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Measurably recombining malaria parasites
Highlights
The recent pandemic has further high-
lighted the public health potential of infec-
tious disease genomic epidemiology.

For viruses, epidemiological parameters
can be estimated under powerful
phylodynamic models using both epide-
miological and genomic data jointly. An
equivalent framework for malaria para-
sites is lacking because they recombine.

Recombination between malaria para-
sites can generate epidemiologically rele-
vant variation, but recombination is
Flavia Camponovo ,1,3 Caroline O. Buckee ,1 and Aimee R. Taylor 2,3,*

Genomic epidemiology has guided research and policy for various viral patho-
gens and there has been a parallel effort towards using genomic epidemiology
to combat diseases that are caused by eukaryotic pathogens, such as the ma-
laria parasite. However, the central concept of viral genomic epidemiology,
namely that of measurably mutating pathogens, does not apply easily to sexually
recombining parasites. Here we introduce the related but different concept of
measurably recombining malaria parasites to promote convergence around a
unifying theoretical framework for malaria genomic epidemiology. Akin to viral
phylodynamics, we anticipate that an inferential framework developed around
recombination will help guide practical research and thus realize the full public
health potential of genomic epidemiology for malaria parasites and other sexu-
ally recombining pathogens.
sometimes ineffective, depending dy-
namically on transmission. This makes it
hard to model. It also means it could
link epidemiological and genomic pro-
cesses if they were modeled jointly.

Given the potential of recombination, ef-
forts to build a unifying inferential frame-
work around the malaria parasite
ancestral recombination graph (ARG)
aremerited. ARG-based genomic epide-
miology could someday be an equivalent
of phylodynamics.
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A new genomic epidemiological concept
The public health value ofmalaria genomic epidemiology (seeGlossary) has been demonstrated
in several recent studies. A few examples include studies identifying local versus imported trans-
mission in Bangladesh [1] and Southern Africa [2], tracking the rise and spread of drug resistance
in the Greater Mekong Region [3], quantifying transmission changes in Senegal [4], or informing on
the feasibility of malaria elimination in Sri Lanka [5]. The public health value of malaria genomic ep-
idemiology is recognized beyond the research community, particularly in light of the recent corona-
virus disease 2019 (COVID19) pandemic [6], and in the context of malaria elimination, where it is
used to identify transmission hotspots and imported cases, for example [7,8]. In order to capitalize
on advances in data generation (e.g., [9]), and efforts by country-level stakeholders to build capac-
ity and integrate genomic epidemiology into policy and practice [7], methodological advances are
needed to make best use of parasite genetic data [10].

Genomic epidemiology relies on the concept of measurably evolving pathogens [11,12]. A pop-
ulation can be said to evolve measurably if differences among DNA sequences, sampled at differ-
ent points in time, are statistically significant [11]. If a pathogen population is measurably evolving
on epidemiologically relevant timescales, genomic data sampled from infections can be used to
measure and map different aspects of disease transmission [12]. For example, epidemiological
timescales may be on an individual host level, between serial infections or symptom onset, or
on a host population level, between groups of infected individuals separated in space or time.

