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Noah H. Rose1,2☯*, Stéphanie Dabo3☯, Silvânia da Veiga Leal4, Massamba Sylla5, Cheikh

T. Diagne6, Oumar Faye6, Ousmane Faye6, Amadou A. Sall6, Carolyn S. McBride1,2,

Louis LambrechtsID
3*

1 Department of Ecology & Evolutionary Biology, Princeton University, Princeton, New Jersey, United States

of America, 2 Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, United States of
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Abstract

The explosive emergence of Zika virus (ZIKV) across the Pacific and Americas since 2007

was associated with hundreds of thousands of human cases and severe outcomes, includ-

ing congenital microcephaly caused by ZIKV infection during pregnancy. Although ZIKV

was first isolated in Uganda, Africa has so far been exempt from large-scale ZIKV epidem-

ics, despite widespread susceptibility among African human populations. A possible expla-

nation for this pattern is natural variation among populations of the primary vector of ZIKV,

the mosquito Aedes aegypti. Globally invasive populations of Ae. aegypti outside of Africa

are considered effective ZIKV vectors because they are human specialists with high intrinsic

ZIKV susceptibility, whereas African populations of Ae. aegypti across the species’ native

range are predominantly generalists with low intrinsic ZIKV susceptibility, making them less

likely to spread viruses in the human population. We test this idea by studying a notable

exception to the patterns observed across most of Africa: Cape Verde experienced a large

ZIKV outbreak in 2015 to 2016. We find that local Ae. aegypti in Cape Verde have substan-

tial human-specialist ancestry, show a robust behavioral preference for human hosts, and

exhibit increased susceptibility to ZIKV infection, consistent with a key role for variation

among mosquito populations in ZIKV epidemiology. These findings suggest that similar

human-specialist populations of Ae. aegypti in the nearby Sahel region of West Africa,

which may be expanding in response to rapid urbanization, could serve as effective vectors

for ZIKV in the future.

Mosquito-borne arboviruses represent a major and growing threat to public health, causing

sickness in over 100 million people every year [1]. Aedes aegypti is the primary vector of the

viruses that cause dengue, chikungunya, Zika, and yellow fever across the global tropics, where

it has aggressively invaded urban habitats over the last several hundred years [2,3]. The overall

ability of mosquitoes to spread arboviruses is well described by the concept of vectorial
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capacity, which mathematically codifies the key entomological parameters driving transmis-

sion [4]. However, burdens of arboviral disease vary considerably across Ae. aegypti’s range,

and the factors that lead to differences in the emergence and spread of arboviruses at both

local and global scales are incompletely understood [5–7].

The explosive emergence of Zika virus (ZIKV) in the last 15 years represents an ideal exam-

ple of the wide variation observed in arbovirus epidemiological dynamics across the global

tropics [8]. ZIKV was first isolated from a sentinel monkey in the Zika forest, Uganda, in 1947

[9]. Retrospective serological surveys detected ZIKV circulation in the human population in

Mali in the late 1990s [10] and in Gabon in 2007 [11], but no major disease outbreak was

reported. The first recorded human epidemic of ZIKV occurred in Yap, Micronesia, in 2007,

where Aedes hensilli is thought to have been the main vector [12]. In the following decade,

ZIKV rapidly spread across the Pacific to the Americas, where it caused major epidemics vec-

tored by Ae. aegypti, with a particularly severe outbreak in Brazil that culminated in 2016 [8].

These epidemics were associated in many cases with severe clinical outcomes, including Guil-

lain–Barré syndrome and microcephaly in infants caused by ZIKV infection during pregnancy

[13]. Across this same period, there has been no corresponding major ZIKV outbreak across

Africa [8], despite presumably numerous virus introductions from the ongoing epidemic in

the Americas. For example, introduction of ZIKV from Brazil resulted in autochthonous trans-

mission and 4 confirmed cases in Angola in 2016 to 2017 [14,15]. A notable exception to this

pattern occurred in Cape Verde, which experienced the first documented Zika epidemic in

Africa during 2015 to 2016 following introduction of a ZIKV strain from the Americas [16].

One possible explanation for the lower incidence of Zika in Africa could be preexisting immu-

nity in places where ZIKV has circulated for a longer time, but serological testing from across

Africa has consistently found widespread susceptibility to ZIKV in people [17,18].

