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Abstract 61 

Humans display vast clinical variability upon SARS-CoV-2 infection1-3, partly due to genetic 62 

and immunological factors4. However, the magnitude of population differences in immune 63 

responses to SARS-CoV-2 and the mechanisms underlying such variation remain unknown. 64 

Here we report single-cell RNA-sequencing data for peripheral blood mononuclear cells from 65 

222 healthy donors of various ancestries stimulated with SARS-CoV-2 or influenza A virus. 66 

We show that SARS-CoV-2 induces a weaker, but more heterogeneous interferon-stimulated 67 

gene activity than influenza A virus, and a unique pro-inflammatory signature in myeloid 68 

cells. We observe marked population differences in transcriptional responses to viral exposure 69 

that reflect environmentally induced cellular heterogeneity, as illustrated by higher rates of 70 

cytomegalovirus infection, affecting lymphoid cells, in African-descent individuals. 71 

Expression quantitative trait loci and mediation analyses reveal a broad effect of cell 72 

proportions on population differences in immune responses, with genetic variants having a 73 

narrower but stronger effect on specific loci. Additionally, natural selection has increased 74 

immune response differentiation across populations, particularly for variants associated with 75 

SARS-CoV-2 responses in East Asians. We document the cellular and molecular mechanisms 76 

through which Neanderthal introgression has altered immune functions, such as its impact on 77 

the myeloid response in Europeans. Finally, colocalization analyses reveal an overlap 78 

between the genetic architecture of immune responses to SARS-CoV-2 and COVID-19 79 

severity. Collectively, these findings suggest that adaptive evolution targeting immunity has 80 

also contributed to current disparities in COVID-19 risk. 81 

Introduction 82 

One of the most striking features of the COVID-19 pandemic is the remarkable extent of 83 

clinical variation among SARS-CoV-2 infected individuals, ranging from asymptomatic 84 

infection to lethal disease1-3. Risk factors include primarily advanced age1 but also male sex5, 85 

comorbidities6, and human genetic factors (i.e., rare and common variants)4,7. Furthermore, 86 

variation in innate immunity8-10 – including inborn errors or neutralizing auto-antibodies 87 

against type I interferons11-13 – contribute to the various SARS-CoV-2-related clinical 88 

manifestations, and epidemiological and genetic data suggest differences in the outcome of 89 

SARS-CoV-2 infection between populations6,7,14,15. These observations, together with 90 

previous reports on the importance of ancestry-related differences in transcriptional responses 91 

to immune challenges16-19, highlight the need for in-depth investigations of the magnitude of 92 

variation in immune responses to SARS-CoV-2 and its drivers across populations worldwide.  93 
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There is strong evidence to suggest that viruses and other infectious agents have had an 94 

overwhelming impact on human evolution, exerting selection pressures that have shaped 95 

present-day population genetic variation20. In particular, human adaptation to RNA viruses, 96 

through selective sweeps or admixture with archaic hominins, has been identified as a source 97 

of population genetic differentiation17,21,22. For example, strong genetic adaptation, starting 98 

~25,000 years ago, has targeted multiple human coronavirus-interacting proteins in East 99 

Asian populations23,24. Furthermore, there is growing evidence for links between Neanderthal 100 

introgression and immunity25, with reports of COVID-19 severity being modulated by 101 

Neanderthal haplotypes in modern Eurasians26,27. However, the ways in which past natural 102 

selection events and archaic admixture have affected the immune response to SARS-CoV-2 in 103 

contemporary humans remains to be investigated.  104 

We addressed these questions by exposing peripheral blood mononuclear cells (PBMCs) 105 

from individuals of Central African, West European, and East Asian descent to SARS-CoV-2 106 

and, for the purpose of comparison, to another respiratory RNA virus, influenza A virus 107 

(IAV). By combining single-cell RNA sequencing (scRNA-seq) data with quantitative and 108 

population genetics approaches, we delineate the respective contributions of cellular, genetic, 109 

and evolutionary factors to population variation in immune responses to SARS-CoV-2. 110 

Defining single-cell responses to RNA viruses  111 

We characterized cell type-specific transcriptional responses to SARS-CoV-2 and IAV, by 112 

performing scRNA-seq on PBMCs from 222 healthy donors who originate from three 113 

different geographic locations (Central Africa, n = 80; West Europe, n = 80; East Asia, n = 114 

62; Methods), thus exposed to probably different environmental conditions, and carry 115 

different genetic ancestries (Supplementary Fig. 1). PBMCs were treated for six hours (i.e., a 116 

time point at which immune responses were strong and cell viability was high; Supplementary 117 

Fig. 2, Supplementary Note 1, Supplementary Table 1) with a mock-control (non-stimulated), 118 

SARS-CoV-2 (ancestral strain, BetaCoV/France/GE1973/2020) or IAV (H1N1/PR/8/1934) 119 

(n=222 samples for each set of experimental conditions). We captured over one million high-120 

quality single-cell transcriptomes (Fig. 1a, Supplementary Fig. 3, Supplementary Table 2a). 121 

By combining transcriptome-based clusters with cellular indexing of transcriptomes and 122 

epitopes by sequencing on a subset of samples (CITE-seq; Methods), we defined 22 different 123 

cell types across five major immune lineages, including myeloid cells, B cells, CD4+ T cells, 124 

CD8+ T cells and natural killer (NK) cells (Fig. 1b, Supplementary Fig. 4, Supplementary 125 

Table 2b-d).  126 
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After adjusting for technical factors (Methods), we found that cell-type identity was the 127 

main driver of gene expression variation (~32%), followed by virus exposure (~27%) (Fig. 128 

1b, c, Supplementary Fig. 5). Both SARS-CoV-2 and IAV induced a strong immune response, 129 

with 2,914 genes upregulated (FDR < 0.01, log2FC > 0.5; out of 12,655 with detectable 130 

expression) in response to virus stimulation across cell lineages (Supplementary Table 2e). 131 

Transcriptional responses to these viruses were highly correlated across cell types and were 132 

characterized by a strong induction of interferon-stimulated genes (ISG) (Fig. 1d). However, 133 

we observed marked heterogeneity in the myeloid response, with SARS-CoV-2 inducing a 134 

specific transcriptional network enriched in inflammatory-response genes (GO:0006954; fold-135 

enrichment (FE) = 3.4, FDR < 4.9 × 10-8) (Supplementary Table 2f). For example, IL1A, IL1B 136 

and CXCL8, encoding pro-inflammatory cytokines, were highly and specifically upregulated 137 

in response to SARS-CoV-2 (log2FC > 2.8, FDR < 2.3 × 10-36), highlighting the greater 138 

inflammatory potential of this virus.  139 

We assessed interindividual variability in the response to viral stimuli, by summarizing the 140 

response of each individual as a function of their mean level of ISG expression (i.e., ISG 141 

activity; Methods, Supplementary Table 2g). We found that SARS-CoV-2 induced more 142 

variable ISG activity than IAV across lineages28, with myeloid cells displaying the strongest 143 

differences (Supplementary Fig. 6a). We determined the relative contributions of the various 144 

interferons (IFNs) to the variation of ISG activity, by using single-molecule arrays (SIMOA) 145 

to quantify the levels of secreted IFN-α, β and γ proteins. In the SARS-CoV-2 condition, IFN-146 

α alone accounted for up to 57% of ISG variability, highlighting its determinant role in the 147 

response to SARS-CoV-2 (Supplementary Fig. 6b, c). IFN-α transcripts were produced by 148 

both infected CD14+ monocytes and plasmacytoid dendritic cells (pDCs) after stimulation 149 

with IAV, but pDCs were the only source of IFN-α after stimulation with SARS-CoV-2 (Fig. 150 

1e) and these cells presented lower levels of IFNA1-21 expression (log2FC = 6.4 for SARS-151 

CoV-2 vs. 12.5 for IAV, Wilcoxon rank-sum p-value = 1.2 × 10-16). Nevertheless, patterns of 152 

interindividual variability for ISG activity were remarkably similar after treatment with 153 

SARS-CoV-2 and IAV (r = 0.60, Pearson’s p-value < 1.2 × 10-22, Fig. 1f), indicating that, at 154 

the population level, the IFN-driven response is largely shared between these two viruses. 155 

Marked cellular heterogeneity across populations 156 

We investigated the contribution of differences in cellular proportions to the observed 157 

interindividual variability of SARS-CoV-2 responses, by focusing on individuals of Central 158 

African and West European ancestries — all recruited during the same sampling campaign, 159 
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thereby mitigating any potential batch effects related to sample processing17. We detected 160 

marked differences in lineage composition across populations, particularly for NK cells (Fig. 161 

2a, Supplementary Table 3a). Notably, an NK subset, identified as memory-like NK cells29, 162 

constituted 55.2% of the NK compartment of African-ancestry individuals, but only 12.2% of 163 

European-ancestry individuals (Wilcoxon rank-sum p-value < 6.4 × 10-20; Supplementary Fig. 164 

7a, b). Individuals of African ancestry also presented higher proportions of CD16+ 165 

monocytes19 and memory lymphocyte subsets, such as memory B cells, effector CD4+ T cells 166 

and effector memory CD8+ T cells re-expressing CD45RA (CD8+ EMRA T cells) (Wilcoxon 167 

rank-sum p-value < 4.1 × 10-5).  168 

We then searched for genes displaying differences in expression between populations. We 169 

found 3,389 genes, across lineages, differentially expressed between populations (popDEGs; 170 

FDR < 0.01, |log2FC| > 0.2) in the basal state, and 898 and 652 genes displaying differential 171 

responses between populations (popDRGs; FDR < 0.01, |log2FC| > 0.2) after stimulation with 172 

SARS-CoV-2 and IAV, respectively (Fig. 2b, Supplementary Table 3b, c). The popDRGs 173 

included genes encoding key immunity regulators, such as the IFN-responsive GBP7 and the 174 

macrophage inflammatory protein CCL23 (MIP-3), both of which were more strongly 175 

upregulated in Europeans (Fig. 2c). The GBP7 response was common to both viruses and all 176 

lineages (log2FC > 0.88, Student’s t-test adj. p-value < 1.4 × 10-3), but that of CCL23 was 177 

specific to SARS-CoV-2-stimulated myeloid cells (log2FC = 0.72, Student’s adj. p-178 

value = 5.3 × 10-4). We estimated that population differences in cellular composition 179 

accounted for 15-47% of popDEGs and for 7-46% of popDRGs, with the strongest impact on 180 

NK cells (Fig. 2b, d, Supplementary Fig. 7c). The variation of cellular composition mediated 181 

pathway-level differences in response to viral stimulation between populations 182 

(Supplementary Table 3d). For example, in virus-stimulated NK cells, genes involved in the 183 

promotion of cell migration, such as CSF1 or CXCL10, were more strongly induced in donors 184 

of European ancestry (normalized enrichment score > 1.5, Gene Set Enrichment Analysis adj. 185 

p-value < 0.009). However, the loss of this signal after adjustment for cellular composition 186 

(Fig. 2e) indicates that fine-scale cellular heterogeneity drives population differences in 187 

immune responses to SARS-CoV-2.  188 

Repercussions of latent cytomegalovirus infection 189 

Latent cytomegalovirus (CMV) infection has been reported to vary across populations 190 

worldwide30 and to alter cellular proportions31-33. We therefore determined the CMV 191 

serostatus of the samples. All but one of the individuals of Central African ancestry were 192 
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CMV+ (99%), versus only 31% of donors of West European ancestry, and CMV seropositivity 193 

was strongly correlated with the proportions of memory-like NK and CD8+ EMRA T cells 194 

(Fig. 2f, Supplementary Fig. 7d). Using mediation analysis, we estimated that CMV 195 

serostatus accounts for up to 73% of population differences in the proportion of these cell 196 

types (Supplementary Table 3e). These differences had a profound impact on the 197 

transcriptional response to SARS-CoV-2 (Supplementary Note 2, Supplementary Table 3f), 198 

probably contributing to the reported associations between CMV serostatus and COVID-19 199 

severity34,35. However, other than its effects on cellular composition, we found that CMV 200 

infection had a limited direct effect on the response to SARS-CoV-2, with only one gene 201 

presenting significant differences in expression in response to this virus at a FDR of 1% 202 

(ERICH3 in CD8+ T cells, log2FC = 1.7, FDR = 0.007; Supplementary Table 3g). These 203 

results reveal how environmental exposures that differ between populations, such as CMV 204 

infection, can lead to changes in the composition of the lymphoid fraction that, in turn, 205 

explain the observed population differences in the response to SARS-CoV-2.  206 

Genetic architecture of the leukocyte response 207 

We assessed the effects of human genetic variants on transcriptional variation, by mapping 208 

expression quantitative trait loci (eQTLs), focusing on cis-regulatory variants. At a FDR of 209 

1%, we identified between 1,866 and 4,323 independent eQTLs per major cell lineage, 210 

affecting a total of 5,198 genes (Fig. 3a, Supplementary Table 4a). Increasing the resolution to 211 

22 cell types led to the identification of an additional 3,603 eQTLs (Fig. 3b, Supplementary 212 

Fig. 8a, Supplementary Table 4b), highlighting the value of scRNA-seq for identifying 213 

context-dependent eQTLs. We found that 79% of eQTLs were replicated (p-value < 0.01) in 214 

at least three cell types, but only 22% were common to all lineages. In total, 812 eQTLs were 215 

cell type-specific (Methods), ~45% of which were detected in myeloid cells (Fig. 3b), 216 

including a pDC-specific eQTL (rs114273142) affecting the host gene encoding miRNA-155 217 

— a miRNA that ultimately promotes sensitivity to type I IFNs36 (Supplementary Fig. 8b). 218 

More broadly, we found that eQTL effect sizes were highly correlated across ontogenetically 219 

related cell types (mean correlation within and between lineages of r = 0.60 and 0.47, 220 

respectively, Wilcoxon rank-sum p-value = 6.2 × 10-6; Fig. 3c).  221 

We then focused on genetic variants that altered the response to viral stimuli (i.e., response 222 

eQTLs, reQTLs). We identified 1,505 reQTLs affecting 1,213 genes (Supplementary Table 223 

4c, d). The correlation of effect sizes across ontogenetically related cell types was weaker for 224 

reQTLs than for eQTLs (0.36 vs. 0.50, respectively, Wilcoxon rank-sum p-value < 5.6 × 10-13, 225 
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Fig. 3c). Furthermore, the proportion of shared reQTLs between the two viruses differed 226 

between cell types. In lymphoid cells, 93% of the reQTLs detected after stimulation with 227 

SARS-CoV-2 were also detected after stimulation with IAV (p-value < 0.01), with only 7.7% 228 

differing in effect size between viruses (interaction p-value < 0.01; Fig. 3d, e). Conversely, 229 

the genetic determinants of the myeloid response were much more virus-dependent (49% of 230 

myeloid reQTLs, interaction p-value < 0.01), with 46 and 185 reQTLs displaying specific, 231 

stronger effects following stimulation with SARS-CoV-2 and IAV, respectively. The 232 

strongest SARS-CoV-2-specific reQTL (rs534191, Student’s p-value = 1.96 × 10-16 for COV 233 

and 0.05 for IAV; Fig. 3f) was identified in myeloid cells, at the MMP1 locus, which encodes 234 

a reported biomarker of COVID-19 severity37. These analyses revealed that the genetic bases 235 

of leukocyte responses to SARS-CoV-2 are highly cell type-dependent, with the myeloid 236 

response being strongly virus-specific.  237 

Ancestry effects on immune response variation  238 

We then evaluated the contribution of genetic ancestry to population differences in immune 239 

responses, by focusing on popDEGs and popDRGs. We found that 11-24% of the genes 240 

expressed genome-wide had at least one eQTL, but this proportion increased to up to 56% and 241 

60% for popDEGs and popDRGs, respectively, not explained by cellular heterogeneity (Fig. 242 

3g, Supplementary Fig. 8c). Furthermore, the popDEGs and popDRGs displaying the largest 243 

population differences were more likely to be under genetic control and associated with 244 

eQTLs/reQTLs with the largest effect sizes (Supplementary Fig. 8d-f). We used mediation 245 

analysis to assess, for each gene, cell lineage and virus treatment, the fraction of population 246 

differences explained by genetics (i.e., the most significant eQTL) or cellular heterogeneity 247 

