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The immune factors driving DNA methyla-
tion variation in human blood

Jacob Bergstedt 1,2,3 , Sadoune Ait Kaci Azzou 1, Kristin Tsuo 1,
Anthony Jaquaniello1, Alejandra Urrutia4, Maxime Rotival 1, David T. S. Lin5,
Julia L. MacIsaac5, Michael S. Kobor 5, Matthew L. Albert 4, Darragh Duffy 6,
Etienne Patin 1,53 , Lluís Quintana-Murci 1,7,53 & Milieu Intérieur
Consortium*

Epigenetic changes are required for normal development, yet the nature and
respective contribution of factors that drive epigenetic variation in humans
remain to be fully characterized. Here, we assessed how the blood DNA
methylome of 884 adults is affected by DNA sequence variation, age, sex and
139 factors relating to life habits and immunity. Furthermore, we investigated
whether these effects are mediated or not by changes in cellular composition,
measured by deep immunophenotyping. We show that DNA methylation dif-
fers substantially between naïve and memory T cells, supporting the need for
adjustment on these cell-types. By doing so, we find that latent cytomegalo-
virus infection drives DNA methylation variation and provide further support
that the increased dispersion of DNA methylation with aging is due to epige-
netic drift. Finally, our results indicate that cellular composition and DNA
sequence variation are the strongest predictors of DNA methylation, high-
lighting critical factors for medical epigenomics studies.

Epigenetic research has improved our understanding of the existing
links between environmental risk factors, aging, genetic variation,
and human disease1,2. Epigenome-wide association studies (EWAS)
have shown that DNAmethylation (i.e., 5-methylcytosine, 5mC), the
most studied epigenetic mark in humans, is associated with a wide
range of environmental exposures along the life course, such as
chemicals3 or past socioeconomic status4–7. Changes in DNA
methylation have also been associated with non-communicable
diseases, such as Parkinson’s and Alzheimer’s diseases, multiple
sclerosis, systemic lupus erythematosus, type 2 diabetes and car-
diovascular disease8–11. These studies collectively suggest that DNA

methylation marks could be of tremendous value as gauges of the
exposome and as clinical biomarkers12,13.

However, interpretation of EWAS remains limited. First, because
the epigenome of a cell reflects its identity14,15, a risk factor or a disease
that alters cellular composition also alters 5mC levels measured in the
tissue16. It is thus necessary to determine if an exposure affects cellular
composition or DNAmethylation states of cell types, in order to better
understand the link between such an exposure, DNA methylation and
disease17. Previous studies have accounted for cellular heterogeneity in
blood by using cell sorting experiments, or cellular proportions esti-
mated from 5mC profiles through in-silico cell mixture deconvolution
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techniques18,19, but these approaches focus on a subset of frequent cell
types that capture only a part of blood cellular composition. Second,
the strong links between DNA methylation and DNA sequence varia-
tion, attested by the numerous DNAmethylation quantitative trait loci
(meQTLs) detected so far20–23, suggest that environmental effects on
the epigenome may operate through gene-by-environment interac-
tions, but evidence for such interactions remains circumstantial.
Finally, environmental risk factors with a yet-unknown effect on DNA
methylation, such as common infections, could confound associations
between other risk factors, DNA methylation and human phenotypes.
Thus, a detailed study of the factors that impact DNA methylation at
the population level, and the extent towhich their effects aremediated
by changes in cellular composition, is required to understand the role
of epigenetic variation in health and disease.

To address this gap, we generated whole blood-derived DNA
methylation profiles at >850,000 CpG sites for 884 healthy adults of
the Milieu Intérieur cohort. We leveraged the deep characterization of
the cohort, including high-resolution immunophenotyping by flow
cytometry24,25, to determine whether and how cellular composition,
intrinsic factors (i.e., age and sex), genetic variation, and 139 health-
and immunity-related variables and environmental exposures affect
the blood DNA methylome. We first assessed differences in the DNA
methylation profiles of 16 different immune cell types. We then per-
formed EWAS, adjusted or not for the measured proportions of the 16
immune cell subsets, and mediation analyses to robustly delineate
effects onDNAmethylation that are direct, i.e., acting through changes
within cells, from those that are mediated, i.e., acting through subtle
changes in cellular composition26. We show that adjusting EWAS for 16
measured cell proportions better accounts for cellular heterogeneity
than current cell mixture deconvolution methods. We identify latent
cytomegalovirus (CMV) infection as a key factor affecting population
variation in 5mC levels, through the dysregulation of human tran-
scription factors and profound changes in the proportion of differ-
entiated T cells. We show that the increased dispersion of DNA
methylation with aging is independent of cellular composition, sup-
porting insteadadecrease in thefidelity of the epigeneticmaintenance
machinery. Furthermore, we show that a large part of the effects on
DNAmethylation of aging, smoking, CMV serostatus, and chronic low-
grade inflammation is due to subtle changes in blood cell composition,
and characterize the DNA methylation signature of cell types affected
by these factors. Finally, we find that the largest effects on DNA
methylation are due to DNA sequence variation, whereas the most
widespread differences among individuals are the result of blood
cellular heterogeneity. This work generates new hypotheses about
mechanisms underlying DNA methylation variation in the human
population and highlights critical factors to be considered in medical
epigenomics studies.

Results
Proportions of naïve and differentiated T cells markedly con-
tribute to DNA methylation variation
To investigate the non-genetic and genetic factors that affect popu-
lation variation in DNA methylation, we quantified 5mC levels at
>850,000 CpG sites, with the Illumina InfiniumMethylationEPIC array,
in the 1000 healthy donors of the Milieu Intérieur cohort (Fig. 1a). The
cohort includes individuals of Western European origin, equally stra-
tified by sex (i.e., 500 women and 500 men) and age (i.e., 200 indivi-
duals from each decade between 20 and 70 years of age), who were
surveyed for detailed demographic and health-related information24,
including factors that are known to affect DNA methylation (i.e., age,
sex, smoking, BMI and socioeconomic status), that have been pro-
posed to affect DNA methylation (e.g., dietary habits, upbringing) or
that pertain to the immune system (e.g., past and latent infections, past
vaccinations, antibody levels; Supplementary Data 1). All donors were
genotyped at 945,213 single-nucleotide polymorphisms (SNPs),

yielding 5,699,237 accurate SNPs after imputation25. After quality
control filtering, high-quality measurements of DNAmethylation were
obtained at 644,517 CpG sites for 884 unrelated individuals27 (Sup-
plementary Fig. 1; Methods). We found that 5mC levels well reproduce
expected patterns across chromatin states15, supporting the good
quality of the data (Supplementary Fig. 1 and Supplementary Notes).

Whereas most epigenome-wide studies adjust on estimated cel-
lular composition to detect direct effects on DNA methylation (i.e.,
acting through changes within cells), we sought to assess both direct
effects and effects that are mediated by changes in cellular composi-
tion, as the genomic location and magnitude of mediated effects can
inform us about how cell differentiation is regulated in response to
environmental exposures17. We thus measured, in all donors, the pro-
portions of 16 immune cell subsets by standardized flow cytometry,
including neutrophils, basophils, eosinophils, monocytes, natural
killer (NK) cells, dendritic cells, B cells, CD4−CD8− T cells and naive,
central memory (CM), effector memory (EM) and terminally differ-
entiated effector memory cells (EMRA) CD4+ and CD8+ T cells25.

We first determined which immune cell populationsmost affect
DNAmethylation variation, by quantifying differences in 5mC levels
between the 16 blood cell subsets with multivariable regression
models including log-ratios of cell subsets, defined according to the
hierarchical and compositional nature of the data28 (Methods). We
verified that our models are accurate, using simulations and com-
parisons with independent DNA methylation data from sorted cel-
lular subsets29. We found that our estimated effects of cell subset
log-ratios on 5mC levels perform as expected on simulated data
(Supplementary Fig. 2 and Supplementary Notes) and are highly
correlated with DNA methylation differences observed between
sorted immune cell fractions (R > 0.6; Supplementary Data 2). When
applying these models on our data, we found that 5mC levels of
134,079 CpG sites (20.8% of CpG sites, Supplementary Data 2) are
associated with the log-ratio of myeloid vs. lymphoid lineages
(Bonferroni corrected Padj < 0.05). Furthermore, the log-ratio of
these subsets is the factor most associated with the first three
Principal Components (PCs) of the DNA methylation data (multiple
linear mixed model of PC1: P = 5.0 × 10−18; PC2: P = 1.6 × 10−43; PC3:
P = 6.7 × 10−17), which respectively explain 11.4, 7.5, and 5.5% of var-
iation in DNA methylation. Importantly, we also found that 20,758
and 44,919 CpG sites are associated with the log-ratios of naïve and
differentiated (CM, EM and EMRA) CD4+ and CD8+ T cell subsets,
respectively (Padj < 0.05, Supplementary Data 2), supporting the
view that 5mC levels differ substantially among T cell sub-
populations30,31. Furthermore, the log-ratios of naïve and differ-
entiated CD4+ and CD8+ subsets are also associated with PC1 and
PC3 (P < 1.2 × 10−4; Fig.1c, d). These results indicate that differences
in the proportion of naïve and differentiated subsets of CD4+ and
CD8+ T cells contribute substantially to DNA methylation variation
and may mediate associations between DNA methylation and
environmental exposures or diseases.

Cellmixture deconvolutionmethods partially account for blood
cell heterogeneity
Direct effects of environmental exposures or diseases on DNA
methylation are often estimated by adjusting EWAS on major cell-
type fractions, which are predicted in silico from 5mC levels with
cell mixture deconvolution methods18,32. However, standard meth-
ods only predict the overall proportions of CD4+ and CD8+ T cells
and may therefore overestimate the direct effects on DNA methy-
lation of factors that affect T cell composition, such as aging and
viral infections25,33. To test this hypothesis, and to assess more
generally how intrinsic and environmental factors affect the DNA
methylome, we conducted EWAS of 141 candidate factors, by using
linear mixed models adjusted on batch variables, genetic factors
(i.e., associated meQTL variants), genetic ancestry, smoking status,
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sex and a non-linear age term (Methods). Models were adjusted, or
not, for the 16 measured cell proportions, to estimate total (i.e.,
direct and mediated) or direct effects, respectively. Mediated
effects were estimated by mediation analysis34 (Methods). We con-
sidered that each EWAS constitutes a separate family of association
tests and used the Bonferroni correction for multiple testing
adjustment (Padj < 0.05).