An alternative explanation for differences in ZIKV emergence and spread could come from

variation among mosquito populations. Ae. aegypti originated in Africa, but then spread out of

Africa and across the global tropics within the past 500 years [3,19]. Across its invasive range

in the Americas and Asia, Ae. aegypti is a remarkably effective vector of arboviruses due to its

strong specialization on human hosts and habitats [6,20,21]. This invasive human-specialist

form, also known as the Ae. aegypti aegypti (Aaa) subspecies, breeds in artificial water contain-

ers and strongly prefers human host odor, allowing it to efficiently spread arboviruses from

human to human [6,22,23]. However, throughout most of sub-Saharan Africa, populations of

the ancestral subspecies Aedes aegypti formosus (Aaf) maintain a generalist ecology [24]. Aaf
populations breed in both natural and human habitats and are attracted to a wide variety of

vertebrate hosts [23–26]. Beyond its behavioral and ecological differences, Aaf is also less sus-

ceptible to ZIKV than Aaa [27]. Overall, the generalist ecology and low ZIKV susceptibility of

Aaf may have contributed to hindering ZIKV emergence in Africa until now, despite the high

epidemic potential of local ZIKV strains [28].

Although most populations of Ae. aegypti in Africa remain generalists with ancestral Aaf
features [24], there is one region of Africa where human-specialist populations thrive: in the

West African Sahel, south of the Sahara Desert. Here, there is little natural habitat for general-

ists across the long dry seasons. Instead, human-specialist populations of Ae. aegypti breed in

human water storage containers and show both strong attraction to human hosts and high sus-

ceptibility to ZIKV infection [24,27]. Although these populations have a human-specialist ecol-

ogy and likely descended from the original human-specialist population that spread out of

Africa [24,29], they show a mixed genomic signature that reflects their lack of physical isola-

tion from nearby generalists, with some degree of ancestry shared with human-specialist popu-

lations outside of Africa, as well as a strong contribution from nearby West African generalist

populations [24]. Outside of the West African Sahel, a similar Aaa-like genomic signature can
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be found in Angola and coastal Kenya; however, these populations have otherwise distinct

ancestries and histories [24,30]. In densely populated urban areas across Africa, Ae. aegypti
populations can also have substantial human-specialist ancestry and show increased attraction

to human hosts relative to nearby rural populations [24].

Cape Verde is a group of small islands off the coast of West Africa, close to the contact zone

between human-specialist Ae. aegypti populations in the West African Sahel and the more

widespread African generalist populations. The genomic background and vector status of Ae.
aegypti in Cape Verde has not been comprehensively characterized to date, but the 2015 to

2016 epidemic indicates that local mosquito populations are presumably effective ZIKV vec-

tors [16]. There are no other known ZIKV vectors besides Ae. aegypti in Cape Verde; Ae. cas-
pius is present but is not a known ZIKV vector [31,32]. Ae. aegypti was first observed in Cape

Verde in 1931, and mitochondrial DNA analyses suggest that it may have been recently intro-

duced from West Africa [32,33]. However, genome-wide patterns of ancestry and correspond-

ing patterns of host preference and arbovirus susceptibility remain unknown. Here, we use

genomic analysis, behavioral assays, and experimental infections to test the hypothesis that

Cape Verdean Ae. aegypti mosquitoes are more effective ZIKV vectors than the Aaf popula-

tions that predominate across most of Africa. We find that a population of Ae. aegypti recently

sampled in Praia, Cape Verde (CPV) shows a strong genome-wide signature of human-spe-

cialist ancestry, similar to that seen in nearby human-specialist populations in the West Afri-

can Sahel and not in generalist populations found across most of Africa. We identify a

correspondingly robust preference for human hosts and a higher ZIKV susceptibility than gen-

eralist counterparts.

We sequenced the genomes of 15 individual Ae. aegypti specimens from the CPV popula-

tion to 20× average sequencing depth (detailed experimental procedures are described in S1

Text). These individuals showed the strongest genomic affinity with West African Aaf popula-

tions, as 64% of average genome-wide ancestry across individuals was attributable to this

ancestry component (Fig 1A, dark blue). However, CPV also contained a substantial amount

of Aaa ancestry (23%; Fig 1A, red). This signature suggests that these populations may be

derived from, or share a common history with, nearby human-specialist populations in the

West African Sahel, where similar levels of Aaa ancestry are associated with strong preference

for humans and increased susceptibility to ZIKV [24,27]. For example, human-preferring pop-

ulations of Ae. aegypti from Thiès and Ngoye, Senegal have 22% and 37% Aaa ancestry, respec-

tively, across the same single-nucleotide polymorphism (SNP) panel. Interestingly, unlike

nearby West African populations, CPV contained substantial East/Central African ancestry

(14%; Fig 1A, light blue). Similar patterns of ancestry have been observed in Libreville, Gabon

(Fig 1A), and Luanda, Angola [30].

