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The high-dimensional character of most biological systems presents genuine challenges
for modeling and prediction. Here we propose a neural network–based approach for
dimensionality reduction and analysis of biological gene expression data, using, as a case
study, a well-known genetic network in the early Drosophila embryo, the gap gene pat-
terning system. We build an autoencoder compressing the dynamics of spatial gap gene
expression into a two-dimensional (2D) latent map. The resulting 2D dynamics suggests
an almost linear model, with a small bare set of essential interactions. Maternally defined
spatial modes control gap genes positioning, without the classically assumed intricate
set of repressive gap gene interactions. This, surprisingly, predicts minimal changes
of neighboring gap domains when knocking out gap genes, consistent with previous
observations. Latent space geometries in maternal mutants are also consistent with the
existence of such spatial modes. Finally, we show how positional information is well
defined and interpretable as a polar angle in latent space. Our work illustrates how
optimization of small neural networks on medium-sized biological datasets is sufficiently
informative to capture essential underlying mechanisms of network function.

systems biology | developmental biology | machine learning | dimensionality reduction | Drosophila gap
genes

The dimensionality of models in biology often mirrors the vast array of molecular
interactions underlying life processes (1), making it difficult to extract the most significant
information about the system and general principles (2, 3). Recent advances in machine
learning (4) allow for a new class of emerging strategies to reduce a system to its bare
modes, often in the form of self-generating neural networks that mimic the dynamics
of the original system (see, e.g., ref. 5 for physical systems). The attraction for low-
dimensional models is their often straightforward interpretability, making it easier to
identify general principles that are common to entire classes of systems (6–12), which can
be put to experimental verification. The challenge in applying this approach to biological
systems is the comparatively small number of data, which might rapidly lead to overfitting
(13), and it is generally unclear how to systematically derive small models. Here we
present a case study where we reduce the complex spatiotemporal dynamics of a well-
studied gene regulatory network into a low-dimensional representation, to derive a general
understanding of the core features of the network dynamics and its function.

During the initial stages of fruit fly development, the early embryo presents an experi-
mentally accessible system for learning about genetic networks (14–18). In particular, the
both experimentally and theoretically well-studied gap gene network, involved in segment
patterning along the anterior–posterior (AP) axis of the embryo, provides an ideal example
for the dimensionality reduction problem. Gap genes form an interconnected layer in
an otherwise feed-forward network that takes upstream inputs from primary maternal
morphogens (Fig. 1A). Following early theoretical predictions by Meinhardt (19), it is
generally proposed that gap genes are mutually repressive (17, 20–24). This defines an
“alternating cushion” system, positioning gap genes’ expressions complementary to one
another (25–27). Under downstream control of the gap gene layer are the pair-rule genes
(28). Their expression occurs in stripes that are precisely and reproducibly positioned
within the embryo, forming an outline for the segmented body plan of the fully developed
organism (29). In this system, states of the network are the expression levels of the gap
genes, and the functional information being encoded is the position of cells along the AP
axis. This three-layered genetic cascade offers a textbook example of positional information
(30), where morphogen concentrations eventually dictate local cellular fates. Biophysical
approaches have been used to properly define, quantify, and reconstruct such information
(31), unequivocally inferring cellular positions—and thus a proxy for cell fates—solely
from gap gene concentrations (32).

The availability of high-precision, dynamical data (32), combined with previous theo-
retical studies (27, 33–35), led us to this case study for a data-driven, low-dimensionality
neural network search using a small autoencoder (4, 36). Autoencoders are neural
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Fig. 1. Dimensionality reduction of gap gene dynamics using an autoencoder. (A) The gap gene system is part of the early Drosophila segmentation gene
network, a cascade of patterning genes that specify cells along the embryo’s AP axis. (Left) Cartoon expression profiles of maternal genes bicoid, nanos, and
torso. (Middle) Gap gene expression for genes giant, knirps, Krüppel, and hunchback. (Right) Pair-rule genes expression. (B) Example of a trained nonlinear
autoencoder with four input nodes (Left) for the four gap genes and compression into a layer with two nodes (Middle) using ReLU activation functions towards
four output nodes (Right). Vertex colors indicate node weights after training (green for positive, red for negative weights). Node colors indicate the state of the
network for an example with high Kr and hb input. (See SI Appendix, section 1 for more detail.) (C) Encoding and decoding of the linear autoencoder. Encoding
compresses four gap genes in two dimensions, realized by taking the differences of gene pairs. Decoding projects the two latent space dimensions onto the
four gap genes. (D) Snapshot of Gaussian-filtered gap gene concentration profiles along the AP axis at t = 30 min into n.c. 14. Points of interest are labeled (1 to
4 for maxima, A/B for additional points). (E) Latent space profiles H1 and H2 for D with corresponding labels.

