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Neuro-In � ammatory Response
and Brain-Peripheral Crosstalk
in Sepsis and Stroke
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Chagas (INI), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil,4 D’Or Institute for Research and Education (IDOR),
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Despite recent therapeutic advances, ischemic stroke is still a leading cause of death a
disability. There is renewed attention on peripheral in� ammatory signaling as a way o
modulating the post-ischemic neuro-in� ammatory process. The immune-brain crosstalk
has long been the focus for understanding the mechanisms of sickness behavior, which
an adaptive autonomic, neuroendocrine, and behavioral response to a periphe
in� ammation. It is mediated by humoral and neural pathways that mainly involve t
circumventricular organs and vagal nerve, respectively. In this review we address
question of how sepsis and stroke can dysregulate this adaptive response, notably
impairing the central integration of peripheral signaling, but also by efferent control of
immune response. We highlight the potential role of gut–brain and brain–spleen signaling
in stroke.

Keywords: immune response, ischemic stroke, neuromodulation, sepsis, sickness behavior
nces at
acute

per
d
currently
by
en
the

,
crine,
gnition,

fatigue,
INTRODUCTION

Ischemic stroke is a leading cause of death and disability worldwide, with major conseque
personal, social, and economic levels (1). There have been therapeutic advances in reducing
ischemic injury, notably through recanalization strategies using intravenous thrombolysis (2) and
mechanical thrombectomy (3). However, there is an urgent need for treatments that would ham
the ischemia-mediated neurotoxic processes and foster repair and plasticity (4). This strategy shoul
be based on a comprehensive understanding of ischemic stroke pathophysiology. There is
renewed focus on the ischemia-induced neuro-in� ammatory process, notably for its modulation
in� ammatory signaling proceeding from the periphery (5). This immune-brain crosstalk has be
the subject of study in the psychoneuroimmunology� eld for some time, especially as it relates to
mechanisms of sickness behavior (6).

Sickness behavior is a physiological integrative reaction to a systemic in� ammatory response
particularly induced by infection, which involves the interconnected autonomic, neuroendo
and limbic systems. It is stereotypically characterized by social withdrawal, decreased co
psychomotor slowing, attention disorders, altered alertness (insomnia, hypersomnia,
n.org April 2022 | Volume 13 | Article 8346491
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somnolence), mood disorders (irritability, anxiety, depress
and eating behavior changes (anorexia, weight loss, thirst) (6, 7).
It is considered an adaptive response for protecting
individual from an aggression by modulatingin � ne both the
local and the systemic in� ammatory response. The brain cent
involved in sickness behavior can be activated by two routes
the humoral and neural pathways, and the behavior is theref
result of a complex control loop of the in� ammatory response.
can be altered at various levels and by structural or functi
mechanisms. For instance, alterations in the perception o
integration of peripheral in� ammatory signals at the brain lev
can induce the dysregulation of the neuro-immune feedb
Besides controlling an acute illness, it is also well-establishe
sickness behavior can be complicated by long-term psycholo
disorders, notably depression.
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THE PHYSIOLOGY OF THE
NEURO-IMMUNE CROSSTALK