We used live host 2-port olfactometer trials to assay host preference in CPV relative to pre-

viously characterized human-specialist (Aaa) and generalist (Aaf) populations. A CPV colony

was initiated from field-collected eggs and used in all subsequent laboratory assays within 2

generations of colonization. In the behavioral assays, we placed female mosquitoes from differ-

ent laboratory colonies into a 50 × 50 × 80 cm chamber, where they used host odor to choose

between 2 exit holes, one leading to a human host, and one leading to a guinea pig. We used

guinea pigs because of their good temperament and history of use in similar experiments that

have reliably separated Aaa and Aaf [22,24,25]. However, previous work has shown that olfac-

tometer trials using alternative hosts (e.g., chicken, quail, laboratory rat, African grass rat) can

recover the same behavioral variation [22,24,25]. Similarly, although these trials were carried

out with a 31-year-old European-American male (the same human host used for most trials in

our earlier study; [24]), previous work indicates that variation in host preference across the

Aaa–Aaf continuum are consistent in trials with human hosts of different ethnicities, sexes,
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Fig 1. Enhanced ZIKV vectorial capacity of Ae. aegypti in Cape Verde. (A) In Cape Verde, Ae. aegypti has

substantial human-specialist ancestry (23% on average, red). Pie charts show population averages for ADMIXTURE

(K = 3) fractions of ancestry from human specialists (red), West African generalists (dark blue), and East/Central

African generalists (light blue), in populations across Ae. aegypti’s native range in sub-Saharan Africa. Ancestry

estimates for Cape Verde (CPV) are newly generated, whereas non-CPV estimates are reanalyzed from [24]. The

human-specialist component dominates Ae. aegypti populations outside of Africa (e.g., Santarem, Brazil). Inset bar

chart shows individual fractions of ancestry from the same 3 ancestry components in CPV, calculated across the same

set of SNPs. CPV also shows ancestry from the East/Central African component (light blue), unlike nearby West

African populations. The base layer of the map is from https://urldefense.com/v3/__https://cran.r-project.org/web/

packages/maps/index.html__;!!JFdNOqOXpB6UZW0!sDKfbulNRVtMqxn5q2Db55SN93DxP6cPYdDUDB-Xy-

GHDAIhO8GAhHf5FEJstypYbq4eF3PhXs9wPufm5y4eFCa5$. (B) In Cape Verde, Ae. aegypti shows a robust

preference for human hosts. Preference indices are calculated from beta-binomial analysis of repeated 2-port live host

olfactometer trials (4 trials of 87 to 102 females for each colony). CPV was tested alongside a generalist field-derived

Ae. aegypti colony from Zika, Uganda (ZIK), a human-specialist colony from Ngoye, Senegal (NGO), and a human-

specialist colony from Orlando, Florida (ORL). Error bars show 95% confidence intervals. (C) In Cape Verde, Ae.
aegypti displays higher ZIKV susceptibility than a generalist colony, similar to human-specialist colonies. Dose–

response curves represent the proportion of ZIKV-infected mosquitoes 7 days post-oral challenge as a function of the

blood meal titers expressed in log10-transformed focus-forming units (FFU)/ml. Susceptibility was assessed for 2 ZIKV

strains representing the African lineage (Senegal 2011, right) and the Asian lineage (Cambodia 2010, left). CPV was

tested alongside a reference ZIKV-resistant colony from Gabon, a reference ZIKV-susceptible colony from

Guadeloupe, and a colony from Ngoye, Senegal (NGO) with intermediate ZIKV susceptibility. Lines are logistic

regression fits for each mosquito colony. The raw experimental data plotted in the figure are provided in S1 Data.
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and ages [24,25]. Across olfactometer trials, we found strong evidence for variation among test

colonies in preference for humans (GLMM likelihood-ratio test: P = 0.001). CPV showed a

robust preference for human odor (Fig 1B) and was significantly more likely to seek humans

than the reference Aaf strain from Uganda (ZIK; Fig 1B, GLMM: P = 0.0002), which preferred

the guinea pig odor (Fig 1B). CPV showed similar levels of preference to Senegalese human

specialists (NGO; Fig 1B) but was not as strongly attracted to humans as the human-specialist

laboratory strain ORL, originally derived from Florida (Fig 1B, GLMM: P = 0.0005).