networks with a bottleneck layer containing only a few nodes.
They are easy to train, as the output layer is directly fitted onto
the input layer (36). If training is successful, the bottleneck layer
encodes (almost) all the information contained in the data into a
small number of nodes (37). The associated phase space defined by
the bottleneck layer is generally called “latent space” (4). Contrary
to more-complex dimensionality reduction techniques [such as
t-distributed Stochastic Neighbor Embedding (t-SNE) (38) or
Uniform Manifold Approximation and Projection (UMAP) (39)],
the relationship between the full system and its low-dimensional
latent space projection is mathematically explicit and intuitive. As
we will show below, this allows us to go back and forth between
the full and the latent space, thus offering a generalized natural
route for low-dimension modeling of biological systems.

Applying this approach to the early fly embryo, we build an
easy-to-interpret two-dimensional (2D) map to describe gap gene
network expression levels in space and time. We identified simple
spatiotemporal modes in latent space, pointing to a 2D model
where time and space are separable: Gap gene positions are set up

by independent spatial modes, with a single common temporal
mode. Mutual interactions only feature as weak perturbations.
Data from maternal gene mutants are consistent with this view,
revealing a modular nature of the wild-type (WT) latent space.
Finally, the latent space representation provides an intuitive ge-
ometric interpretation of positional information. This analysis
illustrates that small latent space models are helpful theoretical
tools, which can be deterministically built from data to provide
quantitative insights into high-dimensional biological systems.

Results

A Small Interpretable Autoencoder for Gap Gene Reconstruc-
tion. We use data from Petkova et al. (32) that provide expression
levels of the gap genes hunchback (hb), giant (gt), knirps (kni),
and Krüppel (Kr). They were measured simultaneously in nuclei
located in the midsagital plane in N = 130 WT embryos at
different time points. Overall expression is projected along the
assumed 1D major body axis (Fig. 1A) for each time point. Thus,
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a data point corresponds to a 4D vector of expression levels (one
dimension per gene), obtained for each position projected along
the AP axis and for 60 time points corresponding to the 1-h
duration of nuclear cycle (n.c.) 14.

To train autoencoders on these data, we tested multiple ar-
chitectures with different numbers of intermediate layers, nodes,
and nonlinearities. We typically used standard rectified linear
units (ReLUs) as activation functions (ReLU(x ) = x if x > 0,
zero otherwise) (4). Autoencoders with a single node in the
intermediate layer were insufficient to give adequate data de-
scriptions, indicating that the spatiotemporal gap gene manifold
is, at the very least, bidimensional. This is consistent with the
assumption that at least two degrees of freedom are necessary,
one for time and one for space. Conversely, when two nodes
(H1,H2) are used in the intermediate layer, autoencoders are
efficient at capturing/reconstructing most features of the gap gene
dynamics (Fig. 1B). An example autoencoder reconstructs most
features of the gap gene profiles, at all time points, such as peak
positions and relative magnitude of gap genes (Fig. 1 C and D). It
misbehaves only by cutting off low gap gene concentrations, such
as the late kni peak in the anterior (compare input and output
in Fig. 1C ). Increasing the number of intermediate layers did
not lead to significant qualitative improvements, and the learned
autoencoder structure is reproducible across training sets. Notice
that the autoencoder does not “predict” any new data: It simply
compresses the original data into the intermediate layer with two
nodes, before reconstructing it.

After training, we observe a remarkable and transparent com-
partmentalization of the system.

1) While H1 is solely a function of Gt and Kr, H2 only depends
on Kni and Hb. In both cases, gap genes contributed with
opposing signs.

2) Likewise, in the output layer, Gt and Kr can be derived from
H1 only, and Kni and Hb from H2 only, again with opposing
signs.

Thus the gap gene system effectively reduces to a two-variable
system that defines a 2D latent space. Such compression is possible
because both variables, H1 and H2, are controlled by mutually
exclusive genes (e.g., positive H1 directly encodes Gt, while neg-
ative H1 encodes Kr). Our autoencoder recapitulates the “alter-
nating cushions” (17, 27), which have been suggested to arise
from mutual repression between nonoverlapping gap genes (i.e.,
respectively, (hb,kni) and (gt,Kr)).