The conventional definition of a measurably evolving pathogen assumes genetic differences are
generated by mutation [11,12]. Pathogen genomic epidemiology as a field developed around
fast-mutating RNA viruses because these viruses mutate so rapidly that differences among them
can be detected with limited genomic data, typical of the pre-genomic era [12]. Whole genome se-
quencing has since enabled genomic epidemiology of some more slowly mutating pathogens [12]
(https://nextstrain.org/pathogens). In general, malaria parasites are not counted among them,
partly because the coherent inferential framework that applies to fast-mutating RNA viruses
(phylodynamics) does not apply readily to malaria parasites since they sexually recombine.
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Glossary
Ancestral recombination graphs
(ARGs): graphs that link DNA
sequences by both mutation and
effective recombination.
Brood: used herein to refer to a
collection of parasites produced when
one or more oocysts hatch collectively in
a mosquito. Note that because of the
speed of fertilization, parasites ingested
from different humans in a superinfected
mosquito likely do not have an
opportunity to mate and likely have
staggered hatchings. As such, parasites
from a superinfected mosquito can
either belong to the same or different
broods.
Brood and non-brood mating: used
herein to refer to mating between
parasites from the same and different
broods, respectively. Brood mating is
comparable with non-random mating in
population genetics more generally,
since mates are not sampled uniformly
from the population at large. We avoid
the term non-random mating, however,
because it could bemisconstrued: when
parasites brood mate, they are sampled
randomly, but from the brood.
Cotransmission: the transmission of
genetically distinct parasites, from
mosquito to human or vice versa, upon a
single mosquito bite.
Effective recombination: used herein
to refer to recombination between
genetically distinct individuals. The
effectiveness of recombination can
range from low (inbreeding:
recombination between genetically
distinct but related individuals) to high
(outcrossing: recombination between
genetically distinct and unrelated
individuals). When genetically identical
individuals recombine (selfing),
recombination is ineffective.
Generation interval: the time between
infection onset in consecutive human
hosts in the transmission chain.
Genomic epidemiology: using
genomics to study disease determinants
in epidemiology. Used herein to refer to
the use of pathogen genomic data to
track pathogen populations in space
and time for public health purposes, as
opposed to the study of human genetic
determinants of noninfectious diseases.
Identity-by-descent (IBD): two alleles
are IBD if they are both copies of an
ancestral allele; a chromosomal
segment is IBD if it is descended intact
(unbroken by recombination) from a
common ancestor.
In this article we compare the genetic consequences of recombination versus mutation in the
context of malaria genomic epidemiology, examine methodological gaps, and propose an ap-
proach towards a unifying inferential framework, something akin to phylodynamics in viral geno-
mic epidemiology. Although we focus on Plasmodium, the concepts apply to a broader range of
sexually recombining pathogens.

Malaria parasites mutate and sexually recombine
Both mutation and recombination generate genetic variation [11,12]: mutation creates differ-
ences, while recombination creates new combinations of those differences. Mutational differ-
ences, δ, can be modeled simply as a linear function of time t, the rate of mutation per locus
per time μ, and the number of loci l: δ = μlt [12]. Sexual recombination also depends on some
fixed parameters (crossover rate, number of loci, chromosomes, and meioses); however, it is
only ‘effective’ when genetically distinct individuals recombine (effective recombination).
Therefore, to model recombinational differences, one must also consider the external processes
that bring individuals together (mating system), the amount of pre-existing variation among those
individuals (population diversity), and how this variation is distributed (population structure). Malaria
parasites are eukaryotes andmutate at a typical eukaryotic rate, which is slow comparedwith other
pathogens. They recombine sexually every life cycle, but the effectiveness of recombination can
range from one, when completely unrelated parasites recombine, to zero, when clones recombine,
a plausible event even in diverse populations. Moreover, the effectiveness of recombination de-
pends on the processes that unite genetically distinct parasites: coinfection and/or superinfection
with genetically distinct parasites. In this section, we discuss how and when malaria parasites
mutate measurably and recombine effectively on an epidemiologically relevant timescale. We
also discuss the known and unknown aspects of the processes that shape effective recombina-
tion. We focus on Plasmodium falciparum and Plasmodium vivax, the twomalaria parasite species
most frequently responsible for human malaria [13].

Mutation
Malaria parasites are single-celled and, throughout the human stage of their life cycle, haploid.
Compared with viral pathogens, they have larger genomes but slower mutation rates:
P. falciparum has a 23-megabase nuclear genome [14] and a SNP mutation rate on the order
of 10−10 mutations per base pair per asexual generation (48 hours) [15].

