dynamics of cortical oscillations at a low sensory level represent a powerful 
means to extract and exploit temporal regularities. By modulating the allocation of processing 
resources in time, intrinsic oscillators play a functional role in temporal predictions and act as 
hard-wired temporal priors, periodically aligning neural excitability with the occurrence of 
repetitive sensorimotor inputs. DAT proposes that attention allocates limited resources 
efficiently to the most critical moments in time, selectively enhancing the processing of relevant 
events (Figure 2): the interplay between isochronous sensory inputs and attentional allocation 
in time may be aligned such that the attended moment (attention-driven) and the moment of 
temporal predictions (temporal statistics) are fully congruent, or in-phase. 
 
Prediction (prior knowledge) and attention (selective relevance) are theoretically distinct 
processes (Summerfield & Egner, 2009; Wyart et al., 2012), but their dissociation must be 
clarified for the temporal domain, where, depending on task context, expectations might reflect 
both attentional orienting and sensory prediction (Doherty et al., 2005; Todorovic et al., 2015). 

https://www.zotero.org/google-docs/?IDyi3G
https://www.zotero.org/google-docs/?YZkiL9
https://www.zotero.org/google-docs/?0FJzGA
https://www.zotero.org/google-docs/?jT9XyT
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In the case of rhythms, the two concepts are related but refer to different aspects of the temporal 
process (de Lange et al., 2018; Press et al., 2020): attention increases the gain of neural 
responses for relevant timepoints, prediction exploits prior event times to assess when those 
timepoints might be, reducing the costs of processing incoming inputs (Arnal et al., 2015; Arnal 
& Giraud, 2012; Cravo et al., 2011).  
 
As an illustration, both aspects are necessary when a conductor incrementally changes tempo. 
The orchestra or the corps de ballet must both predictively entrain their movements to the new 
rhythm and attend to the critical timepoints, beats, to optimize their perception. Section 2.1. 
discusses this specific scenario. Section 2.2. will then introduce the more complex consequences 
of the coexistence between periodic and aperiodic temporal predictions. 
 
 
2.1 Entrainment: temporal predictions and attention in time in unison 
 

Neural entrainment refers to a mechanism by which periodic sensory inputs induce the 
adaptation of a period, and the alignment of the phase of ongoing neural oscillations. In Figure 
2B, the sequence of musical notes serves as a rhythmic input entraining ongoing neuronal 
oscillations; a simulated oscillator thereby develops synchrony and, in turn, regulates neuronal 
excitability to align to the rhythmic stimulus. Oscillatory entrainment has been proposed to be 
instrumental in temporal processing and sensory selection (Lakatos et al., 2008, 2019; Obleser & 
Kayser, 2019) by maintaining a temporal reference frame between sensory stimuli and neural 
responses (Herrmann et al., 2013).  
 
Many studies have emphasized that the intrinsic auditory brain rhythms (notably, δ and θ; 
Figure 1B) match, to a remarkable degree, those found in speech or music; and there is ample 
experimental evidence that music and speech induce neural entrainment (Arnal & Giraud, 2012; 
Doelling et al., 2019; Luo & Poeppel, 2007). We have briefly mentioned the importance of 
sensorimotor alignment in action (Section 1.2) but neural entrainment also facilitates the 
processing of sensory inputs, both within and across sensory modalities (Besle et al., 2011; 
Busch & VanRullen, 2010; Henry & Obleser, 2012; Kösem et al., 2014; Stefanics et al., 2010). For 
instance, the behavioral detection of short silences while listening to sound fluctuates in phase 
with the external rhythm and with the measured neural oscillations at that same frequency 
range (Henry & Obleser, 2012). Visual sensitivity is also modulated in phase with rhythmic 
inputs (Cravo et al., 2013).  
 
When rhythmic inputs are provided in a different sensory modality, both speed and behavioral 
performance in experimental tasks can improve. For instance, in a visual conjunction search 
paradigm, where participants had to detect a horizontal or a vertical bar that changed color 
rhythmically, the addition of sounds synchronized to the color change sped up participants’ 
reaction times (Van der Burg et al., 2008). On the other hand, sounds synchronized to visual 
distractors both slowed participants down and decreased their accuracy (Kösem & Van 
Wassenhove, 2012; see also Miller et al., 2013). These behavioral results were interpreted in the 
context of the cross-sensory entrainment hypothesis (Lakatos et al., 2008), whereby a stream of 
events in one sensory modality (e.g., audition) can serve as a temporal structure for the other 
sensory stream (e.g. vision) so long as they share the same rhythm or frequency. 
 