Based on these results, we chose the simplest two-node autoen-
coder that handles all gap genes equally and significantly simplifies
our analyses going forward, by defining

H1(x , t) = Kr(x , t)−Gt(x , t), [1]
H2(x , t) = Hb(x , t)−Kni(x , t), [2]

and the original data are reconstructed with the help of four ReLU
functions,

Gt = ReLU(−H1) Kr = ReLU(H1), [3]

Kni = ReLU(−H2) Hb = ReLU(H2). [4]

Gap gene reconstruction by such an autoencoder is in excellent
visual agreement between input data and decoded output (Fig. 1C
and SI Appendix, section 1), perfectly capturing gap gene peaks
and boundaries. Correspondence between averaged values of gap
gene inputs and (H1,H2) is shown in Fig. 1 D and E with

landmarks at different positions. We quantified and plotted cor-
relations between data and reconstruction (SI Appendix, Fig. S4)
and found an average error of less than 5% of the maximum gap
gene values.

Analyzing the Dynamics of a Gene Network in Latent Space.
The dynamics of the 4D gap gene system, evolving in time and
space, is thus compressed into a plane defined by two latent
variables, H1 and H2, with minimal loss of information. To gain
insights about the dynamics and possible interactions among
the gap genes, we consider H1(x , t) and H2(x , t) in latent
space (Fig. 2A). At any given time, they map out a parametric
curve (subsequently called “position manifold”) that represents
positions x in latent space. The curve folds on itself in the upper
quadrant of latent space (purple shading) and subsequently traces
a roughly square box around the origin (Fig. 2B).

For the temporal progression of this position manifold, we
identify two phases during the 1-h-long n.c. 14: the first be-
fore 45 min and the second after 45 min, corresponding to,
respectively, a collective overall rise and fall of the profiles (Fig. 2
C and D and Movie S1). Note that around t = 45 min is the
time when positional information encoded by the gap genes is
maximal (24), meaning that the dynamics leading up to this
time encodes most of the functional information. In fact, during
that first phase, the position manifold has a particularly simple
shape: It mostly expands, and flow lines never cross (Fig. 2C and
SI Appendix, Fig. S2), allowing for a considerable dimensional
compression. By expressing the flow with differential equations

d

dt
(H1,H2) = F(H1,H2),

we effectively replace a 4× 4 Gene Regulatory Network (GRN)
by a 2× 2 GRN in latent space. Since, in each part of the plane,
each Hi encodes for a single gap gene, from a mathematical stand-
point, local interactions between spatially adjacent gap genes,
that is, (gt,hb), (hb,Kr), (Kr,kni), and (kni,gt), respectively, are
sufficient to explain the dynamics of the position manifold up to
t = 45 min.

The flow in latent space for t < 45 min (Fig. 2C ) can be
further decomposed into a dominant radial component and a
weaker angular contribution. The latter corresponds to a very slow
linear motion of gap gene expression peaks (i.e., at most, half
a cell diameter per minute [SI Appendix, section 3 and Fig. S7]),
directed toward the posterior boundary of the anterior hb domain.
This motion is well known in the posterior (33, 40), but we
notice that anterior gap genes move slightly toward the posterior
(SI Appendix, Fig. S7), suggestive of a global systematic effect.
We can mathematically remove this contribution, and the flow
becomes radially symmetric in most of latent space (Fig. 2 E and
F ). Importantly, if there are repressions between spatially adjacent
gap genes so that one gene decreases the other one, one would
observe angular components of the flow [e.g., on slow (41) or
canalized manifolds (42)]. So a radial flow suggests an absence of
repressions. We note that there is a strong remaining local angular
component at the border of the (gt,hb) quadrant (arrow in Fig. 2E,
landmark B in Fig. 1D) that could thus originate from a repressive
interaction.

Flow Dynamics Implies Space–Time Separation. To understand
the biophysical origin of the mostly radial flow, we resort to a
standard Partial Differential Equations (PDE)-based toy model for
four genes, produced in localized source regions along the AP axis
(Fig. 3A and SI Appendix, section 6). For two of the simplest mod-
els, one with and the other one without mutual repression between
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A B