(Supplementary Table 5). Cellular composition had a broad effect on population differences 248 

in gene expression and responses to viral stimuli (explaining 16-62% of population 249 

differences per lineage and virus condition, with the strongest effect in NK cells), whereas 250 

genetic variants had a weaker overall effect (accounting for 13-35% of population differences; 251 

Fig. 3h, Supplementary Fig. 8g). However, genetic variants had strong effects on a subset of 252 

genes (141-433 genes per lineage) for which they accounted for 32-58% of population 253 

differences in expression. For example, 81-100% of the difference in GBP7 expression 254 

between donors of African and European ancestry were explained by a single variant 255 

displaying strong population differentiation (rs1142888, derived allele frequency (DAF) 256 

= 0.13 and 0.53 in African- and European-ancestry individuals, respectively, FST = 0.26, 257 

|βeQTL| > 1.7 across lineages upon stimulation). Thus, variation in immune responses across 258 
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populations is driven largely by cellular heterogeneity, but common cis-genetic variants that 259 

present marked allele frequency variation contribute to population differences at specific loci. 260 

Natural selection and SARS-CoV-2 responses 261 

We explored the contribution of natural selection to population differentiation of immune 262 

responses. We first searched for overlaps between eQTLs or reQTLs and genome-wide 263 

signals of local adaptation, measured by the population branch statistic (PBS)38. We identified 264 

1,616 eQTLs (1,215 genes) and 180 reQTLs (166 genes) displaying a strong allele frequency 265 

differentiation (empirical p-value < 0.01) in at least one population (Supplementary Table 266 

S6a). They included key players in IFN-mediated antiviral immunity, such as DHX58 and 267 

TRIM14 in African-ancestry individuals, ISG20, IFIT5, BST2 and IFITM2-3 in European-268 

ancestry individuals, and IFI44L and IFITM2 in East Asian-ancestry individuals. We then 269 

used CLUES39 to identify rapid changes in the frequency trajectory of (r)eQTLs over the last 270 

2,000 generations (i.e., 56,000 years) in each population (Supplementary Fig. 9a-d, 271 

Supplementary Table S6b). We found signals of rapid adaptation (max. |Z| > 3, Methods) 272 

targeting the same (IFITM2, IFIT5) or different (ISG20, IFITM3, TRIM14) eQTLs at highly 273 

differentiated genes. We determined whether selection had altered gene expression in specific 274 

cell types or in response to SARS-CoV-2 or IAV, by testing for an increase in population 275 

differentiation (PBS) at specific eQTLs/reQTLs, relative to random SNPs matched for allele 276 

frequency, linkage disequilibrium (LD) and distance to the nearest gene. In the basal state, 277 

eQTLs were more strongly differentiated in Europeans, with the strongest signal observed for 278 

γδ T cells (Fig. 4a, Supplementary Fig. 9e). We found that 34% of popDEGs — for which 279 

genetics was found to mediate > 50% of the differences between donors of African and 280 

European ancestries — were associated with signals of rapid adaptation in Europeans (vs. 281 

21% in Africans, Fisher’s exact p-value = 7.7 × 10-6). For example, population differences at 282 

GBP7 have been driven by a rapid frequency increase, over the last 782-1,272 generations, of 283 

the rs1142888-G allele in Europeans (max. |Z| > 4.3, Supplementary Fig. 9f). 284 

Focusing on the response to viral stimuli, we found that SARS-CoV-2 reQTLs were 285 

enriched in signals of population differentiation, specifically in East Asians (fold-enrichment 286 

(FE) = 1.24, one-sided resampling p-value < 2×10-4, Fig. 4a). Furthermore, among SARS-287 

CoV-2-specific reQTLs, 28 reQTLs (5.3%) displayed signals of rapid adaptation (max. |Z| > 288 

3) in East Asians starting 770-970 generations ago (~25,000 years) – a time frame associated 289 

with polygenic adaptation at SARS-CoV-2-interacting proteins23 (OR relative to other 290 

populations = 2.6, Fisher’s exact p-value = 7.3 × 10-4, Fig. 4b, c, Supplementary Fig. 9g, h). A 291 
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noteworthy example is the immune mediator LILRB1, in which we detected a SARS-CoV-2-292 

specific reQTL (rs4806787) in pDCs (Fig. 4d). However, the selection events making the 293 

largest contribution to the differentiation of SARS-CoV-2 immune responses in East Asia (top 294 

5% PBS) began before this time period (> 970 generations ago, OR = 1.94, Fisher’s exact p-295 

value = 0.019, Fig. 4b). For example, the rs1028396-T allele, associated with a weaker 296 

response of SIRPA to SARS-CoV-2 in CD14+ monocytes (80% in East Asia vs. 16-25% 297 

elsewhere) is characterized by a selection signal beginning more than 45,000 years ago (Fig. 298 

4b, e). SIRPα  has been shown to inhibit infection by endocytic viruses, such as SARS-CoV-2 299 

(ref.40). These results are consistent with a history of recurrent genetic adaptation targeting 300 

antiviral immunity over the last 50,000 years and contributing to present-day population 301 

differences in SARS-CoV-2 immune responses.  302 

Functional consequences of Neanderthal introgression 303 

We investigated the effect of the introgression of genetic material from archaic humans, such 304 

as Neanderthals or Denisovans, on present-day immune responses to viral challenges, by 305 

defining a set of 100,345 introgressed ‘archaic’ alleles (aSNPs) and determining whether 306 

eQTLs were over/underrepresented among introgressed variants relative to random, matched 307 

SNPs (Methods). We found that archaic haplotypes were 1.3-1.4 times more likely to alter 308 

gene expression, in the basal state (one-sided permutation p-value = 0.02) and after 309 

stimulation with SARS-CoV-2 or IAV (one-sided permutation p-value = 5×10-4 and 6×10-3, 310 

respectively) in Europeans, whereas this trend was not significant in East Asians (FE = 1.1, 311 

one-sided permutation p-value > 0.09, for all sets of conditions, Fig. 5a, Supplementary Table 312 

S7a-c). Enrichment was strongest in SARS-CoV-2-stimulated CD16+ and IAV-infected 313 

CD14+ monocytes, suggesting that archaic haplotypes altering myeloid responses to viruses 314 

have been preferentially retained in the genomes of modern Europeans. Furthermore, archaic 315 

haplotypes regulating gene expression are present at higher frequencies than archaic 316 

haplotypes without eQTLs in Europeans, after adjustment for the mean of minor allele 317 

frequencies worldwide to ensure similar power for the detection of eQTLs (Δf(introgressed 318 

allele) > 4.1%, Student’s p-value < 1.5×10-8; Methods, Fig. 5b, Supplementary Table S7d, e), 319 

providing evidence for the adaptive nature of Neanderthal introgression.  320 

We characterized the functional consequences of archaic introgression at the level of 321 

individual cell types, by focusing on introgressed eQTLs where the archaic allele was found 322 

at its highest frequency in Eurasians (i.e., 5% of most frequent SNPs). These eQTLs included 323 

known adaptively introgressed variants at OAS1-3 or PNMA1 in Europeans and TLR1, 324 
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FANCA or IL10RA in East Asians17,41-44, for which we delineated the cellular and molecular 325 

effects (Supplementary Fig. 10a, b, Supplementary Table S7f). For example, the COVID-19-326 

associated variant rs10774671 at OAS1 (ref.45) exerts its strongest effect in IAV-stimulated γδ 327 

T cells and two alleles in the TLR1-6-10 region (rs189688666-T and rs112318878-T) have 328 

opposite effects on TLR1 expression in IAV-stimulated monocytes and resting CD4+ T cells.  329 

We also identified previously unreported signals of Neanderthal introgression affecting 330 

immunity phenotypes. For example, an introgressed eQTL (rs11119346-T, 43% in East 331 

Asians vs. < 3% in Europeans) was found to downregulate TRAF3IP3 — encoding a negative 332 

regulator of the cytosolic RNA-induced IFN response46 — specifically in IAV-infected 333 

monocytes, thereby favoring IFN release after viral infection (Supplementary Fig. 10c, d). 334 

Likewise, a 35.5-kb Neanderthal haplotype with a frequency of 61% in East Asians (vs. 24% 335 

in Europeans) contains the rs9520848-C allele, which is associated with higher basal 336 

expression for the cytokine gene TNFSF13B in MAIT cells (Supplementary Fig. 10e, f). We 337 

also identified an introgressed reQTL (rs58964929-A) at UBE2F that was present in 38% of 338 

Europeans (vs. 22% of East Asians) and decreased UBE2F responses to SARS-CoV-2 and 339 

IAV in monocytes (Fig. 5c). UBE2F is involved in neddylation, a posttranslational 340 

modification required for the nuclear translocation of IRF7 by myeloid cells following 341 

infection with RNA viruses and, thus, for the induction of type I IFN responses47. 342 

Collectively, these results document the molecular and cellular mechanisms through which 343 

archaic introgression has altered immune functions.  344 

Immunity-related eQTLs and COVID-19 risk 345 

We investigated the contributions of genetic variants altering responses to SARS-CoV-2 in 346 

vitro to COVID-19 risk in vivo, by determining whether eQTLs/reQTLs were more strongly 347 

associated with COVID-19 hits detected by genome-wide association studies7 than random, 348 

matched SNPs (Methods). We observed an enrichment in eQTLs at loci associated with both 349 

susceptibility (reported cases) and severity (hospitalized or critical cases) (FE = 4.1 and 350 

FE > 3.8, respectively, one-sided resampling p-value < 10-4), and a specific enrichment in 351 

reQTLs at severity loci (FE > 3.7, one-sided resampling p-value < 3 × 10-3; Fig. 6a). This 352 

trend was observed across most cell lineages (Supplementary Fig. 11a). Colocalization 353 

analyses identified 40 genes at which there was a high probability of (r)eQTL colocalization 354 

with COVID-19 hits (coloc. PPH4 > 0.8; Supplementary Table S8). These included genes 355 

encoding direct regulators of innate immunity, such as IFNAR2 in non-stimulated CD4+ and 356 

CD8+ T cells, IRF1 in non-stimulated NK and CD8+ T cells, OAS1 in lymphoid cells 357 
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stimulated with SARS-CoV-2 and IAV, and OAS3 in SARS-CoV-2-exposed CD16+ 358 

monocytes (Fig. 6b, c, Supplementary Fig. 11b, c). These results are consistent with a 359 

contribution of immunity-related (r)eQTLs to COVID-19 risk. 360 

Focusing on the evolutionary factors affecting present-day COVID-19 risk, we identified 361 

20 eQTLs that (i) colocalized with COVID-19 susceptibility or severity hits (PPH4 > 0.8) and 362 

(ii) presented positive selection signals (top 1% PBS, n = 13 eQTLs) or evidence of archaic 363 

introgression (n = 7 eQTLs) (Fig. 6d). For example, we found two variants in high LD 364 

(rs569414 and rs1559828, r2 > 0.73) at the DR1 locus that displayed extremely high levels of 365 

population differentiation that could be attributed to out-of-Africa selection (DAF = 0.13 in 366 

Africa vs. > 0.62 in Eurasia, Supplementary Fig. 11d). Interestingly, DR1 suppresses type I 367 

IFN responses48 and the alleles subject to selection, which today decrease COVID-19 368 

severity, reduce DR1 expression in most immune cells (Fig. 6d). Furthermore, we identified a 369 

~39-kb Neanderthal haplotype spanning the MUC20 locus in Europeans and East Asians, in 370 

which the rs2177336-T allele is associated with both higher levels of MUC20 expression in 371 

SARS-CoV-2-stimulated cells, particularly for CD4+ T cells, and a lower susceptibility to 372 

COVID-19. Together, these results reveal the contribution of past selection or Neanderthal 373 

introgression affecting immune response variation to current disparities in COVID-19 risk. 374 

Discussion 375 

The degree and sources of the variation of immune responses to SARS-CoV-2 have emerged 376 

as major issues since the beginning of the COVID-19 pandemic4,6,14,15. Based on single-cell 377 

approaches, this study provides evidence that cellular proportions, the variation of which is 378 

largely due to environmental exposures, are major drivers of population differences in SARS-379 

CoV-2 immune responses. The higher proportions of memory cells detected in lymphoid 380 

lineages in individuals of African descent and their association with persistent CMV infection 381 

suggest that population differences in cellular activation states may be driven primarily by 382 

lifelong pathogen exposure. This highlights how socio-environmental factors (here, pathogen 383 

exposure) may covary with individual ancestry (i.e., genetic background), which may lead to 384 

an overestimation of the effects of ancestry on phenotypic variation (i.e., immune responses to 385 

SARS-CoV-2). Still, common genetic variants can also contribute to the observed variability 386 

of immune responses to viral challenges, but their effects tend to be limited to a subset of 387 

genes displaying strong population differentiation. This is best illustrated by the rs1142888-G 388 

variant, which solely accounts for the > 2.8-fold higher levels of GBP7 expression in response 389 

to viral stimulation in Europeans than in Africans. The higher frequency of this variant in 390 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 22, 2022. ; https://doi.org/10.1101/2022.11.22.517073doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.22.517073
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 
 

Europe appears to result from a selection event that occurred 21,900-35,600 years ago. GBP7 391 

has been shown to facilitate IAV replication by suppressing innate immunity49, but it also 392 

regulates IFN-γ-induced oxidative host defense and confers resistance to intracellular bacteria, 393 

such as Listeria monocytogenes and Mycobacterium tuberculosis50, providing a plausible 394 

mechanism for the occurrence of positive selection at this locus.  395 

This study also provides evidence to suggest that past natural selection and admixture 396 

with Neanderthals contributed to the differentiation of immune responses to SARS-CoV-2. 397 

We found traces of a selection event targeting SARS-CoV-2-specific reQTLs ~25,000 years 398 

ago in the ancestors of East Asians, coinciding with the proposed timing of an ancient 399 

epidemic affecting the evolution of host coronavirus-interacting proteins23,24. However, we 400 

found little overlap between the alleles selected during this period in East Asia and the 401 

reported genetic variants underlying COVID-19 risk, suggesting that there have been changes 402 

in the genetic basis of infectious diseases over time, possibly due to the evolution of viruses 403 

themselves. Nevertheless, we identified cases (e.g., DR1, OAS1-3, TOMM7, MUC20) in 404 

which selection or archaic introgression contributed to changes in both immune responses to 405 

SARS-CoV-2 and the outcome of COVID-19. Genomic studies based on ancestry-aware 406 

polygenic risk scores derived from cross-population GWAS will be required to establish a 407 

causal link between past adaptation and present-day population differences in COVID-19.  408 

Finally, dissection of the genetic architecture of immune response variation across a wide 409 

range of cell types provides mechanistic insight into the effect of alleles previously associated 410 

with COVID-19 risk. We found that several variants of IRF1, IFNAR2, and DR1 associated 411 

with lower COVID-19 severity increase type I IFN signaling in lymphoid cells by 412 

upregulating IRF1 and IFNAR2 or downregulating DR1, providing evidence for the 413 

importance of efficient IFN signaling for a favorable clinical outcome of SARS-CoV-2 414 

infection4,11-13. Another relevant example is provided by the MUC20 locus, at which we 415 

identified a Neanderthal-introgressed eQTL that both increased MUC20 expression in SARS-416 

CoV-2-stimulated CD4+ T cells and has been shown to decrease COVID-19 susceptibility. 417 