Following the observation of behavioral benefits of entrainment, an important working 
hypothesis is that entrainment flexibly synchronizes, and implicitly regulates, neuronal 
excitability for efficient processing of environmental inputs, be they auditory, visual, speech-
related, musical, gestural, or multisensory (Arnal & Giraud, 2012; Giraud & Poeppel, 2012; 
Lakatos et al., 2008; Schroeder et al., 2010; Schroeder & Lakatos, 2009). Note that this working 
hypothesis entails the a priori existence of latent neural oscillators that have the propensity to 

https://www.zotero.org/google-docs/?DtFeIm
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oscillate at a particular frequency. Although some oscillations are readily seen in resting-state 
(Figure 1B) this is difficult to establish with full certainty, and recent reconsiderations of the 
criteria for neural entrainment have been discussed both empirically and theoretically (Doelling 
& Assaneo, 2021; Lakatos et al., 2019; Obleser & Kayser, 2019). This point will be further 
discussed in Section 3. 
 
 
2.2 Non-rhythmic temporal predictions 
 

In the next section, we consider temporal predictions outside of a rhythmic context. Dancers 
must be sensitive not only to the rhythm when the piece is played but also to isolated temporal 
intervals throughout a performance, such as the time from when the conductor arrives on stage 
and when they will give the first cue, or how long a solo musician will hold a fermata. Such 
predictions are often memory-based, developed over the course of rehearsal. Furthermore, 
many musical styles employ non-periodic meters (Huron, 2008) that can nevertheless be 
anticipated and embodied in dance (Godøy et al., 2016; Su, 2016).  
 
The notion of temporal predictions is sometimes conflated with that of entrainment to periodic 
sensory inputs; but, as we have seen, aperiodic temporal predictions can also occur in human 
productions (Rimmele et al., 2018). Recent work suggests that behavioral performance is 
equally enhanced for predictable conditions – whether periodic or not – compared to 
unpredictable ones (Bouwer et al., 2020; Morillon et al., 2016). This could present a challenge 
for classical entrainment models, which hypothesize that periodicity should maximize neural 
entrainment and ensuing behaviors. While potentially useful, entrainment is not the sole neural 
mechanism involved in temporal prediction.  
 
Implicit predictions of temporal intervals have been studied using the foreperiod paradigm 
(Niemi & Näätänen, 1981; Woodrow, 1914): observers learn to predict from a cue stimulus the 
moment of appearance of a target stimulus, i.e. the foreperiod. Depending on the underlying 
temporal statistics, reaction times decrease at the most probable foreperiods (fixed foreperiod 
designs), but also for longer foreperiods (variable foreperiod designs) through conditional 
updating of the temporal prediction. A temporal prediction of the foreperiod has to be initiated 
anew at each presentation of the cue, which itself cannot be predicted in time, such that no 
isochronous temporal structure emerges.  Importantly, human observers and non-human 
primates can learn and represent several foreperiod distributions concurrently or in succession 
(Bueti et al., 2010; Herbst et al., 2018; Janssen & Shadlen, 2005; Trillenberg et al., 2000). 
Interval-based temporal predictions can align neural oscillations to sensory inputs by the phase-
resetting oscillations whose period matches the interval (Haegens & Zion Golumbic, 2018; 
Rimmele et al., 2018; Schroeder & Lakatos, 2009). The phase of endogenous oscillations can be 
modulated by the internal representation of the temporal statistics of events (Breska & Deouell, 
2014; Daume et al., 2021; Herbst & Obleser, 2019) and is sensitive to the shape of the implicit 
foreperiod distribution (Cravo et al., 2011). 
 
The distinction between rhythmic and non-rhythmic temporal predictions has important 
consequences for the postulated neural mechanisms. While rhythmic temporal motifs are 
typically salient enough to be extracted in a bottom-up manner, interval-based predictions range 
on a continuum from strictly implicit, bottom-up modulations of temporal statistics (Bueti et al., 
2010; Cravo et al., 2011; Herbst & Obleser, 2017) to cued top-down temporal orientation (Nobre 
& van Ede, 2017). Whether oscillatory responses observed during rhythmic stimulation truly 
reflect an endogenous representation of temporal predictions, or reflect the exogenous structure 
of the inputs is thus an open question. 
 

https://www.zotero.org/google-docs/?zH3YBO
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The difficulties encountered in Section 2 highlight the need for empirical explorations that tease 
out the origins of temporal predictions, as well as their relation to endogenous attention and 
sensory saliency. These issues are a prelude to the next section, in which we describe the tension 
between endogenous and exogenous rhythms. The first issue that arises is the very existence of 
spontaneous neural oscillations (i.e., in the absence of driving external stimuli), which stems 
from skepticism about the functional relevance of brain rhythms to cognition. A second issue 
results from the need to distinguish the elicitation of neural oscillation from the modulation of 
ongoing oscillations (as posited and questioned by neural entrainment).  
 
