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Abstract 

Background 

Polygenicity and genetic heterogeneity pose great challenges for studying psychiatric conditions. 

Genetically-informed approaches have been implemented in neuroimaging studies to address this 

issue. However, the effects on functional connectivity of rare and common genetic risks for psychiatric 

disorders are largely unknown. Our objectives were to estimate and compare the effect-sizes on brain 

connectivity of psychiatric genomic risk factors with various levels of complexity: oligo-, multi-genic 

copy number variants (CNVs), and polygenic risk scores (PRS) as well as idiopathic psychiatric 

conditions and traits.  

Methods 

Resting-state functional-MRI data were processed using the same pipeline across nine datasets. 

Twenty-nine connectome-wide association studies were performed to characterize the effects of 15 

CNVs (1003 carriers), 7 PRS, 4 idiopathic psychiatric conditions (1022 individuals with either autism, 

schizophrenia, bipolar conditions, or ADHD), and 2 traits (31424 unaffected controls).  

Results 

Effect sizes on connectivity were largest for psychiatric CNVs (estimates: 0.2 to 0.65 z-score) 

followed by psychiatric conditions (0.15 to 0.42), neuroticism and fluid intelligence (0.02 to 0.03), 

and PRS (0.01 to 0.02). Effect-sizes of CNVs on connectivity were correlated to their effects on 

cognition and risk for disease (r=0.9, p=5.93e-06). However, effect sizes of CNVs adjusted for the 

number of genes significantly decreased from small oligogenic to large multigenic CNVs (r=-0.88, 

p=8.78e-06). PRS had disproportionately low effect sizes on connectivity compared to CNVs 

conferring similar risk for disease.  

Conclusion 

Heterogeneity and polygenicity impact our ability to detect brain connectivity alterations underlying 

psychiatric manifestations. 	  
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Introduction 

Polygenicity and genetic heterogeneity pose great challenges for studying mechanisms and risk 

underlying psychiatric conditions (1). Rare copy number variants (CNVs), as well as common 

variants, confer risk for neurodevelopmental and psychiatric disorders such as autism spectrum 

disorder and schizophrenia (SZ). CNVs that increase risk for autism and-or SZ also decrease 

intelligence quotient (IQ)(2,3). Their effect sizes range from large to mild (eg. 22q11.2 and 15q11.2 

deletions decrease IQ by 29 and 3 points respectively and increase risk for SZ with odd-ratios (ORs) 

= 23 and 1.9 respectively, Table 1) (4,5). Effect sizes of CNVs on cognition and risk for 

neurodevelopmental and psychiatric disorders are positively correlated to the number of genes they 

contain. To account for the fact that not all genes contribute equally to the impact of CNVs, we 

developed a CNV severity score, which is the sum of genes encompassed in CNVs, weighted by the 

sensitivity of each gene to loss of function (6). The number of genes included in a CNV and its severity 

score are both measures of the level of multigenicity of a CNV. This severity score can predict the 

effect size of CNVs on cognition with close to 80% accuracy (7,8). Furthermore, the mean effect size 

on cognitive ability of one point of this severity score is similar for benign oligogenic and deleterious 

multigenic CNVs, which suggests that effect sizes of large CNVs are the additive effects of many 

individual genes with small effects. 

 

Similarly, for common variants, polygenic risk scores (PRS) are additive models developed to estimate 

the aggregate effects of thousands of single nucleotide polymorphisms (SNPs) with very small 

individual effects (9,10). The risk for SZ ranges from OR=3.3 to 4.6 (9) when comparing individuals 

in the bottom and top deciles of PRS-SZ; similar or higher than the risk conferred by some oligogenic 

CNVs such as 1q21.1 and 15q11.2 deletions. For PRS-IQ, contrasting bottom and top deciles shows 

moderate to large effect sizes around 9 to 12 points of IQ (11) which is similar to several CNVs 

associated with neurodevelopmental and psychiatric disorders (eg. 16p11.2 duplication) (Table 1).  

Because cognition is thought to be subserved by large-scale brain networks (12), it is reasonable to 

hypothesize that the effects of genetic variants on cognition and behavior (8,13) are mediated by brain 
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structure and networks (14,15). The organization of such networks can be inferred using resting-state 

functional MRI (rs-fMRI)(16,17). Functional connectivity (FC) has gained traction in the last decade, 

characterizing increasingly reproducible patterns of alterations associated with psychiatric conditions 

(18). However, these studies reported small effect sizes, which appeared discordant with the severity 

of autism and attention-deficit/hyperactivity disorders (ADHD) (19,20). Genetically-informed 

approaches have been introduced with the hope to focus on a specific biological risk. Effects of CNVs 

on FC have been investigated at only 2 genomic loci in humans (16p11.2 and 22q11.2) (14,21) 

demonstrating robust effects. Little is known about the effect sizes on FC of psychiatric PRS(22,23). 