Given the role of mucins in forming a barrier against infection in the nasal epithelium, we 418 

suggest that the Neanderthal haplotype confers greater resistance to viral infections via a 419 

similar effect in nasal epithelial cells.  420 

Overall, these findings highlight the value of using single-cell approaches to capture the 421 

full diversity of the human immune response to RNA viruses, and SARS-CoV-2 in particular, 422 

and shed light on the environmental, genetic and evolutionary drivers of immune response 423 

variation across individuals and populations.  424 
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 541 
 542 
Figure 1 | Population-scale single-cell responses to SARS-CoV-2 and IAV. a, Study 543 
design. b and c, Uniform manifold approximation and projection (UMAP) of 1,047,824 544 
peripheral blood mononuclear cells: resting (non-stimulated; NS), stimulated with SARS-545 
CoV-2 (COV), or influenza A virus (IAV) for six hours. b, The colors indicate the 22 546 
different cell types inferred. c, Distribution of cells in NS, COV and IAV conditions on 547 
UMAP coordinates. Contour plot indicates the overall density of cells, and colored areas 548 
delineate regions of high cell density in each condition (gray: NS, red: COV, blue: IAV). d, 549 
Comparison of transcriptional responses to SARS-CoV-2 and IAV across major immune 550 
lineages. Hallmark inflammatory and interferon-stimulated genes are highlighted in orange 551 
and blue, respectively. e, Relative expression of IFN-α-encoding transcripts by each immune 552 
cell type in response to SARS-CoV-2 and IAV. Bar lengths indicate the mean number of IFN-553 
α transcripts contributed by each cell type to the overall pool (cell type frequency × mean 554 
number of IFN-α transcripts per cell). Dot area is proportional to the mean level of IFN-α 555 
transcripts in each cell type (counts per million). f, Correlation of ISG activity scores between 556 
individuals, following exposure to SARS-CoV-2 and IAV. Each dot corresponds to a single 557 
individual (n = 222) and its color indicates the self-reported ancestry of the individual 558 
concerned (AFB: Central African; EUB: West European; ASH: East Asian). 559 
  560 
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 561 
 562 
Figure 2 | Effects of the variation of cellular composition on transcriptional responses to 563 
viral stimuli. a, Cell-type proportions within each major immune lineage in individuals of 564 
Central African (AFB) and West European (EUB) ancestries. b, Number of genes 565 
differentially expressed between AFB and EUB donors, in the basal state (NS) or in response 566 
to SARS-CoV-2 (COV) or influenza A virus (IAV), in each major immune lineage. Numbers 567 
are provided before and after adjustment for cellular composition. c, Examples of genes 568 
displaying population differential responses (popDRGs), either shared between cell types and 569 
viruses (GBP7) or specific to SARS-CoV-2-stimulated myeloid cells (CCL23). *Benjamini-570 
Hochberg adjusted p-value < 0.001. d, Effect of adjusting for cellular composition on genes 571 
differentially expressed between populations. Adjustment reduces the number of genes with 572 
different expression levels between memory-like NK cells and their non-memory counterpart 573 
(i.e., CD56dim NK cells) following exposure to SARS-CoV-2 (red triangles). e, Effect of 574 
adjusting for cellular composition on population differences in the response to viral 575 
stimulation for genes involved in the ‘positive regulation of cell migration’ (GO:0030335) in 576 
the NK lineage. f, Distribution of CD8+ EMRA T and memory-like NK cell frequencies in 577 
AFB and EUB donors according to cytomegalovirus serostatus (CMV+/-) *Wilcoxon Rank-578 
Sum p-value < 0.001. d and f, middle line: median; notches: 95% confidence intervals (CI) of 579 
median, box limits: upper and lower quartiles; whiskers: 1.5× interquartile range. 580 
  581 
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 582 
 583 
Figure 3 | Genetic architecture of the variation of immune response to RNA viruses. a, 584 
Number of eQTLs detected per gene within each major immune lineage. b, Total number of 585 
eQTLs detected in each of the 22 different cell types. Colored bars indicate the number of 586 
genome-wide significant eQTLs in each cell type, white stripes (bottom) indicate cell type-587 
specific eQTLs (p-value > 0.01 in all other cell types), and black stripes (top) indicate the 588 
total number of eQTLs detected in each cell type including eQTLs from other cell types 589 
replicated at a p-value < 0.01. c, Correlation of eQTL (NS; lower triangle) and reQTL 590 
(response to SARS-CoV-2; upper triangle) effect sizes across cell types. For each pair of cell 591 
types, Spearman’s correlation coefficient was calculated for the effect sizes (β) of eQTLs that 592 
are significant at a nominal p-value < 0.01 in each cell type. d, Comparison of reQTL effect 593 
sizes (β) between SARS-CoV-2- and IAV-stimulated cells. Each dot represents a specific 594 
reQTL (i.e., SNP, gene, and lineage) and its color indicates the immune lineage in which it 595 
was detected. e. Number of virus-dependent reQTLs (interaction p-value < 0.01) in each 596 
immune lineage, split according to the stimulus where the reQTL has the largest effect size. f, 597 
Example of a SARS-CoV-2-specific reQTL at the MMP1 locus. *Student’s t-test p-598 
value < 10-16; middle line: median; notches: 95% CI of median, box limits: upper and lower 599 
quartiles; whiskers: 1.5× interquartile range; points: outliers. g, Enrichment in eQTLs among 600 
genes differentially expressed between populations (popDEGs). For each immune lineage, 601 
bars indicate the percentage of genes with a significant eQTL, at the genome-wide scale and 602 
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among popDEGs, before or after adjustment for cellular composition. h, For each immune 603 
lineage and stimulation condition, the x-axis indicates the mean percentage difference in 604 
expression between populations mediated by genetics (i.e., the most significant eQTL per 605 
gene in each immune lineage and condition) or cellular composition, across all popDEGs 606 
(top) or the set of popDEGs associated with a significant eQTL (bottom). The size of the dots 607 
reflects the percentage of genes with a significant mediated effect at a FDR of 1%.  608 
  609 
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 610 
 611 
Figure 4 | Natural selection effects on population differentiation of immune responses. a, 612 
Fold-enrichment in local adaptation signals, defined by the population branch statistic (PBS), 613 
and 95% CI, for eQTLs and reQTLs relative to randomly selected variants, matched for minor 614 
allele frequency, distance to nearest gene, and LD score. b. Estimated periods of selection, 615 
over the past 2,000 generations, for 245 SARS-CoV-2 reQTLs with significant rapid 616 
adaptation signals in East Asians (CHS) (max. |Z-score| > 3). Variants are ordered in 617 
descending order of time to the onset of selection. The area shaded in purple highlights a 618 
period corresponding to 770 to 970 generations ago that has been shown to be associated with 619 
polygenic adaptation signals at host coronavirus-interacting proteins in East Asians23. Several 620 
immunity-related genes are highlighted (top panel). Allele frequency trajectories of two 621 
SARS-CoV-2 reQTLs (rs1028396 at SIRPA and rs11645448 at NOD2) in Central Africans 622 
(YRI, green), West Europeans (CEU, yellow) and East Asians (CHS, purple). Shaded areas 623 
indicate the 95% CIs. Dendrograms show the estimated population phylogeny for each eQTL 624 
based on PBS (i.e., the branch length between each pair of populations is proportional to -625 
log10(1-FST)). c, Percentage of SARS-CoV-2-specific reQTLs presenting selection signals in 626 
different populations, between 770 and 970 generations ago, with resampling-based 95% CIs. 627 
d, e, Examples of SARS-CoV-2-induced reQTLs at LILRB1 (rs4806787) in plasmacytoid 628 
dendritic cells and SIRPA (rs1028396) in CD14+ monocytes. *Student’s t-test p-value < 0.01; 629 
middle line: median; notches: 95% CI of median, box limits: upper and lower quartiles; 630 
whiskers: 1.5× interquartile range; points: outliers. 631 
 632 
  633 
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 634 
 635 
Figure 5 | Impact of archaic introgression on molecular and cellular phenotypes. a, 636 
Enrichment of eQTLs and reQTLs in introgressed haplotypes. For each comparison, the mean 637 
observed/expected ratio and the 95% CIs are reported (based on 10,000 resamplings). b, For 638 
each population and stimulation condition, the frequencies of introgressed haplotypes are 639 
compared according to their effects on gene expression (eQTL vs. non-eQTL; *Wilcoxon’s p-640 
value < 0.001; middle line: median; notches: 95% CI of median, box limits: upper and lower 641 
quartiles; whiskers: 1.5× interquartile range; points: outliers). c, Example of adaptive 642 
introgression at the UBE2F locus (reQTL rs58964929). Upper panel: frequency and nature of 643 
archaic alleles across the genomic region of chromosome 2 containing UBE2F. Each dot 644 
represents an allele of archaic origin, and its color indicates whether it was present in the 645 
Vindija Neanderthal genome (orange) or was common to the Vindija Neanderthal and 646 
Denisova genomes (light yellow). The eQTL index SNP is shown in red. The frequency in 647 
West Europeans (CEU, yellow) and East Asians (CHS, purple) is indicated on the y-axis. 648 
Middle panel: monocyte eQTL p-values for SNPs at the UBE2F locus, color-coded according 649 
to stimulation conditions (gray: non-stimulated (NS), red: SARS-CoV-2-stimulated (COV), 650 
blue: IAV-stimulated (IAV)). Each dot represents a SNP and its size (area) is proportional to 651 
the LD (r2) values between the SNP and nearby archaic alleles. For the archaic alleles, arrows 652 
indicate the effect of the allele on gene expression. Lower panel: gene structure in the 653 
chromosome 2 region, with the UBE2F gene highlighted in red.  654 
  655 
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 656 
 657 
Figure 6 | Immunity-related eQTLs and reQTLs contribute to COVID-19 risk. a, 658 
Enrichment in GWAS loci associated with COVID-19 susceptibility and severity at eQTLs 659 
and reQTLs. For each comparison, fold-enrichments and resampling-based 95% confidence 660 
intervals are displayed. b and c, Colocalization of IRF1 and IFNAR2 eQTLs with COVID-19 661 
severity loci. Upper panels show the -log10(p-value) profiles for association with COVID-19-662 
related hospitalization, and lower panels show the -log10(p-values) profile for association with 663 
expression in non-stimulated CD56dim NK cells (IRF1) and CD4+ T cells (IFNAR2). In each 664 
panel, the color code reflects the degree of LD (r2) with the consensus SNP identified in the 665 
colocalization analysis (purple). For each SNP, the direction of the arrow indicates the 666 
direction of the effect. d, Features of (r)eQTLs colocalizing with COVID-19 risk loci 667 
(PPH4 > 0.8) and presenting either strong population differentiation (top 1% PBS genome-668 
wide) or evidence of Neanderthal introgression. From left to right: (i) effects of the target 669 
allele on gene expression across immune lineages and stimulation conditions, (ii) clinical and 670 
functional annotations of associated genes, (iii) present-day population frequencies of the 671 
target allele, and (iv) effects of the target allele on COVID-19 risk (infection, hospitalization, 672 
and critical state) and colocalization probability. Arrows indicate increases/decreases in gene 673 
expression or disease risk with each copy of the target allele, and opacity indicates the 674 
increases in effect size. In the leftmost panel, arrow colors indicate the stimulation conditions 675 
(gray: non-stimulated (NS), red: SARS-CoV-2-stimulated (COV), blue: IAV-stimulated 676 
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(IAV)). For each eQTL, the target allele is defined as either (i) the derived allele for highly 677 
differentiated eQTLs, or (ii) the allele that segregates with the archaic haplotype for 678 
introgressed eQTLs in Eurasians. When the ancestral state is unknown, the minor allele is 679 
used as a proxy for the derived allele. Note that in some cases (e.g., OAS1) the introgressed 680 
allele can be present at high frequency in Africa, which is attributed to the reintroduction in 681 
Eurasia of an ancient allele by Neanderthals45.  682 
  683 
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Methods 684 

Sample collection 685 

The individuals of self-reported African (AFB) and European (EUB) descent studied are part 686 

of the EVOIMMUNOPOP cohort17. Briefly, 390 healthy male donors were recruited between 687 

2012 and 2013 in Ghent (Belgium), thus before the COVID-19 pandemic (188 of self-688 

reported African descent, and 202 of self-reported European descent). Blood was obtained 689 

from the healthy volunteers, and the peripheral blood mononuclear cell (PBMC) fraction was 690 

isolated and frozen. Inclusion in the current study was restricted to 80 nominally healthy 691 

individuals of each ancestry, between 19 and 50 years of age at the time of sample collection. 692 

Donors of African descent originated from West Central Africa, with >90% being born in 693 

either Cameroon or the Democratic Republic of Congo. For this study, an additional 71 694 

individuals of East Asian descent (ASH) were included (62 donors left after quality control, 695 

see “Single-cell RNA sequencing library preparation and data processing”). ASH individuals 696 

were recruited at the School of Public Health, University of Hong Kong, and were included in 697 

a community-based sero-epidemiological COVID-19 study (research protocol number JTW 698 

2020.02). Inclusion for the study described here was restricted to nominally healthy ASH 699 

individuals (30 men and 41 women) aged between 19 and 65 years of age and seronegative 700 

for SARS-CoV-2. Samples were collected at the Red Cross Blood Transfusion Service (Hong 701 

Kong) where the PBMC fraction was isolated and frozen.  702 

In this study, we refer to individuals of ‘Central African’ (AFB), ‘West European’ (EUB) 703 

and ‘East Asian’ (ASH) ancestries to describe individuals who are genetically similar (i.e., 704 

lowest FST values) to populations from West-Central Africa, Western Europe and East Asia, 705 

using the 1,000 Genomes (1KG) Project51 data as a reference (Supplementary Fig. 1a). Of 706 

note, the AFB, EUB and ASH samples present no detectable evidence of recent genetic 707 

admixture with populations originating from another continent (e.g., AFB present no traces of 708 

recent admixture with EUB). 709 

All samples were collected after written informed consent had been obtained from the 710 

donors, and the study was approved by the ethics committee of Ghent University (Belgium, 711 

no. B670201214647), the Institutional Review Board of the University of Hong-Kong (no. 712 

UW 20-132), and the relevant French authorities (CPP, CCITRS and CNIL). This study was 713 

also monitored by the Ethics Board of Institut Pasteur (EVOIMMUNOPOP-281297).  714 

 715 

 716 
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Genome-wide DNA genotyping 717 

The AFB and EUB individuals were previously genotyped at 4,301,332 SNPs, with the 718 

Omni5 Quad BeadChip (Illumina, California) with processing as previously described17. The 719 

additional 71 ASH donors were genotyped separately at 4,327,108 SNPs with the Infinium 720 

Omni5-4 v1.2 BeadChip (Illumina, California). We updated SNP identifiers based on 721 

Illumina annotation files (https://support.illumina.com/content/dam/illumina-722 

support/documents/downloads/productfiles/humanomni5-4/v1-2/infinium-omni5-4-v1-2-a1-723 

b144-rsids.zip) and called the genotypes of all ASH individuals jointly on GenomeStudio 724 

(https://www.illumina.com/techniques/microarrays/array-data-analysis-experimental-725 

design/genomestudio.html). We then removed SNPs with (i) no “rs” identifiers or with no 726 

assigned chromosome or genomic position (n = 14,637); (ii) duplicated identifiers 727 

(n = 5,059); or (iii) a call rate < 95% (n = 10,622). We then used the 1KG Project Phase 3 728 

data51 as a reference for merging the ASH genotyping data with that of AFB and EUB 729 

individuals and detecting SNPs misaligned between the three genotype datasets. Before 730 

merging, we removed SNPs that (i) were absent from either the Omni5 or 1KG datasets 731 

(n = 469,535); (ii) were transversions (n = 138,410); (iii) had incompatible alleles between 732 

datasets, before and after allele flipping (n = 1,250); and (iv) had allele frequency differences 733 

of more than 20% between the AFB and Luhya from Webuye, Kenya (LWK) and Yoruba 734 

from Ibadan, Nigeria (YRI), or between the EUB and Utah residents with Northern and 735 

Western European ancestry (CEU) and British individuals from England and Scotland (GBR), 736 

or between the ASH and Southern Han Chinese (CHS) (n = 777). Once the data had been 737 

merged, we performed principal components analysis (PCA) with PLINK 1.9 (ref.52) and 738 

ensured that the three study populations (i.e., AFB, EUB, and ASH) overlapped with the 739 

corresponding 1KG populations, to exclude batch effects between genotyping platforms 740 

(Supplementary Fig. 1a). The final genotyping dataset included 3,723,840 SNPs. 741 

 742 

Haplotype phasing and imputation  743 

After merging genotypes from AFB, EUB and ASH donors, we filtered genotypes for 744 

duplicates with bcftools norm --rm-dup all (v1.16) (ref.53) and lifted all genotypes over to the 745 

human genome assembly GRCh38 with GATK’s (v4.1.2.0) LiftoverVcf using the 746 

RECOVER_SWAPPED_ALT_REF=TRUE option54. We then filtered out duplicated variants 747 

again before phasing genotypes with SHAPEIT4 (v4.2.1) (ref.55) and imputing missing 748 

variants with Beagle5.1 (version: 18May20.d20) (ref.56), treating each chromosome 749 

separately. For both phasing and imputation, we used the genotypes of 2504 unrelated 750 
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individuals from the 1,000 Genomes (1KG) Project Phase 3 data as a reference (downloaded 751 

from ftp://ftp/1000genomes.ebi.ac.uk/vol1/ftp/release20130502 and lifted over to GRCh38) 752 

and downloaded genetic maps from the GitHub pages of the associated software (i.e., 753 

