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ABSTRACT. Extracting dynamical pairwise correlations and identifying key residues from large 

molecular dynamics trajectories or normal mode analysis of coarse-grained models are important 

for explaining various processes like ligand binding, mutational effects, and long-distance 

interactions. Efficient and flexible tools to perform this task can provide new insights about 

residues involved in allosteric regulation and protein function. In addition, combining and 

comparing dynamical coupling information with sequence coevolution data can help to understand 

better protein function. To this aim, we developed a Python package called correlationplus to 

calculate, visualize and analyze pairwise correlations. In this way, the package aids to identify key 

residues and interactions in proteins. The source code of correlationplus is available under LGPL 

version 3 at https://github.com/tekpinar/correlationplus. The current version of the package (0.2.0) 

can be installed with common installation methods like conda or pip in addition to source code 

installation. Moreover, docker images are also available for usage of the code without installation.  

 

  

https://github.com/tekpinar/correlationplus
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INTRODUCTION.  

Proteins are macromolecular machines performing essential functions in the cell. Protein function 

is intertwined to protein dynamics, structure and sequence. Because the amount of dynamical, 

structural and genomic data on proteins is increasing very rapidly, integrating all this information 

and inferring meaningful relations relevant to protein function from this data necessitates new 

analysis techniques.  

   In particular, extracting information from dynamical data and connecting this data to protein 

function is a major challenge. Protein dynamics can be studied with various experimental and 

computational methods. Molecular dynamics (MD) simulations and normal mode analysis of 

coarse-grained models such as the elastic network models (ENMs) are among the most widely 

used computational methods to study the dynamical properties of proteins. These two methods 

produce large amounts of data to be analyzed. Extracting pairwise couplings from this data and 

identifying key residues playing a role in communication between different parts of a protein is 

essential because it has been shown that the computed dynamical couplings agree with different 

experimental data for various proteins1-5.  Computing pairwise dynamical couplings requires fast, 

flexible and accessible tools. As a result, developing such tools is a common theme in structural 

bioinformatics. Here, we developed a Python package called correlationplus to calculate, visualize 

and analyze pairwise correlations and identify key residues in proteins.  

   Recently, sequence coeveolution data analysis combined with machine learning methods 

resulted in impressive breakthroughs in computational protein structure determination6, 7. These 

studies, along with many others, indicate that protein sequences may contain information about 

protein structure, function, dynamics and potentially allostery. Due to this reason, correlationplus 

includes some functionality to process and analyze sequence coevolution data or any other 
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coupling data given in a full matrix format.  In this way, we aim to build a bridge between protein 

dynamics and sequences to infer meaningful relations relevant to protein function and allostery.  

 

THEORETICAL BACKGROUND    

Coarse-grained Elastic Network Models (CG-ENMs) 

There are numerous forms of elastic network models with different levels of atomic details and 

force fields. Gaussian network model (GNM)8, anisotropic network model (ANM)9, parameter-

free ANM10, rotation-translation blocks (RTB)11, sequence and distance dependent ENM12 are 

some commonly used models. Even though all-atoms of a system can be considered for normal 

mode analysis, selecting some atoms to represent an amino acid, namely coarse-graining, reduces 

computational work significantly. Due to this advantage, we used only coarse-grained models in 

this work. Correlationplus allows the users to compute normal modes based on coarse-grained 

(CG) GNM and ANM, which are explained further below.   

Gaussian Network Model (GNM) 

In CG-GNM, all Cα atoms (N particles) of a protein within a cutoff radius (Rc=10 Å by default) 

are connected with springs of uniform stiffness (=1.0) and they interact through the potential 

given below8, 13 

𝑉𝐺𝑁𝑀 =
γ

2
[∑ θ(𝑅𝑐 − 𝑅𝑖𝑗)(𝑹𝒊𝒋 − 𝑹𝒊𝒋

𝟎 )
2𝑁

𝑖,𝑗 ] =
𝛾

2
 [∑ (𝜟𝑹𝒊Γ𝑖𝑗𝜟𝑹𝒋)𝑁

𝑖,𝑗 ]   (1) 

𝜃(𝑅𝑐 − 𝑅𝑖𝑗) denotes Heaviside step function and it ensures that only interactions within a cutoff 

radius (Rc) are considered. Rij is instantaneous distance vector between Cα atoms of residue i and 
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j, while R0
ij is the equilibrium distance vector between the same atoms. ΔRj = Rj - R0

j  is distance 

difference vector of Cα atom of residue j. Rj is the instantaneous position vector for Cα atom of 

residue j at any moment while R0
j is equilibrium position vector for Cα atom of residue j. ij is 

ijth  element of Kirchoff matrix  and this element is zero for interactions beyond the cutoff 

radius, it is -1 for all distinct i and j elements. N-1 non-zero eigenvectors of the Kirchoff matrix 

constitute the normal modes of CG-GNM, where N is number of Cα atoms.  