We performed experimental infections to assess the ZIKV susceptibility of the CPV colony

using previously characterized colonies from Gabon and Guadeloupe as references [27]. The

Aaf colony from Gabon is poorly susceptible, whereas the Aaa colony from Guadeloupe and

the NGO colony are highly susceptible. The CPV colony showed higher susceptibility to ZIKV

strains from both the Asian lineage (Cambodia 2010 strain) and the African lineage (Senegal

2011 strain) relative to the Aaf colony from Gabon (Fig 1C). Using the less infectious Cambo-

dia 2010 ZIKV strain, the CPV colony was significantly more susceptible than the colony from

Gabon (CPV: 50% oral infectious dose [OID50] = 6.42 log10 focus-forming units [FFU]/ml,

95% confidence interval [CI] = 5.97 to 6.71; Gabon: OID50 = 7.25 log10 FFU/ml, 95% CI = 6.88

to 7.63), whereas it was similar in susceptibility to the NGO colony and the Aaa colony from

Guadeloupe (NGO: OID50 = 6.41 log10 FFU/ml, 95% CI = 5.80 to 6.74; Guadeloupe: OID50 =

6.18 log10 FFU/ml, 95% CI = undetermined to 6.24) (Fig 1C). Using the more infectious Sene-

gal 2011 ZIKV strain, the CPV colony was also significantly more susceptible than the colony

from Gabon (CPV: OID50 = 4.79 log10 FFU/ml, 95% CI = 4.29 to 5.09; Gabon: OID50 = 6.28

log10 FFU/ml, 95% CI = 5.90 to 6.86) and similar in susceptibility to the NGO and Guadeloupe

colonies (NGO: OID50 = 4.96 log10 FFU/ml, 95% CI = 4.63 to 5.24; Guadeloupe: OID50 = 5.09

log10 FFU/ml, 95% CI = 4.79 to 5.39) (Fig 1C). In all cases, human-specialist ancestry was asso-

ciated with increased susceptibility to ZIKV, as expected. Our earlier study showed that higher

ZIKV susceptibility (measured by the infection rate) was associated with enhanced potential to

transmit ZIKV from a viremic host [27].

Overall, Ae. aegypti in Cape Verde appears to be an effective vector of ZIKV, showing sub-

stantial human-specialist ancestry, and, correspondingly, both robust preference for humans

and increased intrinsic susceptibility to ZIKV relative to generalist Aaf populations that pre-

dominate in Africa. These observations may help explain why Cape Verde experienced a

major ZIKV epidemic in 2015 to 2016, while other African nations did not experience similar

outbreaks. Other factors such as human population density and mosquito abundance could

also play an important role in driving differences in the spread of ZIKV; however, Praia is a rel-

atively small city of about 150,000 inhabitants where the recorded mosquito abundances are

not unusually high [32]. An important role for mosquito population variation is also consistent

with ZIKV circulation in Angola in 2016 to 2017, where the Ae. aegypti population has a simi-

lar genomic signature [30]. Only 4 ZIKV cases were confirmed by direct virus detection, but

they provided evidence of autochthonous transmission in Angola following ZIKV introduc-

tion from Brazil [14,15]. A key future research question is whether the elevated human-special-

ist ancestry of Ae. aegypti in Angola is associated with differences in behavior and ZIKV

susceptibility, as observed in Cape Verde.

Ae. aegypti in Cape Verde had very similar levels of preference for humans and ZIKV sus-

ceptibility to human-specialist Ae. aegypti from Ngoye, Senegal. This raises the question of

why corresponding ZIKV outbreaks were not observed in Senegal in 2015 to 2016, or perhaps

in locations with human-specialist Ae. aegypti in coastal Kenya. It is possible that such out-

breaks simply went unnoticed by public health surveillance systems due to misdiagnosis and/

or underreporting. A large variety of factors affect arbovirus transmission, including variation

in human immunity, climate factors, levels of urbanization, and the success of control efforts
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[34]. One important difference could be patterns of trade and travel related to historical rela-

tionships between nations. The 3 Portuguese-speaking nations of Brazil, Cape Verde, and

Angola were closely linked during the transatlantic slave trade, which is thought to have driven

the introduction of human-specialist populations of Ae. aegypti to the Americas [3]. In the

present day, these nations are still closely linked through trade and migration [35], and ZIKV

was likely introduced to Cape Verde from northeastern Brazil [16]. The Aaa-like ancestry that

we observed in Cape Verdean Ae. aegypti showed evidence of contributions from both West

Africa and the species’ invasive range (S1 Fig); the latter signal could reflect gene flow from

Brazil, although more comprehensive sampling of the Americas and the west coast of Africa

would be necessarily to pinpoint the precise sources of the observed ancestry.