3 The tension in synchronization 
 
While the previous section outlined a complex system evolved to align predictively with 
incoming rhythms, here we show that the perceiver may resist such alignment according to its 
own internal processing. Our brains exert endogenous control over how it perceives: deciding 
which beats are most important, imagining other melodies that might go well with a piece, or 
perceiving different meters where multiple interpretations are possible. At the same time, we 
must also consider that stimuli are not isolated; they are generated intentionally by producers, 
with the aim of eliciting mental constructs in the listeners (e.g., emotions or semantic concepts) 
through manipulations of internal processes. The dynamism in the musical interaction lies not in 
fully successful synchronization, but in the attempt to control and align to a constantly shifting 
experience.  
 
 
3.1 Modulation of endogenous oscillations: uncoupled coupling 
 

If brain rhythms remain under individual’s endogenous and volitional control, a straightforward 
prediction is that one should be able to elicit a neural oscillation at will. This was verified in the 
elegant EEG study of Nozaradan and colleagues (Nozaradan et al., 2011): human participants 
listening to rhythmic auditory stimuli (2.4 Hz periodicity)  were asked to imagine a binary meter 
(1.2 Hz), or a ternary meter (0.8 Hz), aligned to the 2.4 Hz beat, but to refrain from overt motor 
movements or counting. As predicted by entrainment, EEG activity showed clear spectral peaks 
at the beat frequency corresponding to the acoustic inputs. More interestingly, it also showed 
spectral peaks at the frequencies of the mentally generated meter. These findings are essential in 
showing that neural entrainment is not solely a bottom-up brain response to exogenous 
periodicities, it also reflects an endogenous temporal structure that is experienced by the 
listener. In fact, oscillatory dynamics can be measured in the absence of exogenous stimulation 
and resonate during and after rhythmic (Cason et al., 2015; Falk et al., 2017; Pesnot Lerousseau 
et al., 2021) and non-rhythmic (Teng et al., 2018) stimulation. Such intrinsic spontaneous 
oscillators support the biological and psychological needs for adaptability and stability. 
 
Furthermore, endogenous control of brain responses can regulate sensory entrainment in subtle 
ways that are essential to psychological timing. Neural oscillations are not pure sinusoids and 
rather display non-stationarities, like bursting changes or slow changes in phase response. An 
example of non-stationarity in the oscillatory phase response has been argued to maintain an 
endogenous internal metric for the representation of conscious timing (Kösem et al., 2014). In 
this MEG study, desynchronized audiovisual stimuli were rhythmically presented to elicit a peak 
following response at the entrainment rate of 1 Hz (δ). The presentation of desynchronized 
audiovisual stimuli yielded a temporal recalibration phenomenon, in which participants’ 
perception of audiovisual simultaneity shifted. As MEG records the mean response of latent 
neural oscillators, the entrained 1 Hz response should remain constantly in-phase and 
temporally aligned with the rhythmic presentation of the stimuli (Bauer et al., 2020; Thut et al., 
2011). Contrary to this prediction, the phase of the auditory response systematically changed in 
a manner that linearly predicted participants’ time perception. These findings suggested that 
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while the brain may stabilize its internal time metric through external entrainment, the need to 
maintain a unitary perception of the most probable multisensory event may endogenously 
adjust the phase response. Consistent with this observation, the (partial) independence of 
endogenous temporal references with exogenous temporal statistics suggest that some 
properties of entrained oscillations are physiologically independent from the external inputs, 
and exist beyond the passive tracking of sensory signals (Obleser & Kayser, 2019).  
 
Altogether, these results support the idea that neural oscillations play a mechanistic role in 
information processing and that the phase of neural oscillations plays a tangible role in timing 
under endogenous control. In this sense, what fundamentally distinguishes animals from other 
living matter is their capacity to generate timing in manner that remains coherent with, but 
partially independent from, the temporal properties of their environment (van Wassenhove, 
2016, 2017). 
 