SHAPEI4 for phasing and Beagle5.1 for imputation). A third round of duplicate filtering was 754 

performed after phasing and before imputation with Beagle5.1 (version: 18May20.d20) 755 

(ref.56). Phasing was performed setting –pbwt-depth=8 and imputation was performed 756 

assuming an effective population size (Ne) of 20,000. The quality of imputation was assessed 757 

by cross-validation; specifically, we performed 100 independent rounds of imputation 758 

excluding 1% of the variants and compared the imputed allelic dosage with the observed 759 

genotypes for these variants (Supplementary Fig. 1b, c). The results obtained confirmed that 760 

imputation quality was satisfactory, with 98% of common variants (i.e., MAF > 5%) having 761 

an r2 > 0.8 for the correlation between observed and imputed genotypes (>95% concordance 762 

for 96% of common variants). Following imputation, variants with a MAF < 1% or with a low 763 

predicted quality of imputation (i.e., DR2 < 0.9) were excluded, yielding a final dataset of 764 

13,691,029 SNPs for downstream analyses.  765 

 766 

Viruses used in this study 767 

The SARS-CoV-2 reference strain used in this study (BetaCoV/France/GE1973/2020) was 768 

supplied by the National Reference Centre for Respiratory Viruses hosted by Institut Pasteur 769 

(Paris, France) and headed by Dr. Sylvie van der Werf. The human sample from which the 770 

strain was isolated was provided by Dr. Laurent Andreoletti from the Robert Debré Hospital 771 

(Paris, France). The influenza A virus strain used in this study (IAV, PR/8, H1N1/1934) was 772 

purchased from Charles River laboratories (lot n° #3X051116) and provided in ready-to-use 773 

aliquots that were stored at -80°C. 774 

 775 

SARS-CoV-2 stock production 776 

To produce SARS-CoV-2, we used African green monkey kidney Vero E6 cells that were 777 

maintained at 37°C in 5% CO2 in Dulbecco’s minimum essential medium (DMEM) (Sigma-778 

Aldrich) supplemented with 10% fetal bovine serum (FBS, Dutscher) and 1% 779 

penicillin/streptomycin (P/S, Gibco, Thermo Fisher Scientific). Vero E6 cells were plated at 780 

80% confluence in 150 cm2 flasks and infected with SARS-CoV-2 at a multiplicity of 781 

infection (MOI) of 0.01 in DMEM supplemented with 2% FBS and 1% P/S. After 1 hour, the 782 

inoculum was removed and replaced with DMEM supplemented with 10% FBS, 1% P/S, and 783 

cells were incubated for 72 hours at 37°C in 5% CO2. The cell culture supernatant was 784 
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collected and centrifuged for 10 min at 3,000 r.p.m to remove cellular debris, and 785 

polyethylene glycol (PEG; PEG8000, Sigma-Aldrich) precipitation was performed to 786 

concentrate the viral suspension. Briefly, 1 L of viral stock was incubated with 250 mL of 787 

40% PEG solution (i.e., 8% PEG final) overnight at 4°C. The suspension was centrifuged at 788 

10,000g for 30 minutes at 4°C and the resulting pellet was resuspended in 100 mL of RPMI 789 

medium (Gibco, Thermo Fisher Scientific) supplemented with 10% FBS (referred to as R10) 790 

and viral aliquots were stored at -80°C. SARS-CoV-2 viral titers were determined by focus-791 

forming unit (FFU) assay as previously described57. Briefly, Vero-E6 cells were plated in a 792 

96-multiwell plate with 2 × 104 cells per well. The cellular monolayer was infected with serial 793 

dilutions (1:10) of viral stock and overlaid with a semi-solid 1.5% carboxymethylcellulose 794 

(CMC, Sigma-Aldrich) and 1x MEM medium for 36 hours at 37°C. Cells were then fixed 795 

with 4% paraformaldehyde (Sigma-Aldrich), and permeabilized with 1× PBS–0.5% Triton X-796 

100 (Sigma-Aldrich). Infectious foci were stained with a human anti-SARS-CoV-2 Spike 797 

antibody (H2-162, Hugo Mouquet’s laboratory, Institut Pasteur) and the corresponding HRP-798 

conjugated secondary antibody (Sigma-Aldrich). Foci were visualized by 3,3′-799 

diaminobenzidine staining solution (DAB, Sigma-Aldrich) staining and counted with the 800 

BioSpot suite of a C.T.L. ImmunoSpot S6 Image Analyzer. 801 

 802 

In vitro peripheral blood mononuclear cell stimulation 803 

We performed single-cell RNA-sequencing on SARS-CoV-2-, IAV- and mock-stimulated 804 

(referred to as “non-stimulated” condition) PBMCs from healthy donors (80 AFB, 80 EUB 805 

and 71 ASH) in 16 experimental runs. We first performed a kinetic experiment (run 1) on 806 

samples from 4 AFB and 4 EUB stimulated for 0, 6 and 24 hours to validate our in vitro 807 

model across different time points (Supplementary Fig. 2, Supplementary Table 1). The 6-808 

hour time point was identified as the optimal time point for the analysis (Supplementary Note 809 

1). We then processed the rest of the cohort, over runs 2 through 15. Finally, we reprocessed 810 

some samples (run 16) to assess technical variability in our setting and to increase in silico 811 

cell counts (see ‘Single-cell RNA sequencing library preparation and data processing’ 812 

section). Ancestry-related batch effects were minimized by scheduling sample processing to 813 

ensure a balanced distribution of AFB, EUB and ASH donors within each run. 814 

For each run, cryopreserved PBMCs were thawed in a 37°C water bath, transferred to 25 815 

mL of R10 medium (i.e., RPMI 1640 supplemented with 10% heat-inactivated fetal bovine 816 

serum) at 37°C, and centrifuged at 300g for 10 minutes at room temperature. Cells were 817 

counted, re-suspended at 2×10⁶ cells/mL in warm R10 in 25cm2 flasks, and rested overnight 818 
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(i.e., 14 hours) at 37°C.  The next morning, PBMCs were washed and re-suspended at a 819 

density of 3.3×10⁶ cells/mL in R10; 120 µL of a suspension containing 4×10⁵ cells from each 820 

sample was then plated in a 96-well untreated plate (Greiner Bio-One) for each of the three 821 

sets of stimulation conditions. We added 80 µL of either R10 (non-stimulated), SARS-CoV-2 822 

or IAV stock (corresponding to 4×10⁵ focus-forming units diluted in R10) to the cells, so as 823 

to achieve a multiplicity of infection (MOI) of 1 and an optimal PBMC concentration of 824 

2×10⁶ cells/mL. Cells were incubated at 37°C for 0, 6 or 24 hours for the kinetic experiment 825 

(run 1), and for 6 hours for all subsequent runs (runs 2 to 16), in a biosafety level 3 (BSL-3) 826 

facility at Institut Pasteur, Paris. The plates were then centrifuged at 300g for 10 minutes and 827 

supernatants were stored at -20°C until use (see ‘Supernatant cytokine assays’ section). All 828 

samples from the same run were resuspended in Dulbecco’s phosphate-buffered saline (PBS, 829 

Gibco), supplemented with 0.04% bovine serum albumin (BSA, Miltenyi Biotec), and 830 

multiplexed in eight pools according to a pre-established study design (Supplementary Fig. 831 

3a, Supplementary Table 2a). The cells from each pool were counted with a Cell Countess II 832 

automated cell counter (Thermo Fisher Scientific) and cell density was adjusted to 1,000 833 

viable cells/µL 0.04% BSA in PBS. 834 

 835 

Single-cell RNA sequencing library preparation and data processing 836 

We generated scRNA-seq cDNA libraries with a Chromium Controller (10X Genomics) 837 

according to the manufacturer’s instructions for the Chromium Single Cell 3’ Library and Gel 838 

Bead Kits (v3.1). Library quality and concentration were assessed with an Agilent 2100 839 

Bioanalyzer and a Qubit fluorometer (Thermo Fisher Scientific). The final products were 840 

processed for high-throughput sequencing on a HiSeqX platform (Illumina Inc.). 841 

Paired-end sequencing reads from each of the 133 scRNA-seq cDNA libraries (13 libraries 842 

from the kinetic experiment and 120 from the population-level study) were independently 843 

mapped onto the concatenated human (GRCh38), SARS-CoV-2 (hCoV-844 

19/France/GE1973/2020) and IAV (A/Puerto Rico/8/1934(H1N1)) genome sequences with 845 

the STARsolo aligner (v2.7.8a) (ref.58) (Supplementary Fig. 3b). We obtained a mean of 846 

10,785 cell-containing droplets per library, and each droplet was assigned to its sample of 847 

origin with Demuxlet (v0.1) (ref.59), based on the genotyping data available for each 848 

individual. Singlet/doublet calls were compared with the output of Freemuxlet (v0.1) (ref.59) 849 

to ensure good agreement (Supplementary Fig. 3c-e). We loaded feature-barcode matrices for 850 

all cell-containing droplets identified as singlets by Demuxlet in each scRNA-seq library onto 851 

a SingleCellExperiment (v1.14.1) object60. Data from barcodes associated with low-quality or 852 
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dying cells were removed with a hard threshold-based filtering strategy based on three 853 

metrics: cells with fewer than 1,500 total UMI counts, 500 detected features or a 854 

mitochondrial gene content exceeding 20% were removed from each sequencing library 855 

(Supplementary Fig. 3f). We also discarded samples nine ASH donors from whom fewer than 856 

500 cells were obtained in at least one condition (Supplementary Fig. 3g). 857 

We then log-normalized raw UMI counts with a unit pseudocount and library size factors 858 

(i.e., number of reads associated with each barcode) were calculated with quickClusters and 859 

computeSumFactors from the scran package (v1.20.1) (ref.60). We then calculated the mean 860 

and variance of log counts for each gene and broke the variance down into a biological and a 861 

technical component with the fitTrendPoisson and modelGeneVarByPoisson functions of 862 

scran. This approach assumes that technical noise is Poisson-distributed and simulates 863 

Poisson-distributed data to derive the mean-variance relationship expected in the absence of 864 

biological variation. Excess variance relative to the null hypothesis is considered to 865 

correspond to the biological variance. We retained only those genes for which the biological 866 

variance component was positive with a FDR below 1%. We used this filtered feature set and 867 

the technical variance component modeled from the data to run principal components analysis 868 

(PCA) with denoisePCA from scran, thus discarding later components more likely to capture 869 

technical noise. Doublets (i.e., barcodes assigned to cells from different individuals captured 870 

in the same droplet) are likely to be in close neighborhoods when projected onto a subspace of 871 

the data of lower dimensionality (Supplementary Fig. 3h). We therefore used a k-nearest 872 

neighbors (k-NN) approach to discard cryptic doublets (i.e., barcodes associated to different 873 

cells from the same individual captured in the same droplet). Barcodes identified as singlets 874 

by Demuxlet but having over 5/25 doublet NNs in the PCA space, were re-assigned as 875 

doublets and excluded from further analyses.  876 

Following data preprocessing, we performed a second round of UMI count normalization, 877 

feature selection and dimensionality reduction on the cleaned data, to prevent bias due to the 878 

presence of low-quality cells and cryptic doublets. Sequence depth differences were equalized 879 

between batches (i.e., sequencing libraries) with multiBatchNorm from batchelor (v1.8.1) to 880 

scale library size factors according to the ratio of mean counts between batches61 881 

(Supplementary Fig. 3i). We accounted for the different mean-variance trends in each batch, 882 

by applying modelGeneVarByPoisson separately for each sequencing library, and then 883 

combining the results for all batches with combineVar from scran (ref.60). We then bound all 884 

133 separate preprocessed feature-barcode matrices into a single merged 885 

SingleCellExperiment object, log-normalized UMI counts according to the scaled size factors 886 
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and selected genes with mean log-expression values over 0.01 or a biological variance 887 

compartment exceeding 0.001 (Supplementary Fig. 3j). Based on this set of highly variable 888 

genes and the variance decomposition, we then performed PCA on the whole data set with 889 

denoisePCA, and then used Harmony (v0.1.0) on the PCs to adjust for library effects62.  890 

 891 

Clustering and cell-type assignment  892 

We performed cluster-based cell-type identification in each stimulation condition, according 893 

to a four-step procedure. We first performed low-resolution (res. parameter=0.8) shared 894 

nearest-neighbors graph-based (k=25) clustering with FindClusters from Seurat (v4.1.1) with 895 

assignment to one of three meta-clusters (i.e., myeloid, B lymphoid and T/NK lymphoid) 896 

based on the transcriptional profiles of the cells for canonical markers (e.g., CD3E-F, CD14, 897 

FCGR3A, MS4A1) (Supplementary Fig. 4a, b). We then performed a second round of 898 

clustering at higher resolution (res. parameter=3) within each meta-cluster and stimulation 899 

condition (Supplementary Fig. 4c). We systematically tested for differential expression 900 

between each cluster and the other clusters of the same meta-cluster and stimulation 901 

condition. This made it possible to define unbiased markers (|log2FC| ≠ 0, FDR < 0.01) for 902 

each cluster (Supplementary Fig. 4d). We then used these expression profiles of these genes 903 

to assign each cluster manually to one of 22 different cell types (Supplementary Fig. 4e), 904 

which, for some analyses, were collapsed into five major immune lineages. This step was 905 

performed in parallel by three investigators to consolidate consensus assignments. We also 906 

used cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) data, 907 

generated for a subset of cells (2% of the whole data set), to validate our assignments and 908 

redefine clusters presenting ambiguous transcriptional profiles (e.g., memory-like NK cells, 909 

Supplementary Fig. 4f).  910 

By calling cell types from high-resolution, homogeneous clusters, assigned independently 911 

for each lineage and stimulation condition (i.e., non-stimulated, SARS-CoV-2, and IAV), we 912 

were able to preserve much of the diversity in our data set, while avoiding potential 913 

confounding effects due to the stimulation conditions. However, some clusters were 914 

characterized by markers associated with different cell types. Most of these clusters 915 

corresponded to mixtures of similar cell types (e.g., the expression of CD3E, CD8A, NKG7, 916 

CD16 suggested a mixture of cytotoxic CD8+ T and NK cells) and were consistent with the 917 

known cell hierarchy. Other, less frequent clusters expressed a combination of markers 918 

usually associated with lineages originating from different progenitors (e.g., CD3E and CD19, 919 

associated with T and B lymphocytes, respectively). These clusters were considered 920 
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incoherent and discarded. In the fourth and final step of our procedure, we used linear 921 

discriminant analysis to resolve the mixtures that were consistent with the established cell 922 

hierarchy, to obtain a final cell assignment (Supplementary Fig. 4g, h). For clusters of mixed 923 

identity AB, we built a training data set from 10,000 observations sampled from the set of 924 

cells called as A or B, preserving the corresponding frequencies of these cells in the whole 925 

dataset. We then used a model trained on these data to predict the specific cellular identities 926 

within the mixed cluster. 927 

 928 

Cellular indexing of transcriptomes and epitopes by sequencing  929 

As a means to confirm the identity of specific cell types expressing ambiguous markers at the 930 

RNA level, during the last experimental run (run 16), half the cells from each experimental 931 

condition were used to perform CITE-seq, according to the manufacturer’s instructions (10X 932 

Genomics). PBMCs were washed, resuspended in chilled 1% BSA in PBS and incubated with 933 

human TruStain FcX blocking solution (BioLegend) for 10 minutes at 4°C. Cells were then 934 

stained with a cocktail of TotalSeqTM-B antibodies (BioLegend) previously centrifuged at 935 

14,000g for 10 minutes (Supplementary Table S2b). The cells were incubated for 30 minutes 936 

at 4°C in the dark and were then washed three times. Cell density was then adjusted to 1,000 937 

viable cells/µL in 1% BSA in PBS. We generated scRNA-seq libraries and cell protein 938 

libraries (L131-L134) with the Chromium Single Cell 3’ Reagent Kit (v3.1), using the Feature 939 