The Neural Pathway
In� ammatory mediators released at the site of in� ammation can
stimulate peripheral nerves as they express speci� c receptors
both to various cytokines and to Damage-Associated Mole
Patterns (DAMPs) and Pathogen-Associated Molecular Pat
[PAMPs (8)]. Indeed, cytokine receptors (TNF, IL-1ß, IL-6, et
or Toll-Like receptors (TLRs) have been identi� ed on the
membrane of sensory neurons (9–12). DAMPs and toxins
such asa-hemolysin released byStaphylococcus aureus, can
bind to the peptide formyl receptor 1 or to the ion channels
the peripheral neurons (13), which in turn stimulate the releas
of neuropeptides. Various channels involved in nociception,
as the voltage-gated sodium channels Nav1.7, Nav1.8 or N
or transient receptor potential channels, are also expresse
the surface of peripheral neurons. Their activation by nocice
stimuli generated at the site of infection results in the� ring of an
action potential and in the lowering of the nociceptor thresh
In addition to the sensing role of sensory neurons, affe
neurons modulate the local immune response through
release of neuropeptides (substance P, calcitonin gene-r
peptide, vasoactive intestinal peptide, etc.), which interact
endothelium and immune cells located in the vicinity of the a
terminals (8, 14, 15). The vagal nerve has been the most stud
of the peripheral nerves involved in immune-brain crosstalk.
vagal afferents, whose cell bodies are in the nodose ganglia
visceral and thoracic afferents that project to the nucleus o
tractus solitarius (NTS) and the area postrema (AP), which
both located in the medulla and constitute the so-called v
complex (16). The vagal nerve also contains motor efferen
initiated by cholinergic neurons of the dorsal vagal mo
nucleus. The sensory and motor efferences account for 80
20% of the vagal� bers, respectively. It has been shown that
administration of lipopolysaccharide (LPS), cytokines (nam
IL-1b and TNF), or pathogens such asCampylobacter jejun,
stimulates the vagal afferent signaling in rodents, as evidenc
the increase in the expression of the neuronal activation ma
Frontiers in Immunology | www.frontiersin.org 2
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cFos in the NTS (17–21). In addition, a subdiaphragmat
vagotomy (section of the abdominal branch of the vagal ne
blocks the occurrence of sickness behavior normally induce
the intraperitoneal administration of LPS (22). Finally,
electrophysiological recordings have shown that intraperito
administration of TNF or IL-1b induces an increase in vag
nerve activity in mice, which is not observed in TNF and ILb
receptor knock-out mice (18).

Humoral Pathway
The humoral pathway involves various structures
cell interactions.

Circumventricular Organs
Instead of a blood–brain barrier, the circumventricular organ
(CVO) have fenestrated capillaries that allow direct passa
molecules between the general circulation and the brain (6, 7).
CVOs are located around the third and fourth ventricles
distinction is made between secretory CVOs (epiphy
pituitary, median eminence, etc.) and sensory CVOs, nam
the AP, the subfornical organ, and the vascular organ of
terminal lamina. The latter are access points to the brain
circulating cytokines and chemokines, and also DAMPs
PAMPs, which activate receptors on the surface of endoth
cells and resident microglia and thus induce activation casc
that lead to the local production of IL-1ß, interferon-g (INF-g),
TNF, and prostaglandin E2 (PGE2). These in� ammatory
mediators can then spread by simple diffusion in the b
parenchyma and bind to neuronal receptors. They also a
the migration of circulating immune cells into the brain. Inde
studies in mouse models of peripheral in� ammation or
autoimmune encephalitis have demonstrated the presen
non-microglial leukocytes in some CVOs (7, 23, 24). In addition
to CVOs, the choroid plexus and the dura also allow
traf� cking of immune cells between the peripheral circula
and the cerebrospinal� uid (CSF), or between the CSF and
lymphatic vessels draining the brain, respectively (12, 25–27).

Cerebral Endothelial Cells
Cerebral endothelial cells (CECs) also express cytokine rece
notably for TNFa and IL-1b. The activation of these recepto
promotes the induction of the NF-kB signaling pathway, whic
leads to the production and release of secondary messe
from these endothelial cells. These secondary messengers i
nitric oxide (NO) and prostaglandins (PGs) (7, 28). NO acts
mainly as a vasodilator and immunomodulator (29). At the same
time, the PG-E2 subtype can diffuse due to its lipid nature, a
thus modulates some central brain effects of the syst
in� ammatory response. Indeed, PG receptors are locate
brain centers involved in sickness behavior (e.g., hypothal
and amygdala) (30). The activated CECs also relea
chemokines, which diffuse and interact with the surround
neuronal and glial cells (31). Similarly, the IL-6 receptor (IL-6R
synthesized on the surface of leukocytes, can detach from
plasma membrane when the leukocyte is activated. IL-6s
either to the membrane or to the soluble form of IL-6R. In tu
the IL6–IL-6R complex can interact with endothelial cells, wh
April 2022 | Volume 13 | Article 834649
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will express, for instance, adhesion molecules such as IC
(32). Finally, the CEC-circulating leukocyte interaction
another pathway. By using intravital microscopy, it has b
shown that CEC–monocyte interactions are increased 5 d
after the induction of liver in� ammation. This interaction i
mediated by the adhesion protein P-selectin and has been s
to be necessary for local microglial activation (33). Similarly,
CEC–leukocyte interactions modulate neuronal excitability
shown in an experimental model of epilepsy (34).