C D

E F

Fig. 2. Gap gene dynamics in latent space. (A) Snapshot of concentration along the AP axis in latent space (line) for t = 45 min. Points of interest are labeled as
in Fig. 1D. Background color corresponds to the line color of the dominant gene (i.e., the gap gene with higher concentrations than all other ones) in each area.
Throughout the text, we use the same latent space, where vertical direction corresponds to the kni–hb axis, and horizontal direction corresponds to the gt–Kr
axis. (B) Latent profile as in A, color coded by position along the AP axis. Arrows denote progression along increasing x values along the axis. (C) Latent profiles
along the AP axis as in D, but for several time points with t < 45 min. For increasing time, the radius of the profiles increases (arrows). Note that, in quadrant 2,
for x > 80% AP, a flow orthogonal to radial direction is observed. (D) Profiles for later time points with t > 45 min. In quadrants 1, 3, and 4, the radius decreases
slightly (arrows); in quadrant 2, more complex dynamics with the creation of the fold structure is observed. (E) Flow profiles in latent space after speed removal
for t < 40 min for positions ≤40% AP. Borders of the flow and origin of latent space are shown in red. Notice that the flow is radial almost everywhere, except in
quadrant 2, where there is an angular component parallel to the arrow. (F) Average of all gap gene data in 2D latent space. Each line corresponds to the position
manifold at a different time point t = [3, . . ., 53 min] after start of cell cycle 14. Color encodes the position along the axis.

adjacent genes, the flow of the dynamics of the position mani-
folds in latent space is indeed radial (SI Appendix, Figs. S13–S15),
initially forming concave lines with sharply pronounced corners,
corresponding to the concentration maxima in the source regions.
While the position manifold in latent space for the model without
interactions eventually results in a square-shaped box (Fig. 3B),
the model with interactions stabilizes in a concave shape (Fig. 3C ).
Such concavity is not observed in the gap gene system (Fig. 2E),
which further excludes mutual repressions.

To explain the observed presence of a homogeneously ex-
panding squared position manifold with a nonconcave shape at
all times (even early), the simplest solution is to consider an

“adiabatic” version of this model, in which the system is effectively
at steady state at all times (e.g., all production rates increasing
slowly and uniformly under the influence of a global activator).
Such a model can be written as

Hi(x , t) = λ(t)hi(x ), [5]

defining separable spatial modes (h1(x ) and h2(x )) as well as
a common temporal mode λ(t). The associated dynamics is
straightforward: From initially well-defined boundary conditions
(the source terms hi(x )), the genes increase and decrease al-
most proportionally and simultaneously (λ(t)) (Fig. 3D). Small
rotational parts of the flow can be further accounted for by a
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Fig. 3. Geometry of minimal models in latent space. We consider a system of PDEs with four components with localized source regions, diffusion, and
degradation (SI Appendix, Eq. S7). Interactions between components are nonlinear, given by a linear interaction matrix multiplied with a Hill function to ensure
positivity of the solution. More details are given in SI Appendix, section 6. (A) Stationary profile (numerical) without interactions. Source regions are shown as
background color, black boxes denote the boundary of the simulation box, dashed lines denote the region shown in B–D, and numbers point out maxima.
(B) Dynamic solution without interactions. Different lines show the solution at different times; smaller amplitudes in latent space correspond to earlier
times. Numbers point out concentration maxima (compare to A). (C) Dynamic solution with repression of adjacent genes and next-nearest neighbors genes.
(D) Dynamic solution of an “adiabatic” model, Eq. 5, showing radial expansion with almost no change of shape of the position manifold.

single local interaction (corresponding to gt and hb in the data;
SI Appendix, section 6) to result in a position manifold shape in la-
tent space that closely resembles our data (SI Appendix, Fig. S18).

Single-Mode Model with Almost No Interactions Quantitatively
Recapitulates Gap Gene Dynamics. Our variable-separating toy
model (Eq. 5) predicts a dominant first mode (radial flow),
and all gap genes share the same temporal modes. To directly
test these predictions on our data, we perform a singular value
decomposition (SVD) for individual gap genes G (after removal
of the shift of Fig. 2E),

G(x , t) =
∑

i

λG
i f Gi (t)gGi (x ), [6]

with the spatial (gGi (x )) and temporal (f Gi (t)) parts of the dom-
inant mode (λG

1 ) depicted in Figs. 4 A and B, respectively. As
predicted by the toy model, the strong first mode captures, indeed,
λ2
1/(λ

2
1 + λ2

2)≥ 97% of the dynamics (SI Appendix, section 8).
In addition, we see almost identical shapes of the first temporal
modes for individual gap genes (Fig. 4B), again confirming the
toy model prediction. From the shape of these temporal modes,
we infer a two-phase process, with an initial global constant
activation followed by a shutting down phase around t ≈ 25 min
(SI Appendix, section 8).