Out of the 141 candidate factors, those that have significant total
effects on DNAmethylation include age (n = 97,219 CpG sites; 15.1% of
CpG sites), cytomegalovirus (CMV) serostatus (n = 79,654; 12.4%), sex
(n = 23,002; 3.6%), heart rate (n = 2,924; 0.5%), smoking (n = 839; 0.1%),

body temperature (n = 175), C-reactive protein (CRP) levels (n = 53), the
hour of blood draw (n = 36) and traits related to lipid metabolism
(n = 3; Fig. 1b and Supplementary Data 1). Accordingly, the first PCs of
DNA methylation are most strongly associated with CMV (PC1:
P = 8.3 × 10−13; PC2: P = 7.8 × 10−10), age (PC3: P = 5.7 × 10−29) and sex
(PC4: P = 2.2 × 10−5), when not considering immune cell fractions
(Fig. 1c, d and Supplementary Fig. 1i, j). When adjusting on blood cell
composition, factors that have significant direct effects on DNA
methylation include age (n = 35,701; 5.5%), sex (n = 17,067; 2.6%),
smoking (n = 428; 0.07%), CMV serostatus (n = 245; 0.04%), CRP levels
(n = 39) and lipid metabolism-related traits (n = 3; Fig. 1b,
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Supplementary Fig. 3 and Supplementary Notes). These results sug-
gest that, whereas most CMV effects are mediated by cellular com-
position, the effects of sex onDNAmethylation aremainly direct, and a
substantial direct effect of age is also retained, even after adjusting for
naïve andmemory CD4+ and CD8+ T cell subsets. Accordingly, first PCs
of DNAmethylation remain associatedwith sex (PC4: P = 1.3 × 10−3) and
age (PC3: P = 1.1 × 10−9; Fig. 1c), when considering immune cell frac-
tions, but not with CMV serostatus (PC1: P >0.05; Fig. 1d). No sig-
nificant direct effects of heart rate, body temperature and hour of
sampling were detected, indicating that the effects of these factors on
DNA methylation are due exclusively to changes in immune cell
composition35,36.

We then evaluated the performance of three reference-based in-
silico cell mixture deconvolution methods: Houseman et al.’s method,
IDOL, and EPIC IDOL-Ext18,29,32. We observed that cell proportions
estimated by the three methods are substantially correlated with
measured cell proportions (Supplementary Fig. 4). We then compared
EWAS results adjusted either on our flow cytometric data or on cell
proportions estimated by the three deconvolutionmethods.We found
that EWAS adjusted by the IDOL method detects more CpG sites
associated with most candidate factors, relative to EWAS adjusted on
the measured proportions of 16 cell types, particularly for age
(n = 131,142 vs. 35,701) and latent CMV infection (n = 31,159 vs. 245)
(Fig. 1b, e, f). Similar results were found with Houseman’s method
(Fig. 1b). Accordingly, the first PCofDNAmethylation remains strongly
associated with CMV serostatus and age when adjusting on IDOL cel-
lular fractions (P = 7.5 × 10−6 and P = 3.2 × 10−17, respectively), whereas it
is not when considering 16 measured cell proportions (P >0.01).
Conversely, EWAS adjusted by the EPIC IDOL-Ext method, which esti-
mates subsets of naïve and memory CD4+ and CD8+ T cell
populations29, provide results that are similar to those of EWAS
adjusted for high-resolution flow cytometric data (Fig. 1b). These
results suggest that first-generation deconvolution methods do not
fully distinguish direct effects on DNAmethylation from those that are
mediated by fine-grained changes in blood cell composition.

To further test this scenario, we conducted EWAS adjusted on
flow cytometric data for only six major cell types and found results
comparable to those for Houseman et al.’s and the IDOL methods
(Fig. 1b). Furthermore, CMV effect sizes adjusted on IDOL cellular
fractions or the six major cell proportions were twice more corre-
lated with estimated measures of DNA methylation differences
between naïve and differentiated CD4+ T cells, relative to CMV
effect sizes adjusted on 16 measured cell proportions (R = 0.66,
relative to R = 0.31, respectively; Fig. 1g, h). Together, these results
indicate that adjustment for the proportions of only the six major
cell types is not able to fully account for blood cell heterogeneity,
particularly when estimating the effects of age and CMV infection
on DNA methylation, two factors that are known to skew CD4+ and
CD8+ T cell compartments toward differentiated phenotypes25.

Cytomegalovirus infection alters the blood DNA methylome
through the regulation of host transcription factors
We identified CMV serostatus as one of the exposures that is asso-
ciated with the largest number of CpG sites (Fig. 1b). CMV is the cau-
sative agent of a latent, mainly asymptomatic, infection that ranges in
seroprevalence from 30 to 100% across populations37. CMV is known
to drastically alter the composition of the CD4+ and CD8+ T cell com-
partments in blood25,33. Accordingly, we found that 85,922 CpG sites
show a significant cell-composition-mediated effect of CMV serostatus
on DNA methylation (Padj < 0.05; Supplementary Data 1), indicating
that the effects of the latent infection are mainly mediated by cellular
composition. Furthermore, we observed a strong correlation between
mediated and total effect sizes of CMV serostatus (R =0.93; Fig. 2a)
and 99.5% of CpG sites with a significant direct effect also show a
significant mediated effect (n = 244/245). We found that mediated
effect sizes of CMV are strongly correlatedwith estimatedmeasures of
DNA methylation differences between naïve and memory CD4+ and
CD8+ T cells (R = 0.68 and R =0.53, respectively; Fig. 2b), suggesting
that cell-composition-mediated effects of CMV are predominantly
attributable to changes in these T cell subsets.

One of the strongest cell-composition-mediated effects of CMV
infection was observed in an intron of DNMT3A (β value scale 95%
confidence interval [CI]: [1.8%, 2.4%], Padj = 1.1 × 10−23), encoding a key
DNA methyltransferase playing a role in the replication of some
herpesviruses38. CMV+ donors show a substantial increase in the pro-
portion of CD4+ and CD8+ TEMRA cells (P = 6.8 × 10−35 and P = 1.9 × 10−50,
respectively), which in turn are associated with higher 5mC levels at
DNMT3A (P = 3.3 × 10−25 and P = 1 × 10−53, respectively), supporting
mediation by differentiated memory T cell subsets (Fig. 2c). To test if
the effects of CMV infection on 5mC levels are cell-type-dependent, we
derived and verified an interaction model similar to CellDMC39

(Methods). We restricted this analysis to interactions with the pro-
portionof cells from themyeloid lineage, as previously reported40, and
found only one CpG site where CMV effects depend on the proportion
of myeloid cells (Padj < 0.05; Supplementary Data 3). These results
indicate that CMV infection affects a large fraction of the blood DNA
methylome primarily through changes in blood cell proportions,
rather than through cell-type-dependent changes.

However, when adjusting for blood cell composition, including
CD4+ and CD8+ T cell sub-types, a significant direct effect of CMV
serostatus was detected for 245 CpG sites. Increased 5mC levels in
CMV+ donors localize predominantly in enhancers and regionsflanking
transcription start sites (odds ratio [OR] > 3.0, Padj < 5.3 × 10−8; Sup-
plementary Fig. 5), suggesting dysregulation of host gene expression
as a result of latent infection. The second strongest direct effect of
CMV infection was observed nearby the TSS of LTBP3 (β value scale
95% CI: [1.9%, 3.1%], Padj = 7.1 × 10−17; Fig. 2d and Supplementary Fig. 6).
LTBP3 is a regulator of transforming growth factorβ (TGF-β)41, which is
induced in CMV latently infected cells42. Strikingly, CpG sites showing

Fig. 1 | Non-genetic effects on the bloodDNAmethylome according todifferent
corrections for cellular heterogeneity. a Study design. Created with BioR-
ender.com. b Number of CpG sites associated with non-genetic factors, according
to different corrections for cellular heterogeneity. Columns indicate adjustments
for 16 blood cell proportions measured by flow cytometry (“16 cells”), 12 blood cell
proportions estimated by the EPIC IDOL-Ext deconvolution method29 (“IDOL-ext”),
6 blood cell proportions measured by flow cytometry (“6 cells”), 6 cell proportions
estimated by the IDOL deconvolution method32 (“IDOL”), 6 cell proportions esti-
mated by Houseman et al.’s deconvolution method18 (“Houseman”) and no
adjustment for blood cell composition (“None”). Tests were corrected for multiple
testing by the Bonferroni adjustment. c Age against the third Principal Component
(PC) of DNA methylation levels. Colors indicate donors whose proportion of naïve
CD8+ T cells in blood is below or above the cohort median. d Proportion of CD4+

memory T cells against the first PC of DNA methylation levels. Colors indicate the
CMV serostatus of donors. eDirect effects of age on 5mC levels, adjusting on 6 cell

proportions estimated by IDOL, against direct effects of age on 5mC levels,
adjusting on 16 cell proportions measured by flow cytometry. f Direct effects of
CMV serostatus on 5mC levels, adjusting on 6 cell proportions estimated by IDOL,
against direct effects of CMV serostatus on 5mC levels, adjusting on 16 cell pro-
portions measured by flow cytometry. g Effects of CD4+ T cell differentiation on
5mC levels against direct effects of CMV serostatus on 5mC levels, adjusting on 6
cell proportions estimated by IDOL. h Effects of CD4+ T cell differentiation on 5mC
levels against direct effects of CMV serostatus on 5mC levels, adjusting on 16 cell
proportions measured by flow cytometry. e–h Effect sizes are given in the M value
scale. Only associations significant either with the model adjusting for IDOL-
estimated cell proportions or the model adjusted for 16measured cell proportions
are shown (Padj < 0.05). e, f The black line indicates the identity line. c, d, g, h The
black line indicates the linear regression line. Statistics were computed based on a
sample size of n = 884 and for 644,517 CpG sites.
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increased 5mC levels in CMV+ donors are strongly enriched in binding
sites for theBRD4 transcription factor (TF) (n = 187/189,OR = 48.0, 95%
CI: [13.1, 399.0], Padj < 1.1 × 10−27; Fig. 2e and Supplementary Data 4), a
bromodomain protein that plays a critical role in the regulation of
latent and lytic phases of CMV infection43. Conversely, CpG sites
showing a decrease in DNA methylation in CMV+ donors are strongly
enriched in binding sites for BATF3 (OR = 24.8, 95% CI: [13.8, 42.2],
Padj < 1.3 × 10−14; Fig. 2f), which is paramount in the priming of CMV-
specific CD8+ T cells by cross-presenting dendritic cells44. Collectively,
these analyses imply that CMV infection directly affects the human
blood DNA methylome through the dysregulation of host TFs impli-
cated in viral latency and host immune response.