These humoral pathways relay peripheral in� ammation to the
brain by involving resident glial cells (microglia and astrocy
and peripheral cells in� ltrated into the parenchyma. Th
therefore results in thein-situ release of cytokines an
chemokines, but also of second messengers, such as N
PGs. These mediators maintain and relay the in� ammatory
signaling to the neurons. It is important to note that the neu
and humoral pathways described above have very diffe
temporal patterns of activation, with afferent neural signa
being much faster than the humoral pathway.

The Central Integration of Neural and
Humoral Signaling
The site of action of cytokines and chemokines depends prim
on the areas of expression of their receptors. IL-1b, IFN-g, and
Frontiers in Immunology | www.frontiersin.org 3
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TNF are the cytokines mainly involved in sickness beha
These receptors are expressed in most resident cell types
brain and in various brain regions, namely, the CVO, thalam
striatum, hippocampus, hypothalamus, and amygdala
studying the expression of early induced-neuronal genes,
as the cFos gene, it is possible to obtain a map of the brain
that are activated during acute in� ammation (Figure 1). The
vagal complex, which includes the NTS and AP, is activate
both neural and humoral pathways and is the principal en
point for peripheral in� ammatory signaling. The vagal comp
then transmits the signal to other brainstem nuclei, namely: 1
rostral ventromedial medullary area (RVLM) that regulates
heart rate, blood pressure and barore� ex; 2) the periaqueduct
gray matter (PAG), involved in nociception and defense beha
3) the parabrachial nucleus (PBN), that modulates appetitive
aversive responses; and 4) the locus coeruleus (LC), the
center of the sympathetic response to stress (6). In turn, the PBN
and LC spread extensively into: 1) the regions of the thalamus
regulate pain perception [paraventricular nucleus (PVT)]; 2)
hypothalamus, which controls the release of stress horm
[paraventricular nucleus (PVN), supraoptic nucleus (SO)], f
intake [arcuate nucleus (Arc)], thermoregulation and sleep;
3) the limbic system, responsible for the sleep cycle (pre-
median nucleus) and control of cognitive functions a
FIGURE 1 | A schematic view of the neuro-immune crosstalk during in� ammation. Shown are the humoral and neural pathways conveying in� ammatory signaling
to the brain, the main brain centers involved in the integration of the in� ammatory signaling and controlling autonomic, neuroendocrine and behavioural responses
(constituting sickness behavior), and� nally, the interaction between peripheral immune cells (notably of the spleen) and stress hormones and autonomic efferences
(35, 36). NTS, nucleus of tractus solitarius; AP, area postrema; DMN, dorsal nucleus of vagus nerve; BNST, bed nucleus of the stria terminalis.
April 2022 | Volume 13 | Article 834649
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Bourhy et al. Neuro-Immune Crosstalk in Stroke
behavioral response [hippocampus, amygdala and nucleus
bed of the terminal stria (BNST)].

The Autonomic, Neuroendocrine, and
Behavioral Responses
The neural and/or humoral-activated brain centers are t
interconnected and orchestrate regulation of the imm
response through the so-called‘in� ammatory re� ex’ (Figure 2).

Neural Modulation
Studies on the in� ammatory re� ex have shown a function
interaction between the parasympathetic (vagal nerve)
sympathetic nervous systems that re� ne regulation of the innat
immune response (8, 38). In this re� ex, the in� ammatory signa
delivered by sensory neurons of the vagal nerve is integrate
the brain. It then stimulates a descending anti-in� ammatory
response mediated by the cholinergic efferences originating
the dorsal motor nucleus of the vagal nerve (39). Interestingly,
these vagal� bers innervate the celiac and superior mesen
ganglia, which contain noradrenergic neurons of the splenic n
(40). Therefore, the splenic nerve participates in this in� ammatory
re� ex (41). Indeed, its noradrenergic axons stimulate the splen
cells, which express bothb-adrenergic receptors and the choli
acetyltransferase enzyme, which is responsible for acetylc
(Ach) synthesis (35, 42). Thus, the vagal stimulation of the splen
nerve results in noradrenergic-mediated Ach synthesis and re
by spleen T cells. The stimulation of cholinergic neurons con
production of TNF-a in the spleenvia the splenic nerve (43).
In parallel, the neurons of the sympathetic system, located i
spinal cord, innervate many visceral organs (40) and also contro
the secretion of adrenaline from the adrenal glands, which
directly as a hormone.