Fig. 4 C and E shows the concentration fields reconstructed us-
ing only the dominant mode for each gap gene for time points 30
and 45 min, respectively (see Movie S2 for the entire dynamics).
Most dynamic features of gap domains are well captured by this
model, for example, position and slope of Kr and kni domains,
and boundaries of gt. This is especially surprising since it is
generally assumed that these features necessitate explicitly mutual
repression among the gap genes (17), which are not included here.

This model provides an unequivocal biological interpretation:
gG1 (x ) is the first spatial mode encoding the positional infor-
mation provided by local factors (e.g., maternal gradients), and
f G1 (t) captures a global temporal regulation. Small discrepancies
of this single-mode model can be accounted for by inclusion of
weak, second-order effects. For instance, addition of two linear
parameters allows recovery of the weak rotational flow in latent
space (corresponding to repression of gt by hb, and hb autoacti-
vation [Fig. 4 D and F, Movie S3, and SI Appendix, section 8]).
Inclusion of the late second SVD mode allows recovery of the
late n.c. 14 structure in the dynamics for anterior gt, hb, and Kr
(SI Appendix, section 8).

Maternal Mutants Display Modularity in Latent Space. The
most plausible explanation for the appearance of stationary spatial
modes (gG1 (x )) for each gap gene is that they are defined early
during development by maternal morphogens. This interpretation
provides a clear prediction: In loss-of-function maternal mutants,
spatial modes should be lost where associated maternal genes
are not expressed, and, in latent space, the corresponding flow
should be missing. If the temporal modes are also conserved across
gap genes in these maternal mutants (e.g., due to some global
regulation), the flow of the remaining spatial modes in latent space
should be unchanged from the flow observed in WT. Hence, gaps
in embryonic development (due to the absence either of gap genes
(14) or of maternal genes) should have corresponding gaps for the
flow in latent space.

Gap gene expression data for maternal mutants (32) qual-
itatively confirm these predictions (Fig. 5). Loss of functions
for maternal mutants for bcd, nos, and tor display gaps in the
latent space region where the missing maternal genes are normally
expressed. The flow outside those regions is qualitatively preserved
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A B

C D

E F

Fig. 4. Reconstruction of gap gene dynamics using first mode of SVD and posterior interactions. (A) SVD mode 1, spatial part, of the different genes (lines),
colors are similar to Fig. 1. (B) SVD mode 1, temporal part (lines). Since the absolute magnitude of the modes are arbitrary, all curves are rescaled to have the
same maximum value to best compare their shape. (C) Reconstruction of concentration profiles using the first mode SVD (shown for t = 30 min) without any
interaction. (D) Reconstruction using the first mode SVD and a fit of interactions in the posterior (for positions >55% AP). The interactions are shown in Inset
(see mathematical details in SI Appendix, section 8). (E and F) Same as C and D, but for t = 45 min. Insets show the dynamics in latent space.

from the WT flow (Fig. 5A). The bcd mutants (Fig. 5B) are
restricted to the bottom left part of the latent space, nos mutants
(Fig. 5C ) are restricted to the upper part of the latent space, and
tor mutants (Fig. 5D) truncate the position manifold at landmark
B (Fig. 2A).

Double mutants (Fig. 5 E–G) essentially confirm these ob-
servations, with further truncation of the flow. More quantita-
tively, mutant spatial modes are either truncated or stretched
versions of the corresponding WT ones (Fig. 5H ). For instance,
the spatial modes of nos mutants are virtually identical to WT
in the anterior (up to a multiplicative constant accounting for
relative peak magnitudes), but are essentially flat in the posterior.
Other mutants show similar behavior (SI Appendix, section 8).
Temporal modes for maternal mutants are identical to WT when

bcd is present, and are delayed otherwise (SI Appendix, Fig. S21),
possibly indicative of differential temporal regulations by maternal
genes (43).

We also explore the flow in latent space for these mutants for
potential gap gene interactions that might be otherwise hidden
in the WT data. Again, rotational flow in latent space (simi-
lar to what we see in quadrant 2 for WT data) would be a
clear signature. For the single-copy bcd mutant, we see weak
clockwise rotational flow in quadrant 1, possibly suggestive of
repression of hb by Kr (SI Appendix, Figs. S4 and S29). For nos
mutants, we see weak counterclockwise rotation in quadrant 1
(SI Appendix, Figs. S4 and S29), suggestive of repression of Kr by
hb. In both cases, however, the effects are rather mild, again
pointing to a minor role for repressive interactions in this system.
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A

H

B C D

E F G

Fig. 5. Comparison of WT and maternal mutants in latent space. (A) WT with sketch of latent space angle influenced by the maternal genes bicoid (bcd), nanos
(nos), and torso (tor). (B–G) Maternal mutants in latent space with deletions of one (B–D) and two (E–G) maternal genes. The names correspond to the deleted
genes and miss the regions influenced by the respective genes (compare with A). (H) First spatial SVD modes of gap genes for WT and single gene mutants.
Single mutants have regions comparable to the WT (white background); the comparable positions of the WT are shown as arrows.