Finally, to motivate future research on the epigenetic effects of
CMV infection, we used elastic net regression and stability selection to
predict CMV serostatus from DNA methylation (Methods). Based on
547 CpG sites, the model predicts CMV serostatus with an out-of-
sample accuracy of 87%, using 10-fold cross-validation. We anticipate
that this model will be useful to determine if latent CMV infection can
confound epigenetic risk for disease45,46.

Aging elicits DNA hypermethylation related to Polycomb
repressive complexes and increased epigenetic dispersion
Although the effects of aging on DNA methylation are well
established47–51; it remains unclear the extent to which they are due to
changes in unmeasured proportions of differentiated T cells (Fig. 1b)

or CMV infection, which are both strongly associated with age25,52.
Indeed, age has a significant total effect on 5mC levels at 97,219 and
113,742 CpG sites, when adjusting or not on CMV serostatus, and CMV
infectionmediates a substantial fraction of total age effects (n = 10,074
CpG sites). We thus investigated how the blood DNA methylome is
shaped by the intertwined processes of cellular aging (i.e., direct
effects) and age-related changes in blood cellular composition (i.e.,
mediated effects), while accounting for CMV serostatus.

We found that, out of the 35,701 CpG sites associated directly
with age, more than 97% were associated with age in a previous
EWAS53, indicating a strong overlap (OR 95% CI: [35.6, 40.8]). In line
with previous findings54, direct effects of age are typically larger
than mediated effects (Fig. 3a). Furthermore, the strongest direct
age effects, such as those observed at ELOVL2 and FHL2 (Supple-
mentary Fig. 6), are not mediated by cellular composition (Padj =
1.0), suggesting that age-related changes at these CpG sites are
typically shared across cell-types. We observed that 61% of the CpG
sites directly associated with age show a decrease in 5mC levels.
Age-associated demethylation predominates outside of CpG islands
(CGIs) and in regions flanking transcription start sites and in
enhancers (Fig. 3b and Supplementary Fig. 7a, b). Conversely, DNA
hypermethylation was observed in 95% of age-associated CpGs
within CGIs. Consistently, CpG sites exhibiting increasing 5mC
levels with age are mainly found in Polycomb-repressed regions,
bivalent TSSs, and bivalent enhancers (Fig. 3b, c), which are CGI-rich
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Fig. 2 | Effects of cytomegalovirus infection on the blood DNA methylome.
a Total effects against cell-composition-mediated effects of CMV infection on 5mC
levels. b Effects of CD4+ T cell differentiation on 5mC levels against cell-
composition-mediated effects of CMV infection on 5mC levels. c Proportion of
CD8+ TEMRA cells in CMV– and CMV+ donors (left panel). 5mC levels at the DNMT3A
locus against the proportion of CD8+ TEMRA cells (right panel). 5mC levels are given
in the β value scale. The black line indicates the linear regression line. d Genomic
distribution of direct effects of CMV infection at the LTBP3 locus. e Enrichment of
CpG sites with a significant direct, positive effect of CMV infection in binding sites

for TFs. f Enrichment of CpG sites with a significant direct, negative effect of CMV
infection in binding sites for TFs. a, b Only CpG sites with a significant cell-
composition-mediated effect are shown. The black line indicates the identity
line. Tests were corrected for multiple testing by the Bonferroni adjustment.
a, b, d Effect sizes are given in the M value scale. e, f The 15 most enriched TFs are
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95% CI. CIs were estimated by the Fisher’s exact method. Statistics were computed
based on a sample size of n = 884 and for 644,517 CpG sites.
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for multiple testing by the Bonferroni adjustment.
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regions (Supplementary Fig. 1M, N). Furthermore, these CpG sites
are most enriched in binding sites for RING1B, JARID2, RYBP, PCGF1,
PCGF2, and SUZ12 TFs (OR > 10.0; Fig. 3d and Supplementary
Data 4), which are all part of the Polycomb repressive complexes 1
and 2. PRC1 and PRC2 mediate cellular senescence and modulate
longevity in invertebrates55,56. Importantly, when restricting the
analysis to CpG sites outside of CpG islands, we found similar
enrichments in Polycomb-repressed regions (OR 95% CI [17.7, 20.0])
and PRC TF binding sites (RING1B OR 95% CI: [19.9, 22.4]; PCGF2 OR
95%CI [17.8, 20.7]). Finally, genes with age-increasing 5mC levels are
strongly enriched in developmental genes (Padj = 1.7 × 10−48; Sup-
plementary Data 5), which are regulated by PRCs57. Overall, these
results confirm previously described effects of age on the blood
DNA methylome, while accounting more comprehensively for
blood cell composition and CMV infection, and support a key
regulatory role of Polycomb proteins in age-related
hypermethylation58.

We then assessed whether age-related changes in blood cell
composition or CMV seropositivity could contribute to age-related
changes in the variance of 5mC levels, a phenomenon known as
“epigenetic drift” (i.e., the divergence of the DNA methylome as a
function of age owing to stochastic changes)51,59–61. We observed
that the proportion of several cell types in blood is increasingly
dispersed with aging, such as CD4+ TEMRA cells (Fig. 3e). Therefore,
we fitted models parameterizing the residual variance with a linear
age term, and adjusting for 16 immune cell proportions, age, CMV
serostatus, smoking status and sex in the mean function (Methods).
We observed a significant dispersion of DNA methylation with age
for 3.1% of all CpG sites (n = 20,140, Padj < 0.05). We compared these
CpG sites with those previously reported to be increasingly variable
with age in whole blood and monocytes60 and replicated 2604 out
of 5,075 CpG sites, supporting a strong overlap between the two
different approaches (OR 95% CI: [36.2, 40.8]). An example of a CpG
site with a large, age-increasing dispersion is found in the TSS of
MAFA (Padj = 4.4 × 10−43; Fig. 3f), encoding a transcription factor that
regulates insulin. Strikingly, 99.4% of CpGs with age-related dis-
persion show an increase in the variance of 5mC levels with age
(Fig. 3g), supporting a decrease in the fidelity of epigenetic main-
tenance associated with aging. In addition, we found that, out of
20,140 CpG sites with age-related dispersion, 87.3% show no sig-
nificant changes in mean 5mC levels with age, and we detected no
correlation between estimates of dispersion and direct age effect
sizes (Fig. 3h), implying that these results are not driven by rela-
tionships between the average and variance of 5mC levels. Fur-
thermore, when also adjusting the variance function for cellular
composition, we found evidence of dispersion in 8,576 CpG sites
(Padj < 0.05), with similar effect sizes as in the previous model
(R = 0.93; Methods). Collectively, these findings indicate that aging
elicits numerous DNA methylation changes in a cell-composition-
independent manner, including global epigenome-wide demethy-
lation, hypermethylation of PRC-associated regions and increased
variance, highlighting the occurrence of different mechanisms
involved in epigenetic aging.

Immunosenescence-related changes in cellular composition
mediate DNA methylation variation with age
We detected a significant cell-composition-mediated effect of age at
~1.1% of CpG sites (n = 7090; Fig. 3a and Supplementary Data 1), indi-
cating that a substantial fraction of age-related changes in DNA
methylation are due to age-related changes in immune cell propor-
tions. Mediated effects are most often associated with demethylation
(76% of age-associated CpG sites), regardless of the chromatin state or
CGI density of the loci considered (Fig. 3j and Supplementary Fig. 7c,
d). Enhancers and regions flanking transcription start sites are enri-
ched in CpG sites with a significant cell-composition-mediated effect

of age (Fig. 3i), possibly because these regions tend to be regulated in a
cell-type-dependent manner15. In contrast with direct age effects, CpG
sites with a cell-composition-mediated increase in DNA methylation
are enriched in TF binding sites for RUNX1-3 (OR = 8.5, 95% CI: [4.5,
14.7], Padj < 1.2 × 10−8), which are key regulators of hematopoiesis
(Fig. 2k and Supplementary Data 4). Genes with CpG sites showing a
mediated increase or decrease in DNA methylation with age are enri-
ched in genes involved in lymphoid (Padj = 2.0 × 10−7) and myeloid
(Padj = 6.1 × 10−13) cell activation, respectively (Supplementary Data 5).
This indicates that mediated effects of age on DNA methylation are
related to progressive, lifelong differences in the composition of the
lymphoid and myeloid cell lineages.

We then determined if age effects on 5mC levels depend on the
proportion of cells from the myeloid lineage, by using an interac-
tion model (Methods). In line with a previous study54, we found that
cell-type-dependent effects of age (Supplementary Data 3) are
limited; only 10 CpG sites show DNA methylation changes with age
that depend on the proportion of myeloid cells (Padj < 0.05; Sup-
plementary Data 3). Importantly, age also has a strong mediated
effect on all these CpG sites (Padj < 1.0 × 10−10), implying that these
loci are associated with age because of changes in blood cell com-
position, although their relation to age is cell-type-dependent.
Collectively, our findings provide statistical evidence that DNA
methylation variation with age results from different, non-mutually
exclusive mechanisms: the progressive decline of the epigenetic
maintenance system that is common to all cell types, the increased
heterogeneity of immune cell subsets that characterizes
immunosenescence62 and, to a lesser extent, accelerated changes
within specific blood cell compartments.

Sex differences in DNAmethylation are predominantly cell- and
age-independent
Given that substantial differences in immune cell composition have
been observed between women and men25, we next assessed how
cellular heterogeneity contributes to sex differences in DNA
methylation63–65. We found 3.6% of CpG sites (n = 23,002) with a sig-
nificant total effect of sex, 2.6% (n = 17,067) with a significant direct
effect, and only 0.2% (n = 1385) with a significant cell-composition-
mediated effect (Padj < 0.05; Supplementary Fig. 8a and Supplemen-
tary Data 1). Out of CpG sites directly associated with sex, 96.2% were
already associated with sex in a previous EWAS53, indicating again a
strong overlap (OR 95% CI: [39.6, 46.5]). The largest direct effects of
sex were observed at DYRK2, DNM1, RFTN1, HYDIN, and NAB1 genes
(Padj < 1.0 × 10−263; Supplementary Fig. 6). For example, the DYRK2
promoter is 11.7% and 45.6% methylated in men and women, respec-
tively, at a CpG site that we found to be bound by the X-linked PHF8
histone demethylase (Supplementary Fig. 8b, c). DYRK2 phosphor-
ylates amino acids and plays a key role in breast and ovarian cancer
development66.

