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ABSTRACT. Extracting dynamical pairwise correlations and identifying key residues from large molecular dynamics trajectories or normal mode analysis of coarse-grained models are important for explaining various processes like ligand binding, mutational effects, and long-distance interactions. Efficient and flexible tools to perform this task can provide new insights about residues involved in allosteric regulation and protein function. In addition, combining and comparing dynamical coupling information with sequence coevolution data can help to understand better protein function. To this aim, we developed a Python package called correlationplus to calculate, visualize and analyze pairwise correlations. In this way, the package aids to identify key residues and interactions in proteins. The source code of correlationplus is available under LGPL version 3 at https://github.com/tekpinar/correlationplus. The current version of the package (0.2.0) can be installed with common installation methods like conda or pip in addition to source code installation. Moreover, docker images are also available for usage of the code without installation.

INTRODUCTION.

Proteins are macromolecular machines performing essential functions in the cell. Protein function is intertwined to protein dynamics, structure and sequence. Because the amount of dynamical, structural and genomic data on proteins is increasing very rapidly, integrating all this information and inferring meaningful relations relevant to protein function from this data necessitates new analysis techniques.

In particular, extracting information from dynamical data and connecting this data to protein function is a major challenge. Protein dynamics can be studied with various experimental and computational methods. Molecular dynamics (MD) simulations and normal mode analysis of coarse-grained models such as the elastic network models (ENMs) are among the most widely used computational methods to study the dynamical properties of proteins. These two methods produce large amounts of data to be analyzed. Extracting pairwise couplings from this data and identifying key residues playing a role in communication between different parts of a protein is essential because it has been shown that the computed dynamical couplings agree with different experimental data for various proteins [START_REF] Kormos | Do collective atomic fluctuations account for cooperative effects? Molecular dynamics studies of the U1A-RNA complex[END_REF][START_REF] Selvaratnam | Mapping allostery through the covariance analysis of NMR chemical shifts[END_REF][START_REF] Akimoto | Signaling through dynamic linkers as revealed by PKA[END_REF][START_REF] Wang | Mapping allosteric communications within individual proteins[END_REF][START_REF] Yildirim | Competing Roles of Ca(2+) and Nonmuscle Myosin IIA on the Dynamics of the Metastasis-Associated Protein S100A4[END_REF] . Computing pairwise dynamical couplings requires fast, flexible and accessible tools. As a result, developing such tools is a common theme in structural bioinformatics. Here, we developed a Python package called correlationplus to calculate, visualize and analyze pairwise correlations and identify key residues in proteins.

Recently, sequence coeveolution data analysis combined with machine learning methods resulted in impressive breakthroughs in computational protein structure determination [START_REF] Jumper | Highly accurate protein structure prediction with AlphaFold[END_REF][START_REF] Tunyasuvunakool | Highly accurate protein structure prediction for the human proteome[END_REF] . These studies, along with many others, indicate that protein sequences may contain information about protein structure, function, dynamics and potentially allostery. Due to this reason, correlationplus includes some functionality to process and analyze sequence coevolution data or any other coupling data given in a full matrix format. In this way, we aim to build a bridge between protein dynamics and sequences to infer meaningful relations relevant to protein function and allostery.

THEORETICAL BACKGROUND

Coarse-grained Elastic Network Models (CG-ENMs)

There are numerous forms of elastic network models with different levels of atomic details and force fields. Gaussian network model (GNM) [START_REF] Bahar | Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonic potential[END_REF] , anisotropic network model (ANM) [START_REF] Atilgan | Anisotropy of fluctuation dynamics of proteins with an elastic network model[END_REF] , parameterfree ANM [START_REF] Yang | Protein elastic network models and the ranges of cooperativity[END_REF] , rotation-translation blocks (RTB) [START_REF] Tama | Building-block approach for determining low-frequency normal modes of macromolecules[END_REF] , sequence and distance dependent ENM [START_REF] Dehouck | Effective harmonic potentials: insights into the internal cooperativity and sequence-specificity of protein dynamics[END_REF] are some commonly used models. Even though all-atoms of a system can be considered for normal mode analysis, selecting some atoms to represent an amino acid, namely coarse-graining, reduces computational work significantly. Due to this advantage, we used only coarse-grained models in this work. Correlationplus allows the users to compute normal modes based on coarse-grained (CG) GNM and ANM, which are explained further below.