Further linking Cape Verde to arbovirus systems outside of West Africa, we observed sub-

stantial ancestry in Cape Verdean Ae. aegypti from the East/Central Aaf ancestry component

that is nearly absent from most of West Africa, but common further south, including in

Angola [30]. This finding suggests a more complex history for Ae. aegypti in Cape Verde than

a simple introduction from nearby Senegalese populations. Instead, the Ae. aegypti population

in Cape Verde may have experienced incoming gene flow from populations further south, pos-

sibly through trade with Angola. Improved genomic sampling from Angola and other parts of

Southern and Central Africa could clarify the precise origins of this signal. Overall, our results

suggest that the genetic makeup of vector populations may be shaped by historical relation-

ships and patterns of human activity in addition to ecological factors and spatial proximity.

Further highlighting a role for human activities, ecological projections based on United

Nations estimates of human population growth suggest that many urban populations of Ae.
aegypti may shift towards a human-specialist ecology in the coming decades [24,36]. Presently,

levels of Aaa ancestry in these cities are not as high as those observed in Cape Verde (e.g., Oua-

gadougou, Burkina Faso: 9%) [24]. However, as this proportion increases, such cities may be at

increased risk of ZIKV outbreaks.

The mechanisms underlying variation in ZIKV susceptibility in Ae. aegypti are still

unknown. Given the generally mild effects of arboviruses on Ae. aegypti’s fitness [37], these

differences may not be adaptive on the part of the mosquito host—instead, they may reflect

indirect consequences of other physiological or immune adaptations through pleiotropy or

genetic linkage, genetic drift between mosquito lineages, and/or viral adaptation. A previous

genetic mapping study detected a signal of association between the second Ae. aegypti chromo-

some and differences in ZIKV susceptibility, but the corresponding genomic region is large,

making it difficult to identify causal genes [27]. Future efforts to identify the specific genes

driving these differences could provide key tools for monitoring and managing the risk of

ZIKV outbreaks in the future.

Taken together, our results are consistent with a prominent role for variation among vector

populations in shaping the emergence and spread of arboviruses, especially in Ae. aegypti’s
native range of Africa, where vector populations vary widely in ecology, behavior, and genomics

[38]. This population-level variation is not static but is directly shaped by human-driven pro-

cesses like rapid urbanization [24]. For this reason, comprehensive characterization of popula-

tion differences in vector status, and proactive surveillance of changing mosquito populations

will play an important role in managing and reducing burdens of mosquito-borne disease.
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ancestries. We previously found that when specifying 6 ancestry components (K = 6),

ADMIXTURE identified 2 distinct human-specialist ancestry components—a putatively

ancestral African human-specialist component (marked in orange) and a globally invasive

component corresponding to human-specialist lineages that left Africa and spread across the

global tropics (marked in red) [24]. Human-specialist ancestry in Cape Verde includes sub-

stantial contributions from each of these components—this may reflect gene flow from both

the invasive range (likely Brazil) and the west coast of Africa (likely Senegal and/or Angola).

However, more extensive sampling from both the Americas and native range would be neces-

sary to conclusively identify precise source populations. The base layer of the map is from
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5. Black WC, Bennett KE, Gorrochótegui-Escalante N, Barillas-Mury CV, Fernández-Salas I, de Lourdes

MM, et al. Flavivirus susceptibility in Aedes aegypti. Arch Med Res. 2002; 33(4):379–388. https://doi.

org/10.1016/s0188-4409(02)00373-9 PMID: 12234528

6. Brady OJ, Hay SI. The global expansion of dengue: how Aedes aegypti mosquitoes enabled the first

pandemic arbovirus. Annu Rev Entomol. 2020; 65:191–208. https://doi.org/10.1146/annurev-ento-

011019-024918 PMID: 31594415

7. Weaver SC, Charlier C, Vasilakis N, Lecuit M. Zika, Chikungunya, and Other Emerging Vector-Borne

Viral Diseases. Annu Rev Med. 2018; 69:395–408. https://doi.org/10.1146/annurev-med-050715-

105122 PMID: 28846489

8. Musso D, Ko AI, Baud D. Zika Virus Infection—After the Pandemic. N Engl J Med. 2019; 381(15):1444–

1457. https://doi.org/10.1056/NEJMra1808246 PMID: 31597021

9. Dick GW, Kitchen SF, Haddow AJ. Zika virus (I). Isolations and serological specificity. Trans R Soc

Trop Med Hyg. 1952; 46(5):509–520. https://doi.org/10.1016/0035-9203(52)90042-4 PMID: 12995440.
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