Although this process generates many mutations (given the vast amount of parasites within a sin-
gle malaria infection), the majority of those mutations occur singularly and are purged [9]. A well-
defined core genome is often used for P. falciparum genomic epidemiology [16]. Among a pop-
ulation of infecting parasites, it accrues an estimated 0.84 ± 1.8 nonpurged mutations per month
[17]. That value increases to 2.92 ± 2.3 nonpurged mutations per month (comparable with
measurably mutating viruses) when advanced technologies are used to extend the accessible re-
gion of the genome [17]. Thus, with a generation interval of around 3 months for P. falciparum
[18], it is theoretically possible to differentiate malaria parasites along a transmission chain using
mutation. However, those mutations are only identifiable when parasites from different infections
do not recombine (e.g., in near-elimination settings where transmission is extremely low and
clonal propagation is extensive) [17].

Recombination
While malaria parasites might accrue a small number of nonpurged mutations over the course of
one lifecycle, 50% of the genome is expected to differ if recombination with an unrelated parasite
occurs. This means that recombination has greater potential to generate measurable variation on
epidemiologically relevant timescales. This potential has been demonstrated by various studies
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Identity-by-state (IBS): two alleles are
IBS if they are biochemically alike
(e.g., both adenine), regardless of
whether they are IBD or identical-by-
chance.
Multiplicity of infection (MOI): also
referred to as complexity of infection
(COI); the number of genetically distinct
parasite genotypes within an infection,
where genotype is used here to refer to a
specific example of the malaria parasite
genome.
Phylodynamics: models linking
phylogenetic and epidemiological
processes in order to estimate
epidemiologically relevant parameters.
Phylogenetic models: also referred to
phylogenomics. The study of phylogeny,
which is the evolutionary history
between groups of organisms according
to a taxon rank (such as genus, species,
or strains). Molecular phylogeny uses
nucleotide sequences to reconstruct
phylogenetic trees.
Superinfection: the transmission of
parasites to an already infected human
or mosquito, via infectious bites from
multiple mosquitoes to one human (or
via a single mosquito biting multiple
infectious people, respectively.
(e.g., [19–21]), using either identity-by-descent (IBD) as a measure of recombinational related-
ness or identity-by-state (IBS), a correlate of IBD [22].

Recombination is obligate in the malaria parasite lifecycle. Human blood stage parasites differen-
tiate into gametocytes that are imbibed by the mosquito, where they differentiate promptly into
gametes and pair to sexually recombine approximately 3 hours after ingestion [23]. Each pair re-
sults in an oocyst, with usually fewer than five oocysts per mosquito [24]. The speed of fertilization
impedes recombination between parasites from different blood meals and thus different people,
unless a mosquito feeds on different people in very quick succession, a phenomenon that likely
does not contribute significantly to malaria epidemiology. P. falciparum gametes are estimated
to crossover with probability 7.4 × 10−7 per base pair [16]. This implies, on average, 0.01 cross-
overs per 13 500 base pairs and approximately one crossover per chromosome, of which
P. falciparum has 14. This means that after recombination between unrelated parasites, we ex-
pect offspring to be 50% related to their parents with, on average, one contiguous IBD segment
per chromosome. Even without crossovers, sexual reproduction can generate variation because
offspring inherit a random combination of their parental chromosomes.