DNA methylation levels are higher in women at 79.7% of sex-
associated autosomal CpG sites (Supplementary Fig. 8d, e), a pattern
also observed in newborns64. This proportion is similar across different
genomic regions, based on either chromatin states or CpG density
(Supplementary Fig. 8e, g). When quantifying how sex differences in
DNA methylation vary during adulthood, by adding a sex-by-age
interaction term to our models (Methods), we found only 7 CpG sites
with a significant, sex-dependent effect of age (Padj < 0.05; Supple-
mentary Data 3). Confirming previous findings53,67, the strongest sex-
by-age interaction effects were found at FIGN (Padj < 7.1 × 10−15), asso-
ciated with risk-taking behaviors68 and educational attainment69, and
PRR4 (Padj < 5.6 × 10−3), associated with the dry eye syndrome, a hor-
mone-dependent, late-onset disorder70. Overall, our findings indicate
that the bloodDNAmethylome is widely affected by sex, but its effects
are typically not mediated by cellular composition and do not change
during adulthood.
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Gene × cell type andgene × environment interactions affectDNA
methylation variation
Gene × environment interactions are thought to underlie adaptable
human responses to environmental exposures through epigenetic
changes71. To test if gene × environment interactions affect DNA
methylation, we first estimated, for each CpG site, the effects on 5mC
levels of local and remote DNA sequence variation, defined as genetic
variants within a 100-Kb window and outside a 1-Mb window centered
on the CpG site, respectively (Methods). We considered local and
remote meQTLs to be independent families of tests and used the
Bonferroni correction to adjust for multiple testing. We found a sig-
nificant local meQTL for 107,048 CpG sites and a significant remote
meQTL for 1228 CpG sites (Padj < 0.05; Supplementary Fig. 9 and
Supplementary Data 6). In agreement with previous studies21,23, CpG
sites with a local meQTL are enriched in enhancers (OR 95% CI: [2.09,
2.21]) and depleted in TSS and actively transcribed genes (OR 95% CIs:
[0.52, 0.56] and [0.57, 0.60]; Fig. 4a). Conversely, CpG sites under
remote genetic control are enriched in TSS regions (OR 95% CI: [2.10,
3.11]) and regions associated with ZNF genes (OR 95% CI: [1.26, 6.17];
Fig. 4b). Furthermore, we found that remote meQTL variants are also
strongly concentrated in ZNF genes (OR 95% CI: [14.6, 29.8]; Fig. 4c),
suggesting that zinc-finger proteins (ZFPs) play a role in the long-range
control of DNA methylation, in line with their role in the regulation of
heterochromatin72–74.

We next explored whether effects of genetic variants on 5mC
levels depend on the circulating proportion of myeloid cells. We
found evidence for cell-type-dependent meQTLs at only 249 CpG
sites (Padj < 0.05; Fig. 4d and Supplementary Data 3), supporting the
notion that genetic effects on 5mC levels are generally shared
across blood cell subsets75. The strongest signal was found between
5mC levels upstream of CLEC4C and the nearby rs11055602 variant,
which has been previously shown to strongly affect CLEC4C protein
levels76. This C-type lectin, known as CD303, is used as a differ-
entiation marker for dendritic cells, suggesting the epigenetic reg-
ulation of the locus is cell-type-dependent. Accordingly, rs11055602
genotype effects on DNA methylation depend on the circulating
proportions of myeloid cells (β scale interaction effect, 95% CI:
[0.16, 0.22], Padj = 7.4 × 10−20; Fig. 4e), and dendritic cells (95% CI: CI:
[−8.3, −5.0], Padj = 3.5 × 10−15).

We then evaluated whether the main non-heritable determi-
nants of DNAmethylation variation in our cohort, i.e., age, sex, CMV
serostatus, smoking status and chronic low-grade inflammation
(CRP levels; Fig. 1b, Supplementary Fig. 3 and Supplementary
Notes), can affect 5mC levels in a genotype-dependent manner. We
thus tested for genotype × age, genotype × sex, genotype × smoking
jointly (Methods). Genotype × CRP levels interactions were tested in
separate models that also include the other interaction terms. We
found statistical evidence for genotype-dependent effects of age
and sex at 68 and 20 CpG sites, respectively (Padj < 0.05, MAF > 0.10;
Fig. 4d and Supplementary Data 3), the interacting meQTL variant
being local in all cases. We detected a strong genotype × age inter-
action for twoCpG sites located in the BACE2 gene, the 5mC levels of
which decrease with age only in donors carrying the nearby
rs2837990 G > A allele (β scale 95% CI: [0.11, 0.13], Padj = 7.28 × 10−10;
Fig. 4f). BACE2 encodes beta-secretase 2, one of two proteases
involved in the generation of amyloid beta peptide, a critical com-
ponent in the etiology of Alzheimer’s disease77. Another strong
genotype × age interaction effect was found for a CpG site upstream
of FCER1A, encoding the high-affinity IgE receptor. FCER1A 5mC
levels decrease with age in rs2251746 T > C carriers only (95% CI:
[0.05,0.07], Padj = 8.6 × 10−9), a variant known to control serum IgE
levels78. Collectively, our analyses identify few, albeit strong,
environment- and cell-type-dependent meQTLs, supporting the
relatively limited impact of gene × cell type and gene × environment
interactions on the blood DNA methylome.

Cellular composition and genetics drive DNA methylation var-
iation in human blood
Having established how cellular composition, intrinsic factors, genetic
variation, and a broad selection of non-heritable factors shape the
bloodDNAmethylome, we next sought to compare the relative impact
of these factors onDNAmethylation.We classified the factors into four
groups: (i) the cellular composition group, which consists of the 16
measured cell proportions; (ii) the intrinsic group, which consists of
age and sex; (iii) the genetic group, which consists of the most asso-
ciated local-meQTL variant around each CpG site; and (iv) the expo-
sure group, which consists of smoking status, CMV serostatus andCRP
levels. Since these groups vary in their degrees of freedom, we mea-
sured the relative predictive strength for each CpG site by the out-of-
sample prediction accuracy, estimated by cross-validation (Methods).
To ensure unbiased estimates, we mapped local meQTLs anew within
each training set.

The full model that includes all groups explains <5% of out-of-
sample variance for 52.3% of CpG sites (Fig. 5a), which are typically
characterized by low total 5mC variance (Supplementary Fig. 10). This
suggests that these sites are constrained in the healthy population and
that smallfluctuations in 5mC levelsdetermine their variation, possibly
due to measurement errors or biological noise. Nevertheless, the
model explains >25% of DNA methylation variance for 20.8% of CpG
sites (n = 134,305). The strongest predictor for these CpG sites is cel-
lular composition, genetics, intrinsic factors and exposures in 74.7%,
21.5%, 3.8% and 0.01% of cases, respectively. Cellular composition
explains >25% of out-of-sample variance for 1.0% of CpG sites
(n = 90,033; Fig. 5a, c and Supplementary Data 7), with the highest
variance explained by cellular composition for one CpG site being
71.8%. For the 2,580 CpG sites where the model explains >75% of var-
iance, local DNA sequence variation is the strongest predictor in 99.2%
of cases (Fig. 5c and Supplementary Data 7). Local genetic variation
explains >25% of DNA methylation variance at 23,677 CpG sites, and
almost as many when adjusting for cellular composition (n = 22,865)
(Fig. 5a, b), indicating that genetic effects on 5mC levels aremainly cell-
composition-independent. Intrinsic factors explain >25% of out-of-
sample variance at 3669 CpG sites, and >75% at 16 sites (Fig. 5c). When
conditioning on cell composition, these numbers dropped to 334 and
6 CpG sites, respectively, suggesting that the predictive ability of age
and sex is partly mediated by immune cell composition (Fig. 5b).
Interestingly, environmental exposures are the weakest predictor of
5mC levels, explaining >25% of the variance at only 29 CpG sites and
with a maximum variance explained for a CpG site of 50.1%.

Finally, we estimated the proportion of variance explained by
genotype × age, genotype × sex and genotype × exposure interactions,
by considering the difference of the out-of-sample variance explained
by models including interaction terms and models with only main
effects (Methods). We found a significant increase in predictive ability
when including interaction terms for 431 CpG sites (ANOVA Padj <
0.05). However, the effects were typically modest: only 13 CpG sites
showed an increase in the proportionof variance explained larger than
5% (Fig. 5b). Collectively, these results show that cellular composition
and local genetic variation are the main drivers of DNA methylation
variation in the blood of adults, reinforcing the critical need to study
epigenetic risk factors and biomarkers of disease in the context of
these factors.

Discussion
Here, we present a rich data resource that delineates the contribution
of blood cellular composition, age, sex, genetics, environmental
exposures, and their interactions to variation in the DNA methylome.
All the results can be explored via a web-based browser (http://
mimeth.pasteur.fr/), to facilitate the exploration of the estimated
effects of these factors on DNA methylation variation. We found that
CMV infection elicits substantial changes in the blood DNA
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methylome, in contrast with other herpesviruses such as EBV, HSV-1,
HSV-2, and VZV. Latent CMV infection is known to profoundly alter the
number, activation status and transcriptional profiles of immune cell
populations, yet its epigenetic consequences have attracted little
attention.Weobserved thatmostCMVeffects onDNAmethylation are
mediated by the profound changes in blood cell composition25,
including the CMV-driven inflation ofmemory CD4+ and CD8+ T cells33.
However, we also detected cell-composition-independent effects of
CMV infection, suggesting that the herpesvirus can directly regulate

the host epigenome. Notably, differentially methylated CpG sites in
CMV+ donors are strongly enriched in binding sites for BRD4, a key
host regulator of CMV latency43, suggesting that the recruitment of
BRD4 by CMV during latent infection affects BRD4-regulated host
genes. Furthermore, CMV+ donors are characterized by a strong
increase in 5mC levels at LTBP3, the product of which is involved in
TGF-β secretion. TGF-β is a well-known immunosuppressive cytokine
induced by CMV infection42, which represents a possible strategy of
the virus to escape host immunity. These results suggest that the
capacity of CMV to manipulate the host epigenetic machinery results
in epigenetic changes of latently infected cells.

Our study provides further support to the notion that three
different biologicalmechanisms underlie age-related changes inDNA
methylation. The first elicits an increased dispersion of 5mC levels
with age that is related to epigenetic drift51,59–61. We found that dis-
persion of DNA methylation with age is not due to cellular hetero-
geneity, supporting instead the progressive decline in fidelity of the
DNA methylation maintenance machinery across cell populations.
The second mechanism results in cell-composition-independent,
global DNA demethylation and CGI-associated hypermethylation.
Age-associated DNA demethylation could be related to the down-
regulation of DNMT3A/B de novo methyltransferases, whereas CGI-
associated hypermethylation may result from the downregulation of
the Polycomb repressive complexes 1 and 2 and/or TET proteins,
coupled with a loss of H3K27me3 marks79–81. Alternatively, these
changes may be related to the mitotic clock, which assumes a pro-
gressive accumulation of DNA methylation changes with mitotic
divisions, including loss of methylation at partially methylated
domains (PMD) and gain of methylation at PRC2-marked CpG-rich
regions82–84. Both scenarios are supported by the enrichment of
Polycomb-repressed regions in age-associated CpG sites, and of
binding sites of PRC-related TFs in CpG sites methylated with age.
The third mechanism elicits cell-composition-mediated demethyla-
tion at all compartments of the epigenome, particularly at enhancers
of myeloid activation genes. This process likely reflects an increased
degree of differentiation in the lymphoid compartment with age.
Single-cell methylomes of differentiating and dividing white blood
cells will help determine the role of mitotic and post-mitotic 5mC
changes during epigenetic aging.