Finally, the immune cells express Ach and/or adrene
receptors, which modulate pro-in� ammatory (i.e., NF-kB) o
anti-in� ammatory (i.e., JAK) intracellular signaling. F
instance, macrophages express thea7 nicotinic acetylcholine
e
n the
gdala
ala is
d in
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receptor (a7nAChR). By binding tob2-adrenergic, the
noradrenaline and adrenaline inhibit the NF-kB pathway, and
thereby the release of pro-in� ammatory cytokines by innate an
adaptive immune cells (8). On the other hand, innate immun
cells expressa-adrenergic receptors that are rather pr
in� ammatory (44). Thus, the� nal immune response depends
various time-dependent factors, namely, cell type, their rece
and environment, and the phase of the in� ammatory process.

Neuroendocrine Response
The neuroendocrine response to stress involves
hypothalamus–pituitary–adrenal (HPA) axis. Pro-in� ammatory
cytokines stimulate the release of glucocorticoids by regul
the release of corticotropin hormone by the PVN,
adrenocorticotropic hormone (ACTH) by the ante-hypophy
and � nally of cortisol by the adrenal glands. In tur
glucocorticoids exert a negative control over the imm
system by inhibiting the synthesis and release of p
in� ammatory cytokines. In addition, glucocorticoids regu
their own production by negative feedback to higher level
the HPA (45). A subpopulation of catecholaminergic neurons
the NTS and RVLM projects to the PVN, promoting
corticosteroid response to peripheral in� ammation directly
mediated by the vagal nerve (46). Vasopressin is also a stre
hormone that controls not only blood pressure and the barore� ex
but also the HPA axis and the emotional response (47).

Behavioral Response
It is striking that some of the late features of infection-indu
sickness behavior are comparable to the clinical symptom
depression. They include altered mood and abilities, red
sensitivity to reward seeking, and reduced food consump
(37). In humans, the association between depression, anxiet
in� ammation has been con� rmed by several meta-analyses (37,
48). In the context of systemic in� ammation, several brain region
are recruited, including those orchestrating defensive behavi
ensure survival, notably fear (Figure 1). Fear is a rapid adaptiv
response, which depends on a distributed circuit centered o
amygdala and converging on the central nucleus of the amy
(CeA). Studies in humans and rodents show that the amygd
a key relay for fear and anxiety circuits and is directly involve
the behavioral changes observed during illness behavior (49).
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A DYSREGULATED RESPONSE TO
STRESS: THE EXAMPLE OF SEPSIS

As described previously, sickness behavior is a physiolo
reaction to an acute systemic in� ammatory response tha
involves interconnected peripheral and central circuits tha
sense, mediate, and integrate an in� ammatory signal, and 2
elaborate an autonomic, neuroendocrine, and behav
response, leading to immune response modulation
allostasis maintenance. In various conditions, this comple
brain-immune crosstalk can dysfunction at any of its rela
resulting in an altered response to stress, either by exce
default. Sepsis represents the model of dysregulated respo
FIGURE 2 | A schematic view of centers, according to their functions,
activated during a systemic in� ammatory response (37). Amyg, amygdala; AP,
area postrema; Arc, arcuate nucleus; BNST, bed nucleus of the stria
terminalis; HIP, hippocampus; LC, locus coeruleus; MNPO, median preoptic
nucleus; NTS, nucleus of tractus solitarius; PBN, parabrachial nucleus; PAG,
periacqueductal gray; PVN, paraventricular nuclei; PVT, paraventricular nuclei
of the thalamus; RVLM, rostral ventrolateral medulla; SO, supraoptic nucleus.
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stress (50). Thus, septic patients can develop relative adr
insuf� ciency. This is associated with increased mortality, w
can, however, be reduced by a substitutive opotherapy (51, 52).
Impaired osmoregulation of vasopressin also occurs in the a
phase of severe sepsis, resulting from a depolarization o
osmoreceptors (53–55). Interestingly, osmoreceptors a
located within CVOs and their dysfunction might be induc
by in� ammatory cytokines. The defective osmoregulation
persist after recovery fromsepsis and accounts for th
impairment of thirst (53). Furthermore, severe sepsis can
associated with brainstem dysfunction which is clinic
characterized by a heterogeneous abolition of brains
re� exes (56), impaired heart rate variability with a decrease
the sympathovagal balance (57), barore� ex and respirate rat
variability, and also increased latencies of the somatosenso
middle-brain auditory evoked potentials (58) and absence o
electroencephalographic reactivity (59). This brainstem
dysfunction is associated with increased mortality, mult
organ failure, and disorders of consciousness, nam
coma and delirium (56). These phenomena are related
dysfunction of the reticular ascending activating system
the autonomic centers, which are both liable to neu
in� ammatory insult as evidenced by neuropathological stu
(60). Septic patients often complain of anxiety, which
considered a warning signal. In a prospective, multice
cohort study, we found that anxiety was more intense
patients who would subsequently develop new organ failu
is conceivable that anxiety is either a marker of critical illn
severity or, by notably increasing the allostatic load seconda
an overstimulation of the sympathetic system, an aggrav
factor (61). Interestingly, we found that impaired perception
danger was also predictive of organ failure, suggesting t
dysfunction of the limbic system may contribute to unfavora
outcome (personal data). We conducted an experimental s
to assess whether sepsis is associated with amygdala dysfu
We found that there is an acute activation of the cen
amygdala-BNST circuits, whose speci� c inhibition prevents
anxiety-related behaviors and fear memory 15 days after s
in mice (62).