 

Anisotropic Network Model (ANM) 

In CG-ANM, all Cα atoms of a protein within a certain cutoff radius (Rc=15 Å by default) interact 

with each other through a simple Hookean potential9:  

𝑉𝐴𝑁𝑀 =
𝛾

2
[∑ 𝜃(𝑅𝑐 − 𝑅𝑖𝑗)(𝑅𝑖𝑗 − 𝑅𝑖𝑗

0 )
2𝑁

𝑖,𝑗 ]     (2) 

In this potential, 𝛾 has the same definition and default value as in GNM. R0
ij denotes the 

equilibrium distance between Cα atoms of residue i and j, while Rij is the instantaneous distance 

between the same pair of Cα atoms. Using this potential, one can build a hessian matrix and find 

its eigenvectors to obtain 3N-6 normal modes of a protein, where N is the number of Cα atoms . 

This model has been successful in explaining experimentally observed conformational changes of 

proteins as well as fluctuations around native conformations and coupled dynamics of proteins9, 14, 

15.     

 

Linear Correlations from Dynamics 

 

There are two widely used linear correlation metrics that can be obtained from dynamics data: 

dynamical cross-correlations (DCC) and linear mutual information (LMI) of protein fluctuations. 
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These computed linear correlations can provide insights about dynamical couplings in proteins. 

Previous studies showed that the information obtained from the dynamical correlations are 

supported by various experimental methods1, 16. For example, Chesca NMR correlations2 are in 

qualitative agreement with both DCC and LMI results for Chemotactic Y protein17, which is an 

allosteric protein (See Figure S1). In addition, the correlations can be used for automated domain 

classification and dynamical community analyses18-20. As a result, the dynamical correlations can 

be useful by themselves or they can be processed further by graph theoretical approaches to extract 

more information. Theoretical background on how to calculate DCC and LMI from both MD 

trajectories or normal modes obtained from CG-ENMs is introduced below. 

 

Dynamical Cross-Correlation (DCC) 

One can calculate DCC between residues i and j from a set of models. The source of these models 

can be experimental methods like NMR or theoretical methods such as MD trajectories or normal 

modes. DCC can be defined as follows:   

𝐷𝐶𝐶𝑖𝑗 = 〈Δ𝑹𝒊 ∙ Δ𝑹𝒋〉        (3) 

Here, Δ𝑅𝑖 = 𝑹𝒊 − 〈𝑹𝒊 〉 is the positional difference vector of atom i with respect to its average 
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position after an overall fitting procedure has been conducted. < > indicates that an averaging over 

selected models is performed.  

   In the case of normal modes, DCC can be obtained with Equation (4).  

𝐷𝐶𝐶𝑖𝑗 =
3𝑘𝐵𝑇

𝛾
∑

𝝁𝒍
𝒊𝝁𝒍

𝒋

𝜆𝑙

𝐿
𝑙=1         (4) 

 

Here, kB denotes Boltzmann constant and T is temperature. λl denotes eigenvalue of mode l and 𝝁𝒍 

is the corresponding eigenvector. It is convenient to normalize DCCs as follows: 

𝑛𝐷𝐶𝐶𝑖𝑗 =
𝐷𝐶𝐶𝑖𝑗

[𝐷𝐶𝐶𝑖𝑖𝐷𝐶𝐶𝑗𝑗]
1/2        (5) 

nDCC ranges between [-1, 1]. While 0 indicates no correlations, 1 (-1) means complete 

correlation (anti-correlation). If we are only interested in the existence of the correlations between 

residue pairs rather than the direction of the correlations, only the absolute values of nDCCs can 

be used.  In this case, all values will be between [0, 1].  