While PRS and CNVs can have similar effect sizes on psychiatric risk, the effects on connectivity of 

these 2 classes of variants with vastly different levels of genomic complexity, have never been 

compared.  

 

Our aims were to 1) Estimate and compare the effects of oligogenic (e.g. 4 protein-coding genes for 

15q11.2 CNVs), multigenic (e.g. 49 protein-coding genes for 22q11.2 CNVs) (24), and PRS for 

psychiatric conditions on brain connectivity, 2) Characterize the relationship between effect sizes of 

genomic variants on cognition/behavior and connectivity, 3) Test the relationship between the level of 

multigenicity (measured by the number of genes and the severity score) and effect sizes of CNVs on 

connectivity. 

 

To this end, we analyzed rs-fMRI data in n=33,452 individuals and performed 29 connectome-wide 

association studies for 15 CNVs, 7 PRS, 4 idiopathic conditions, inflammatory bowel disease (IBD), 

and 2 traits (fluid intelligence and neuroticism).  
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Methods 

The selection process for the CNVs, PRS, psychiatric conditions and traits are detailed in the 

supplemental methods. 

Cohorts 

Our analysis included 33,452 individuals from nine datasets (Table 1, Figure 1). Each study of the 

corresponding dataset was approved by the research ethics review boards of the respective institutions. 

This project was approved by the research ethics review board at the Centre Hospitalier Universitaire 

Sainte Justine.  

Clinical genetic datasets  

We used 4 ‘genetically-informed’ CNV datasets, which were recruited based on the presence of a 

CNV associated with neurodevelopmental and psychiatric disorders, regardless of symptomatology 

(detailed in eMethod in Supplement). Of note, the term oligogenic refers to CNVs containing: 1 gene 

<CNV ≤ 5 genes, while multigenic CNVs contain more than 5 genes. These categories are descriptive, 

and cutoffs are descriptive. None of the analyses rely on these categories. 

 

These four datasets included the Simons Variation in Individuals Project (SVIP for 16p11.2 and 

1q21.1 CNVs) (25) and the University of California, Los Angeles 22q11.2 CNV project (UCLA). 

fMRI data have not yet been published for the Montreal rare genomic disorder family project (MRG, 

Canada)(8), and the Define Neuropsychiatric-CNVs Project (Cardiff, UK). 

Unselected population  

CNVs associated with neurodevelopmental and psychiatric disorders and non-psychiatric CNVs were 

also identified in the UK-Biobank dataset (UKBB)(25) (eMethods in the Supplement). Non-

psychiatric CNVs were defined as variants without any previous association with a psychiatric 

condition in large case-control studies (4,26–28). 
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Idiopathic psychiatric conditions cohorts 

We used the ABIDE1 (29), ABIDE2 (30), ADHD-200 (31), the Consortium for Neuropsychiatric 

Phenomics (CNP) (32), and an aggregate dataset of 10 SZ studies (14,33); collectively these datasets 

include individuals with idiopathic autism, ADHD, SZ, and BIP, as well as their respective controls. 

Psychiatric assessments are detailed in eMethods in Supplement. 

CNV calling and Polygenic scores (PRS) computation 

CNVs were identified in the UKBB using PennCNV(34) and QuantiSNP (35) following previously 

published methods (7) (eMethods in Supplement). 

We computed 7 PRS for individuals of European ancestry in the UKBB using Bayesian regression 

and continuous shrinkage priors (36) (Table1, eMethods and eTable1 in Supplement).  

Resting-state functional MRI preprocessing 

All datasets were preprocessed using the same parameters of Neuroimaging Analysis Kit (NIAK) (37). 

Preprocessed data were visually controlled for quality of the coregistration, head motion, and related 

artifacts (eMethods in Supplement). 