The dysfunction of the autonomic or limbic centers is likely
result from a dysregulated neuro-in� ammatory process
involving a neurotoxic activation of microglial cells. Microg
activation in response to a stimulus encompasses morpholo
immunological, and metabolic changes. Activated micro
cells can, very schematically, acquire either a pro-in� ammatory
or an anti-in� ammatory immunophenotype which are usua
considered to be neurotoxic or neuroprotective, respecti
Activated microglia can release various neurotoxic mediato—
namely, cytokines, NO, gliotransmitters and metabolites (su
reactive oxygen species)—that increase neuronal excitability, fu
neuronal hyper-activation, and may induce neuronal apopt
(63, 64). The modulation of microglial activity might therefore
a relevant approach for restoring an adaptive immune-b
crosstalk in sepsis. There have been promising results
numerous experimental studies which have tested therap
interventions, namely, minocycline (65), hydrocortisone (66),
Frontiers in Immunology | www.frontiersin.org 5
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cholinergic inhibition (67, 68), and vagal nerve stimulation (69).
However, no randomized clinical trial has so far been succe
Administration of rivastigmine (70) has been shown to b
deleterious and statins inef� cient for treating or preventing
brain dysfunction in critically ill patients (71, 72). Given that
microglial activation is a dynamic phenomenon, a ma
limitation is the absence of a biomarker for the microg
phenotype. Although shown to be useful in patients w
Alzheimer’s disease, positron emission tomography
microglial activation cannot be performed easily in se
patients (73). Based on experimental evidence of its effec
microglial cell-mediated neurotoxicity, we will soon carry ou
multicenter, randomized clinical trial for assessing wheth
levetiracetam, an anti-seizure drug, prevents brain dysfun
in septic patients (73). The autonomic modulation of th
immune response has also been investigated (74). It mainly
consists of stimulation of the cholinergic anti-in� ammatory
re� ex, which can be achieved by electrical stimulation of
vagal nerve, administration of agonists of nicotinic acetylcho
or b2-adrenergic receptors, but also by pharmacologic inhib
of cholinesterase (67) and electroacupuncture (75).
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THE BRAIN-IMMUNE CROSSTALK IN
ISCHEMIC STROKE

There are several arguments for hypothesizing that isch
stroke can impair the brain-immune crosstalk. First, the la
can be activated by the systemic in� ammatory respons
transitorily triggered by an ischemic stroke (76) but also by an
infection, which is a frequent stroke complication favored
secondary peripheral immunodepression (77). Second, ischem
stroke can damage brain circuits involved in the immune-b
crosstalk, resulting in a maladaptive response to stress, with
and long-term consequences. Finally, the activation of
immune system during sepsis can induce ischemic stroke.