 
3.2 Synchronizing with others: Rhythms, almost 
 

Given the complex predictive apparatus, why can we not perfectly predict rhythmic behaviors of 
others? Surprising stimuli attract exogenous attention (Theeuwes, 1991): unexpected stimuli, 
like a sudden thunder or a bright flash, automatically grab our attention in a bottom-up manner. 
The same occurs in less dramatic scenarios: surprising words in a sentence (“I like my coffee 
with cream and socks”) attract more attention than predictable ones (Itti & Baldi, 2009; Zarcone 
et al., 2016). The subtle interplay between anticipation and surprisal is essential in music 
(Huron, 2008). Surprisal, formulated as the error between what is predicted and what occurs, is 
also a mathematical definition of information content. Inputs that differ from our predictions 
contain new information (Shannon, 1948). 
 
A common example of the utility of surprisal in music is when performers in dance or music vary 
the timing of their expression. Unscripted and expressive shifts in musical timing, commonly 
referred to as rubato, communicate to the audience added information that they should prepare 
to clap, or to respond with their own melody depending on the environment. On the other hand, 
a long pause in the middle of a piece may generate surprise or tension in the listener, attracting 
their attention to the next phrase. A good performer in dance or music varies the timing of their 
performance. These unscripted and expressive shifts in musical timing, often referred to as 
rubato (Clarke, 1989; Todd, 1985) further engage the listener and often evoked emotional 
experiences. These behaviors, therefore, differ from the ubiquitous biological rhythms in our 
environment because they explicitly manipulate the perceiver, rendering them maximally 
receptive to new information. 
 
How this behavior should relate to neural oscillations remains a matter of debate. Recent 
proposals suggest that such synchronization can align with imprecise expressive rhythms 
(Doelling & Assaneo, 2021). In this sense, it may be in the producer’s interest to maintain 
enough of a rhythm that synchronization is meaningful, while also introducing enough 
complexity to avoid stationarity. Furthermore, a single oscillator is likely too simple a 
mechanism to support the full complexity of rhythms that we experience in dance and music. 
Here is where the motor cortex, with its ability to flexibly simulate temporal trajectories at a 
wide array of time scales, may come into play. The interplay between motor trajectories and 
oscillatory synchronization may form the basis of this interaction between producer and 
listener. 
 
From a temporal prediction perspective, a tension arises between the listener (audience) and 
the producer (expresser): the former thrives on predicting the timing of events; the latter 
thrives on attention-grabbing surprise. The result is a feedback-loop system, which must 
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constantly progress: listeners improve their internal model of the producers, the improvement 
in (non-)rhythmic predictions diminishes surprisal, which forces the invention of new surprising 
techniques. Despite – or perhaps because of – our endogenous biases towards predicting 
rhythms and patterns, humans tend to avoid perfect predictability. In music, listeners 
experience the desire to move, and greater pleasure, when the rhythmic complexity is at a 
medium level (Matthews et al., 2019; Witek et al., 2014): too complex, and the stimulus becomes 
unpredictable, difficult to track—too simple, and it becomes overly predictable. While it may 
appear that the “goal” of neural synchronization is to become fully aligned with the outside 
world, human behavior suggests a different approach. The tension between our internal 
rhythms and those of our environment is an important feature of our perception, helping us to 
learn new rhythms and/or to contribute our own creativity to the process. 
 
 
Conclusions 
 
In this chapter, we discussed the interplay of rhythms rooted in neurobiology and emerging in 
human expression as tension between endogenous brain rhythms and exogenous entrainment 
by sensorimotor inputs. Tension is reminiscent of homeostasis and the need to maintain an 
equilibrium in face of ever-changing environments. For this equilibrium to remain steady, 
biological rhythms under automatic and voluntary control require efficient and reliable circuits. 
In the absence of entrainment to external clocks, intrinsic rhythms maintain their course, 
displaying distinct, endogenously defined periodicities, including neuronal ones (Webb et al., 
2009). It is noteworthy that some neuronal circuits, such as central pattern generators, are 
specialized in producing rhythmic behaviors like walking, swimming, breathing, or chewing in 
the absence of rhythmic inputs (Marder & Bucher, 2001). Life is also unquestionably a matter of 
rhythms and most bodily rhythms exist independently of externally imposed stimulations: 
breathing or beating hearts consist in the periodic alternations of physiological inflows and 
outflows. In many species, synchronization and entrainment are not solely defined by passive 
universal time constants, they are also driven by social interactions (Aschoff et al., 1971; Bloch, 
2010; Eban-Rothschild & Bloch, 2012). While this may be unsurprising for dancers, musicians 
and cognitive neuroscientists, that social synchronization may affect basic biological functioning 
such as clocking mechanisms (even in passive biological clocks) is intriguing and essential. This 
is the seed for collective behaviors whose complexity can be increased by some of the 
fundamental mechanisms we have described – active sensing, dynamic attending, entrainment, 
temporal predictions, and ultimately, synchronization. All lead to the creativity of human 
productions. 
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