Linear Mutual Information (LMI) 

Despite its widespread usage, nDCC has some problems. If two atoms move in perpendicular 

directions simultaneously, their correlation cannot be measured with nDCC due to the dot product 

in Equation 3. Instead, LMI is a parameter that does not suffer from angular dependency as 

encountered in DCC21. To calculate LMI between residues i and j, one has to calculate 𝐶𝑖 = 〈𝒙𝒊
𝑻𝒙𝒊〉 

and 𝐶𝑖𝑗 = 〈(𝒙𝒊, 𝒙𝒋)
𝑻

(𝒙𝒊, 𝒙𝒋)〉 where 𝒙𝒊 = 𝑹𝒊 − 〈𝑹𝒊〉. Here, Ri denotes position vector of atom i. 

Inserting Ci, Cj and Cij into the following equation  

𝐿𝑀𝐼𝑖𝑗 =
1

2
[ln (det 𝐶𝑖) + ln (det 𝐶𝑗) −  ln (det 𝐶𝑖𝑗)]     (6) 
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gives us the pairwise LMI. When the values are normalized, 0 value of LMI means that there is no 

correlation, while 1 means they are completely correlated.  

 

DESCRIPTION AND FEATURES  

Correlationplus is a Python 3 package that can be executed on Linux, Mac OS and Windows 

operating systems. Even though it can be installed from the source code given at 

https://github.com/tekpinar/correlationplus, pip/conda based installation procedures were 

implemented to facilitate the installation. Correlationplus utilizes several high-quality Python 

packages like Numpy22, Matplotlib23, Prody24, 25, NetworkX26 and MDAnalysis27, 28. However, the 

end-user does not have to preinstall these packages because the dependencies are handled 

automatically by pip or conda. Due to multiple operating system support and automated 

installation procedures, correlationplus aims to reach a broad audience of computational and 

experimental structural biology community.  

    Correlationplus contains four major modules that can be used both via command-line script 

interfaces as well as interactively. The modules are named ‘calculate’, ‘visualize’, 

‘centralityAnalysis’ and ‘pathsAnalysis’. To facilitate the usage of the modules, there is a script 

interface for each module. The names of the scripts are as follows: ‘calculate’, ‘visualize’, 

‘analyze’ and ‘paths’. After installation of the package, each script can be invoked from the 

terminal as follows: ‘correlationplus calculate -h’ etc. Each script will be introduced in the 

following subsections.  

Calculate Script 

https://github.com/tekpinar/correlationplus
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The ‘calculate’ script of correlationplus can compute DCCs29 and LMIs between pairs of 

residues21 (Figure 1 a). While only a PDB file is sufficient for CG-ENM-based computations, MD 

coordinate trajectories need to be provided to extract dynamical correlations from MD simulations. 

ENM-based approach can yield dynamical information quickly albeit with limited atomic details. 

On the other hand, MD-based data can provide atomic details such as the influence of ligand 

binding or mutational effects, but at a higher computational cost. Users can select the method 

according to their needs and resources.   

    Prody package25 is utilized for the calculation of normal modes according to the gaussian 

network model (GNM) or the anisotropic network model (ANM). GNM can be more efficient for 

large protein complexes. There are recommended values for number of normal modes (100) and 

the cutoff distance (10 Å for GNM and 15 Å for ANM)15, but these values can be tuned by the 

user via command line arguments. Even though only two CG-ENMs (GNM and ANM) are used 

to compute normal modes in correlationplus, there is not any restriction on the usage of the other 

CG-ENMs. As a result, they can also be used directly (by providing the normal modes as trajectory 

files) or indirectly (by providing the DCC or LMI matrices).  

   Correlationplus can handle common MD trajectory formats like dcd, xtc and trr. Thanks to 

the command-line arguments implemented, only a certain part of a trajectory can also be selected 

in the calculations. Trajectory handling support is provided by the highly efficient MDAnalysis 

Python package27, 28.  In fact, even models obtained from NMR experiments or models that are not 

based on MD simulations30 can be used to compute DCC or LMI, if converted to an appropriate 

trajectory format. This ability of correlationplus to handle different formats and to process data 

from various sources gives it a high flexibility and increases its general applicability.  
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    Typical output of this script is a full matrix of the selected correlation quantity. This matrix can 

be used -along with a protein structure in PDB format- in ‘visualize’, ‘analyze’ and ‘paths’ scripts, 

which are described in the following subsections. 

Visualize Script 

The ‘visualize’ script of correlationplus is integrated with the commonly used protein visualization 

software VMD31 and PyMOL32 to produce high quality 3D visualizations. This script produces 

tcl/pml scripts that can be called with VMD/PyMOL to project correlations onto protein structures. 