Barcoding technology for Cell Surface Proteins (10X Genomics).  940 

 941 

Supernatant cytokine assays  942 

Before protein analysis, sample supernatants were treated in the BSL-3 facility to inactivate 943 

the viruses, according to a published protocol for SARS-CoV (ref.63), which we validated for 944 

SARS-CoV-2. Briefly, all samples were treated with 1% (v/v) TRITON X100 (Sigma-945 

Aldrich) for 2 hours at room temperature, which effectively inactivated both SARS-CoV-2 946 

and IAV. Protein concentration was then determined with a commercial Luminex multi-947 

analyte assay (Biotechne, R&D Systems) and the SIMOA Homebrew assay (Quanterix). For 948 

the Luminex assay, we used the XL Performance Kit according to the manufacturer’s 949 

instructions, and proteins were determined with a Bioplex 200 (Bio-Rad). Furthermore, IFN-950 

α, IFN-γ (duplex) and IFN-β (single-plex) protein concentrations were quantified in SIMOA 951 

digital ELISA tests developed as Quanterix Homebrews according to the manufacturer’s 952 

instructions (https://portal.quanterix.com/). The SIMOA IFN-α assay was developed with two 953 

autoantibodies specific for IFN-α isolated and cloned (Evitria, Switzerland) from two 954 
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APS1/APECED patients64 and covered by patent application WO2013/098419. These 955 

antibodies can be used for the quantification of all IFN-α subtypes with a similar sensitivity. 956 

The 8H1 antibody clone was used to coat paramagnetic beads at a concentration of 0.3 957 

mg/mL for use as a capture antibody. The 12H5 antibody was biotinylated (biotin/antibody 958 

ratio = 30:1) and used as the detector antibody, at a concentration of 0.3 µg/mL. The SBG 959 

enzyme for detection was used at a concentration of 150 pM. Recombinant IFNα17/αI (PBL 960 

Assay Science) was used as calibrator. For the IFN-γ assay, the MD-1 antibody clone 961 

(BioLegend) was used to coat paramagnetic beads at a concentration of 0.3 mg/mL for use as 962 

a capture antibody. The MAB285 antibody clone (R&D Systems) was biotinylated 963 

(biotin/antibody ratio = 40:1) and used as the detector antibody at a concentration of 0.3 964 

µg/mL. The SBG enzyme used for detection was used at a concentration of 150 pM. 965 

Recombinant IFN-γ protein (PBL Assay Science) was used as a calibrator. For the IFN-β 966 

assay, the 710322-9 IgG1, kappa, mouse monoclonal antibody (PBL Assay Science) was used 967 

to coat paramagnetic beads at a concentration of 0.3 mg/mL, for use as a capture antibody. 968 

The 710323-9 IgG1 kappa mouse monoclonal antibody was biotinylated (biotin/antibody ratio 969 

= 40:1) and used as the detector antibody at a concentration of 1 µg/mL. The SBG enzyme for 970 

detection was used at a concentration of 50 pM. Recombinant IFN-β protein (PBL Assay 971 

Science) was used as a calibrator. The limit of detection (LOD) of these assays was 0.8 fg/mL 972 

for IFN-α, 20 fg/mL for IFN-γ, and 0.2 pg/mL for IFN-β, considering the dilution factor of 973 

10. 974 

 975 

Flow cytometry  976 

Frozen PBMCs from three AFB (CMV+) and six EUB (three CMV+, three CMV-) donors 977 

were thawed and allowed to rest overnight, as previously described. For each donor, 106 cells 978 

were resuspended in PBS supplemented with 2% fetal bovine serum and incubated with 979 

human Fc blocking solution (BD Biosciences) for 10 minutes at 4°C. Cells were then stained 980 

with the following antibodies for 30 minutes at 4°C: CD3 VioGreen (clone BW264/56, 981 

Miltenyi Biotec), CD14 V500 (clone M5E2, BD Biosciences), CD57 Pacific Blue (clone 982 

HNK-1, Biolegend), NKp46 PE (clone 9E2/NKp46, BD Biosciences), CD16 PerCP-Cy5.5 983 

(clone 3G8, BD Biosciences), CD56 APC-Vio770 (clone REA196, Miltenyi Biotec), NKG2A 984 

FITC (clone REA110, Miltenyi Biotec), NKG2C APC (clone REA205, Miltenyi Biotec). The 985 

cells were then washed and acquired on a MACSQuant cytometer (Miltenyi Biotec), and the 986 

data were analyzed with FlowJo software (v10.7.1) (ref.65). 987 

 988 
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Cytomegalovirus IgG ELISA 989 

We determined the cytomegalovirus (CMV) serostatus of AFB (n = 80) and EUB (n = 80) 990 

donors with a human anti-IgG CMV ELISA kit (Abcam) on plasma samples, according to the 991 

manufacturer’s instructions.  992 

 993 

Quantification of batch effects and replicability 994 

Once all the samples had been processed, we used the kBET metric (v0.99.6) (ref.66) to assess 995 

the intensity of batch effects and to quantify the relative effects of technical and biological 996 

variation on cell clustering. This made it possible to confirm that the variation across libraries, 997 

and across experimental runs, remained limited relative to the variation across individuals or 998 

across conditions (Supplementary Fig. 5a). We used technical replicates to assess the 999 

replicability of our observations across independent stimulations. Agreement was good 1000 

between the cell proportions and the interferon-stimulated gene (ISG) activity scores inferred 1001 

across independent runs (r > 0.82, p < 7.6 × 10-13) (Supplementary Fig. 5b, c).  1002 

 1003 

Pseudobulk estimation, normalization, and batch correction 1004 

Individual variation in gene expression was quantified at two resolutions: five major immune 1005 

lineages and 22 cell types. We aggregated raw UMI counts from all high-quality single-cell 1006 

transcriptomes (n = 1,047,824) into bulk expression estimates by summing gene expression 1007 

values across all cells assigned to the same lineage/cell type and sample (i.e., individual and 1008 

stimulation conditions) using the aggregateAcrossCells function of scuttle (v1.2.1) (ref.67). 1009 

We then normalized the raw aggregated UMI counts by library size, generating 3,330 lineage-1010 

wise (222 donors × 3 sets of conditions × 5 lineages) and 14,652 cell type-wise (666 samples 1011 

× 22 cell types) pseudobulk counts-per-million (CPM) values, for all genes in our data set. 1012 

CPM values were then log2-transformed, with an offset of 1 to prevent non-finite values and 1013 

to stabilize variation for weakly expressed genes. Genes with a mean CPM < 1 across all 1014 

conditions and lineages/cell types were considered to be non-expressed and were discarded 1015 

from further analyses, leading to a final set of 12,667 genes at the lineage level (12,672 genes 1016 

when increasing granularity to 22 cell types), including 12 viral transcripts. To quantify the 1017 

experimental variation induced by experimental run, library preparation and sequencing, and 1018 

remove unwanted batch effects, we first used the lmer function of the lme4 package (v1.1-1019 

27.1) (ref.68) to fit a linear model of the following form in each stimulation condition and for 1020 

each lineage/cell type: 1021 
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 1022 

  𝑙𝑜𝑔 1+ 𝐶𝑃𝑀! = 𝛼 + 𝐼𝐼𝐷! + 𝐿𝐼𝐵! + 𝑅𝑈𝑁! + 𝐹𝐿𝑂𝑊! + 𝜀!           (1)   1023 

 1024 

where CPMi is the gene expression in sample i (i.e., one replicate of a given individual and set 1025 

of experimental conditions), α is the intercept, 𝐼𝐼𝐷!~𝒩 0, 𝑜!"#!  captures the effect of the 1026 

corresponding individual on gene expression, 𝐿𝐼𝐵!~𝒩 0, 𝑜!"#!  captures the effect of 10X 1027 

Genomics library preparation, 𝑅𝑈𝑁!~𝒩 0, 𝑜!"#!  captures the effect of the experimental run, 1028 

𝐹𝐿𝑂𝑊!~𝒩 0, 𝑜!"#$%&""!  captures the effect of the sequencing flow cell, and 𝜀! captures 1029 

residual variation between samples. We then subtracted the estimated value of the library, 1030 

experimental run, and flow cell effects (as provided by the ranef function) from the 1031 

transformed CPMs of each sample, to obtain batch-corrected CPM values. Finally, we 1032 

averaged the batch-corrected CPM values obtained across different replicates for the same 1033 

individual and set of stimulation conditions, to obtain final estimates of gene expression.  1034 

For each cell type and stimulation condition, an inverse-normal rank-transformation was 1035 

applied to the log2 CPM of each gene, before testing for differences in gene expression 1036 

between populations and mapping expression quantitative trait loci. Within each lineage and 1037 

set of stimulation conditions, we ranked, for each gene, the pseudobulk expression values of 1038 

all individuals, assigning ranks at random for ties, and replaced each observation with the 1039 

corresponding quantile from a normal distribution with the same mean and standard deviation 1040 

as the original expression data. This inverse-normal rank-transformation rendered 1041 

downstream analyses robust to zero-inflation in the data and outlier values, while maintaining 1042 

the rank-transformed values on the same scale as the original data. 1043 

 1044 

Interferon-stimulated gene activity calculation 1045 

Interferon-stimulated genes (ISGs) strongly respond to both viruses across all lineages/cell 1046 

types. We therefore evaluated each donor’s ISG expression level at basal state or upon 1047 

stimulation with either SARS-CoV-2 or IAV by constructing an “ISG activity” score. For the 1048 

human genes in our filtered gene set (N = 12,655), we defined as ISGs (n = 174) those genes 1049 

included in the union of GSEA’s hallmark (https://www.gsea-1050 

msigdb.org/gsea/msigdb/genesets.jsp?collection=H) “IFN-α response” and “IFN-γ response” 1051 

gene sets, but excluded those from the “inflammatory response” set. We then used 1052 

AddModuleScore from Seurat (v4.1.1) (ref.69) to measure ISG activity as the mean 1053 

pseudobulk expression level of ISGs in each sample minus the mean expression for a hundred 1054 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 22, 2022. ; https://doi.org/10.1101/2022.11.22.517073doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.22.517073
http://creativecommons.org/licenses/by-nc-nd/4.0/


37 
 

randomly selected non-ISGs matched for mean magnitude of expression. In all analyses, ISG 1055 

activity scores were adjusted for cell mortality of the sample by fitting a model of the form: 1056 

 1057 

𝐼𝑆𝐺! = 𝛼 + Population! + CellMortality! + 𝜀!           (2)  1058 

 1059 

and subtracting the effect of cell mortality from the raw ISG scores. In this model, 𝐼𝑆𝐺! 1060 

denotes the ISG activity score of individual i, 𝛼 is the intercept, Population! and 1061 

CellMortality! are variables capturing the effect of the population, and cell mortality on ISG 1062 

activity and 𝜀! are normally distributed residuals. For comparisons with SIMOA-estimated 1063 

IFN levels, the carscore function from the care R package70 was used to model ISG activity 1064 

as a function of levels of IFN- α, β, and γ, adjusting for population, age, sex and cell 1065 

mortality. The percentage of ISG variance attributable to each IFN (α, β, or γ) was estimated 1066 

as the square of the resulting CAR scores.  1067 

 1068 

Modelling population effects on the variation of gene expression  1069 

To estimate population effects on gene expression while mitigating any potential batch effect 1070 

relating to sample processing, we first focused exclusively on AFB and EUB individuals, as 1071 

all these individuals were recruited during the same sampling campaign and their PBMCs 1072 

were processed at the same time, with the same experimental procedure17. For each immune 1073 

lineage, cell type, stimulation condition, and gene, we then built a separate linear model of the 1074 

form: 1075 

 1076 

   Expr!  = 𝛼 + 𝛽! . 𝐼!!"# + 𝑍!! .γ + 𝜀!                      (3)     1077 

  1078 

where Expr!  is the rank-transformed gene expression (log-normalized CPM) for individual i 1079 

in the lineage/cell type and condition under consideration, 𝐼!!"# is an indicator variable equal 1080 

to 1 for European-ancestry individuals and 0 otherwise, and 𝑍! represents the set of core 1081 

covariates of the sample that includes the individual’s age and cellular mortality (i.e., 1082 

proportion of dying cells in each thawed vial, as a proxy of sample quality). In addition, 𝜀! are 1083 

the normally distributed residuals and 𝛼,𝛽! ,γ are the fitted parameters of the models. In 1084 

particular, 𝛼 is the intercept, 𝛽! indicates the log2fold change difference in expression 1085 

between individuals of European and African ancestry, and γ captures the effects of the set of 1086 

core covariates on gene expression.  1087 
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We reasoned that differences in the variance of gene expression between populations might 1088 

inflate the number of false positives. We therefore used the vcovHC function of 1089 

sandwich (v2.5-1) (ref.71) with the type=‘HC3’ option to compute sandwich estimators of 1090 

variance that are robust to residual heteroskedasticity. We estimated the 𝛽!  coefficients and 1091 

their standard error with the coeftest function of lmtest (v0.9-40) (ref. 72). FDR was calculated 1092 

across all conditions and lineages with the Benjamini-Hochberg procedure (p.adjust function 1093 

with ‘fdr’ method). Genes with a FDR < 1% and |𝛽! | > 0.2 were considered to be as 1094 

differentially expressed between populations (i.e., “raw” popDEGs). We adjusted for cellular 1095 

composition within each lineage L, by introducing into model (3) a set of variables (𝐹!∙)!∈! 1096 

encoding the frequency in the PBMC fraction of each cell type j comprising the lineage (e.g., 1097 

naïve, effector, and regulatory subsets of CD4+ T cells).  1098 

 1099 

Expr! = 𝛼! + 𝛽! . 𝐼!!"# + 𝑍!! .γ' +  𝛿! .𝐹!,!
!∈!

+ 𝜀!          4  

The notation is as above, with 𝛼′,𝛽! ,γ', the fitted parameters of the model. In this model, 𝛿! is 1100 

the effect on gene expression of a 1% increase in cell type j and 𝛽! indicates the cell 1101 

composition-adjusted log2fold change difference in expression between AFB and EUB 1102 

individuals. The significance of 𝛽! was calculated as decribed above, with a sandwich 1103 

estimator of variance and the coeftest function. FDR was calculated across all conditions and 1104 

lineages to yield a set of “cell-composition-adjusted” popDEGs. We assessed the impact of 1105 

cellular composition on differences in gene expression between populations, by defining 1106 

Student’s test statistic 𝑇∆!as follows: 1107 

 1108 

𝑇∆! =
 𝛽! −  𝛽!

Var 𝛽! −  𝛽!
=

 𝛽! −  𝛽!
𝑠!! + 𝑠!! − 2𝜌𝑠!𝑠!