Due to blood–brain barrier breakdown, the brain ischem
tissue releases cytokines, chemokines, brain-derived ant
and DAMPS into the circulation, which stimulates t
peripheral immune system. The brain-derived antigens, ma
enolase, S100b and GFAP, are drained into the lymphatic sy
and the spleen through the CSF and serum (78), where they can
activate macrophages and B and T cells. It has b
experimentally shown that there is a dramatic production
pro-in� ammatory cytokines by activated T cells of the lym
nodes after ischemic stroke (79, 80). In stroke patients
circulating antibodies against the N-methyl-D-aspartic a
receptor or myelin basic protein are detectable, and b
antigens are also detected in tonsils and lymph nodes81).
With the use of a label ing technique, it has be
experimentally shown that spleen immune cells are foun
the brain 24 to 96 h after stroke (82). These� ndings indicate tha
stroke induces autoreactive T cells, which have been repor
worsen brain injury in animals but are also considered to fa
post-stroke autoimmunity. If not reported after stroke, au
immune encephalitis can occur after a herpes simp
April 2022 | Volume 13 | Article 834649
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Bourhy et al. Neuro-Immune Crosstalk in Stroke
encephalitis (83). The main consequence of this system
in� ammatory response is the in� ltration (84)—facilitated by
the increased expression of adhesion molecules—of the brain
by activated cells of innate (i.e., macrophages, neutrop
dendritic and natural killer cells) and adaptive (i.e., T ce
immunity, inducing blood–brain barrier dysfunctionvia
protease secretion, brain edema, the neuro-in� ammatory
process, and� nally, brain damage. If innate immunity cells a
usually considered deleterious, it seems however that T ce
more equivocal. For instance,gdT cells, which reside primaril
in the gut, can reach the ischemic brainvia the meninges and
contribute to microglial neurotoxic activation and neutrop
recruitment by secreting IL-17 (85). On the other hand, T cell
have also been shown to promote neurogenesis, repair
remodelling (4, 86–88). Cellular DAMPs mainly include
adenosine triphosphate (ATP), S100b, High-Mobility Gro
Box-1 and peroxiredoxins; extracellular DAMPS inclu
� bronectin, tenascin C, heparan sulphate, and hyaluronan78).
They are major players in local neurotoxic phenomena but
contribute to the activation of the peripheral immune syst
Within the � rst hours following stroke there is an increase
circulating pro-in� ammatory cytokines (i.e., IL-6 and TNF-a),
which are mostly produced from peripheral immune cells89,
90). Thrombolysis can be complicated by a syste
in� ammatory response syndrome that is associated with
outcome (91). Interestingly, the targeting of DAMPs, immun
signaling molecules (such as cytokines), microglial polarizat
macrophages, and T cells are now considered to be prom
therapeutic strategies (78, 92).

This acute pro-in� ammatory response is rapidly followed
immunodepression, which is teleologically considered
dampen brain in� ltration by activated immune cells and
have a neuroprotective effect. This immunodepress
characterized by lymphopenia, deactivation of monocy
depletion of splenic T-cells and natural killer cells, redu
splenic size (80), and also decreases the production
proin� ammatory cytokines such as lymphocytic IFN-g and
monocytic TNF-a (78, 93), which are necessary fo
defense against bacterial infection. The main consequenc
this immunodepression is infection, to which changes
gut microbiota might contribute by increasing plasm
trimethylamine N-oxide levels (94, 95). Gut dysbiosis is also
determinant of post-stroke outcomes (96).