Each pairwise correlation is depicted as a blue cylinder whose radius is proportional to the strength 

of the correlation. In its current implementation, normalized dynamical correlation values higher 

than |0.75| are projected onto the protein structure. However, this default value can be changed 

easily with script arguments. If only the correlations between distant residues are investigated, a 

distance filter can also be applied. In this way, only the correlations related to long-distance 

interactions can be projected on the structure.  

Furthermore, the ‘visualize’ script produces high quality 2D figures of correlation maps. If the 

protein contains multiple chains, the script can produce inter-chain and intra-chain correlations 

separately (Figure 1 b). In this way, subunit and domain cooperativity mechanisms can be studied. 

Also, this script produces a 2D plot of the distribution of the correlation quantity with respect to 

inter-residue distances. This information can be useful to evaluate the potential of a given 

correlation metric to identify long-range allosteric interactions. 

Even though the ‘calculate’ script can only compute dynamical correlations, the ‘visualize’ script 

is not limited to these quantities. It can also be used to visualize various sequence 

coevolution/conservation matrices such as Pearson (pair) correlation coefficient, mutual 
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information and joint Shannon entropy obtained from multiple sequence alignments. Particularly, 

the output of CoeViz server can be used with the ‘visualize’ script with minimal effort33. Moreover, 

the ‘visualize’ script can parse coevolution data from EVcouplings server 

(https://evcouplings.org/)34. In addition to data from these two servers, the user can visualize any 

other coupling data given in a full matrix format by specifying the data type as ‘generic’. This 

gives the end-user a significant flexibility to visualize couplings in proteins. In this way, dynamical 

correlation data can be combined with sequence information obtained by various approaches to 

extract key residues playing different dynamical or structural roles. 

Analyze Script 

Combining results of MD simulations or normal modes of CG-ENMs with graph theoretical 

approaches can yield new insights about protein dynamics and their role in allostery. tRNA:protein 

complexes, imidazole glycerol phosphate synthase and CRISPR−Cas9 HNH Nuclease are some 

examples showing the potential of this type of analyses with experimental support 35-38.  Dynamical 

communities and various dynamics-based centrality metrics obtained from graph theoretical 

approaches revealed key residues playing a role in signal transmission and allosteric regulation39-

41. Due to these reasons, we implemented a special script to extract graph theoretical features such 

as degree42, betweenness42, closeness42, current flow betweenness43, current flow closeness, 

eigenvector centrality44 and community analyses45 (Figure 1 c). In this script, a graph is 

constructed by considering Cα atoms of the protein as nodes of the graph. If the residue correlations 

are higher than a value-threshold (0.3 for nDCC and LMI) and the inter-node distance is lower 

than a distance-threshold (7 Å), an edge is constructed between nodes i and j. Since absolute values 

of the normalized pairwise dynamical correlations are between [0, 1], the weight of each edge can 

be chosen as -log(|Cij|) for a dynamics-based network, where Cij is the relevant correlation quantity 
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between residues i and j. In this way, edge weights remain always positive. On the other hand, 

weight of each edge is 1/|Cij| for a pairwise correlation value obtained from sequence coevolution 

metrics and or any other generic data to avoid negative weights for correlation/coupling values 

greater than 1. The weight is bidirectional in all cases; therefore, the network is an undirected 

network. The initial threshold values are the ones that are recommended in previous studies35, 46, 

but users can modify them according to their needs.  

    We used the well-established NetworkX Python package to calculate graph theoretical 

quantities26. After the calculations, all centralities are added to the B-factor column of a newly-

created PDB file that can be visualized with any protein viewer by coloring Cα atoms according 

to their B-factors. Previous studies47, 48 showed that active site residues, functional sites and key 

residues at inter-subunit interfaces can be identified with this kind of analyses (as an example, see 

the quantity called eigenvector centrality projected on SARS-CoV-2 main protease in Figure 1 c). 

Paths Script 

We can calculate and visualize optimal and suboptimal communication paths between a source 

residue and a target residue with the aid of ‘paths’ script. Only chain ID and a residue ID (as given 

in the PDB file) is needed both for the source and the target residues (For example, -b A41 -e B41 

indicates that source residue is residue 41 of chain A and the target residue is residue 41 of chain 

B). The paths are weighted as explained in the previous subsection and they are calculated 

according to the algorithm described by Jin Y. Yen49. In addition to the path lengths, tcl and pml 

scripts helps the end-user visualize these paths quickly with VMD and PyMOL. An example output 

for the suboptimal communication path between active sites of SARS-CoV-2 main protease is 

given in Figure 1 d.  
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DISCUSSION AND CONCLUSION 

Here we discuss the main differences between currently available software and correlationplus. 