Another interesting finding of our study is that environmental
exposures explain a small fraction of the variance of DNAmethylation
in healthy adults, at odds with the common view that the epigenome is
strongly affected by the environment85. Twin studies have estimated
the heritability of DNA methylation to range from ~20–40% (ref.
86–88), suggesting that environmental effects, along with gene ×
environment interactions, account for the remaining 60–80% (ref. 89).
However, other factors, including cellular composition and measure-
ment error, may account for most of the unexplained variance. Con-
sistently, we estimated that cellular composition explains >25% of the
variance for ~13% of the DNA methylome, and it has been estimated
that measurement error may explain >50% (ref. 90). Nevertheless, a
limitation of our study is that perinatal and early life exposures, which
are thought to contribute extensively to epigenetic variation in
adulthood85, have not been extensively assessed in theMilieu Intérieur
cohort. In addition, it has been hypothesized that gene × environment
interactions are central to understand the role of epigenetics in
development91, but statistical evidence for interaction effects requires
larger cohorts92, suggesting that our results might represent a small,
perceptible fraction of a large number of weak effects93,94. Large,
longitudinal cohorts addressing the developmental origins of disease
are needed to shed new light on the role of DNA methylation in the
interplay between genes and the environment.

Collectively, our findings have broad consequences for the study
and interpretation of epigenetic factors involved in disease risk. First,
our analyses show that first-generation cell mixture deconvolution
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methods18,32 do not fully distinguish direct from cell-composition-
mediated effects of CMV infection and age on DNA methylation,
probably because these two factors alter the proportions of blood cell
subsets that are not estimated by these methods. This reinforces the
view that EWAS must be interpreted with great caution, particularly
when the studied diseases or conditions are known to affect unmea-
sured immune cell fractions. Encouragingly, our findings suggest that,
when blood cell composition is not measured directly, high-resolution
cell mixture deconvolution methods29,95 provide a more complete
correction for cellular heterogeneity and are therefore expected to
improve the interpretation of future epigenomic studies. Second,
because age, sex, CMV infection, smoking, and chronic low-grade
inflammation can influence disease risk45,96–99, our results emphasize
the critical need to consider such factors in EWAS, as these factors can
confound associations. Lastly, our findings reveal the epigenetic
impact of aging and persistent viral infection through fine-grained
changes in blood cell proportions, highlighting the need to assess the
respective role of altered cellular composition andDNAmethylation in
the etiology of disease17. Large-scale studies using single-cell approa-
ches will help overcome these challenges, and are anticipated to fur-
ther decode the epigenetic mechanisms underlying healthy aging and
the environmental causes of human disease.

Methods
The Milieu Intérieur cohort
The Milieu Intérieur cohort was established with the goal to identify
genetic variation and environmental exposures that affect phenotypes
related to the immune system in the adult, healthy population. The
1000 healthy donors of the Milieu Intérieur cohort were recruited by
BioTrial (Rennes, France), and included 500 women and 500 men. All
subjects provided written informed consent, including for genetic
studies, prior to enrollment in the study. Donors included 100 women
and 100men fromeachdecade of life, between 20 and 69 years of age.
Donorswere selected based on various inclusion and exclusion criteria
that are detailed elsewhere24. Briefly, donors were required to have no
history or evidence of severe/chronic/recurrent pathological condi-
tions, neurological or psychiatric disorders, alcohol abuse, recent use
of illicit drugs, recent vaccine administration, and recent use of
immune modulatory agents. To avoid the influence of hormonal fluc-
tuations in women, pregnant and peri-menopausal women were not

included. To avoid genetic stratification in the study population, the
recruitment of donors was restricted to individuals whose parents and
grandparents were born in Metropolitan France.

Ethical approvals
The study is sponsored by the Institut Pasteur (Pasteur ID-RCB Num-
ber: 2012-A00238-35) and was conducted as a single center study
without any investigational product. TheMilieu Intérieur clinical study
was approved by the Comité de Protection des Personnes—Ouest 6
(Committee for the protection of persons) on June 13, 2012 and by the
French Agence Nationale de Sécurité du Médicament (ANSM) on June
22, 2012. The samples and data used in this study were formally
established as the Milieu Intérieur biocollection (study#
NCT03905993), with approvals by the Comité de Protection des Per-
sonnes—Sud Méditerranée and the Commission nationale de l’infor-
matique et des libertés (CNIL) on 11 April 2018.

DNA sampling and extraction
Whole bloodwas drawn from the 1000Milieu Intérieur healthy, fasting
donors every working day from 8AM to 11AM, fromSeptember 2012 to
August 2013, in Rennes, France. Different anticoagulants were used,
depending on the downstream analyses. For DNA methylation profil-
ing, blood samples were collected on EDTA, whereas samples for flow
cytometry and genome-wide DNA genotyping were collected on Li-
heparin. Tracking procedures were established in order to ensure
delivery to Institut Pasteur (Paris) within 6 h of blood draw, at a tem-
perature between 18 °C and 25 °C. Upon receipt, samples were kept at
room temperature until DNA extraction. DNA for DNA methylation
profiling was extracted using the Nucleon BACC3 genomic DNA
extraction kit (catalog #: RPN8512; Cytiva, Massachusetts, USA). High-
quality genomic DNA was obtained for 978 out of the 1000 donors.

DNA methylation profiling and data quality controls
Extracted genomic DNA was treated with the EZ DNA Methylation Kit
(catalog #: D5001; Zymo Research, California, USA). Bisulfite-
converted DNA was applied to the Infinium MethylationEPIC Bead-
Chip (catalog #: WG-317–1003; Illumina, California, USA), using the
manufacturer’s standard conditions. The MethylationEPIC BeadChip
measures 5mC levels at 866,836 CpG sites in the human genome. Raw
IDAT files were processed with the minfi R package100. All samples
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showed average detection P-values < 0.005. No sample showed amean
ofmethylated intensity signals lower than 3 × standard deviations (SD)
from the cohort average. Therefore, no samples were excluded based
on detection P-values or methylated intensity signals. The sex pre-
dicted from 5mC signals on sex chromosomes matched the declared
sex for all samples (Supplementary Fig. 1a). Using the 59 control SNPs
included in the MethylationEPIC array, a single sample showed high
genotype discordance with the genome-wide SNP array data (see
‘Genome-wide DNA genotyping’ section) and was thus excluded
(Supplementary Fig. 1b). Unmethylated and methylated intensity sig-
nals were converted to M-values. A total of 2930 probes with >1%
missingness (i.e., detection P-value > 0.05 for more than 1% of donors)
were excluded and remaining missing data (missingness = 0.0038%)
were imputed by mean substitution. Using the irlba R package, Prin-
cipal Component Analysis (PCA) of M values identified nine outlier
samples, including eight that were processed on the same array
(Supplementary Fig. 1c), which were also excluded. The “noob” back-
ground subtraction method101 was applied on M values for the
remaining 968 samples, which showed highly consistent epigenome-
wide DNA methylation profiles (Supplementary Fig. 1d, e).

To identify batch effects on the DNA methylation data, we sear-
ched for the factors that were the most associated with the top 20 PCs
of the PCA of noob-corrected M values. We used a linear mixed model
that included age, sex and cytomegalovirus (CMV) serostatus as fixed
effects, and slide position and sample plate as random effects. The
models were fitted with the lme4 R package102. Strong associations
were observed between the first four PCs and slide position and
sample plate (Supplementary Fig. 1f, g). M values were thus corrected
for these two batch effects using the ComBat function, from the sva R
package103. After ComBat correction, the ten first PCs of a PCA of M
values were associated with factors known to affect DNA methylation,
including blood cell composition, age and sex (Supplementary
Fig. 1h–j), indicating no other, strong batch effect on the data (see
section ‘Associationswith principal components of DNAmethylation’).

M-values were converted to β values, considering that β = 2 M /
(2 M + 1). Because outlier 5mC values due to measurement error could
inflate the type I error rate of regressionmodels, we excluded, for each
CpG site, M or β values that were greater than 5 × SD from the popu-
lation average, corresponding to <0.1% of all measures. We also
excluded (i) 83,380 non-specific probes that share >90% sequence
identity with several genomic regions (see details in104), (ii) 118,575
probes that overlap a SNP that is within the 50pb surrounding theCpG
site and has a MAF > 1% in the Milieu Intérieur cohort or in European
populations from the 1000 Genomes project105, (iii) 558 probes that
were absent from the Illumina annotations version 1.0 B4 and (iv)
16,876 probes located on sex chromosomes. As a result, the final,
quality-controlled data was composed of 968 donors profiled at
644,517 CpG sites.

Flow cytometry
Immune cell proportions were measured using ten eight-color flow-
cytometry panels25. The acquisition of cells was performed using two
MACSQuant analyzers, which were calibrated using MacsQuant cali-
bration beads (Miltenyi, Germany). Flow cytometry data were gener-
ated using MACSQuantify software version 2.4.1229.1. The mqd files
were converted to FCS compatible format and analyzed by FlowJo
software version 9.5.3. A total of 110 cell proportions were exported
fromFlowJo. Protocols, panels, staining antibodies, andquality control
filters used for flow cytometry analyses are detailed elsewhere25.
Abnormal lysis or staining were systematically flagged by trained
experimenters. We removed outliers by using a scheme detailed
previously25. We used a distance-based approach that, for each cell
type, removesobservations in the right tail if thedistance to the closest
observation in the direction of themean is larger than 20%of the range
of the observations. Similarly, observations in the left tail were

removed if the distance to the closest observation in the direction of
the mean is more than 15% than the range the observations. We
removed 22 observations in total, including a maximum of 8 obser-
vations for a single cell type (i.e., for the proportion of neutrophils).
Problems in flow cytometry processing, such as abnormal lysis or
staining, were systematically flagged by trained experimenters, which
resulted in 8.7% missing data. Because imputing missing data for
donors who show large missingness could be inaccurate, we excluded
74 donors with no data for the T cell panel. Finally, the remaining
missing data were imputed using the random forest-based missForest
R package106.