Computing connectomes 

We segmented the brain into 64 functional seed-based regions and 12 networks defined by the multi-

resolution MIST brain parcellation (38). FC was computed as the temporal pairwise Pearson’s 

correlation between the average time series of the 64 seed-based regions, and then Fisher-z 

transformed. The connectome of each individual encompassed 2,080 connectivity values: (63x64)/2 

= 2016 region-to-region connectivity + 64 within seed-based region connectivity. We chose the 64 

parcel atlas of the multi-resolution MIST parcellation 

(https://simexp.github.io/multiscale_dashboard/index.html) as it falls within the range of network 

resolution previously identified to be maximally sensitive to FC alterations in neurodevelopmental 

and psychiatric disorders such as autism (39). We corrected for multiple comparisons using a false 

discovery rate strategy (40). 
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Connectome-wide association studies  

We performed 29 connectome-wide association studies by either contrasting cases and their respective 

controls for:  

● 7 CNVs associated with neurodevelopmental and psychiatric disorders and 8 non-psychiatric 

CNVs (Table1), 4 idiopathic psychiatric disorder cohorts (autism, SZ, BIP, and ADHD) and 

1 non-brain related condition (IBD). Controls refer 1) to individuals without a CNV for 

analysis investigating the effect of CNVs and 2) individuals without a diagnosis in analyses 

investigating effects of psychiatric conditions.  

● or by investigating the linear effects of 7 continuous PRS: autism, BIP, SZ, Cross-disorder 

(ADHD, autism, BIP, SZ, anorexia nervosa, major depression, obsessive-compulsive 

disorder, and Tourette syndrome), IQ as well as two non-brain related control traits: Low-

Density Lipoprotein (LDL) and Chronic Kidney Disease (CKD), as well as 2 continuous traits 

provided by UKBB: Neuroticism, and Fluid intelligence. 

FC was z-scored based on the variance of the pooled controls used for each connectome-wide 

association study (column ‘Cohorts’ in Table 1). They were conducted by linear regression, in which 

z-scored FC values were the dependent variables and genetic or diagnostic status or traits were the 

explanatory variables. PRS and traits were normalized within the UKBB sample. 

It was previously demonstrated that global signal adjusted (GSA)-FC profiles show stronger 

correlations with cognition (41), and reduce confounding effects in multi-site studies (42). We, 

therefore, used GSA FC profiles for this study. Global effect sizes obtained without GSA are available 

in eTable5 in the supplement. 

Models were adjusted for sex, scanning site, head motion, age, and global signal (=‘GSA’) defined as 

the mean of all 2,080 Fisher’s Z values (42). FC profiles were defined as the 2,080 β values of 2,080 

connections.  

Z-score Connection [i, … 2080] ~ β0 + βgenetic status + βage + βmotion + βsex + βsite + βglobal signal 
 

This linear regression was applied for each of the 2,080 functional connections. Since all raw 

connectomes were normalized on the variance of the controls, regression estimates (beta) can be 
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interpreted as z-scores. We corrected for multiple testing using FDR (q < 0.05) as well as a permutation 

procedure (see eMethods, in Supplement). Effect-size of genetic risk, conditions, and traits on 

connectivity was defined as the top decile of the 2080 absolute β values. Sensitivity analyses using a 

cross-validation approach (43) ensured that effect sizes were stable across the different sample sizes 

investigated in the study. 

Multiple testing 

Within each independent variable (15 CNVs, 7 PRS, 4 conditions and 2 traits), we corrected for the 

number of tests (2,080 connections) using the Benjamini-Hochberg FDR correction at a threshold of 

q < 0.05 (40,44). We also computed an empirical p-value by conducting a permutation test, shuffling the 

genetic or clinical status labels of the individuals included in each connectome-wide association study 

(5,000 permutations). We estimated the empirical p-value by calculating the frequency of obtaining 

an effect size equal to or greater than the original observation (45).  

Estimating effect sizes using cross-validation 

We generated effect sizes for each sample using K-fold cross-validation (CV) with 2, 5, and 10 folds 

CV (43). For each genetic risk, condition and trait, we split the sample into K segments (for case-

control analyses segments are stratified accordingly), then for K iterations we held out a segment as a 

training sample to generate a betamap and identify the connections with effect size estimates in the 

top decile. On the remaining independent test group, we extracted the top decile connections, and 

computed their mean effect sizes. The overall effect size was computed as the mean of K estimates 

(eFigure1, Supplement).  

Bootstrap procedure to estimate 95th Confidence Intervals of effect size ratios: 

We identified the 95% confidence intervals for the ratios of effect sizes using a bootstrap procedure 

(46). First, for each sample we generated the actual betamap, and identified the top decile connections 

and their mean X. Then, for 5000 iterations we resampled with replacement the same number of 

subjects (for case-control analyses the resampling was performed separately in each group), generated 
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a resampled betamap and took the mean of the identified connections to form a distribution 

(x_1,x_2,...x_5000). To generate a distribution of ratios for a given pair X_1, X_2 (where X_1 > X_2) 

we take the ratios of the bootstrap distributions (x_1_1/x_2_1,x_1_2/x_2_2,...,x_1_5000/x_2_5000). 