Effective recombination
Although recombination is obligate, it is not always effective. Malaria parasites can self (i.e., geneti-
cally identical parasites can recombine), in which case recombination is ineffective. Selfing is inevita-
ble when a mosquito feeds on a single monoclonal infection. Otherwise, selfing, inbreeding, and/or
outcrossing can occur, where inbreeding refers to partially effective recombination between related
parasites, outbreeding refers to fully effective recombination between unrelated parasites, and the
occurrence of one or more events depends on the number of parasite pairs that recombine. The
extent of effectiveness depends principally on the composition of multiclonal human infections on
which mosquitoes feed (Figure 1A).
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Figure 1. Effective recombination. (A) Human-to-mosquito cotransmission leads to effective recombination but its effectiveness depends on the type of mating and thus the
processes that generated the multiclonal human infection (cotransmission and superinfection). Different colors represent genetically distinct parasites within infections (host fill)
and during recombination (parental gametes, circles; offspring, squares). Brood mating following mosquito-to-human cotransmission is more likely to have low effectiveness due
to probable inbreeding, whereas non-brood mating following superinfection is likely to have high effectiveness due to probable outbreeding if the population is largely outbred.
(B) The frequency of occurrence of effective recombination is expected to increase with higher transmission intensity. Given genomic diversity in the population, greater
transmission results in more superinfections, leading to more multiclonal infections in humans and mosquitoes, which in turn increase the opportunity for cotransmission.
Multiclonal infections allow for effective recombination, which in turn gives rise to more multiclonal infections and greater genomic diversity. The effectiveness of recombination
(not shown) depends on the routes via which multiclonally infected mosquitoes are generated: more routes via superinfection will lead to more non-brood mating, while more
routes via mosquito-to-human cotransmission will lead to more brood mating (panel A).

Trends in Parasitology, Month 2022, Vol. xx, No. xx 3

CellPress logo


Trends in Parasitology
OPEN ACCESS
A multiclonal human infection can be generated in two, non-mutually exclusive ways: by a single
mosquito bite transmitting genetically distinct parasites (cotransmission) and/or by several
mosquito bites (superinfection; e.g., Figure 1A). Parasites from different mosquitoes cannot be-
long to the same brood. Within the mosquito, parasites can belong to the same brood, which
can contain clones, strangers, and siblings [25,26]. Interbrood relatedness of parasites depends
on the diversity and structure of the parasite population, and intrabrood relatedness depends on
the relative occurrence of clones, strangers, and siblings within the brood and on the relatedness
of the parental gametes. This means that the level of effective recombination between parasite
genotypes depends on the relative frequency of both brood and non-brood mating between
parasites, which, in turn, depends on cotransmission and superinfection between hosts
(Figure 1A). That is to say, malaria parasites are not panmictic and the generation of diversity is
linked to transmission intensity in a nontrivial way.

Both cotransmission and superinfection are expected to increase with transmission intensity,
thereby increasing the overall prevalence of multiclonal infections (as has been observed inversely
[27]) and the frequency of occurrence of effective recombination (Figure 1B). It is more difficult to
predict how the effectiveness of recombination will be impacted by transmission intensity: given
pre-existing variation, more infectious bites lead to a higher rate of superinfection and thus
more opportunities for non-brood mating, which leads to outcrossing if the population is diverse
and largely unstructured. However, more outcrossing leads to more mosquito-to-human
cotransmission of outbred offspring that can consequently brood mate, which almost certainly
leads to some inbreeding. As such, although superinfection and outcrossing both lead to effective
recombination (Figure 1B), superinfection likely amplifies its effectiveness while mosquito-to-
human cotransmission likely attenuates it (not shown).

Observations from field studies testify to the complexity of this system, using descriptive statistics
of parasite genetic data as proxy indicators. Generally, high estimates of diversity and average
multiplicity of infection (MOI) suggest high transmission, while evidence of prevalent clonal
clusters and monoclonal infections suggest low transmission [28]. However, this relationship is
sometimes unclear [29], especially in the presence of gene flow [5,30–35]. Moreover, interpreta-
tion is hampered by extensive spatial heterogeneity [36], which is accentuated as transmission
declines [37,38], but does exist in high transmission [39,40], though it is harder to detect [41].
Relapses add additional complexity for P. vivax, where MOIs can reflect present or past inocula-
tions and thus are generally higher than those of P. falciparum [42].

For either species, what these processes collectively mean for the effectiveness of recombination
is unclear: in low transmission settings, evidence of high P. vivax population diversity and average
MOI has been observed together with significant linkage disequilibrium (LD, indicative of low
effective recombination) [5,37]; while in similarly low transmission settings, evidence of low
P. falciparum population diversity and prevalent monoclonal infections has been observed
together with low LD [43]. In high transmission settings, evidence of P. falciparum inbreeding
persists [44,45], consistent with the expected effect of brood-mating, and in both low
and high transmission settings, P. falciparum multiclonal infections contain highly related
parasites [26,46,47].