Genome-wide DNA genotyping
The 1000 Milieu Intérieur donors were genotyped on both the
HumanOmniExpress-24 and theHumanExome-12 BeadChips (Illumina,
California, USA), which include 719,665 SNPs and 245,766 exonic SNPs,
respectively. Average concordance rate between the two genotyping
arrays was 99.9925%. The combined data set included 732,341 high-
quality polymorphic SNPs. After genotype imputation and quality-
control filters25, a total of 11,395,554 SNPswas further filtered forminor
allele frequencies >5%, yielding a data set composed of 1000 donors
and 5,699,237 SNPs for meQTL mapping. Ten pairs of first to third-
degree related donors were detected with KING 1.9 (ref. 107). Out of
the 894 donors whose blood methylome and blood cell composition
were accurately profiled, 884 unrelated donors were kept for sub-
sequent analyses.

Immune cell proportions
One of the key questions in this study is whether differences in 5mC
levels observed with respect to different factors are due to epigenetic
changes occurring within cell types or if they in fact reflect changes in
blood cell composition. To answer this question, we considered the
proportions of 16major subsets of blood: naïve, centralmemory (CM),
effector memory (EM) and terminally differentiated effector memory
(EMRA) subsets of CD4+ and CD8+ T cells, CD4-CD8- T cells, B cells,
dendritic cells, natural killer (NK) cells, monocytes, neutrophils,
basophils and eosinophils25. As these cellular proportions were mea-
sured by flow cytometry using a hierarchical gating strategy25, they are
expected to sum to one. Yet, because of measurement errors, cell
fractions do not exactly sum to one in all donors. For a measure of the
proportion of a given cell subset in a given donor, we therefore used
the absolute count of the cell type divided by the sum of absolute
counts of all the 16measured cell subsets. We used the same approach
when considering a reduced set of six major cell types, comprising
neutrophils, monocytes, NK cells, B cells, and CD4+ and CD8+ T cells,
for comparison purposes.

Compositional analysis of cellular composition
We sought to study the association between 5mC levels and blood cell
composition, experimentally measured by flow cytometry. However,
the 16 measured cellular proportions are constrained to be positive
and to sum to one. Consequently, a change in one cellular proportion
must necessarily change one ormoreof the other cellular proportions,
complicating the interpretation of parameters estimated from linear
regression models with measured immune cell proportions as
predictors28,108,109. Here, we investigated instead the effect of balances,
which are transformations of cell-type proportions that can be seen as
a generalization of the logit-transform. These balances model the
effect of a relative change between two groups of cell types. They are
defined in a hierarchical manner of increasing granularity, by a
sequential binary partition (SBP) of the 16 measured cell types, gen-
erating 15 balances in total (Supplementary Data 2). As an example, we
describe the first two balances. The other balances are defined in an
analogous manner according to the SBP and the general procedure
detailed elsewhere108. The first balance captures the relative effect on
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5mC levels of the myeloid cell types compared to the lymphoid cell
types. Of the 16 measured cell types, five are myeloid and eleven are
lymphoid. Let cM1

i , . . . ,cM5
i be the measured myeloid proportions and

cL1i , . . . c
L11
i be lymphoid proportions for the i:th individual. The first

balance predictor for that individual is defined by

b1
i =

ffiffiffiffiffiffiffiffiffiffiffi
5 × 11
5 + 11

r
log

Q5
m= 1c

Mm
iQ11

l = 1c
Ll
i

( )
, ð1Þ

The second balance is defined within the lymphoid group and
captures the relative effect on 5mC levels of T cells with respect to NK
cells and B cells. Let cT 1

i , . . . ,cT9
i be the measured proportions of the

nine types of T cells and let cBi and cNKi be proportions of B cells and NK
cells. The balance contrasting T cells with NK cells and B cells is given
by

b2
i =

ffiffiffiffiffiffiffiffiffiffi
9×2
9+2
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cBi c
NK
i
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All balances were computed from the SBP using the robCompo-
sitions R package110. To evaluate the validity of our approach, we
compared the estimated effects on 5mC levels of balances contrasting
two groups of cell-types with the measured differences in 5mC levels
between the same two groups, obtained fromMethylationEPIC data in
sorted cell-types29 and found strong correlations (R > 0.6; Supple-
mentary Fig. 2 and Supplementary Data 2). We further evaluated the
accuracy of our approach by performing a simulation study. First, we
simulated 5mC levels based on observed cell composition data and
evaluated how the balances capture 5mC differences in the relevant
cell types. Second, we simulated cell composition data from aDirichlet
distribution and again evaluated that regression models including the
balances as predictors give the expected results (Supplemen-
tary Notes).

The 15 balances were used to investigate the effects of immune
cell composition on 5mC levels at individual CpG sites (see section
‘Epigenome-wide association study of cell composition’) and on prin-
cipal components of epigenome-wide DNA methylation levels (see
section ‘Associationswith principal components of DNAmethylation’).

Epigenome-wide association study of cell composition
To investigate how immune cell composition affects the blood DNA
methylome,we investigated effects of cell-type balances on 5mC levels
at eachCpG site. For the p:th CpG site and the i:th individual, introduce
observed 5mC levels ypi measured on the M value scale. Let bi be a
vector of 15 cell-type balances with corresponding parameter vector
βp
b: Let the vector SNPp

i contain the significant local SNP with the
smallest P-value and all independently associated remote SNPs (see
section ‘Local meQTL mapping analyses’ and section ‘Remote meQTL
mapping analyses’) with corresponding parameter vector βp

SNP. We
performed an epigenome-wide association analysis of cellular com-
position by fitting the models,

ypi =μ
p +bt

iβ
p
b + SNPp

i

� �t
βp
SNP + ε

p
i , ð3Þ

where εpi ~ 0,σ2
p

� �
. Models were fitted by ordinary least squares. For

each balance in bi (see Eqs. (1) and (2) for examples), the parameters in
βp
b are interpreted as the change in 5mC levels for an increase in the

first cell-type group and the correspondingdecrease in the secondcell-
type group.

Associations with principal components of DNA methylation
To evaluate how principal components (PCs) of DNA methylation
levels are related to cell composition, we first computed PCs of 5mC
levels at 644,517 CpG sites, with the irlba R package. Let yki be the
observed value of the k:th PC of the DNA methylation data and bi a

vector of 15 cell-type balances measured for individual i with the cor-
responding parameter vector βk

b. Given that we observed variability in
5mC levels across dates of blood draw, we included them as random
effects. Let j be the dayof blood draw for the i:th individual. Themodel
we used to estimate the effects of cellular composition on PCs of DNA
methylation was,

yki =μ
k +bt

iβ
k
b +DateOfSamplingkj ið Þ + ε

k
i , ð4Þ

with DateOfSamplingk
j ið Þ ~N 0, τ2k

� �
and εki ~ 0, σ2

k

� �
. The models were

fitted with the lme4 R package102.
To evaluate how PCs of DNA methylation levels are related to the

candidate non-heritable factors, i.e., age, sex, smoking status, CMV
serostatus, introduce the variables Agei, Womani, Exsmokeri, Smokeri
and CMVi with corresponding parameters βk

Age, βk
Woman, βk

Exsmoker,
βk
Smoker and βk

CMV. Let PC1i and PC2i be the two first PCs of the genotype
matrix. Let ci be a vector of 15 measured cell proportions, excluding
neutrophils because of the sum-to-one constraint, and βk

c the corre-
sponding parameter vector. Themodel we used to estimate the effects
of non-genetic factors on PCs of DNA methylation was,

yki = μk + ctiβ
k
c +Ageiβ

k
Age +Womaniβ

k
Woman + Exsmokeriβ

k
Exsmoker

+ Smokeriβ
k
Smoker + CMViβ

k
CMV + PC1iβ

k
PC1 + PC2iβ

k
PC2

+DateOfSamplingk
j ið Þ + ε

k
i :

ð5Þ

The models were fitted with the lme4 R package102. Inference was
performed using the Kenward-Roger F-test approximation for linear
mixed models, implemented in the pbkrtest R package111.

Epigenome-wide association studies of non-genetic factors
We assessed the effects of 141 non-genetic variables (Supplementary
Data 1) on the blood DNA methylome of adults. The measured 5mC
levels at a CpG site are the average of the DNAmethylation state at this
CpG site of all cells in the blood sample. Many of the 141 candidate
variables might influence cell composition, which will cause a corre-
sponding change in 5mC levels. We denote this effect the “(cell-com-
position-)mediated effect”. In addition, the variable might alter 5mC
levels within individual cells, or within cell-types.We denote this effect
the direct effect (see Supplementary Fig. 11 for a schematic directed
acyclic graph of the system). Several factors are known to have a large
effect on blood cell composition in healthy donors, the most impor-
tant being age, sex, CMV serostatus and smoking25. As an added
complexity, these factors are also associated with most of the other
variables in the study. Based on this framework, we investigated four
questions, each one targeted by a separate statistical model.

The total effect. The total effect includes both changes in 5mC levels
induced by changes in cellular composition (i.e., cell-composition-
mediated effects) and those induced within cell types (i.e., direct
effects). For each variable of interest x and each CpG site, the total
effect was estimated in a regression model including, as response
variable, the 5mC levels of the CpG site on the M value scale and, as
predictors, xi, a nonlinear age term of 3 DoF natural splines, sex, CMV
serostatus, smoking status, the significant local SNP with the smallest
P-value, independently associated remote SNPs and thefirst twoPCsof
the genotypematrix. Again, sincewe observed variability in 5mC levels
across dates of blood draw, we included them as a randomeffect term.
For the p:th CpG site, let ypi be the 5mC levels of the i:th individual on
the M value scale, f pAge Agei

� �
a nonlinear age term of 3 DoF natural

splines and SNPp
i a vector of the minor allele counts for the significant

local SNP with the smallest P-value and independently associated
remote SNPs, with corresponding parameter vector βp

SNP. The total
effect of the variable xiwas estimated by the corresponding parameter

Article https://doi.org/10.1038/s41467-022-33511-6

Nature Communications |         (2022) 13:5895 12



βp
x in the models,
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p + xiβ
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where DateOfSamplingpj ið Þ ~N 0,τ2p
� �

and εpi ~ 0,σ2
p

� �
. The effect of

agingwas tested inmodelswith x removed and thenon-linear age term
replaced by a linear one. The effects of sex, smoking status and CMV
serostatus were tested in models where we removed x. For variables
relating towomen only (e.g., age ofmenarche), we excludedmen from
the analysis and removedWomaniβ

p
Woman. Themodels were fitted with

the lme4 R package102. Hypothesis tests were performed using the
Kenward-Roger approximation of the F-test for linear mixed models,
implemented in the pbkrtest R package111.