Sum of genes and CNV severity score 

The CNV severity score was previously published and is an additive model (7,8). It is the sum of genes 

included in a CNV, and each gene is weighted by its sensitivity to loss function, which is measured 

by the LOEUF score which is available for each coding gene (47). Smaller values of LOEUF represent 

genes with highest sensitivity to loss of function (more severe genes), therefore the inverse of LOEUF 

is used in the additive model:  

CNV Severity score = (gene1×1/LOEUFgene1)+(gene2×1/LOEUFgene2) + …. 

This severity score is predictive of a CNVs effect size on cognition(7,48) and risk for psychiatric 

conditions (3,49).  

As a sensitivity analysis, we computed a CNV severity score based on the pLI (probability of being 

Loss of function Intolerant (50), which is another constraint score with a binary distribution (>0.8 for 

intolerant genes and close to 0 for all other genes). As a result, this score only takes into account the 

contribution of intolerant genes. 

Results 

Effects of genetic risk factors and psychiatric conditions on brain connectivity 

All 7 CNVs associated with neurodevelopmental and psychiatric disorders and none of the nine non-

psychiatric CNVs significantly altered functional connections (FDR, 2080 connections, q<0.05, Table 

2). Empirical p-value analyses (‘pval effect’, Table 2) - performing contrasts in 5,000 randomly 

sampled groups - found the same level of significance compared to the FDR procedure (Table 2).  

The previously published 22q11.2 deletion FC profile showed the largest effects (mean of brain-wide 

estimates in the top decile= 0.65) followed by the 16p11.2 deletion showed large effects on FC profiles 

(0.57). The 22q11.2 and 16p11.2 FC profiles were robust and correlated (r=0.7 and 0.83) to previously 
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published profiles that were based on smaller samples (14). 1q21.1 deletion and duplication FC 

profiles showed moderate to large effects on FC. 15q11.2 deletion showed the mildest effects among 

CNVs associated with neurodevelopmental and psychiatric disorders. Individual CNV FC profiles in 

3D maps showing effect sizes for each of the 64 functional regions are available at: 

https://claramoreau9.github.io/Braimaps_Github.html. 

 

All brain-related PRS (SZ, BIP, autism, cross disorder, IQ) altered FC profiles. The non-brain-related 

PRS (LDL, CKD) showed no significant effects (Table 2). 

Individuals diagnosed with idiopathic SZ, BIP, autism but not ADHD had significantly altered FC 

compared to controls. SZ, ADHD, and autism FC-profiles were previously published (14) but we 

recomputed them with additional individuals. Correlations between new and previously published 

profiles were 0.95, 0.70 and 0.86 respectively. 

Effect sizes were largest for CNVs associated with neurodevelopmental and psychiatric disorders 

followed by psychiatric conditions, fluid intelligence, neuroticism, and PRS (Figure 2A-D). Effect 

sizes of deletions were on average 1.3 fold larger than their reciprocal duplications. Effect sizes for a 

change in 1 SD of a cognitive trait or a PRS were on average one order of magnitude smaller than 

those associated with CNVs (Figure 2E). To test the relationship between GWAS sample size and the 

effect of PRS on FC, we compared the PRS-SZ based on the most recent GWAS in 76,755 subjects 

with SZ (51) to the one based on an older GWAS computed with 23,585 subjects with SZ (52). The 2 

FC profiles associated with the 2 PRS-SZ were correlated (r=0.89), but the number of significant 

connections was higher for the FC profile based on the larger SZ-GWAS. The effect size (for 1SD of 

PRS) was also larger, the top decile of beta values increasing from 0.0138, CI95 (0.011-0.016) to 

0.016 CI95 (0.013-0.019).  

Sensitivity analyses showed that effect size estimates were robust to several cross-validations as well 

as the effects of sex, pooled or matched controls, clinical or non-clinical ascertainment, and medication 

(eResults in Supplement). 
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Relationship between effect sizes of CNVs on connectivity and cognition or risk for 

neurodevelopmental and psychiatric disorders 

We observed a correlation between the effect size of CNVs on FC and their previously reported effect 

size on cognitive ability(7) (r=0.9, p=5.93e-06), but effects of CNVs on FC were systematically smaller 

than their effect on cognitive ability (Figure 2F). Effect size on FC was also correlated with previously 

reported, general risk for neurodevelopmental and psychiatric disorders; i.e. the highest risk conferred 

by each CNV for either autism (26,28) or SZ (4,53) (r=0.79, p=0.001, Figure 2H). As expected, this 

correlation was weaker for autism (r=0.75) and SZ-risk (r=0.6) separately since some CNVs confer 

high risk for autism but not SZ and vice versa (eFigure 4 in supplement). The correlation with 

cognitive ability was similar across all 12 networks (Figure 2G, eFigure 5 in supplement).  