Positional Information in Latent Space. If maternal genes de-
fine independent spatial and temporal modes, most positional
information should be present early on and might be visible
in latent space. Following the same procedure as Petkova et al.
(32), we thus quantify the positional information carried by the
position manifold. We build a 2D Bayesian map P(x |H1,H2)
from individual 40- to 44-min-old embryos to infer positions
from the two latent space variables H1 and H2 as defined by Eqs.
1 and 2, leading to the associated position manifold in Fig. 6A (see
SI Appendix, section 2 for details). The associated decoding map
(Fig. 6B) appears almost identical to the map based on the four gap
genes directly (32) (Fig. 6 B, Inset). We can reconstruct position
with a precision of around 1% (SI Appendix, section 2), similar
to the original decoding map (32), confirming that positional
information is well encoded in latent space.

Similar to the original analysis (32), our position manifold–
based decoding produces a region with reduced precision in the
20 to 40% egg length region, where a symmetry in the probability
structure appears. This region corresponds to a singularity in the
corner of the position manifold, and, physically, to the anterior
region of the embryo where a small kni peak is missed by the
autoencoder.

The big advantage of the latent space representation is that
it provides a geometrical interpretation for positional informa-
tion that maps gap gene concentrations to position. When we
plot the most probable position given by the 2D Bayesian map
(Fig. 6C ), the color map defined by position x largely recapitulates
the polar angle ϕ in latent space (at least in the 35 to 75%
egg length region of the embryo, which almost entirely covers
the pair-rule gene Eve expression domain [Fig. 6D]). From the
definition of H1 and H2 (Eqs. 1–4), this polar angle ϕ cor-
responds to the concentration ratio of adjacent gap genes: for
the first quadrant (ϕ ∈ [0,π/2]), tanϕ= hb/Kr; for the second

quadrant (ϕ ∈ [π/2,π]), tan(π − ϕ) = hb/gt; for the third quad-
rant (ϕ ∈ [π, 3/2π]), tanϕ= kni/gt; and, for the fourth quadrant
(ϕ ∈ [3/2π, 2π]), tan(−ϕ) = kni/Kr. More explicitly, at each
transition between two quadrants, the concentration of one of
the gap genes approaches zero; for instance, the value ϕ= 3π/2
corresponds to whereH1 � gt � Kr � 0, so that both ratios kni/gt
and kni/Kr are singular, and | tanϕ|=∞.

Repeating this analysis for the various mutant datasets from
above (Fig. 6A), we reconstruct and recover the mutant decoding
maps from Petkova et al. (32). We see strong agreement between
positional information encoded either by H1 and H2 or by the
four gap genes directly. For instance, Fig. 6 E and F shows the
position manifold and inferred position, respectively, for a nos
mutant using the WT map, (map from ref. 32 reproduced in
Fig. 6 F, Inset). More examples are given in SI Appendix, section 2,
again with excellent agreement between the two approaches. Thus
the reconstructed 2D latent space from WT data transparently
contains most of positional information encoded by gap genes,
confirming its relevance as an analytical tool.

Discussion

We have applied a dimensionality reducing autoencoder to the
Drosophila gap gene network and show that many features of
this complex spatiotemporal system can be inferred from an
unbiased 2D latent space projection. Gap gene expression dynam-
ics is concisely described in this latent space by a simple two-
mode model, one for space and one for time, and the latter is
common to all gap genes, suggesting common global transcrip-
tional or translational regulation. The entire WT dynamics can
thus be explained, with few added interactions, with the spatial
modes being defined during early stages by the upstream maternal
genes.
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A B

C D

E F

Fig. 6. Encoding positional information in latent space. (A) Overlay of position manifolds for 23 individual WT embryos at 40 min to 44 min after mitosis 13 in
latent space. The average across these embryos is shown in black. (B) Bayesian probability of being at position x∗ as a function of actual position x, evaluated
using the latent space variables H1 and H2. (Inset) Similar map evaluated with four gap genes reproduced from ref. 32. (C) Most probable position along the AP
axis in latent space (shown on a circular crown to highlight correlation to polar angle). (D) Positions as a function of polar angles for all points of the circular
crown from C. (E and F) Data in latent space and prediction of position for oskar mutant. (Inset) Similar map evaluated with four gap genes reproduced from ref.
32, with permission from Elsevier.