The direct effect. Let the vector ci be measured proportions of the 15
immune cell types, excluding neutrophils, for the i:th individual andβp

c
the corresponding parameter vector. Using the same notation as for
the total effect, the direct effect of the variable xi was estimated by βp

x
in the models,
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p + xiβ

p
x + c

t
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We also tested the interaction effect of sex, CMV serostatus and

smoking status with age by including one interaction term at a time in
the model specified in Eq. (7). The models were fitted with the lme4 R
package102. Hypothesis tests were performed by the Kenward-Roger
approximation of the F-test for linear mixed models, implemented in
the pbkrtest R package111.

The mediated effect. The cell-composition-mediated effect was esti-
mated as the effect on 5mC levelsmediated by changes in proportions
of the 16 cell subsets due to the given factor. We estimated the
mediated effect of aging, sex, variables related to smoking, CMV ser-
ostatus and heart rate. Themediated effect was estimated using a two-
stage procedure. First, we fittedmodels withmeasured proportions of
immune cells as response variables. Let ci be a vector of measured
proportions of the 15 blood subsets, excluding neutrophils. Let cni
denote the n:th entry of the vector ci , i.e., the measured proportion of
the n:th cell-type for the i:th individual. Introduce the vector ki of
covariate values for the i:th individual, including age (3DoF splinewith
an entry for each term), sex, smoking, CMV serostatus and ancestry (2
PCs), but excluding the variable of interest xi (mediated effect of aging
was estimated with a linear term). For the model of the n:th cell-type,
let βn

k be the parameter vector for the covariate vector ki and βn
x the

parameter for the variable of interest xi. In the first stage, we fitted the
models,

Efcni ∣xi,kig=β0 + xiβ
n
x +k

t
iβ

n
k , n= 1,::,15: ð8Þ

Next, let ypi be 5mC levels in theMvalue scale for thep:th CpG site,
θp
x the parameter for the variable of interest, and θp

c and θp
k parameter

vectors for the effects of cell proportions and covariates. In the second
stage, we fitted the models,

Efypi ∣xi,ci,kig=θp0 + xiθ
p
x + c

t
iθ

p
c +k

t
iθ

p
k : ð9Þ

The mediated effect of xi on DNA methylation was estimated by
βt
xθ

p
c (ref. 34). Inference was performed by the parametric bootstrap.

Thedirect effects adjusted by deconvolutionmethods. To compute
the IDOL and Houseman-adjusted effects, we estimated propor-
tions of CD4+ and CD8+ T cells, B cells, NK cells, monocytes, and
neutrophils, using the estimateCellCounts2 function in the Flow-
Sorted.Blood.EPIC package with either Houseman et al.’s CpG sites,
or IDOL optimized CpG sites112. For age, sex, smoking status, CMV
serostatus, heart rate, ear temperature and hour of blood draw, we
estimated the IDOL- and Houseman-adjusted effect by adjusting for
estimated 5 proportions in the model specified by Eq. (7), instead of
the 15 measured proportions, excluding neutrophils because of the
sum-to-one constraint. To compute the EPIC IDOL-Ext-adjusted
effects, we estimated proportions of 12 major cell types in blood,
including CD4+ and CD8+ T cells, naïve and differentiated subtypes
of CD4+ and CD8+ T cells, neutrophils, monocytes, basophils, eosi-
nophils, NK cells, regulatory T cells, naïve andmemory B cells, using
the IDOL-Ext reference matrix in the estimateCellCounts2 function
from the FlowSorted.BloodExtended.EPIC R package29. We esti-
mated the IDOL-Ext-adjusted effect by including 11 estimated pro-
portions in Eq. (7) instead of the 15 measured proportions,
excluding neutrophils because of the sum-to-one constraint.
Finally, for comparison purposes, we also computed the association
between non-genetic factors and 5mC levels by adjusting, in Eq. (7),
for the proportions of the 5 major cell types measured by flow
cytometry, instead of the 15 measured proportions, excluding again
neutrophils.

Prediction of CMV serostatus
We built a prediction model to estimate CMV serostatus from DNA
methylation data using elastic net regression for binary data113,
implemented in the glmnet R package114. We included all CpG sites
as predictors in the model, including those on the X and Y chro-
mosomes. The model was built from 863,906 CpG sites in
969 samples. The elastic net model has two tuning parameters that
determine the degree of regularization of the predictor function.
We selected both tuning parameters by two-dimensional five times
repeated cross-validation over the two parameters. The final model
fitted on the full data set includes 547 CpG sites with non-zero
parameters.

Detection of the dispersion of DNA methylation with age
To estimate changes in dispersion of 5mC levels with age, we fit-
ted regression models where the residual variance depends on
age. Let ypi be 5mC levels on the M value scale for the p:th CpG site
and the i:th individual. Using similar notations as above, we esti-
mated the dispersion effect of age by the parameter θp in the
models,

ypi =μ
p + ctiβ

p
c + SNPp

i

� �t
βp
SNP + f

p
Age Agei

� �
+Womaniβ

p
Woman

+ Exsmokeriβ
p
Exsmoker + Smokeriβ

p
Smoker + CMViβ

p
CMV

+ PC1iβ
p
PC1 + PC2iβ

p
PC2 + ε

p
i ,

ð10Þ

where

εpi ~N 0, σ2
i,p

� �
, logσi,p = τ

p +Ageiθ
p
: ð11Þ

We devised a hypothesis test for θ by a likelihood ratio test
comparing the model in Eq. (11), to a model with

εpi ~N 0,σ2
p

� �
, logσp = τ

p: ð12Þ

As a sensitivity analysis, we also fitted a model with

εpi ~N 0, σ2
i,p

� �
, logσi,p = τ

p +Ageiθ
p + ctiβ

p
c : ð13Þ
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In this case, the hypothesis test for θ was done by comparing to a
model with

εpi ~N 0, σ2
i,p

� �
, logσi,p = τ

p + ctiβ
p
c : ð14Þ

These models were fitted with the gamlss R package115.

Local meQTL mapping analyses
Local meQTL mapping was performed using the MatrixEQTL R
package116. Association was tested for each CpG site and each SNP in a
100-Kb window around the CpG site, by fitting a linear regression
model assuming an additive allele effect. Models included, as pre-
dictors, the 15 immune cell proportions, a nonlinear age term encoded
by 3 degrees-of-freedom (DoF) natural splines, sex, smoker status, ex-
smoker status and CMV serostatus. We also adjusted for the top two
PCs of a PCA of the genotype data. We did not include more PCs
because of the low population substructure observed in the cohort25.
For the i:th individual and the p:th CpG site, let ypi be the measured
5mC levels on the M value scale, SNPp,m

i the minor allele count of the
m:th tested SNP for theCpG site and f p,mAge Agei

� �
a nonlinear age termof

natural splines.Moreover, let the vector ci bemeasuredproportions of
the 15 immune cell-types for the i:th individual, excluding neutrophils,
and βp,m

c the corresponding parameter vector. The additive allele
effect of the SNP was estimated by the parameter βp,m

m in the models,

ypi =μ
p,m +SNPp,m

i βp,m
m + f p,mAge Agei

� �
+Womaniβ

p,m
Woman

+ Exsmokeriβ
p,m
Exsmoker + Smokeriβ

p:m
Smoker

+ CMViβ
p,m
CMV + PC1iβ

p,m
PC1 + PC2iβ

p,m
PC2 + c

t
iβ

p,m
c + εp,mi ,

ð15Þ

where εp,mi is a symmetrical zero-mean distribution with constant
variance.

Remote meQTL mapping analyses
Testing all possible associations between 644,517 CpG sites and
5,699,237 SNPs would require performing 3769 billion statistical tests.
To reduce the multiple testing burden, remote meQTL mapping was
conducted on a selection of 50,000CpG siteswith the highest residual
variance in the model described in Eq. (15), but withm indexing in this
case only the most associated local SNP for the p:th CpG site. For each
of the 50,000 selected CpG sites, we then fitted one model per SNP
located outside of a 1-Mb window around the CpG site. For each SNP-
CpG pair, we estimated the additive allele effect of the remote SNP
using the model specified in Eq. (15) but with m now indexing remote
SNPs for the p:th CpG site. Both local and remote meQTL mapping
testswere corrected formultiple testing by theBonferroni adjustment.

Detection of independent remote meQTLs
We designed the following scheme to compute a set Φ of indepen-
dently associated remote SNPs for each CpG site, where all such SNPs
are associated with 5mC levels yp at the p:th CpG site, conditional on
the most associated local SNP and other SNPs inΦ. Define X1 to be the
set of SNPs with a remote association to yp and let x0 be the most
associated significant local SNP, if it exists. The set X1 typically includes
several SNPs that are in linkagedisequilibrium (LD). The algorithmuses
an iterative procedure to build sets Mj of SNPs, where in the j:th
iteration, SNPs that are not associated with 5mC levels at the CpG site
conditional on SNPs included in Mj−1 are discarded, while the most
associated is retained inMj. In thefinal step, the setΦ is constructed by
elements of the final set M that are associated with 5mC levels at the
CpG site conditional on all the other elements in M. Intuitively, Φ
consists of the most associated SNP in each LD block. The algorithm is
given in pseudocode in Algorithm (1), where the condition βp ≠ 0 is
determined by an F-test on the level α = 10−6.

Algorithm 1. Forming a set of remote independently associated SNPs
with a CpG site.