To summarize, effective recombination has greater potential than mutation to generate variation
that is measurable on an epidemiological scale, but, unlike mutation, its effectiveness is inextrica-
bly linked to the epidemiological context in a complicatedway (Figure 1B). Although somemodels
of themosquito stage of this highly complex system exist [25,26,48], its entirety is not understood
well enough to translate into a functional form (see Outstanding questions).
4 Trends in Parasitology, Month 2022, Vol. xx, No. xx
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Malaria genomic epidemiology at present
For the practical application of pathogen genomic epidemiology, data should be used to infer param-
eters of epidemiological interest under a cohesive statistical model that links the processes that gen-
erate the genetic data to epidemiological ones (e.g., in viral genomic epidemiology, phylogenetic
models are linked to coalescent or birth–deaths models in a framework called phylodynamics
[49–52]). Under a statistical model, interpretation is straightforward (phenomena of interest can be
expressed explicitly as parameters and their dependence on hypothesized predictors evaluated
[53]), as is prospective study design (e.g., using posterior predictive simulation or by maximizing
the Fisher information of parameters of interest, as in [54]). Various steps build up to this model
(Figure 2). Typically, malaria genomic epidemiological projects culminate in hypotheses generated
by descriptive analyses (step three of Figure 2) because a cohesive inferential framework is lacking.

Descriptive analyses in malaria genomic epidemiology are related to those across malaria geno-
mics more generally (Box 1). They generate valuable hypotheses but they are also liable to gen-
erate some spurious associations. Moreover, descriptive analyses cannot provide conclusive
answers to the questions malaria genomic epidemiology ultimately seeks to answer [55]. For ex-
ample, a clustering analysis might reveal population structure that suggests gene flow to a region
is restricted [56] and thus that the region is a suitable candidate for targeted intervention, but with-
out a model under which this hypothesis can be falsified, one cannot reject competing processes,
such as drug selection.

Because of recombination, phylodynamic frameworks cannot be applied directly to malaria
(phylodynamic methods that accommodate recombination treat it as noise and not signal [12])
and an equivalent framework for malaria is lacking. However, efforts to develop simulation-
based models are ongoing (e.g., the R package SIMPLEGEN, https://mrc-ide.github.io/
SIMPLEGEN/). Agent-based models linked to genomic processes have been used to estimate
R0 and changes in transmission intensity [4,57], to investigate the relationship between different
descriptive statistics of parasite genetic data and transmission intensity [55,58], to study the effect
of heterogeneity on the spatial distribution of multiclonal infections and on the stability of transmis-
sion [38], and to study the effect of selective pressures on evolution under different transmission
TrendsTrends inin ParasitologyParasitology

Figure 2. Possible series of genomic steps in pathogen genomic epidemiological studies. Step 1, genomic data are collected. To be useful, those data must
contain variation that has accumulated on an epidemiological relevant scale (e.g., due to mutation or recombination, processes that data summaries generated in step 2 often
reflect). Step 3 involves a suite of descriptive analyses; for example, the computation of descriptive statistics of pathogen diversity and differentiation, population assignment, and
clustering analyses. A model that connects the genomic processes to epidemiological ones is formulated in step 4, typically using mathematics to articulate hypotheses
concretely. This process incites clarification and thus is valuable in and of itself. An arrow connects data to step 5, because data are used to infer the parameters of the model.
This step also links to epidemiological data; however, these are not shown. Above and below the steps, examples are provided for viral and malaria genomic epidemiology,
respectively. Those that do not currently exist are highlighted in italic and bold. Abbreviations: ARG, ancestral recombination graph; Epi., epidemiology.
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Box 1. Malaria genomic epidemiology in context
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Figure I. Sources of genomic variation used in pathogen genomic analyses on different scales.