Gaussian Network Model (GNM)

In CG-GNM, all Cα atoms (N particles) of a protein within a cutoff radius (Rc=10 Å by default) are connected with springs of uniform stiffness (=1.0) and they interact through the potential given below [START_REF] Bahar | Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonic potential[END_REF][START_REF] Tirion | Large Amplitude Elastic Motions in Proteins from a Single-Parameter, Atomic Analysis[END_REF] 

𝑉 𝐺𝑁𝑀 = γ 2 [∑ θ(𝑅 𝑐 -𝑅 𝑖𝑗 )(𝑹 𝒊𝒋 -𝑹 𝒊𝒋 𝟎 ) 2 𝑁 𝑖,𝑗 ] = 𝛾 2 [∑ (𝜟𝑹 𝒊 Γ 𝑖𝑗 𝜟𝑹 𝒋 ) 𝑁 𝑖,𝑗 ] (1) 
𝜃(𝑅 𝑐 -𝑅 𝑖𝑗 ) denotes Heaviside step function and it ensures that only interactions within a cutoff radius (Rc) are considered. Rij is instantaneous distance vector between Cα atoms of residue i and j, while R 0 ij is the equilibrium distance vector between the same atoms. ΔRj = Rj -R 0 j is distance difference vector of Cα atom of residue j. Rj is the instantaneous position vector for Cα atom of residue j at any moment while R 0 j is equilibrium position vector for Cα atom of residue j. ij is ij th element of Kirchoff matrix  and this element is zero for interactions beyond the cutoff radius, it is -1 for all distinct i and j elements. N-1 non-zero eigenvectors of the Kirchoff matrix constitute the normal modes of CG-GNM, where N is number of Cα atoms.

Anisotropic Network Model (ANM)

In CG-ANM, all Cα atoms of a protein within a certain cutoff radius (Rc=15 Å by default) interact with each other through a simple Hookean potential [START_REF] Atilgan | Anisotropy of fluctuation dynamics of proteins with an elastic network model[END_REF] :

𝑉 𝐴𝑁𝑀 = 𝛾 2 [∑ 𝜃(𝑅 𝑐 -𝑅 𝑖𝑗 )(𝑅 𝑖𝑗 -𝑅 𝑖𝑗 0 ) 2 𝑁 𝑖,𝑗 ] (2) 
In this potential, 𝛾 has the same definition and default value as in GNM. R 0 ij denotes the equilibrium distance between Cα atoms of residue i and j, while Rij is the instantaneous distance between the same pair of Cα atoms. Using this potential, one can build a hessian matrix and find its eigenvectors to obtain 3N-6 normal modes of a protein, where N is the number of Cα atoms .

This model has been successful in explaining experimentally observed conformational changes of proteins as well as fluctuations around native conformations and coupled dynamics of proteins [START_REF] Atilgan | Anisotropy of fluctuation dynamics of proteins with an elastic network model[END_REF][START_REF] Tama | Conformational change of proteins arising from normal mode calculations[END_REF][START_REF] Tekpinar | Only a Subset of Normal Modes is Sufficient to Identify Linear Correlations in Proteins[END_REF] .

Linear Correlations from Dynamics

There are two widely used linear correlation metrics that can be obtained from dynamics data: dynamical cross-correlations (DCC) and linear mutual information (LMI) of protein fluctuations.

These computed linear correlations can provide insights about dynamical couplings in proteins.

Previous studies showed that the information obtained from the dynamical correlations are supported by various experimental methods [START_REF] Kormos | Do collective atomic fluctuations account for cooperative effects? Molecular dynamics studies of the U1A-RNA complex[END_REF][START_REF] Kormos | A study of collective atomic fluctuations and cooperativity in the U1A-RNA complex based on molecular dynamics simulations[END_REF] . For example, Chesca NMR correlations 2 are in qualitative agreement with both DCC and LMI results for Chemotactic Y protein [START_REF] Lee | Crystal structure of an activated response regulator bound to its target[END_REF] , which is an allosteric protein (See Figure S1). In addition, the correlations can be used for automated domain classification and dynamical community analyses [START_REF] Melvin | Visualizing correlated motion with HDBSCAN clustering[END_REF][START_REF] Calligari | Decomposition of Proteins into Dynamic Units from Atomic Cross-Correlation Functions[END_REF][START_REF] Shudler | BlockMaster: partitioning protein kinase structures using normal-mode analysis[END_REF] . As a result, the dynamical correlations can be useful by themselves or they can be processed further by graph theoretical approaches to extract more information. Theoretical background on how to calculate DCC and LMI from both MD trajectories or normal modes obtained from CG-ENMs is introduced below.