The key role of the spleen in the immune response (36), and gut
microbiota in infection and recovery, highlights the implication
the HPA axis and autonomic nervous system, both componen
brain-immune communication and, as discussed above,
response to stress and sickness behavior. First, there is an increa
of plasma cortisol and catecholamine levels after stroke (4, 97).
Second, the spleen is innervated by the noradrenergic neurons
splenic nerve, which is regulated by the cholinergic neurons o
vagal nerve. This innervation is relatively anti-in� ammatory,via
the b2-adrenergic pathway (98). There is no direct cholinerg
innervation of the spleen. In contrast to that in rodents, ther
direct sympathetic innervation of the spleen in humans, w
preferentially interacts with leukocytes and is potenti
Frontiers in Immunology | www.frontiersin.org 6
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pro-in� ammatory (50). Interestingly, it has been shown th
sepsis can impair this direct sympathetic nerve (50). In addition,
circulating catecholamines modulate the response of the sp
immune cells. Therefore, there is a subtle sympathe
parasympathetic balance in the spleen immune respo
Regarding the gastrointestinalsystem, the sympathetic nervo
system may be deleterious, by disrupting production of intestina
mucin, gut permeability (via noradrenergic-mediated expression
TREM1), and composition of intestinal microbiota (78, 99), while
the vagal nerve is, on the other hand, more protective. For inst
reducing parasympathetic nerve activity after an acute brain in
stimulates intestinal bacterial proliferation and increases bac
translocation (96). It has been recently demonstrated that there
circulating molecular regulators, such as small RNA, that� nely
control the cholinergic re� ex in stroke patients. Therefore, target
the autonomic nervous system seems a relevant therapeutic o
The blockade of spleen noradrenergic control was bene� cial in an
animal model of ischemic stroke with improvement in survival and
prevention of infection (79, 100). Moreover, activating th
cholinergic re� ex reduces systemic and neuro-in� ammation but
also infarct size in stroke animal models (101, 102). The decrease i
plasma acetylcholinesterase levels, a marker of cholin
immunosuppressive activity and predictor of poor outcom
in stroke patients (103), supports intervention in the
parasympathetic system. However, we call for caution as
sympathetic/parasympathetic balance is dynamic and com
suggesting that its control cannot be simplistic. Among o
bene� ts, such as replacing brain dead cells and promoting b
repair, stem cells might be a promising way to optimize neuro
immune interaction (104). We would like to emphasize that aging
major risk factor for stroke, hasa dramatic impact on periphera
and brain immune cells by favoring a pro-in� ammatory response
but it also affects the HPA axis and autonomic nervous sys
therefore altering the brain-immune crosstalk (78). Finally, it would
be interesting to assess how sickness behavior is impaired in strok
patients, especially in those who developed infection or late an
and depression (105, 106). Furthermore, it remains unknown t
what extent stroke location alters the peripheral-central crossta
play in the natural course of stroke. Notably, brainstem stroke
impair the connectivity between the autonomic, neuroendoc
and limbic systems. Thus, if sepsis is a consequence of s
induced immunosuppression, it isalso a factor in dysregulate
neuro-immune responses andunfavorable outcomes i
stroke patients.

To date, no intervention has been proven to decrease the ri
of subsequent infection after stroke, and no study on
modulation of in� ammation has been shown to prevent t
occurrence of an ischemic stroke or to improve the outco
For instance, the STROKE-INF clinical trial did not show a
bene� t for prophylactic antibiotics in reducing the risk
pneumonia in stroke patients with dysphagia (107). A better
understanding of the brain-immune crosstalk could hel
develop a targeted and personalized therapeutic approac
based on immune response phenotyping.

Finally, the systemic in� ammatory response is associated w
endothelial activation and intravascular coagulation, both of w
April 2022 | Volume 13 | Article 834649
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can induce ischemic stroke, as reported in neuroradiologica
neuropathological studies (108, 109). In addition to
microcirculatory impairment, a decrease in blood pressur
cerebral blood� ow, and impaired cerebral autoregulation, are
mechanisms of cerebral infarcts. Therefore, the occurrence of sep
can worsen ischemic damage in a stroke patient, by trigg
neuro-in� ammation but also by affecting cerebral perfusion
inducing macro- and microcirculatory dysfunction (110).
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CONCLUDING REMARKS

In conclusion, brain-immune communication mainly involves
autonomic nervous system, which can sense and mod
peripheral in� ammation, in cooperation with the neuroendocri
and limbic systems. Brain-immune crosstalk is a key player in
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evolution of sepsis and stroke, both at its acute and recovery p
in� uencing neurotoxic and neuroprotective mechanisms. It se
that the sympathetic nervous system is somewhat deleterious wh
the parasympathetic system tends to be bene� cial. Targeting the
autonomic nervous system would therefore be relevant
tremendously challenging since the sympathetic an
parasympathetic activities are dynamically balanced and
univocal. Moreover, the natural neuro-immune response to st
is likely to be modi� ed by various but common factors, name
aging and sex, and also stroke location and occurrence of sepsis
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