Pathogen genomic analyses use different sources of variation that cover different spatio-temporal scales, not all of which
are suited to epidemiology. Figure I provides an overview, to which there are exceptions (e.g., [17]).

Mutation is the main source of genomic variation used in viral phylodynamic studies, which range from intrahost to inter-
continental scales. Examples of phylodynamic studies of RNA-viruses across different scales include a retrospective study
of city-scale spatial spread of influenza A/H3N2 [66]; the investigation of the 2014 Ebola outbreak in Sierra Leone [67]; and
tracking the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic (reviewed in [68]).

Mutation is also the main source of genomic variation used in malaria phylogenetic studies, which often explore species
origin on a large spatial scale [69]. These studies often use genomic data where the assumption of no recombination holds
(e.g., genomic data from different parasite species, or DNA data on non-recombining mitochondria).

Analyses of allele frequencies within and across populations feature in many population genetic analyses of malaria
parasites. Allele frequencies change with selection (e.g., from drug pressure), gene-flow (e.g., due to the mobility of
infected hosts), or genetic drift (particularly in small populations), typically at a rate slower than that which is epide-
miologically relevant on an individual level [22,70]. That said, in small populations with limited effective recombina-
tion, allele frequencies may vary at a rate equivalent to recombination (e.g., [71]). In any case, descriptive statistics
of allele frequency variation (population-level) provide less resolution that those of recombination-based metrics
(individual-level).

Recombination-based metrics (e.g., summaries of IBD along the genome and relatedness, which averages over the
genome) are popular when studying signals of selection, malaria parasite population connectivity, and population
structure (e.g., [1,2,20,72]). To characterize population structure, IBD- and IBS-based similarity matrices are often input
into clustering algorithms, which include tree-like algorithms but are not strictly phylogenetic models [73]. Unlike allele
frequencies, which may ormay not change over a short period of time, parasites always recombine between different human
hosts. Therefore, recombination-based metrics have the potential to vary between individuals, providing recombination
is effective.

Multiplicities of infection vary between infected hosts. They do not require any change on the parasite level. Otherwise
stated, variation on the parasite level might be fixed, but partitioned differently among hosts. As such, among all genetic
metrics, estimates of the multiclonal infection prevalence and MOIs respond most quickly to changes in transmission
[27,55,58]. They can also change between initial and recurrent infections within individuals.

Trends in Parasitology
OPEN ACCESS
settings [59]. These models are used to simulate data under arbitrarily complex scenarios whose
parameters are known. They are thus very versatile, but at a cost: in general, they are too complex
for full statistical inference. However, they can be calibrated by comparingmodel predictions to real
data and then used to design prospective studies.
6 Trends in Parasitology, Month 2022, Vol. xx, No. xx
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The future of malaria genomic epidemiology
The ultimate unifying inferential framework for malaria genomic epidemiology would center
around ancestral recombination graphs (ARGs), in the same way phylodynamics centers
around phylogenetic trees. In the case of malaria, the mating system would link host-level param-
eters of epidemiological interest to the parasite genomes that feature in the ARG.

An ARG is a graph that links DNA sequences by bothmutation and effective recombination. It can
also be viewed as a sequence of phylogenetic trees, one tree for each locus along the genome,
where trees from one loci to the next are transformed if effective recombination events occur be-
tween the loci [60]. It is a summary of all the coalescence and effective recombination events in
the genealogical history of a set of nucleotide sequences and thus very powerful [60,61]. More-
over, if inferred under a framework that includes an epidemiological model whose parameters
can be expressed as a function of parasite ancestry, an inferred ARG leads to estimates of epide-
miological interest (Figure 3). ARG-based malaria genomic epidemiology does not exist yet in
large part because ARG inference is expensive both computationally and operationally
[60,62,63], but human population genetic studies are advancing ARG inferential methods [61].
ARG-based methods require adjustment for malaria populations, specifically to account for dy-
namic rates of selfing, inbreeding, and outbreeding. In particular, an advanced ARG-based
model is needed since the effectiveness of recombination is an emergent property of the parasite
mating system and a fixed estimate or average rate (as for selfing in [64]) would not represent un-
derlying transmission, which is ultimately the target of inference.