             (5) 

 1109 

where  𝛽!  and 𝛽! are the raw and cell-composition-adjusted differences in expression 1110 

between populations, 𝑠! and 𝑠! are the estimated standard error of  𝛽! and  𝛽! respectively, 1111 

and 𝜌 is the observed correlation in permuted data between the  𝛽! and  𝛽!statistics. Under the 1112 

null hypothesis that population differences are not affected by cellular composition, 𝑇∆! 1113 

should follow an approximate Gaussian distribution with mean 0 and variance 1, enabling the 1114 

definition of a p-value 𝑝∆!. We then considered the set of raw popDEGs that (1) were not 1115 

significant after adjustment (FDR > 1% or |𝛽! |<0.2) and (2) displayed significant differences 1116 
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between the raw and adjusted effect sizes (|𝑇∆!|>1.96) imputable to the effect of cellular 1117 

composition.  1118 

For the assessment of population differences in response to viral stimuli (i.e., popDRGs), 1119 

we used the same approach, but with the replacement of log-normalized counts with the log-1120 

fold change difference in expression between the stimulation conditions for each of the two 1121 

viruses and non-stimulated conditions. 1122 

 1123 

Pathway enrichment analyses 1124 

We performed functional assessments of the effects of cellular composition variability on 1125 

differences in gene expression between donors in the basal state and in response to each virus, 1126 

with the fgsea R package (v1.18.1) (ref.73) and default options. This made it possible to 1127 

perform a gene set enrichment analysis with population differences in each lineage ranked by 1128 

the magnitude of the effect of ancestry on the expression or response of the gene before (βr) 1129 

and after (βa) adjustment for differences in cellular composition. 1130 

 1131 

Fine mapping of expression quantitative trait loci (eQTL)  1132 

For eQTL mapping, we used variants with MAF >5% in at least one of the three populations 1133 

considered, resulting in a set of 10,711,657 SNPs, of which 4,164,060 were located < 100kb 1134 

from a gene. We used MatrixEQTL (v2.3) (ref.74) to map eQTLs in a 100-kb region around 1135 

each gene and obtain estimates of eQTL effect sizes and their standard error. eQTL mapping 1136 

was performed separately for each immune lineage/cell type and condition, based on rank 1137 

transformed gene expression values. eQTL analyses were performed adjusting for population, 1138 

age, chromosomal sex, cell composition (within each lineage), as well as cell mortality and 1139 

total number of cells in the sample, and a data-driven number of surrogate variables included 1140 

to capture unknown confounders and remove unwanted variability. Specifically, for each 1141 

immune lineage/cell type and condition, surrogate variables were obtained using the sva 1142 

function from the sva R package (v3.40.0) (ref.75) with option method=’two-steps’, providing 1143 

all other covariates as known confounders (mod argument). The number of surrogate 1144 

variables to use in each lineage/cell type and condition was determined automatically based 1145 

on the results from num.sv function with method=’be’ (ref.75).  1146 

For each gene, immune lineage/cell type and stimulation condition, Z-values (i.e., the 1147 

effect size of each eQTL divided by the standard error of effect size) were then calculated, 1148 

and the fine mapping of eQTLs was performed with SuSiE (v0.11.42) (ref.76) (susie_rss 1149 

function of the susieR R package), with a default value of up to 10 independent eQTLs per 1150 
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gene. Imputed genotype dosages were extracted in a 100-kb window around each gene and 1151 

regressed against the population of origin (i.e., AFB, EUB or ASH). Genes with <50 SNPs in 1152 

the selected window were discarded from the analysis. Pairwise correlations between the 1153 

population-adjusted dosages were then assessed, to define the genotype correlation matrix to 1154 

be used for the fine mapping of eQTLs. In rare cases (<0.1% of tested genes × conditions 1155 

combinations), the susie_rss function failed to converge, even when the number of iterations 1156 

was increased to >106. These runs were, thus, discarded, and the associated eQTLs were 1157 

assigned a null Z-score during FDR computation (see below). For each eQTL, the index SNP 1158 

was defined as the SNP with the highest posterior inclusion probability (i.e., the α parameter 1159 

in the output of SuSiE) for that eQTL, and the 95% credible interval was obtained as the 1160 

minimal set of SNPs 𝑆 such that 𝛼! > 0.01 for all 𝑠 ∈ 𝑆 and α!!∈! > 0.95. Only eQTLs 1161 

with a log-Bayes factor (lbf) > 3 were considered for further analyses. 1162 

For each lineage and set of stimulation conditions, each eQTL identified by SuSiE was 1163 

assigned an eQTL evidence score, defined as the absolute Z-value of association between the 1164 

eQTL index SNP and the associated gene. We then used a pooled permutation strategy to 1165 

define the genome-wide number of significant eQTLs (i.e., eQTL × gene combinations) 1166 

expected under the null hypothesis, for different thresholds of the eQTL evidence score. We 1167 

repeated the eQTL mapping procedure on the dataset after randomly permuting genotype 1168 

labels within each population. We then counted, for each possible evidence score threshold T, 1169 

the number of eQTLs identified in the observed and permuted data. Finally, we retained as a 1170 

significance threshold the lowest threshold giving a number of significant eQTLs in the 1171 

permuted data (false positives) of less than 1% the number of eQTLs identified in the 1172 

observed data (false positives + true positives).  1173 

 1174 

Aggregation of eQTLs across cell types and stimulation conditions 1175 

The eQTL index SNP may differ between cellular states (immune lineage/cell type and 1176 

stimulation condition), even in the presence of a single causal variant. It is therefore necessary 1177 

to aggregate eQTLs to ensure that the same locus is tagged by a single variant across cellular 1178 

states. To this end, we applied the following procedure, for each gene: 1179 

1 Let 𝐶! be the set of cellular states where a significant eQTL was detected for gene g, 1180 

and 𝑆! be the associated list of eQTLs (i.e., cellular state × index SNPs). We aim to define a 1181 

minimal set of SNPs, 𝑀!, that overlaps the 95% credible intervals of all significant eQTLs in 1182 

𝑆!.  1183 
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2 For each SNP s in a 100-kb window around each gene, compute the expected number 1184 

of cellular states where the SNP has a causal effect on gene expression 𝐸 𝑁! 𝑠  as:  1185 

 1186 

                        𝐸 𝑁! 𝑠 = 𝑃𝑃!"!∈!!        6  1187 

 1188 

where 𝑃𝑃!" is the posterior probability that SNP s has a causal effect on the expression of 1189 

gene g in the cellular state j (cell type × condition). 1190 

3 Find the SNP s that maximizes 𝐸 𝑁! 𝑠 , and add it to 𝑀! 1191 

4 Remove from 𝑆!, all eQTLs where the 95% credible interval contains SNP s 1192 

5 Repeat steps 1-3 until 𝑆! is empty.  1193 

 1194 

At the end of this procedure, 𝑀! provides the list of independent eQTL index SNPs (referred 1195 

to as eSNPs) for gene g, for which we extracted summary statistics across all cellular states.  1196 

 1197 

Mapping of response eQTLs  1198 

For the mapping of response eQTLs (reQTLs), we repeated the same procedure as for the 1199 

mapping of eQTLs, using rank-transformed log2 fold change as input rather than gene 1200 

expression. This included reQTL mapping with MatrixEQTL74, fine mapping with SuSiE76, 1201 

permutation-based FDR computation, and aggregation of reQTL across immune lineages, cell 1202 

types and stimulation conditions. Surrogate variables were computed directly from log2fold 1203 

changes. For IAV-infected monocytes (detected only in the IAV condition), fold changes 1204 

were computed relative to CD14+ monocytes in the non-stimulated condition. This produced a 1205 

list of independent reQTL index SNPs 𝑀’, similar to that obtained for eQTLs, for which we 1206 

extract summary statistics across all cellular states.  1207 

 1208 

Sharing of eQTLs across cell types and stimulation conditions 1209 

After extracting the set 𝑀 of independent eSNPs across all genes, we defined ‘cell-type-1210 

specific eQTLs’ as eQTLs significant genome-wide in a single cell type. We accounted for 1211 

the possibility that some eQTLs may be missed in specific cell types due to a lack of power, 1212 

by introducing a second definition of eQTL sharing based on nominal p-values. Specifically, 1213 

we considered an eQTL to be cell type-specific at a nominal significance if, and only if, it was 1214 

significant genome-wide in a single cell type and its nominal p-value of association was 1215 

greater than 0.01 in all other cell types. For each pair of cell types, the correlation of eQTL 1216 
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effect sizes was calculated on the set of all eQTLs passing the nominal significance criterion 1217 

(p < 0.01) in at least one of the two cell types. To understand how the effect of genetics on 1218 

immune response varies between SARS-CoV-2 and IAV, we defined an interaction statistic 1219 

that enabled us to test for differences in reQTL effect size between the two viruses. 1220 

Specifically, within each immune lineage/cell type, we defined: 1221 

 1222 

𝑇!"# =
 !!"#! !!"#

Var  !!"#! !!"#
=  !!"#! !!"#

!!"#
! !!!"#

!   (7) 1223 

 1224 

When the reQTL effect size is identical between the two viruses, we expect 𝑇!"# to be 1225 

normally distributed around 0 with variance 1, allowing to derive an interaction p-value. We 1226 

thus defined as virus-dependent reQTLs those with a nominal interaction p-value < 0.01 and 1227 

as virus-specific reQTLs those that passed a nominal p-value threshold of 0.01 in only one of 1228 

the two stimulation conditions. 1229 

 1230 

Mediation analyses 1231 

For all popDEGs and popDRGs, we evaluated the proportion of the difference in expression 1232 

or response to viral stimulation between populations attributable to either genetic factors (i.e., 1233 

eQTLs) or cellular composition, with the mediate function of the mediation package of R 1234 

(v4.5.0) (ref.77). Mediation analysis made it possible to separate the differences in 1235 

expression/response between populations that were mediated by genetics (i.e., differences in 1236 

allele frequency of a given eQTL between populations, 𝜁!), or cellular composition (i.e., 1237 

difference in cell type proportions between populations, 𝜁!) from those occurring 1238 

independently of the eQTL/cell type considered (independent or direct effect δ). It was then 1239 

possible to estimate the respective proportion of population differences mediated by genetics 1240 

τg and cellular composition τc as 𝜏! =
!!

!!!!!!!
 and 𝜏! =

!!
!!!!!!!

, with 𝜁! + 𝜁! + 𝛿 1241 

corresponding to the total differences in expression/response between populations. For each 1242 

popDEG and popDRG, we focused on either (i) the most strongly associated SNP in a 100-kb 1243 

window around the gene, regardless of the presence or absence of a significant (r)eQTL, or 1244 

(ii) the cell type differing most strongly between populations in each lineage (i.e., CD16+ 1245 

monocytes in the myeloid lineage, 𝜅 light chain-expressing memory B cells in the B-cell 1246 

lineage, effector cells in CD4+ T cell lineage, CD8+ EMRA cells in the CD8+ T-cell lineage, 1247 
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and memory cells in the NK cell lineage). For each popDEG and potential mediator M, we 1248 

then ran mediate with the following models: 1249 

 1250 

       𝐸𝑥𝑝𝑟!  ~ 𝛼 +  𝛽.M! + 𝛿. 𝐼!!"# + 𝑍!! . γ + 𝜀!   (8) 1251 

               M!  ~ 𝛼! +  𝛿′. 𝐼!!"# + 𝑍!! . γ' + 𝜀′!   (9) 

 1252 

where 𝐸𝑥𝑝𝑟! corresponds to normalized expression values in the cell type/condition under 1253 

consideration, 𝛼 and 𝛼′ are two intercepts, 𝛽 is the effect of the mediator M! on gene 1254 

expression, 𝛿 and 𝛿′ are the (direct) effect of population (captured through the indicator 1255 

variable 𝐼!!"#) on gene expression and on the mediator, γ and γ' capture the confounding 1256 

effect of covariates (i.e. age, and cell mortality) on both gene expression and the mediator, 1257 

and 𝜀! and 𝜀′! are normally distributed residuals. For popDRGs, we used the same approach, 1258 

replacing normalized gene expression values with the log2fold change in gene expression 1259 

between the stimulated and unstimulated states.  1260 

 1261 

Detection of signals of natural selection 1262 

We avoided SNP ascertainment bias, by performing natural selection analyses with high-1263 

coverage sequencing data from the 1,000 Genomes (1KG) Project78. We downloaded the 1264 

GRCh38 phased genotype files from the New York Genome Center FTP server and 1265 

calculated the pairwise FST (ref.79) between our three study populations (AFB, EUB, or ASH) 1266 

and all 1KG populations, to identify the 1KG populations who were the most genetically 1267 

similar to our study populations. All selection and introgression analyses (see section 1268 

‘Archaic introgression analyses’) were based on the Yoruba from Ibadan, Nigeria (YRI), Utah 1269 

residents with Northern and Western European ancestry (CEU) and Southern Han Chinese 1270 

(CHS) populations, as these 1KG populations had the lowest FST values with our three study 1271 

groups. We filtered the data to include only autosomal bi-allelic SNPs and insertions/deletions 1272 

(indels), and removed sites that were invariant (i.e., monomorphic) across the three 1273 

populations. We identified loci presenting signals of positive selection (local adaptation) with 1274 

the population branch statistic (PBS)38, based on the Reynold’s FST estimator79 between pairs 1275 

of populations. PBS values were calculated for the YRI, CEU, and CHS populations 1276 

separately, with the other two populations used as the control and outgroup. For each 1277 

population, genome-wide PBS values were then ranked, and variants with PBS values within 1278 

the top 1% were considered putative targets of selection. For annotation of the selected 1279 
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eQTLs, the ancestral and derived states at each site were inferred from six-way EPO multiple 1280 

alignments for primate species (EPO6, available from ftp ://ftp.ensembl.org/pub/release-1281 

71/emf/ensembl-compara/epo_6_primate/), and the effect size was reported for the derived 1282 

allele. For sites without an ancestral/derived state in the EPO6 alignment, the effect of the 1283 

allele with the lowest frequency worldwide was reported.  1284 

We assessed the extent to which different sets of eQTLs displayed signals of local 1285 

adaptation in permutation-based enrichment analyses. For each population, we compared the 1286 

mean PBS values at (r)eQTLs for each set of cell type/stimulation condition with the mean 1287 

PBS values obtained for 10,000 sets of randomly resampled sites. Resampled sites were 1288 

matched with eQTLs for minor allele frequency (mean MAF across the three populations, 1289 

bins of 0.01), LD scores (quintiles), and distance to the nearest gene (bins of 0-1 kb, 1 kb-5 1290 

kb, 10 kb-20 kb, 20 kb-50 kb, >100 kb). For each population and set of eQTLs, we defined 1291 

the fold-enrichment (FE) in positive selection as the ratio of observed/expected values for 1292 

mean PBS and extracted the mean and 95% confidence interval of this ratio across all 1293 

resamplings. One-sided resampling p-values were calculated as the number of resamplings 1294 

with a FE>1 divided by the total number of resamplings. Resampling p-values were then 1295 

adjusted for multiple testing by the Benjamini-Hochberg method. 1296 

 1297 

Detecting and dating episodes of local adaptation 1298 

We inferred the frequency trajectories of all eQTLs and reQTLs during the past 2,000 1299 

generations (i.e., 56,000 years before the present, with a generation time of 28 years), 1300 

systematically by using CLUES (commit no. 7371b86, 27 may 2021) (ref.39). We first used 1301 

Relate (v1.1.8) (ref.80) on each population separately, to reconstruct tree-like ancestral 1302 

recombination graphs (ARGs) around each SNP in the genome and to estimate effective 1303 

population sizes across time based on the rate of coalescence events over the inferred ARGs. 1304 

Using CLUES39, we then estimated at each eQTL or reQTL, the most likely allele frequency 1305 

trajectories for each sampled ARG and averaged these trajectories across all possible ARGs.  1306 

We then analyzed changes in inferred allele frequencies over time, to identify selection 1307 

events characterized by a rapid change in allele frequency. We considered the posterior mean 1308 

of allele frequency at each generation and smoothed the inferred allele frequency trajectories 1309 

by loess regression to ensure progressive changes in allele frequency over time, and to 1310 

minimize the artifacts induced by the inference process. Finally, for each variant and in each 1311 

population, we calculated the change in allele frequency 𝑓 at each generation as the difference 1312 

in the smoothed allele frequency between two consecutive generations: 1313 
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𝑓 𝑡 =
𝑑𝑓
𝑑𝑡 𝑡 = 𝑓 𝑡 + 1 − 𝑓 𝑡      (10) 

Under an assumption of neutrality, the count of a particular allele at generation t+1 is the 1314 

result of a Bernoulli trial parameterized B(N,f), where N is the size of the haploid population. 1315 

The variance of allele frequencies at generation t+1 is, therefore, greater for alleles present at 1316 

higher frequencies in generation t,  1317 

𝑉 𝑓 =
𝑓 1− 𝑓

𝑁        (11) 

We adjusted for this, by scaling the change in allele frequency 𝑓 by a normalizing factor 1318 

dependent on the allele frequency at generation t, such that the variance of the normalized 1319 

change in allele frequency 𝑔 was the same across all variants,  1320 

𝑔 =
𝑓

𝑓 1− 𝑓
       (12) 

Finally, at each generation, we divided the normalized change in allele frequency 𝑔 by its 1321 

standard deviation across all eQTLs and reQTLs, to calculate a Z-score for detecting alleles 1322 

for which the normalized change in allele frequency exceeded genome-wide expectations,  1323 

𝑍 =
𝑔

𝑠𝑑 𝑔       (13) 