DCC calculation is implemented in several packages such as Carma50, Prody24, 25 and Bio3D51. 

Prody is an essential component in the ‘calculate’ script of correlationplus for obtaining normal 

mode-based DCCs but it cannot be used to calculate LMI. In addition, visualization and dissection 

of the correlations as well as network analysis capabilities of correlationplus are features that make 

it significantly distinct from Carma and Prody packages.  Bio3D51, which is an R package, has 

some functionalities similar to correlationplus. However, its trajectory handling (only dcd files) 

capabilities are more limited compared to correlationplus. MDAnalysis27, 28 also does not have 

these capabilities, even though it has some excellent features for trajectory handling and analysis. 

In terms of dynamical network analysis, WISP52 is an important software to note. It is integrated 

to VMD to provide visualization of long-range interactions. However, difficulties in its installation 

and its non-modular architecture fade its appeal for conducting dynamical network analysis with 

it. Another software with some dynamical network analysis capabilities is xPyder plugin53, which 

is integrated to PyMOL. Even though its graphical user interface is very advantageous, 

correlationplus is more flexible since it allows the end-user to use both application programming 

interface and script interface. In addition, correlationplus allows calculation of more graph 

centralities than xPyder. A recent dynamical network analysis software that uses only generalized 

mutual information is also worthy of mentioning. This Python package is named dynetan and it 

can only calculate generalized mutual information quite efficiently. To summarize, even though 

there are several packages that has partially overlapping functionalities with our software, 

correlationplus differs from the other packages in terms of its design: It aims to integrate 

correlation/coupling data of different origins and extract long-distance interactions from it. 
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    Correlationplus is a fast and easy-to-use tool to get information about pairwise correlations and 

to identify key functional components in a protein structure. For a protein with 1500 residues, the 

full workflow from calculation to all analyses of correlations can be completed within an hour on 

a typical workstation. In addition, it is possible to analyze and combine coevolution matrices with 

the dynamical information. In conclusion, correlationplus is an efficient tool to produce, visualize 

and analyze dynamical information rapidly and combine it with different information sources to 

understand key residues and pairwise interactions playing allosteric and functional roles in 

proteins.  

 

DATA AND SOFTWARE AVAILABILITY 

The correlationplus is open source and its source code is available under LGPL version 3 at 

https://github.com/tekpinar/correlationplus. Figure 1 of this paper was obtained from the publicly 

available data in the examples folder of this repository. An example Bash script showing basic 

usage of correlationplus is also provided in the examples folder. The current version of the 

correlationplus package (0.2.0) can be installed with common installation methods like conda or 

pip in addition to the source code installation. Moreover, docker images are also available for 

usage of the code without installation. 

  

https://github.com/tekpinar/correlationplus
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FIGURES. 

 

Figure 1.  A summary of functionalities of correlationplus. a) calculate script b) visualize script 

c) analyze script output with an example showing the eigenvector centrality results for SARS-

CoV-2 main protease48.  d) paths script output showing suboptimal allosteric communication paths 

between two active site residues of SARS-CoV-2 main protease.  
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ASSOCIATED CONTENT 

Supporting Information.  

The following file is available free of charge. 

Supporting Information contains 1 figure (Figure S1) and an appendix (file type: PDF). 

 

Figures 

Figure S1. Absolute values of Chesca NMR correlations (upper triangle) vs computed correlations 

(lower triangle) for Chemotactic Y protein (PDB ID: 1f4v17 Chain A). a) Absolute values of 

Chesca NMR vs. absolute values of nDCC. b) Absolute values of Chesca NMR vs. normalized 

LMI. Three out of the four major peaks in LMI and nDCC matrices (red and dark red regions 

labeled with Roman numerals from I to IV) have corresponding high correlations in the 

experimental data.   
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Erratum 

A Python script showing versatility of the correlationplus application programming interface 

compared to the traditional webservers that perform similar tasks is provided in the 

correlationplus github repository: 

https://github.com/tekpinar/correlationplus/blob/master/examples/example_api_usage.py  

After the proofs of this article were corrected, we were made aware of the existence of the paper 

by Sheik Amamuddy et. al54. This work developed tools similar to ours, but both were developed 

completely independently. 
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