Consistent with this model, maternal gene mutants can be
projected in the same latent space, validating the model’s modular
structure where different parts of the latent space are indeed
controlled by different maternal morphogens (Fig. 5A). These
results are consistent with earlier observations that maternal mu-
tants cannot produce novel cellular fates (44), and the latent space
representation demonstrates that the overall expression dynamics
in these maternal mutants is largely preserved.

It has been shown previously that all four gap genes are needed
to decode cellular identities, and thus position along the AP
axis, with 1% accuracy (32). We have shown here that positional
information can be reconstructed from the 2D latent space map,
also with 1% accuracy. It might thus seem counterintuitive that
two variables can achieve the same accuracy as all four gap genes
together in the full system. However, by design of the autoencoder,
one can reconstruct the four gap gene concentrations from the two
variables H1 and H2, and thus the overall information content

is conserved in the 2D latent space. A big advantage of this
2D representation is that it allows for an intuitive geometric
representation of the positional information as a polar angle ϕ.
The simplicity of the autoencoder further allows connecting this
angle back to the ratio between spatially adjacent gap genes,
revealing the direct connection between gap gene concentrations
and positional information.

This encoding of position by the ratio of adjacent gap gene
concentrations is thus directly biologically interpretable. In par-
ticular, the positions of the downstream Eve stripes are regulated
by the two axes learned by the autoencoder. Stripes 2 and 5 are
both regulated by Kr and gt (45). They are expressed where the
latent variable H2 =Kr −Gt ≈ 0 and where Hb and Kni peak
(32), corresponding to ϕ�±π/2. The stripe pairs 3/7 and 4/6
are regulated by hb and kni (26, 46); in particular, stripe 4 is
expressed in a region where kni and Kr have comparable con-
centrations. We would then expect the enhancer for eve-stripe-4
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to effectively compute the ratio Kr/kni, a prediction that can
be checked experimentally by looking at homozygous mutants
for both genes. Connecting position this way, directly to gap
gene concentration ratios, provides an intuitive rationale for the
modular structure of the gap gene system where maternal genes
regulate those ratios by coordinating the spatial gap genes modes.

Dimensionality reduction leads to a more global view of the
underlying dynamics of the data, revealing common features
invisible to traditional network-based mechanistic descriptions.
The latent space projects time and position onto polar coordinates
radius and angle, respectively, corresponding to different SVD
modes, and many dynamical features of the system become clearly
visible in latent space. Position is encoded by a single spatial mode
for each individual gap gene, defining distinct quadrants in latent
space. A common temporal mode of all gap genes suggests a global
coordination of transcriptional inputs, giving rise to uniform
expansion of the position manifold in latent space. Declarations
of these modes likely happen early, most probably by maternal
inputs, with few modulations by downstream interactions. Latent
space further reveals the underlying connection between gap
gene dynamics and positional information: The dynamics mostly
occurs along lines of constant polar angles ϕ, associated with gap
gene ratios, which further defines position.

The underlying simplicity of the gap gene system uncovered by
our approach calls into question the typically assumed necessity
for multiple interactions that have been described in the literature
(17). As mentioned above, it is generally assumed that gap genes
position themselves via mutual repression, thereby generating sets
of spatially adjacent gap gene expression domains. Capturing such
nonlinearities was a primary motivation for the use of an autoen-
coder (instead of linear techniques) to understand data structure.
While our autoencoder learns in an unsupervised way that the
(Kr,gt) and (kni,hb) pairs are not expressed simultaneously [i.e.,
the “alternating cushion” model (17, 21, 27)], we also demonstrate
that a single-mode (i.e., linear) model reproduces the data without
explicit mutual repression in our formulation. Noteworthy is that
both the location and sharpness of gap gene pattern boundaries
are well explained by this model. Of course, one cannot expect
a model derived from WT data to infer all existing interactions
between gap genes. In particular, some existing interactions might
have secondary roles, for example, for developmental robustness in
response to various perturbations. But, assuming a minimal model
designed to recover the spatiotemporal components of expression
profiles, a strong prediction is that, in gap gene null mutants, one
should not expect to see significant changes for the expression
profiles of the remaining gap genes.