Dynamical Cross-Correlation (DCC)

One can calculate DCC between residues i and j from a set of models. The source of these models can be experimental methods like NMR or theoretical methods such as MD trajectories or normal modes. DCC can be defined as follows:

𝐷𝐶𝐶 𝑖𝑗 = 〈Δ𝑹 𝒊 • Δ𝑹 𝒋 〉 (3) 
Here, Δ𝑅 𝑖 = 𝑹 𝒊 -〈𝑹 𝒊 〉 is the positional difference vector of atom i with respect to its average position after an overall fitting procedure has been conducted. < > indicates that an averaging over selected models is performed.

In the case of normal modes, DCC can be obtained with Equation (4).

𝐷𝐶𝐶 𝑖𝑗 = 3𝑘 𝐵 𝑇 𝛾 ∑ 𝝁 𝒍 𝒊 𝝁 𝒍 𝒋 𝜆 𝑙 𝐿 𝑙=1 (4) 
Here, kB denotes Boltzmann constant and T is temperature. λl denotes eigenvalue of mode l and 𝝁 𝒍 is the corresponding eigenvector. It is convenient to normalize DCCs as follows:

𝑛𝐷𝐶𝐶 𝑖𝑗 = 𝐷𝐶𝐶 𝑖𝑗 [𝐷𝐶𝐶 𝑖𝑖 𝐷𝐶𝐶 𝑗𝑗 ] 1/2 (5) 
nDCC ranges between [-1, 1]. While 0 indicates no correlations, 1 (-1) means complete correlation (anti-correlation). If we are only interested in the existence of the correlations between residue pairs rather than the direction of the correlations, only the absolute values of nDCCs can be used. In this case, all values will be between [0, 1].

Linear Mutual Information (LMI)

Despite its widespread usage, nDCC has some problems. If two atoms move in perpendicular directions simultaneously, their correlation cannot be measured with nDCC due to the dot product in Equation 3. Instead, LMI is a parameter that does not suffer from angular dependency as encountered in DCC [START_REF] Lange | Generalized correlation for biomolecular dynamics[END_REF] . To calculate LMI between residues i and j, one has to calculate 𝐶 𝑖 = 〈𝒙 𝒊 𝑻 𝒙 𝒊 〉 and 𝐶 𝑖𝑗 = 〈(𝒙 𝒊 , 𝒙 𝒋 ) 𝑻 (𝒙 𝒊 , 𝒙 𝒋 )〉 where 𝒙 𝒊 = 𝑹 𝒊 -〈𝑹 𝒊 〉. Here, Ri denotes position vector of atom i.

Inserting Ci, Cj and Cij into the following equation

𝐿𝑀𝐼 𝑖𝑗 = 1 2 [ln (det 𝐶 𝑖 ) + ln (det 𝐶 𝑗 ) -ln (det 𝐶 𝑖𝑗 )] (6) 
gives us the pairwise LMI. When the values are normalized, 0 value of LMI means that there is no correlation, while 1 means they are completely correlated.

DESCRIPTION AND FEATURES

Correlationplus is a Python 3 package that can be executed on Linux, Mac OS and Windows operating systems. Even though it can be installed from the source code given at https://github.com/tekpinar/correlationplus, pip/conda based installation procedures were implemented to facilitate the installation. Correlationplus utilizes several high-quality Python packages like Numpy 22 , Matplotlib [START_REF] Hunter | Matplotlib: A 2D Graphics Environment[END_REF] , Prody [START_REF] Zhang | ProDy 2.0: Increased Scale and Scope after 10 Years of Protein Dynamics Modelling with Python[END_REF][START_REF] Bakan | ProDy: Protein Dynamics Inferred from Theory and Experiments[END_REF] , NetworkX [START_REF] Hagberg | Exploring Network Structure, Dynamics, and Function using NetworkX[END_REF] and MDAnalysis [START_REF] Gowers | MDAnalysis: A Python Package for the Rapid Analysis of Molecular Dynamics Simulations[END_REF][START_REF] Michaud-Agrawal | MDAnalysis: a toolkit for the analysis of molecular dynamics simulations[END_REF] . However, the end-user does not have to preinstall these packages because the dependencies are handled automatically by pip or conda. Due to multiple operating system support and automated installation procedures, correlationplus aims to reach a broad audience of computational and experimental structural biology community.