For each variant and generation, we then considered an absolute Z-score > 3 to constitute 1324 

evidence of selection and we inferred the onset of selection of a variant as the first generation 1325 

in which |Z| > 3. 1326 

 1327 
Simulations, power, and type I error estimates 1328 

We assessed the ability of our approach to detect (and date) events of natural selection 1329 

correctly from the trajectories of allele frequencies, by using simulations with SLiM (v4.0.1) 1330 

(ref.81) under various selection scenarios. Simulations were performed under a Wright-Fisher 1331 

model for a single mutation occurring ~5000 generations ago, at a frequency varying from 1332 

𝑓!"# =
!
! 

 to 𝑓!"# = 1− !
! 

 in steps of 1%, where N is the simulated population size. We 1333 

allowed population size to vary over time according to published estimates80 for the YRI, 1334 

CEU and CHS populations (Supplementary Fig. S9b). We then performed simulations both 1335 

under an assumption of neutrality (1000 simulations for each starting frequency) and 1336 

assuming a 200 generations-long episode of selection (100 simulations for each starting 1337 

frequency and selection scenario). Selection episodes were simulated with an onset of 1338 

selection 1000, 2000, 3000, or 4000 generations ago, and with a selection coefficient ranging 1339 
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from 0.01 to 0.05 (Supplementary Fig. S9c). We saved computation time, by performing a 10-1340 

fold scaling in line with SLiM recommendations. For each selected scenario and variant, 1341 

simulated allele frequencies were retrieved every 10 generations, and smoothed with the loess 1342 

function of R using default parameters. We then calculated normalized differences in 1343 

smoothed allele frequencies for each simulated variant and scaled these differences at each 1344 

generation, based on their standard deviation among neutral variants, to obtain Z-scores. For 1345 

each selection scenario, we focused on the center of the selection interval and determined the 1346 

type I error and power for various thresholds of absolute Z-scores varying from 0 to 6. We 1347 

found that a threshold of 3 yielded both a low type I error (<0.2% false positives) and a 1348 

satisfactory power for detecting selection events (Supplementary Fig. S9c). Finally, at each 1349 

generation, we estimated the percentage of simulations, under an assumption of neutrality or a 1350 

particular selection scenario, for which the absolute Z-score exceeded a threshold of 3. We 1351 

found that significant Z-scores were equally rare at each generation under the assumption of 1352 

neutrality, but that selected variants presented a clear and localized enrichment in significant 1353 

Z-scores for intervals in which we simulated selection (Supplementary Fig. S9d). 1354 

 1355 

Archaic introgression analyses 1356 

For the definition of regions of the modern human genome of archaic ancestry (Neanderthal 1357 

or Denisovan), we downloaded the VCFs from the high-coverage Neanderthal Vindija82 and 1358 

Denisovan Altai83 genomes (human genome assembly GRCh37; 1359 

http://cdna.eva.mpg.de/neandertal/Vindija/) and applied the corresponding genome masks 1360 

(FilterBed files). We then removed sites within segmental duplications and lifted over the 1361 

genomic coordinates to the GRCh38 assembly with CrossMap (v0.6.3) (ref.84). We used two 1362 

statistics to identify introgressed regions in the CEU and CHS populations: (i) conditional 1363 

random fields (CRF)85,86, which uses reference archaic and outgroup genomes to identify 1364 

introgressed haplotypes; and (ii) the S’ method87, which identifies stretches of probably 1365 

introgressed alleles without requiring the definition of an archaic reference genome.  1366 

For CRF-based calling, we phased the data with SHAPEIT4 (v4.2.1) (ref.55), using the 1367 

recommended parameters for sequence data, and focused on bi-allelic SNPs for which the 1368 

ancestral/derived state was unambiguously defined. We then performed two independent runs 1369 

of CRF to detect haplotypes inherited from Neanderthal or Denisova. For Neanderthal-1370 

introgressed haplotypes, we used the Vindija Neanderthal genome as the archaic reference 1371 

and YRI individuals merged with the Altai Denisovan genome as the outgroup. For 1372 

Denisovan-introgressed haplotypes, we used the Altai Denisovan genome as the archaic 1373 
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reference panel and YRI individuals merged with the Vindija Neanderthal genome as the 1374 

outgroup. Results from the two independent CRF runs were analyzed jointly, and we retained 1375 

alleles with a marginal posterior probability PNeanderthal ≥ 0.9 and PDenisova < 0.5 as 1376 

Neanderthal-introgressed haplotypes and those containing alleles with PDenisova ≥ 0.9 and 1377 

PNeanderthal < 0.5 as Denisovan-introgressed haplotypes. For the S’-based calling of 1378 

introgressed regions, we considered all biallelic SNPs with an allele frequency < 1% in the 1379 

YRI population to be Eurasian-specific alleles. We then ran the Sprime software 1380 

(v.07Dec18.5e2) (https://github.com/browning-lab/sprime) separately for the CEU and CHS 1381 

populations, to identify and score putatively introgressed regions containing a high density of 1382 

Eurasian-specific alleles. Putatively introgressed regions with a S’ score >150,000 were 1383 

considered to be introgressed. This cutoff score has been shown to provide a good trade-off 1384 

between power and accuracy based on simulations of introgression under realistic 1385 

demographic scenarios87. For both calling methods (i.e., CRF and S’), we used the 1386 

recombination map from the 1,000 Genomes (1KG) Project Phase 3 data release51.  1387 

After the calling of introgressed regions throughout the genome for each population, we 1388 

defined SNPs of putative archaic origin (archaic SNPs, aSNPs) as those (i) located in an 1389 

introgressed region defined by either the CRF or S’ method, (ii) with one of their alleles being 1390 

rare or absent (MAF < 1%) in the YRI population, but present in the Vindija Neanderthal or 1391 

Denisovan Altai genomes, and (iii) in high LD (r2 > 0.8) with at least two other aSNPs and, to 1392 

exclude incomplete lineage sorting, comprising an LD block of > 10 kb. This yielded a set of 1393 

100,345 high-confidence aSNPs (Supplementary Table S7a). We further categorized aSNPs 1394 

as of Neanderthal origin, Denisovan origin or shared origin according to their 1395 

presence/absence in the Vindija Neanderthal and Denisovan Altai genomes. Finally, we 1396 

considered any site that was in high LD with at least one aSNP in the same population in 1397 

which introgression was detected to be introgressed, and classified introgressed haplotypes as 1398 

of Neanderthal origin, Denisovan origin, or shared origin according to the most frequent 1399 

origin of aSNPs in the haplotype. For introgressed SNPs, we defined the introgressed allele as 1400 

(i) the allele rare or absent from individuals of African ancestry if the SNP was an aSNP, and 1401 

(ii) for non-aSNPs, the allele most frequently segregating with the introgressed allele of 1402 

linked aSNPs. In each population, introgressed alleles with a frequency in the top 1% for 1403 

introgressed alleles genome-wide were considered to present evidence of adaptive 1404 

introgression. 1405 

The enrichment of introgressed haplotypes in eQTLs or reQTLs was assessed separately 1406 

for each population (CEU and CHS), first by stimulation condition and then by cell type 1407 
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within each condition. Within each cell type/stimulation condition, we considered the set of 1408 

all (r)eQTLs for which the index SNP displayed at least a marginal association (Student’s 1409 

p < 0.01) with gene expression. For each population and (r)eQTL set, we then grouped 1410 

(r)eQTLs in high LD (r2 > 0.8), retaining a single representative per group, and counted the 1411 

total number of (r)eQTLs for which the index SNP was in LD (r2 > 0.8) with an aSNP (i.e., 1412 

introgressed eQTLs). We then used PLINK (v1.9) --indep-pairwise (with a 500-kb window, 1 1413 

kb step, an r2 threshold of 0.8, and a MAF > 5%) (ref.52), to define tag-SNPs for each 1414 

population, and we determined the expected number of introgressed SNPs by resampling tag-1415 

SNPs at random with the same distribution for MAF, LD scores, and distance to the nearest 1416 

gene. We performed 10,000 resamplings for each (r)eQTL set and population. One-sided 1417 

resampling-based p-values were calculated as the frequency at which the number of 1418 

introgressed SNPs among resampled SNPs exceeded the number of introgressed SNPs among 1419 

(r)eQTLs. Resampling-based p-values were then adjusted for multiple testing by the 1420 

Benjamini–Hochberg method. 1421 

We searched for signals of adaptive introgression, by determining whether introgressed 1422 

haplotypes that altered gene expression were introgressed at a higher frequency than 1423 

introgressed haplotypes with no effect on gene expression. For each stimulation cell 1424 

type/condition, we focused on the set of introgressed eQTLs segregating with a MAF > 5% in 1425 

each population (retaining a single representative per LD group) and compared the frequency 1426 

of the introgressed allele with that of introgressed tag-SNPs genome-wide. We modeled 1427 

𝑟(!"#$), the (rank-transformed) frequency of introgressed tag-SNPs according to the 1428 

presence/absence of a linked eQTL 𝕀!"#$ , and the mean MAF of the SNP across the three 1429 

populations (giving a higher power for eQTL detection).  1430 

 1431 

𝑟 !"#$  ~ 𝑎 +  𝑏. 𝕀!"#$  + 𝑐.𝑀𝐴𝐹      (14) 

 1432 

where 𝕀!"#$ is an indicator variable equal to 1 if the SNP is in LD with an eQTL (r2>0.8) 1433 

and 0 otherwise, 𝑀𝐴𝐹 is the mean MAF calculated separately for each population, 𝑎 is the 1434 

intercept of the model, b measures the difference in rank 𝑟(!"#$) between eQTLs and non 1435 

eQTLs, and c is a nuisance parameter capturing the relationship between 𝑀𝐴𝐹 and 𝑟(!"#$). 1436 

Under this model, the difference in frequency between eQTLs and non-eQTLs can be tested 1437 

directly in a Student’s t test with 𝐻!: 𝑏 = 0. 1438 

 1439 
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Enrichment in COVID-19-associated loci and colocalization analyses 1440 

We downloaded summary statistics from the COVID-19 Host Genetics Initiative (release 7: 1441 

https://www.covid19hg.org/results/r7) (ref.7) for three GWAS: (i) A2 - very severe respiratory 1442 

cases of confirmed COVID-19 vs. the general population; (ii) B2 - hospitalized COVID-19 1443 

cases vs. the general population; (iii) C2 – confirmed COVID-19 cases vs. the general 1444 

population. We assessed the enrichment in eQTLs and reQTLs of COVID-19 1445 

susceptibility/severity loci by considering, for each eQTL/reQTL, the A2, B2 or C2 p-values 1446 

of the index SNP and calculating the percentage of eQTLs/reQTLs with a significant GWAS 1447 

p-value of 10-4. This percentage was then compared to that obtained for the resampled set of 1448 

SNPs, matched for distance to the nearest gene (bins of 0-1, 1-5, 5-10, 10-20, 20-50, and 50-1449 

100 kb) and MAF (1% MAF bins). We performed 10,000 resamplings for each set of 1450 

eQTLs/reQTLs tested. The use of different p-value thresholds for COVID-19-associated hits 1451 

(10-3 to 10-5) yielded similar results 1452 

To identify specific eQTLs/reQTLs colocalized with GWAS hits, we first considered all 1453 

(r)eQTLs for which the index SNPs were located within 100 kb of a SNP associated with 1454 

COVID-19 susceptibility/severity (p-value < 10-5). For each immune lineage/cell type, and 1455 

condition for which the eQTL/reQTL reached genome-wide significance, we next extracted 1456 

all SNPs in a 500-kb window around the index SNP for which summary statistics were 1457 

available for both the eQTLs/reQTLs and COVID-19 GWAS phenotypes (A2, B2, and C2) 1458 

and performed a colocalization test using the coloc.signals function of the coloc (v5.1.0) 1459 

package of R. We set a prior probability for colocalization p12 of 10-5 (i.e., the recommended 1460 

default value). Any pair of eQTL or reQTL/COVID-19 phenotypes with a posterior 1461 

probability for colocalization PP.H4 > 0.8 was considered to display significant 1462 

colocalization.  1463 

 1464 

Statistical Analyses 1465 

Unless explicitly specified, all statistical tests are two-sided and based on measurements from 1466 

independent samples. 1467 

 1468 

 1469 
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Data availability 1470 

The RNA sequencing data generated and analyzed in this study have been deposited in the 1471 

Institut Pasteur data repository, OWEY, which can be accessed via the following link: 1472 

https://doi.org/XXXX. The genome-wide genotyping data generated or used in this study 1473 

have been deposited in OWEY and can be accessed at the following URL: 1474 

https://doi.org/XXXX. Data access and use is restricted to academic research related to the 1475 

variability of the human immune response. 1476 

 1477 

Code availability 1478 

All custom computer code or algorithms used in this study are available from github 1479 

(https://github.com/h-e-g/popCell_SARS-CoV-2).  1480 

 1481 

Inclusion and Ethics 1482 

The current research project builds on samples collected in Ghent (Belgium) and Hong-Kong 1483 

SAR (China) and has been conducted in collaboration with local researchers. Roles and 1484 

responsibilities were agreed amongst collaborators ahead of the research. Research conducted 1485 

in this study is relevant to local participants and has been reviewed by local ethics committees 1486 

(committee of Ghent University, Belgium, n° B670201214647; Institutional Review Board of 1487 

the University of Hong-Kong; n° UW 20-132), and the relevant French authorities (CPP, 1488 

CCITRS and CNIL). This study was also monitored by the Ethics Board of Institut Pasteur 1489 

(EVOIMMUNOPOP-281297). All manipulations of live viruses were performed in a high 1490 