The locations of effective recombination events in a malaria parasite ARG, and thus the effective-
ness of recombination, are governed by the parasite mating system: branches are sampled uni-
formly at random among branches allocated to different broods when non-brood mating occurs,
branches are sampled among those allocated to the same brood when brood mating occurs;
otherwise, when recombination is not effective, branches are propagated from one generation
to the next. How to model the malaria parasite mating system is a difficult open question but
models from population ecology provide some inspiration. The use of IBD, though relatively
TrendsTrends inin ParasitologyParasitology

Figure 3. Overview of ancestral recombination graph (ARG)-based malaria genomic epidemiology. The goal of genomic epidemiology is to use observed
genomic and epidemiological data (left) to infer epidemiologically relevant parameters (right). One way to do this would be to formulate a model around the malaria
parasite ARG. In this example, four genetically distinct DNA segments (A, B, C, D) each of length equal to four loci (indexed by i ) are linked back to a recent common
ancestor (gray) via four per-locus mutations (mi) and one effective recombination event (red circle) over five generations. The observed sequences are outlined in black,
whereas unobserved inferred sequences deeper within the ARG are not. This example only depicts sequences sampled from the human host and thus some
sequences present in the mosquito are omitted; specifically, two of the four haploid meiotic products that were produced after effective recombination.
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Outstanding questions
How does transmission impact the
effectiveness of malaria parasite
recombination? And how do these
processes translate into a model of
the malaria parasite mating system?
More specifically:

• How does transmission translate
into the frequency of occurrence of
cotransmission and superinfection
between hosts and thus brood and
non-brood mating between parasites?

• For a given transmission setting
at equilibrium, how does brood and
non-brood mating between para-
sites translate into outcrossing,
inbreeding, and selfing between
parasite genotypes?

• For a given transmission setting at
equilibrium, what is a representative
distribution of stranger, sibling, and
clonal parasites within a brood?

• For a given transmission setting
at equilibrium, what are the
representative distributions of
relatedness and IBD between
stranger, sibling, and clonal para-
sites within a brood and between
stranger parasites from different
broods?

• How do the underlying processes
translate into measurable correlates
of transmission (e.g., the prevalence
of human infection and the
entomological inoculation rate) and
new to malaria genomic epidemiology, is not new to population ecological studies of eukaryotes,
where sexual recombination is the primary source of genomic variation. For example, close kin
mark recapture, a method recently developed to estimate time-series of adult population size
and survival of fish or other species [54], such as mosquitoes [65], defines priors for kinship prob-
abilities using demographic models with parameters such as the adult population size, birth rate,
and individual survival probability, while accounting for possible covariates, including date and lo-
cation of capture. Theoretically, this framework could be adapted to malaria, where a transmis-
sion model would replace the demographic model with epidemiological covariates (e.g., case-
specific characteristics) that modify the probability of kinship among malaria parasites.

Concluding remarks
Malaria genomic epidemiology is an exciting field of research which has proven useful for infor-
ming malaria surveillance and in which interest is growing among malaria control programs and
policy makers. However, it is largely dominated by descriptive genomic data analysis that are dis-
connected from routine epidemiological analyses and are frequently retrospective. Although in-
sightful, these types of analyses lack a clear common framework and are limited to speculative
interpretation of the underlying transmission dynamics. We introduce the concept of measurably
recombining malaria parasites in the hope that it will encourage development around a unifying
inferential framework under which models can be developed and thus used for hypothesis-
driven analyses and statistically robust prospective study design. This is by no means an easy
task (see Outstanding questions) but ongoing progress towards it will advance malaria genomic
epidemiology, thereby helping to promote its full potential for public health.
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