Correlationplus contains four major modules that can be used both via command-line script interfaces as well as interactively. The modules are named 'calculate', 'visualize', 'centralityAnalysis' and 'pathsAnalysis'. To facilitate the usage of the modules, there is a script interface for each module. The names of the scripts are as follows: 'calculate', 'visualize', 'analyze' and 'paths'. After installation of the package, each script can be invoked from the terminal as follows: 'correlationplus calculate -h' etc. Each script will be introduced in the following subsections.

Calculate Script

The 'calculate' script of correlationplus can compute DCCs [START_REF] Ichiye | Collective motions in proteins: a covariance analysis of atomic fluctuations in molecular dynamics and normal mode simulations[END_REF] and LMIs between pairs of residues [START_REF] Lange | Generalized correlation for biomolecular dynamics[END_REF] (Figure 1 a). While only a PDB file is sufficient for CG-ENM-based computations, MD coordinate trajectories need to be provided to extract dynamical correlations from MD simulations.

ENM-based approach can yield dynamical information quickly albeit with limited atomic details.

On the other hand, MD-based data can provide atomic details such as the influence of ligand binding or mutational effects, but at a higher computational cost. Users can select the method according to their needs and resources.

Prody package [START_REF] Bakan | ProDy: Protein Dynamics Inferred from Theory and Experiments[END_REF] is utilized for the calculation of normal modes according to the gaussian network model (GNM) or the anisotropic network model (ANM). GNM can be more efficient for large protein complexes. There are recommended values for number of normal modes (100) and the cutoff distance (10 Å for GNM and 15 Å for ANM) [START_REF] Tekpinar | Only a Subset of Normal Modes is Sufficient to Identify Linear Correlations in Proteins[END_REF] , but these values can be tuned by the user via command line arguments. Even though only two CG-ENMs (GNM and ANM) are used to compute normal modes in correlationplus, there is not any restriction on the usage of the other CG-ENMs. As a result, they can also be used directly (by providing the normal modes as trajectory files) or indirectly (by providing the DCC or LMI matrices).

Correlationplus can handle common MD trajectory formats like dcd, xtc and trr. Thanks to the command-line arguments implemented, only a certain part of a trajectory can also be selected in the calculations. Trajectory handling support is provided by the highly efficient MDAnalysis Python package [START_REF] Gowers | MDAnalysis: A Python Package for the Rapid Analysis of Molecular Dynamics Simulations[END_REF][START_REF] Michaud-Agrawal | MDAnalysis: a toolkit for the analysis of molecular dynamics simulations[END_REF] . In fact, even models obtained from NMR experiments or models that are not based on MD simulations 30 can be used to compute DCC or LMI, if converted to an appropriate trajectory format. This ability of correlationplus to handle different formats and to process data from various sources gives it a high flexibility and increases its general applicability.

Typical output of this script is a full matrix of the selected correlation quantity. This matrix can be used -along with a protein structure in PDB format-in 'visualize', 'analyze' and 'paths' scripts, which are described in the following subsections.

Visualize Script

The 'visualize' script of correlationplus is integrated with the commonly used protein visualization software VMD [START_REF] Humphrey | VMD: visual molecular dynamics[END_REF] and PyMOL [START_REF] Schrodinger | The PyMOL Molecular Graphics System[END_REF] to produce high quality 3D visualizations. This script produces tcl/pml scripts that can be called with VMD/PyMOL to project correlations onto protein structures.

Each pairwise correlation is depicted as a blue cylinder radius is proportional to the strength of the correlation. In its current implementation, normalized dynamical correlation values higher than |0.75| are projected onto the protein structure. However, this default value can be changed easily with script arguments. If only the correlations between distant residues are investigated, a distance filter can also be applied. In this way, only the correlations related to long-distance interactions can be projected on the structure.

Furthermore, the 'visualize' script produces high quality 2D figures of correlation maps. If the protein contains multiple chains, the script can produce inter-chain and intra-chain correlations separately (Figure 1 b). In this way, subunit and domain cooperativity mechanisms can be studied.

Also, this script produces a 2D plot of the distribution of the correlation quantity with respect to inter-residue distances. This information can be useful to evaluate the potential of a given correlation metric to identify long-range allosteric interactions.