security BSL-3 environment.  1491 
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 1608 
 1609 
Supplementary Figure 1 | Genetic structure of study populations and SNP imputation. a, 1610 
Principal component analysis of genotyping data. Each dot corresponds to an individual. 1611 
Study samples (AFB, EUB, and ASH, in bold typeface) are projected jointly with 1,000 1612 
Genomes populations of various ancestries including African (dots colored in green 1613 
gradients), European (dots colored in yellow gradient), East Asian (dots colored in purple 1614 
gradient), South Asian (dots colored in orange gradient) and American (dots colored in blue 1615 
gradients). Abbreviations for each individual population can be found in ref.51. b and c, 1616 
Quality control of genotype imputation. Distribution of r2 between genotyped and imputed 1617 
SNPs (b) and genotype accuracy (c) obtained by 100-fold cross-validation and shown 1618 
separately for different bins of minor allele frequency (MAF).  1619 
 1620 
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 1622 
 1623 
Supplementary Figure 2 | Single-cell kinetics of the immune response to RNA viruses. a, 1624 
b, Uniform manifold approximation and projection (UMAP) of 86,363 peripheral blood 1625 
mononuclear cells (PBMCs), mock-stimulated (NS) or stimulated with SARS-CoV-2 (COV) 1626 
or influenza A virus (IAV) for 0, 6 or 24 hours. c, Mean cell-type counts per individual, set of 1627 
stimulation conditions and time point. d, Number of differentially expressed genes (DEG; 1628 
absolute log2 fold change (|log2FC|) > 0.5, FDR < 0.01) after 6 or 24 hours of stimulation with 1629 
SARS-CoV-2 or IAV relative to non-stimulated controls. e, Percentage of reads mapping to 1630 
the SARS-CoV-2 or IAV genomes per cell, after 6 or 24 hours of stimulation, split by major 1631 
immune lineage. f, Comparison of inflammatory and interferon-stimulated transcriptional 1632 
responses of myeloid cells and CD4+ T cells (as an example of a lymphoid cell type) after 6 or 1633 
24 hours of stimulation with SARS-CoV-2 or IAV. g, Cytokine protein responses to 6 hours 1634 
of stimulation with SARS-CoV-2 or IAV. In a, c and e, the colors indicate the immune 1635 
lineages inferred from single-cell transcriptome data. In b, d and g, the colors indicate the 1636 
stimulation condition and time post-stimulation. In e and g, boxplots are defined as follows: 1637 
middle line, median; box limits, upper and lower quartiles; whiskers, 1.5× interquartile range; 1638 
points, outliers.  1639 
 1640 
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 1642 
 1643 
Supplementary Figure 3 | Quality control of single-cell RNA-seq data. a, Experimental 1644 
design. During each experimental run, PBMCs from 16 individuals (numbered 1 to 16) were 1645 
processed in three different sets of experimental conditions (colored plates), and the resulting 1646 
samples were split into four pools of 12 samples (four non-stimulated (NS), four influenza A 1647 
virus-stimulated (IAV), four SARS-CoV-2-stimulated (COV)). Each pool was then processed 1648 
on two independent libraries to increase the number of cells per sample (eight pools of 12 1649 
samples in total). b, Library sequencing depth, and total number of reads aligned either 1650 
genome-wide, in the genic region, or over the coding exons. c, Distribution of the number of 1651 
cell-containing droplets detected per library across the 16 experimental runs performed. d, 1652 
Percentage of doublets per library as a function of the number of cell-containing droplets 1653 
detected. Colors reflect the inferred number of singlets in the library. e, Number of singlets 1654 
per library inferred with two independent demultiplexing algorithms: Demuxlet (supervised) 1655 
and Freemuxlet (unsupervised). Colors reflect the total number of droplets in the library. f, 1656 
Distribution of cells along quality-control metrics in our data set (i.e., UMI count, gene count, 1657 
and percentage of mitochondrial reads). Cells that were excluded by our hard-threshold 1658 
filtering are highlighted in red. g, Number of high-quality cells per sample (individual × 1659 
condition), split by stimulation condition. Individuals with <500 cells in at least one sample 1660 
were excluded (dashed red line). h, Number of genetic doublets among k nearest neighbors as 1661 
a function of the droplet status assigned by Demuxlet (SNG: singlet, DBL: doublet, AMB: 1662 
ambiguous). i, Per-library mean of raw and batch-normalized size factors, as a function of the 1663 
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mean number of UMIs per cell in the library. Vertical bars indicate 95% CI of the mean. After 1664 
normalization with multiBatchNorm, size factors successfully capture differences in read 1665 
depth across libraries. j, Filtering of weakly expressed and low-variability genes. For each 1666 
gene, the variance and mean counts are shown on a log scale (with an offset of 10-4). The 1667 
dashed line indicates the expected relationship between mean and variance under a Poisson 1668 
distribution (technical noise). Genes are colored according to their expression levels (highly 1669 
expressed: mean > 0.01) and estimated biological variance (highly variable: biological 1670 
variance > 0.001). Genes that are both weakly expressed and of low variability (light blue) are 1671 
excluded from downstream analyses. In b, c, g, and h, boxplots are defined as follows: middle 1672 
line, median; box limits, upper and lower quartiles; whiskers, 1.5× interquartile range; points, 1673 
outliers. 1674 
  1675 
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 1676 
 1677 
Supplementary Figure 4 | Cell-type assignment according to cluster-based 1678 
transcriptional profiles and surface protein markers. a, Uniform manifold approximation 1679 
and projection (UMAP) of 1,047,824 PBMCs, either resting (mock-stimulated) or stimulated 1680 
with SARS-CoV-2 (COV) or influenza A virus (IAV) for 6 hours. b, Normalized single-cell 1681 
RNA UMI count distributions of 6 canonical marker genes. c, Graph-based subclustering of 1682 
the non-stimulated T/NK meta-cluster; cluster 3, initially defined as part of a larger cluster of 1683 
mixed NK and CD8+ T cells, is highlighted. d, Log2-fold change difference in expression of 1684 
markers defining NK cell identity between cluster 3 and the rest of the T/NK metacluster. e, 1685 
Cell-type inference based on canonical marker expression in sub-clusters increases the 1686 
resolution of cell-type identities, but some mixed-identity and unidentified clusters remain 1687 
(gray). f, At the transcriptional level, most of the cells in cluster 3 are CD3E-positive, and, 1688 
thus, associated with lymphocyte lineages, but CITE-seq data show that most cluster 3 cells 1689 
do not express CD3 protein, hence their assignment to the NK lineage. g, Cell-type inference 1690 
after CITE-seq-based assignment and resolution of mixed-identity clusters by linear 1691 
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discriminant analysis (LDA). Unassigned cells (gray) are discarded. h, Assignment of cells 1692 
from mixed-identity clusters, based on previously identified clusters. In this example, LDA 1693 
models are trained on data from 10,000 confidently identified naive CD4+ and naive CD8+ T 1694 
cells, making it possible to assign most cells from a mixed cluster to one of the two target 1695 
identities.  1696 
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 1697 
 1698 
Supplementary Figure 5 | Batch effects and replicability of single-cell experiments. a, 1699 
Effect of technical and biological variation on the clustering of cells. For each comparison, we 1700 
consider a random subset of 150 pairs of samples (run × library × individual × condition). For 1701 
each pair of samples, violins and boxplots show the distribution of the kBET rejection rate, 1702 
which increases when cells from different samples tend to cluster separately (middle line: 1703 
median; box limits: upper and lower quartiles; whiskers: 1.5× interquartile range; points: 1704 
outliers). For self-comparisons, cells from the same sample were randomly split into two 1705 
groups before kBET calculation. Comparisons for quantifying the effects of various factors 1706 
(e.g., run, library preparation, individual, population or stimulation condition) on cell mixing 1707 
are highlighted. For all comparisons shown, differences in kBET are significant for a 1708 
Wilcoxon rank-sum test p-value < 10-9. b and c, Comparison of estimated lineage proportions 1709 
(b) and mean ISG expression (c) between replicate samples processed separately across 1710 
different runs (cells from the same individual thawed on a different day and stimulated in the 1711 
same conditions). In c, regression lines and the 95% confidence interval are shown for each 1712 
stimulation condition. 1713 
  1714 
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 1715 
 1716 
Supplementary Figure 6 | Interferon-stimulated gene responses to SARS-CoV-2 and 1717 
IAV stimulation. a, Distribution of ISG activity in the non-stimulated state and in response to 1718 
SARS-CoV-2 (COV) and influenza A virus (IAV) across the five major immune lineages. For 1719 
each lineage and set of stimulation conditions, the violins and boxplots show the distribution 1720 
of ISG activity scores across all 222 donors (middle line: median; box limits: upper and lower 1721 
quartiles; whiskers: 1.5× interquartile range; points: outliers). b, Proportion of the variance of 1722 
ISG activity explained by IFN-α, IFN-β and IFN-γ in the non-stimulated condition and in 1723 
response to SARS-CoV-2 and IAV, across the five major immune lineages. c, Correlation 1724 
between levels of IFN-α in the supernatants (measured by SIMOA) and ISG activity in 1725 
myeloid and lymphoid (CD4+ T cells) cells, adjusted for cellular mortality. Each dot 1726 
represents a sample (donor × condition) and is colored according to its stimulation condition 1727 
(gray: NS, red: COV and blue: IAV). For each lineage and set of stimulation conditions, 1728 
regression lines and 95% confidence intervals are shown.  1729 
  1730 
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 1731 
 1732 
Supplementary Figure 7 | Population cellular heterogeneity and transcriptional 1733 
responses to viral stimulation. a, Validation of the memory-like NK fraction. Flow 1734 
cytometry data for representative CMV+ and CMV- donors, highlighting the higher 1735 
percentage of memory-like NK cells (NKG2C+, NKG2A-, CD57+) among CMV+ donors than 1736 
among CMV- donors. b, Population variation in the percentage of CD16+ monocytes, memory 1737 
lymphocyte subsets and memory-like NK cells. For each major immune lineage, the cell type 1738 
differing most strongly in frequency between AFB and EUB donors is shown. Boxplots show 1739 
the distribution of the percentage of the target cell type in the corresponding lineage in each 1740 
population (middle line: median; box limits: upper and lower quartiles; whiskers: 1.5× 1741 
interquartile range). c, Effect of adjusting for cellular composition on the absolute differences 1742 
in expression between AFB and EUB donors, as a function of absolute differences in 1743 
expression between the two cell types differing most in frequency between these populations 1744 
(Supplementary Table 3b). For each lineage and stimulation condition, the regression line and 1745 
95% confidence interval are shown. d, Serology assays for CMV across donors according to 1746 
ancestry. Each dot represents a donor and is colored according to ancestry (AFB: Central 1747 
Africans, EUB: West Europeans). The gray line represents the detection threshold used to 1748 
identify a donor as seropositive.  1749 
  1750 
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 1751 
 1752 
Supplementary Figure 8 | Expression quantitative trait loci mapping and contribution to 1753 
population differences in response to RNA viruses. a, Overlap of eQTLs and eGenes (i.e., 1754 
genes with an eQTL) detected during the mapping of eQTLs at the immune lineage and cell-1755 
type levels. b, Example of a pDC-specific eQTL for MIR155HG. MIR155HG expression 1756 
levels in pDCs and CD14+ monocytes according to rs114273142 genotype in non-stimulated 1757 
(NS), SARS-CoV-2-stimulated (COV) and influenza A virus-stimulated (IAV) conditions 1758 
(middle line: median; box limits: upper and lower quartiles; whiskers: 1.5× interquartile 1759 
range; points: outliers). c, Enrichment in reQTLs among popDRGs. For each lineage, bars 1760 
indicate the percentage of genes with a significant reQTL, both genome-wide and among the 1761 
popDRGs identified, before or after adjustment for cell composition (referred to as “adjusted" 1762 
and “raw” respectively). d, Percentage of popDEGs with an eQTL according to the magnitude 1763 
of differences in expression. In each lineage, popDEGs are assigned to one of five magnitude 1764 
groups based on quintiles of log2fold change between the AFB and EUB populations. For 1765 
each lineage and magnitude group, the number of popDEGs with an eQTL and the total 1766 
number of popDEGs are reported. e, Relationship between eQTL effect sizes and population 1767 
differences in expression. f, Relationship between reQTL effect sizes and population 1768 
differences in response to immune stimulation. For each stimulation condition, the regression 1769 
line is computed jointly across all cell types. g, Contribution of genetics and cell composition 1770 
to population differences in response to stimulation by COV and IAV. For each lineage and 1771 
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stimulation condition, the x-axis indicates the mean percentage of population differences in 1772 
response to stimulation mediated by either genetics or cell composition, across all popDRGs 1773 
(upper panels) or the set of popDRGs with a significant reQTL (lower panels). The size of the 1774 
dots reflects the percentage of genes with a significant mediated effect (FDR<1%).  1775 
  1776 
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 1777 
 1778 
Supplementary Figure 9 | Positive selection signals across time, cell types and 1779 
populations. a, Method for estimating the time of onset of selection from derivative 1780 
information from allele frequency trajectories. (Top) Allele frequency trajectories in an East 1781 
Asian population (CHS) across the past 2,000 generations of two SARS-CoV-2 reQTLs (i.e., 1782 
rs4806787 and rs1028396), affecting the response of LILRB1 in plasmacytoid dendritic cells 1783 
and SIRPA in CD14+ monocytes, respectively. (Middle) Change at each generation (from past 1784 
to present) of the (smoothed) frequency of the derived allele, normalized for allele frequency. 1785 
(Bottom) Z-score calculated as the normalized derivative, scaled at each generation by the 1786 
standard deviation of derivatives across all eQTLs. Periods of selection are estimated as the 1787 
range, in generations, over which the rate of change in the frequency of each allele deviates 1788 
significantly from expectations under the hypothesis of neutrality (i.e., |Z-score| > 3). (Top to 1789 
bottom) The corresponding allele frequency trajectories, first derivatives and Z-scores for 100 1790 
random SNPs sampled from the set of all (r)eQTLs detected in this study are shown in gray. 1791 
b, Effective population size and episodes of positive selection over time used in our 1792 
simulations. Colored lines indicate effective population size (green: YRI, yellow: CEU, 1793 
purple: CHS); shaded areas indicate positive selection events. c, Type I error and power as a 1794 
function of Z-score threshold. Power and type I error are reported for selection occurring 1795 
1000-1200 generations ago, for coefficients of selection ranging from 0.01 to 0.05. d, Power 1796 
to detect positive selection at a Z-score threshold of 3, as a function of time. Lines are colored 1797 
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according to the date on which selection began (gray for neutral). e, Fold enrichments in 1798 
signals of positive selection (i.e., strong PBS) across the 22 cell types in Central Africans 1799 
(YRI), West Europeans (CEU) and East Asians (CHS). Fold enrichments were calculated by 1800 
genome-wide resampling of SNPs matched for minor allele frequency, LD and distance to the 1801 
nearest gene. Vertical bars indicate 95% confidence intervals. f, Allele frequency trajectories 1802 
over the past 2,000 generations in YRI (green) and CEU (yellow) of the GBP7 reQTL 1803 
(rs1142888-G). Shaded areas indicate 95% confidence intervals. g and h, Estimated period of 1804 
selection over the past 2,000 generations, for 148 and 279 SARS-CoV-2 reQTLs with 1805 
significant evidence of natural selection in Central Africans and West Europeans, respectively 1806 
(max. |Z-score| > 3). In both panels, variants presenting strong signals of positive selection 1807 
(i.e., top 5% for PBS) are shown in color. The transparent rectangle highlights the period 1808 
between 770 and 970 generations ago (i.e., 21.5-27.2 thousand years ago) associated with 1809 
polygenic adaptation targeting host coronavirus-interacting proteins. Variants are ordered 1810 
along the x-axis in descending order of time to the onset of natural selection.  1811 
  1812 
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 1813 
 1814 
Supplementary Figure 10 | Neanderthal introgression at loci regulating gene expression 1815 
in different cell types. a. Adaptively introgressed eQTLs of host defense genes. From left to 1816 
right: (i) effects of the introgressed allele on gene expression across immune lineages and 1817 
stimulation conditions, (ii) clinical and functional annotations of associated genes, (iii) 1818 
present-day population frequencies of the introgressed alleles, (iv) percentile of archaic allele 1819 
frequency at the locus (CEU and CHS; dark shades: top 1%, light shades: top 5%, and (v) 1820 
effects of the target allele on COVID-19 risk (infection, hospitalization, and critical state). 1821 
Arrows indicate the increase/decrease in gene expression or disease risk with each copy of the 1822 
introgressed allele. Opacity increases with significance. In the leftmost panel, arrow colors 1823 
indicate the stimulation condition (gray: NS, red: COV, blue: IAV). For each eQTL, the 1824 
introgressed allele is defined as the allele segregating with the archaic haplotype in Eurasians. 1825 
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b, Effects on gene expression of two loci presenting strong evidence of adaptive introgression 1826 
(OAS1, TLR1). For each locus, eQTL effect size and 95% confidence intervals are shown 1827 
across the 22 cell types and the three stimulation conditions. c and e, Frequency and nature of 1828 
archaic alleles at two introgressed loci (TNFSF13B and TRAF3IP3). Each dot represents an 1829 
archaic allele and is colored according to its presence in Vindija Neanderthal (orange), 1830 
Denisova (green) or both (yellow). The y-axis reflects their frequency in CEU (yellow) or 1831 
CHS (purple) populations. The eQTL index SNP is shown in red. d, The Neanderthal-1832 
introgressed eQTL at TRAF3IP3 is apparent only in IAV-infected monocytes, and is not 1833 
detected in bystander cells (stimulated but not infected). f, Effects of the introgressed eQTL at 1834 
TNFSF13B in MAIT cells (i.e., the cell type with the largest effect size). For d and f, middle 1835 
line: median; box limits: upper and lower quartiles; whiskers: 1.5× interquartile range; points: 1836 
outliers. 1837 
  1838 
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 1839 
 1840 
Supplementary Figure 11| Colocalization of eQTLs and reQTLs with COVID-19-1841 
associated loci. a, Enrichment in COVID-19-associated loci at eQTLs and reQTLs in each 1842 
major lineage. For each set of eQTLs and each COVID-19 phenotype, fold enrichment and 1843 
resampling-based 95% confidence intervals are displayed. b and c, Colocalization of eQTLs 1844 
with COVID-19 GWAS hits at the OAS1-3 locus. For each eQTL, the upper panel shows the 1845 
log10 p-value profile for association with COVID-19 phenotypes and the lower panel 1846 
represents the profile of log10 p-values for association with expression in a representative cell 1847 
type. Arrows indicate the direction of the effect at each SNP. The color code reflects LD (r2) 1848 
with the consensus SNP, shown in purple, identified by colocalization analysis. d, Allele 1849 
frequency trajectories over the last 2,000 generations in the three populations of two DR1 1850 
eQTLs (rs569414 and rs1559828) that colocalize with COVID-19 severity loci. Shaded areas 1851 
indicate 95% confidence intervals.  1852 
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