If the CpG site is under local genetic control then letM1 = x0, otherwise
let M1 = ∅
Repeat for j = 1, 2,…
P = x 2 Xj nMj : β

p
x ≠0

n
in ypi =μ

p + xiβ
p
x +

P
z2Mj

ziβ
p
z + ε

p
i , ε

p
i ~ 0,σ2

p

� �o

If P = ∅ Exit
Xj + 1 =P
Mj+1 = Mj ∪ {x : x SNP with the smallest P-value in P}
End
Φ=

�
x 2 Mj + 1 n x0 : βp

x≠0
in ypi =μ

p + xiβ
p
x +

P
z2Mj + 1nfxgziβ

p
z + ε

p
i , ε

p
i ~

�
0, σ2

p

��

Cell-type-dependent effects of genetic and non-genetic factors
on DNA methylation
To investigate whether the effects of a factor on DNA methylation
depend on the proportion of myeloid cells in blood, we fitted models
that included an interaction term between the factor of interest (i.e.,
age, sex, smoking status, CMV serostatus and genetic variants) and the
proportion ofmyeloid cells, cmi , defined as the sum of the proportions
of cell-types from the myeloid lineage. With the same notations as
above, but with ypi being 5mC levels on the β value scale for the p:th
CpG site and the i:th individual, we estimated the cell-type-dependent
effects of non-genetic factors by fitting the models,

ypi =μ
p +Ageiβ

p
Age +CMViβ

p
CMV +Womaniβ

p
Woman + Smokeriβ

p
Smoker

+ PC1iβ
p
PC1 + PC2iβ

p
PC2 + c

m
i β

p
cm + cmi

× Womaniθ
p
Woman +Ageiθ

p
Age + Smokeriθ

p
Smoker +CMViθ

p
CMV

� �
+ εpi :

ð16Þ

We also investigated whether the effect of genotypes could be
dependent on the proportion of myeloid cells in the sample. For the
p:th CpG site and the i:th individual, let SNPp,k

i be the minor allele
counts of the significant local SNP with the smallest P-value and
independently associated remote SNPs. In this case, we also use 5mC
levels on the β value scale. We estimated the cell-type-dependent
effects of genetic factors by fitting the models,

ypi =μp + f pAge Agei
� �

+CMViβ
p
CMV +Womaniβ

p
Woman + Smokeriβ

p
Smoker

+ PC1iβ
p
PC1 + PC2iβ

p
PC2 + c

m
i β

p
cm +

X
k
SNPp,k

i βSNPp,k

+ cmi
X

k
SNPp,k

i θSNPp,k

� �
+ εpi :

ð17Þ

Inference in both cases was done by Wald tests with
heteroscedasticity-consistent standard errors estimated by the sand-
wich R package117.

Detection of gene × environment interactions
We tested whether age, sex, CMV serostatus, smoking status or CRP
levels could have a genotype-dependent effect on the DNA methy-
lome. For the i:th individual and the p:th CpG site, let ypi be the 5mC
levels on theMvalue scale, SNPp,k

i , k = 1, . . . ,Kp, theminor allele counts
of the significant local meQTL with the lowest P-value and the Kp � 1
independently associated remote meQTLs, and ci the vector of 15
measured immune cell proportions with corresponding parameter
vector βp

c . Interaction effects were estimated for each CpG site in the
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model,

E ypi ∣SNP
p,1
i , . . . , SNPp,Kp

i , Agei,Womani, Smokeri, CMVi

n o

= μp +
XKp

k = 1
SNPp,k

i βSNPp,k + ctiβ
p
c +PC1iβ

p
PC1 + PC2iβ

p
PC2 +Ageiβ

p
Age

+Womaniβ
p
Woman + Smokeriβ

p
SmokerCMViβ

p
CMV

+
XKp

k = 1
SNPp,k

i Ageiθ
p,k
Age +Womaniθ

p,k
Woman + Smokeriθ

p,k
Smoker + CMViθ

p,k
CMV

� �

ð18Þ

We investigated effects of CRP levels in a separate model that
simply added a log-transformed CRP term to Eq. (18). Inference was
done by Wald tests with heteroscedasticity-consistent standard errors
estimated by the sandwich R package117.

Estimation of proportions of explained 5mC variance
According to our analyses, 5mC levels in the healthy population are
mainly associated with local genetic variation, blood cell composition,
age, sex, smoking, CMV infection and CRP levels. We grouped these
variables into four categories: genetic, cell composition, intrinsic (age
and sex) and exposures (smoking, CMV infection and CRP levels). For
the p:th CpG site and the i :th individual, we collected observations of
the minor allele count for the most associated local SNP in xp,g

i , the
proportions of the 15 cell types, excluding neutrophils, in the vectorxc

i ,
intrinsic factors (sex and natural spline expanded values of age) in the
vector xin

i and exposures (smoking status, CMV serostatus and log-
transformed CRP levels) in the vector xe

i , with corresponding para-
meters βp

g , β
p
c , β

p
in and βp

e . We interpret here log-transformed CRP
levels as a proxy measure of the exposure of chronic low-grade
inflammation. For each CpG site, we define linear predictor terms by

f pg xp,gi

� �
= xp,gi βp

g , ð19Þ

f pc xc
i

� �
= xc

i

� �t
βp
c , ð20Þ

f pin xin
i

� �
= xin

i

� �t
βp
in, ð21Þ

f pe xe
i

� �
= xe

i

� �t
βp
e ð22Þ

These functions vary in their degrees of freedom, so to get a fair
comparison between them, we estimated group effect sizes as the out-
of-sample proportion of variance explained by each group predictor.
This estimation is done by indexing samples into two disjoint index
groups I1 and I2, fitting the models on samples from I1, and evaluating
the prediction accuracy on samples from I2.

Let ypi be 5mC levels for thep:th CpG site on theβ value scale. Take
cell composition as example. To compute the total effect of cell
composition on 5mC levels at the CpG site, we first fit a model with
individuals in I1,

yp,ci =μp + xc
i

� �t
βp
c , i 2 I1 ð23Þ

with parameters β̂
p

c and μ̂p estimated by least squares. We then
define the total effect size to be the squared correlation between the
observations and the out-of-sample predictions in individuals in I2,

RTotc

� �2
= cor yj,ŷ

p,c
j

� �2
, j 2 I2: ð24Þ

Total effects for the other predictor groups were defined
analogously.

For groups other than the cell composition group, we also com-
puted a direct effect. For each group, it was computed as the added
out-of-sample proportion of variance explained when adding the
group predictor term to that of the cell composition group. Take the
exposures group as an example, the direct effect was computed by

RD
e

� �2
= RTote+ c

� �2
� RTotc

� �2
, ð25Þ

where RTote+ c

� �2
is the total effect of the sum of the predictor terms for

exposures and cell composition,

f c+ e = f
p
c xc

i

� �
+ f pe xe

i

� �
: ð26Þ

To mitigate the impact of sampling on estimates of total and
direct effects, we did four independent repeats of five-fold cross-vali-
dation and averaged effect sizes across all 20 samples. To have an
unbiased estimation of the out-of-sample explained variance, we redid
a local meQTL mapping on the training set in each iteration of the
cross-validation scheme. The algorithm for drawing samples of the
total effect is detailed in Algorithm (2).

Algorithm2. Cross-validation for estimating out-of-sample group total
effect size.

Repeat 4 times:
With equal probability, assign an integer between 1 and 5 to all
individuals.
For k = 1,…,5
Index individuals assigned k as Ik , the others are indexed as Ink
Select SNP for the predictor f pg by performing a local meQTL mapping
on individuals in I∖k
For predictor f pn 2 ff pg , f pc , f pin, f pe g
Estimate μ̂p, β̂

p

n with I1 = I\k
Compute RTotn

� �2
by Eq. (24) with I2 = Ik

The scheme to sample the direct effects is analogous. Finally, we
estimated an effect size for interactions between the local SNP and
non-genetic factors for each CpG site. It was computed, similarly to Eq.
(25), as the added out-of-sample proportion of variance explained by
the regression function,

f pInt SNPp
i ,Agei,Womani,CMVi,ExSmokeri,Smokeri,CRPi

� �

=μp + SNPp
i β

p
SNP +Ageiβ

p
Age +Womaniβ

p
Woman +CMViβ

p
CMV

+ ExSmokeriβ
p
ExSmoker + Smokeriβ

p
Smoker + log CRPi

� �
βp
CRP

+ SNPp
i

�
Ageiθ

p
Age +Womaniθ

p
Woman +CMViθ

p
CMV + ExSmokeriθ

p
ExSmoker

+ Smokeriθ
p
Smoker + log

�
CRPi

�
θpCRP

�

ð27Þ
compared to the same regression function without interaction

terms,

fpMain SNPp
i ,Agei,Womani,CMVi,ExSmokeri,Smokeri,CRPi

� �

=μp +SNPp
i β

p
SNP + Ageiβ

p
Age +Womaniβ

p
Woman +CMViβ

p
CMV

+ ExSmokeriβ
p
ExSmoker + Smokeriβ

p
Smoker + log CRPi

� �
βp
CRP:

ð28Þ

Biological annotations
Information about the position, closest gene and CpG density of each
CpG site was obtained from the Illumina EPIC array manifest v.1.0 B4.
We retrieved the chromatin state of regions around each CpG site,
using the 15 chromatin states inferredwith ChromHMM for CD4+ naive
T cells by the ROADMAP Epigenomics consortium15. We used
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peripheral blood mononuclear cells (PBMCs) as reference. The data
was downloaded from the consortium webpage (https://egg2.wustl.
edu/roadmap/web_portal/chr_state_learning.html). The transcription
factor binding site data used was public CHIP-seq data collected and
processed for the 2020 release of the ReMap database118, including a
total of 1165 TFs. Binding sites include both direct and indirect binding.
Enrichment analyses were performed by creating simple two-way
tables for each target set and each annotation (i.e., chromatin states,
CpG density, transcription factor binding site), and then performing
Fisher’s exact test. Gene ontology enrichments were computed with
the gometh function in the missMethyl R package119.

We tested if a set of x local or remote meQTL SNPs is enriched in
disease- or trait-associated variants, by sampling at random, among all
tested SNPs, 15,000 sets of x SNPs with minor allele frequencies mat-
ched to those of meQTL SNPs. For each resampled set, we calculated
the proportion of variants either known to be associatedwith a disease
or trait, or in LD (set here to r2 > 0.6) with a disease/trait-associated
variant (P-value < 5 × 10−8; EBI-NHGRI Catalog of GWAS hits version
e100 r2021-01-1). The enrichment P-value was estimated as the per-
centage of resamples for which this proportion was larger than that
observed in meQTL SNPs. LD was precomputed for all 5,699,237 SNPs
with PLINK 1.9 (with arguments ‘–show-tags all–tag-kb 500–tag-
r2 0.6’)120.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The Infinium MethylationEPIC raw and processed data generated in
this study27 have been deposited in the Institut Pasteur data repository,
OWEY, which can be accessed via the following link: https://doi.org/10.
48802/owey.f83a-1042. All association statistics obtained in this study
(i.e., the 141 EWAS and interaction models, local meQTLmapping) can
be explored and downloaded from the web browser http://mimeth.
pasteur.fr/. The SNP array data can be accessed in the European
Genome-Phenome Archive (EGA) with the accession code
EGAS00001002460. All Milieu Intérieur datasets can be accessed by
submitting a data access request tomilieuinterieurdac@pasteur.fr, the
Milieu Intérieur data access committee (DAC). The DAC informs all the
research participants of the data access request and grants data access
if the request is consistent with the informed consent signed by the
participants. In particular, research on Milieu Intérieur datasets is
restricted to research on the genetic and environmental determinants
of human variation in immune responses. Data access is typically
granted two months after request submission.

Code availability
All the code supporting the current study, including the CMV estima-
tion model, has been uploaded to GitHub:121 https://github.com/
JacobBergstedt/MIMETH.
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