Even though the 'calculate' script can only compute dynamical correlations, the 'visualize' script is not limited to these quantities. It can also be used to visualize various sequence coevolution/conservation matrices such as Pearson (pair) correlation coefficient, mutual information and joint Shannon entropy obtained from multiple sequence alignments. Particularly, the output of CoeViz server can be used with the 'visualize' script with minimal effort [START_REF] Baker | CoeViz: a web-based tool for coevolution analysis of protein residues[END_REF] . Moreover, the 'visualize' script can parse coevolution data from EVcouplings server (https://evcouplings.org/) [START_REF] Hopf | The EVcouplings Python framework for coevolutionary sequence analysis[END_REF] . In addition to data from these two servers, the user can visualize any other coupling data given in a full matrix format by specifying the data type as 'generic'. This gives the end-user a significant flexibility to visualize couplings in proteins. In this way, dynamical correlation data can be combined with sequence information obtained by various approaches to extract key residues playing different dynamical or structural roles.

Analyze Script

Combining results of MD simulations or normal modes of CG-ENMs with graph theoretical approaches can yield new insights about protein dynamics and their role in allostery. tRNA:protein complexes, imidazole glycerol phosphate synthase and CRISPR-Cas9 HNH Nuclease are some examples showing the potential of this type of analyses with experimental support [START_REF] Sethi | Dynamical networks in tRNA:protein complexes[END_REF][START_REF] Negre | Eigenvector centrality for characterization of protein allosteric pathways[END_REF][START_REF] Botello-Smith | Robust Determination of Protein Allosteric Signaling Pathways[END_REF][START_REF] East | Allosteric Motions of the CRISPR-Cas9 HNH Nuclease Probed by NMR and Molecular Dynamics[END_REF] . Dynamical communities and various dynamics-based centrality metrics obtained from graph theoretical approaches revealed key residues playing a role in signal transmission and allosteric regulation 39- 41 . Due to these reasons, we implemented a special script to extract graph theoretical features such as degree [START_REF] Di Paola | Protein Contact Networks: An Emerging Paradigm in Chemistry[END_REF] , betweenness [START_REF] Di Paola | Protein Contact Networks: An Emerging Paradigm in Chemistry[END_REF] , closeness [START_REF] Di Paola | Protein Contact Networks: An Emerging Paradigm in Chemistry[END_REF] , current flow betweenness [START_REF] Brandes | Centrality measures based on current flow[END_REF] , current flow closeness, eigenvector centrality [START_REF] Zaki | Data mining and analysis : fundamental concepts and algorithms[END_REF] and community analyses [START_REF] Girvan | Community structure in social and biological networks[END_REF] (Figure 1 c). In this script, a graph is constructed by considering Cα atoms of the protein as nodes of the graph. If the residue correlations are higher than a value-threshold (0.3 for nDCC and LMI) and the inter-node distance is lower than a distance-threshold (7 Å), an edge is constructed between nodes i and j. Since absolute values of the normalized pairwise dynamical correlations are between [0, 1], the weight of each edge can be chosen as -log(|Cij|) for a dynamics-based network, where Cij is the relevant correlation quantity between residues i and j. In this way, edge weights remain always positive. On the other hand, weight of each edge is 1/|Cij| for a pairwise correlation value obtained from sequence coevolution metrics and or any other generic data to avoid negative weights for correlation/coupling values greater than 1. The weight is bidirectional in all cases; therefore, the network is an undirected network. The initial threshold values are the ones that are recommended in previous studies [START_REF] Sethi | Dynamical networks in tRNA:protein complexes[END_REF][START_REF] Sheik Amamuddy | Impact of Early Pandemic Stage Mutations on Molecular Dynamics of SARS-CoV-2 M(pro)[END_REF] , but users can modify them according to their needs.

We used the well-established NetworkX Python package to calculate graph theoretical quantities [START_REF] Hagberg | Exploring Network Structure, Dynamics, and Function using NetworkX[END_REF] . After the calculations, all centralities are added to the B-factor column of a newlycreated PDB file that can be visualized with any protein viewer by coloring Cα atoms according to their B-factors. Previous studies [START_REF] Penkler | Allosteric Modulation of Human Hsp90alpha Conformational Dynamics[END_REF][START_REF] Tekpinar | Impact of dimerization and N3 binding on molecular dynamics of SARS-CoV and SARS-CoV-2 main proteases[END_REF] showed that active site residues, functional sites and key residues at inter-subunit interfaces can be identified with this kind of analyses (as an example, see the quantity called eigenvector centrality projected on SARS-CoV-2 main protease in Figure 1 c).

