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Cell culture medium, nasopharyngeal and sera samples spiked with SARS-CoV-2 were subjected to heat
inactivation for various periods of time, ranging from 30 s to 60 min. Our results showed that SARS-CoV-2
could be inactivated in less than 30 min, 15 min, and 3 min at 56 �C, 65 �C, and 95 �C, respectively. These
data could help laboratory workers to improve their protocols by handling the virus in biosafety
conditions.
� 2021 Published by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
In December 2019, a new coronavirus named Severe Acute Res-
piratory Syndrome Coronavirus 2 (SARS-CoV-2) emerged inWuhan
City, Hubei Province in China and quickly became pandemic,
spreading to almost all countries in about 2 months. This highly
contagious virus has already caused a great number of infections
and deaths, and the scientific community is facing new challenges
to combat the ongoing outbreak. As no specific therapeutics and
vaccines are available for disease control, lockdowns, social dis-
tancing, and quick detection of cases are currently the main weap-
ons against the virus. Diagnostic and serological tools help to
detect SARS-CoV-2 carriers and immunized recovered patients as
soon as possible, and are therefore part of this fighting strategy
and necessary to consider a return to normal life. In this context,
viral inactivation procedures are urgently needed to allow safe
experimental laboratory conditions. Amplification of viral RNA by
quantitative RT-PCR is currently the gold standard procedure for
diagnosis recommended by the World Health Organization.1 Viral
RNA extraction kits sometimes require an initial lysis step at
70 �C or more for 5 min. Heat inactivation of the virus is also
needed for serum treatment before ELISA and serological assays.

Although 56 �C is commonly used for inactivation of enveloped
viruses,2,3 higher temperatures can be used in some cases.4–6 This
temperature is also used to eliminate serum complement. In this
study, we exposed SARS-CoV-2 to three different inactivation tem-
peratures (56 �C, 65 �C, and 95 �C) for various periods of time and
tested its infectivity using the TCID50 method.
A human strain of SARS-CoV-2, isolated from a French patient
hospitalized in February 2020 (GISAID accession number:
EPI_ISL_437689), was grown on Vero E6 cells for three passages.
The cells were maintained in Dulbecco’s modified Eagle’s medium
(DMEM 1X, GIBCO) supplemented with 5% fetal calf serum
(FCS) and antibiotics (0.1 units penicillin, 0.1 mg/mL streptomycin,
GIBCO) at 37 �C in a humidified 5% CO2 incubator. The
SARS-CoV-2 virus was titrated by the TCID50 method, as described
previously,7 except that Vero E6 cells were used and examination
for cytopathic effect was performed after 5 days. The viral titer
was adjusted from 6.5 log10 TCID50/mL to a final titer of 6 log10
TCID50/mL in three different kinds of media, that is, cell culture
medium (DMEM 1X), pooled nasopharyngeal samples of several
patients tested negative for SARS-CoV-2, and pooled sera from
donors collected before the 1st of January 2020 at a time when
the virus was not circulating in France.

Diluted samples (500 mL) were submitted in triplicate to various
temperatures for different periods of time in a calibrated and ver-
ified dry water bath, cooled on ice, and tested for infectivity by the
TCID50 method as described above. All experiments were con-
ducted under strict BSL3 conditions.

The mean viral titers obtained for each condition are presented
in Tables 1, 2, and 3. Viral inactivation over time is shown in Fig. 1.

At 56 �C, no infectious virus was detected within 30 min in cell
culture medium (Fig. 1A) and within 20 min in nasopharyngeal
samples and sera (Fig. 1B and 1C). As expected, increasing the tem-
perature had a negative effect on viral infectivity as no infectious
virus was detected within 15 min at 65 �C (Fig. 1A and 1B). At
95 �C, 3 min was sufficient to inactivate the virus in nasopharyn-
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Table 1
Log10 TCID50 per mL titers obtained after inactivation of cell culture medium containing 6 log10 TCID50/mL of SARS-CoV-2. ND: not detected (below the limit of virus detection
which corresponded to 0.67 log10 TCID50 per ml).

56 �C 65 �C

Time (min) 0 15 30 38 60 0 15 30 60

Cell culture medium 6.6 3.23 ND ND ND 6.6 ND ND ND

Table 2
Log10 TCID50 per mL titers obtained after inactivation of nasopharyngeal samples spiked with 6 log10 TCID50/mL of SARS-CoV-2. ND: not detected (below the limit of virus
detection which corresponded to 0.67 log10 TCID50 per ml).

56 �C 65 �C 95 �C

Time (min) 0 10 20 30 0 5 10 15 0 0.5 3 6

Nasopharyngeal samples 6.17 2.77 ND ND 6.57 4.83 ND ND 6.57 6.23 ND ND

Table 3
Log10 TCID50 per mL titers obtained after inactivation of human sera spiked with 6 log10 TCID50/mL of SARS-CoV-2. ND: not detected (below the limit of virus detection which
corresponded to 0.67 log10 TCID50 per ml).

56 �C

Time (min) 0 5 10 15 20 30

Sera 6.2 4.87 2.57 ND ND ND

Fig. 1. Viral titers in log10 TCID50/mL obtained after heat inactivation of infected cell culture medium (A), nasopharyngeal samples spiked with SARS-CoV-2 (B), and sera
samples from negative donors spiked with SARS-CoV-2 (C). Each condition was performed in triplicate. Each dot represents the mean viral titer and vertical lines represent
the standard deviation.
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geal samples (Fig. 1B). The high quantity of infectious virus
detected after 30 s (6.23 log10 TCID50/mL) was probably due to
the time necessary for the media and the tubes to reach 95 �C
inside.

To complement our results, viral RNA from each sample,
except from nasopharyngeal samples treated at 56 �C, was
extracted using a Nucleospin RNA Virus kit (Macherey-Nagel)
for quantitative RT-PCR. Primers and probes targeting two regions
of the RdRP gene developed by the French National Reference
Center for Respiratory Infections Viruses and a LightCycler
480 II instrument were used as previously described.8 The E gene
was used as a tertiary target for confirmation, following the
Charité protocol.9 The results showed that the mean genomic
RNA copy number ranged between 9.9 � 107 copy genome/5 mL
and 5.3 � 109 copy genome/5 mL (data not shown). For each
condition, the quantity of viral RNA was very stable over time,
suggesting that viral RNA remained intact in virus particles. At
95 �C, the results showed a slight decrease in viral RNA quantity
over time with approximately a 2.2-fold increase in the cq value,
which could potentially prevent SARS-CoV-2 detection in samples
with low viral loads.10,11

These results are similar to our previous results obtained with
the Middle East Respiratory Syndrome coronavirus (MERS-CoV),5

which belongs to the same genus of viruses. In conclusion,
SARS-CoV-2 is relatively sensitive to heat inactivation under our
laboratory conditions. These data can help laboratory workers
to elaborate and improve their protocols for SARS-CoV-2 experi-
ments, and reinforce our current knowledge on coronavirus
survival.12,13
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