Existing data on gap gene expression in mutant backgrounds
lack the quantitative and dynamic precision to be examined by our
approach. However, in published gap gene mutant backgrounds,
the changes in the expression profiles of the unperturbed gap genes
appear surprisingly mild (17). In particular, in gt null mutants, the
central Kr domain barely changes (47, 48), which is completely
unexpected if domains are carved out by mutual repression.
Similarly, in Kr null mutants, both gt domains expand toward the
center but do not merge (25), meaning that other regulation is
at play to carve out the gt domains (e.g., activation modulation
as in our model, or some redundancies in the system). For the
(kni,hb) pair, as explicitly pointed out in ref. 21, expression of hb
“appears unchanged in kni null mutant embryos,” again inconsis-
tent with an alternating cushion model with repression of hb by
kni. However, in hb null mutants, the central kni domain expands
strongly anteriorily (49), consistent with the alternate cushion
idea. Noteworthy, however, is that hb is the only gap gene that
also has a maternal component, which could play an earlier role.

More direct evidence for repression between nonoverlapping
gap genes comes from gain-of-function experiments (17). For
instance, overexpression of gt shifts Kr (25), but this should be
contrasted with the fact that gt null mutants present no change
of the central Kr domain (47, 48). As stated above, it could be
that some of the interactions (here, repression of Kr by gt) mostly
provide developmental robustness in a specific context (e.g., in
response to overexpression of other genes), and therefore could
not be inferred from WT data or even loss-of-function mutants.
As illustrated by our toy model (SI Appendix, section 6), in the
presence of relatively strong self-activation combined with local
repression, mutual repressions can help stabilize gap gene kinetics
and prevent further amplification (SI Appendix, Figs. S18–S21).

For adjacent gap gene pairs ((Kr,hb), (Kr,kni), (gt,kni), and
(gt,hb)), we expect any repressive interactions to be weak, since
there is no mutual exclusion between those gene pairs, and,
indeed, genetic evidence is sparse at best (17). In our 2D descrip-
tion, such repression would, in principle, be easily detectable as
nonradial components of the flow. Indeed, our analysis of WT
data provides a clear geometric signature for the (gt,hb) repression
system in the posterior, which is consistent with experimental
evidence from mutants (17, 47). However, for no other pair do
we get a clear signature for repression. For example, while, for
the (hb,Kr) pair, mutual repression has been suggested, possibly
giving rise to multistability and canalization (42, 50), the flow
we see in latent space in the corresponding region (quadrant
1 [SI Appendix, Fig. S3 and Fig. 2E] after the very weak speed
removal) is radial, and no nonlinear effects characteristic of fixed
point attractors are seen (compare, e.g., with figure 7 in ref. 42).

We observed a linear speed relation for the gap gene peaks,
implying a very slow anterior to posterior motion in the anterior
part of the embryo and the well-described posterior to anterior
flow for posterior gap genes (33). In the spirit of minimal mod-
eling, it is more parsimonious to assume that a single, global,
underlying mechanism generates the slow drift of the entire system
(e.g., a slow modulation of the dynamics of the upstream maternal
gradients), rather than fine-tuning of multiple weak local mutual
repressive interactions. For instance, cross-interaction between
posterior and anterior maternal gradients might explain such slow
motion; see, for example, a model of motion for kink/antikink
pairs (51). In addition, gap gene motion is amplified (damped)
in bcd (nos) mutants (SI Appendix, section 3), which is consistent
with the remarkable similarity and nonmonotinicity of the tempo-
ral modes for individual gap genes, directly suggesting a collective
temporal coordination of gap genes by upstream signals.

Definite answers on the role and magnitude of interactions
between gap genes might only come from precise quantification
of gap gene mutant dynamics. In particular, if temporal modes
and angular speed in latent space are unchanged compared to
WT, this would rather suggest an important role for upstream
controls, while major changes of temporal dynamics (e.g., anterior
to posterior speed of gap genes) would rather point toward a
role of gap gene cross-repression. It should also be pointed out
that model inference from data is, of course, contingent on the
assumed underlying mathematical model. Additional hypothe-
ses, for example, inclusion of different enhancers activated at
different times (52), or more complicated computations at the
transcriptional level [memory, delay, irreversibility (53)], might
allow for nontrivial dynamics explaining gap gene shifts. This also
justifies starting with a parsimonious, data-driven approach to first
decouple the description of the dynamics before assuming any
underlying model. Here, we find it informative that a very simple
dynamics emerges and can thus be explained without the need of
multiple complex interactions.
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