Paths Script

We can calculate and visualize optimal and suboptimal communication paths between a source residue and a target residue with the aid of 'paths' script. Only chain ID and a residue ID (as given in the PDB file) is needed both for the source and the target residues (For example, -b A41 -e B41

indicates that source residue is residue 41 of chain A and the target residue is residue 41 of chain B). The paths are weighted as explained in the previous subsection and they are calculated according to the algorithm described by Jin Y. Yen [START_REF] Yen | Finding the K Shortest Loopless Paths in a Network[END_REF] . In addition to the path lengths, tcl and pml scripts helps the end-user visualize these paths quickly with VMD and PyMOL. An example output for the suboptimal communication path between active sites of SARS-CoV-2 main protease is given in Figure 1 d.

DISCUSSION AND CONCLUSION

Here we discuss the main differences between currently available software and correlationplus.

DCC calculation is implemented in several packages such as Carma 50 , Prody [START_REF] Zhang | ProDy 2.0: Increased Scale and Scope after 10 Years of Protein Dynamics Modelling with Python[END_REF][START_REF] Bakan | ProDy: Protein Dynamics Inferred from Theory and Experiments[END_REF] and Bio3D 51 .

Prody is an essential component in the 'calculate' script of correlationplus for obtaining normal mode-based DCCs but it cannot be used to calculate LMI. In addition, visualization and dissection of the correlations as well as network analysis capabilities of correlationplus are features that make it significantly distinct from Carma and Prody packages. Bio3D 51 , which is an R package, has some functionalities similar to correlationplus. However, its trajectory handling (only dcd files) capabilities are more limited compared to correlationplus. MDAnalysis 27, 28 also does not have these capabilities, even though it has some excellent features for trajectory handling and analysis.

In terms of dynamical network analysis, WISP [START_REF] Van Wart | Weighted Implementation of Suboptimal Paths (WISP): An Optimized Algorithm and Tool for Dynamical Network Analysis[END_REF] is an important software to note. It is integrated to VMD to provide visualization of long-range interactions. However, difficulties in its installation and its non-modular architecture fade its appeal for conducting dynamical network analysis with it. Another software with some dynamical network analysis capabilities is xPyder plugin [START_REF] Pasi | xPyder: a PyMOL plugin to analyze coupled residues and their networks in protein structures[END_REF] , which is integrated to PyMOL. Even though its graphical user interface is very advantageous, correlationplus is more flexible since it allows the end-user to use both application programming interface and script interface. In addition, correlationplus allows calculation of more graph centralities than xPyder. A recent dynamical network analysis software that uses only generalized mutual information is also worthy of mentioning. This Python package is named dynetan and it can only calculate generalized mutual information quite efficiently. To summarize, even though there are several packages that has partially overlapping functionalities with our software, correlationplus differs from the other packages in terms of its design: It aims to integrate correlation/coupling data of different origins and extract long-distance interactions from it. 
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 1S1 Figure 1. A summary of functionalities of correlationplus. a) calculate script b) visualize script c) analyze script output with an example showing the eigenvector centrality results for SARS-CoV-2 main protease 48 . d) paths script output showing suboptimal allosteric communication paths between two active site residues of SARS-CoV-2 main protease.
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Correlationplus is a fast and easy-to-use tool to get information about pairwise correlations and to identify key functional components in a protein structure. For a protein with 1500 residues, the full workflow from calculation to all analyses of correlations can be completed within an hour on a typical workstation. In addition, it is possible to analyze and combine coevolution matrices with the dynamical information. In conclusion, correlationplus is an efficient tool to produce, visualize and analyze dynamical information rapidly and combine it with different information sources to understand key residues and pairwise interactions playing allosteric and functional roles in proteins.

DATA AND SOFTWARE AVAILABILITY

The correlationplus is open source and its source code is available under LGPL version 3 at https://github.com/tekpinar/correlationplus. Figure 1 The following file is available free of charge.

Supporting Information contains 1 figure (Figure S1) and an appendix (file type: PDF).
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Erratum

A Python script showing versatility of the correlationplus application programming interface compared to the traditional webservers that perform similar tasks is provided in the correlationplus github repository: https://github.com/tekpinar/correlationplus/blob/master/examples/example_api_usage.py After the proofs of this article were corrected, we were made aware of the existence of the paper by Sheik Amamuddy et. al [START_REF] Sheik Amamuddy | MDM-TASKweb: MD-TASK and MODE-TASK web server for analyzing protein dynamics[END_REF] . This work developed tools similar to ours, but both were developed completely independently. ACKNOWLEDGMENT