Most networks are affected by genetic risk and conditions 

Genetic risk, conditions, and traits affected connections that were distributed across all functional brain 

networks (Figure 3). However, basal ganglia-thalamus and somatomotor networks exhibited over-

connectivity across most genetic risk and conditions (sum beta values: 2.1 and 1.1 respectively). In 

contrast, limbic and auditory networks were predominantly under-connected (sum beta values: -2.7, -

1.3 respectively). 

Effect sizes of individual genes within CNVs decrease as CNVs increase in number of genes. 

We first asked if there was a relationship between the number of genes in a CNV (Figure 4A) and its 

effect size on functional connectivity. This was the case (r=0.72, p=0.002, Figure 4B) and the 

relationship was similar when genes were weighted by their sensitivity to gene dosage (severity score, 

r=0.76, p=0.0009, Figure 4C). 

To investigate the effects of multigenicity on connectivity, we computed for each CNV an effect size 

adjusted for gene content (effect-size divided by the number of genes included in the CNV). We 

observed that the adjusted effect-size of CNVs significantly decreased as CNVs increased in number 

of genes (r= -0.85, p= 3e-05, Figure 4D). Using the severity score showed the same phenomenon (r= -

0.88, p= 8.8e-06, Figure 4E). In other words, compared to small oligogenic CNVs, large multigenic 
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CNVs have smaller effects on FC than expected based on the number of genes they contain. We 

performed the same analysis using pLI (instead of LOEUF) to test the assumption that only a few 

intolerant genes contribute to the CNV-associated FC alterations (eFigure 6). The same decrease in 

effect size was observed as the number of intolerant genes increased in CNVs.  

In contrast, there was no relationship between the severity score and its adjusted effect size on IQ 

(r=0.30, p=0.25, eFigure 7, Supplement).  

To further investigate the effect of multigenicity on FC, we examined PRS and CNVs with similar 

effects (previously published, Table2) on cognitive ability and risk for autism and SZ. PRS effect 

sizes on connectivity were disproportionately lower (between 38 and 13-fold lower) than those 

observed for the selected CNVs (1q21.1 deletions, 16p11.2, and 22q11.2 duplications and 15q11.2 

deletions) (Figure 2E). 

 

Discussion 

Main findings 

In this large rsfMRI dataset, we demonstrated that most rare and common genetic risks for 

neurodevelopmental and psychiatric disorders affect FC but effect sizes vary over an order of 

magnitude across variants. We showed that the effect sizes of CNVs on FC were correlated with their 

previously reported effects on cognitive ability and risk for autism and SZ connectome-wide. This 

relationship was observed across all brain networks which is consistent with the fact that fluid 

intelligence is thought to be subserved by networks widely distributed across the brain (54). Whether 

these associations across all networks are causal of IQ decrease in CNV carriers remains an open 

question. 

Multigenicity had a profound impact on FC signals: As CNVs increased in size and number of genes, 

effect size of CNVs adjusted for gene content (number of genes and severity score), rapidly decreased. 

In line with this observation, PRS had minute effects on FC, and the latter were disproportionately low 

compared to those observed for CNVs with similar effect sizes on IQ and risk for autism or SZ. 
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Similar effect sizes across functional and structural MRI 

Effect sizes on functional connectivity across neurodevelopmental CNVs and psychiatric conditions 

are consistent with those reported for structural MRI measures (55,56) even when much larger samples 

are investigated (Cohen’s d=-1 and d=0.6 for cortical surface and thickness respectively in n=475 

carries of the 22q11.2 deletion (57)). For autism (58) and SZ (59) previously reported effect sizes for 

cortical thickness (Cohen’s d= 0.21 and 0.5 respectively) were also similar to those observed in our 

study for functional connectivity (55). To date, the only effect sizes reported for PRS were for SZ 

(beta =0.02 for cortical surface and thickness) and are consistent with the very small effects in the 

current study (60). 

Even small levels of multigenicity increase heterogeneity at the functional connectivity level 

We observed that the effect size on FC of one gene (the CNV adjusted effect size) declines (by an 

order of magnitude) for increasingly multigenic CNVs. In other words, a gene would contribute to a 

smaller FC effect in a multigenic CNV compared to a gene with the same severity score (sensitivity 

to gene dosage) encompassed in a small oligogenic one. Multigenic CNVs may therefore represent 

heterogeneous combinations of relatively distinct FC profiles associated with each dosage-sensitive 

gene (Figure 4F). This suggests that genes within a CNV or a polygenic score may cancel out each 

other's effects on FC, leading to weaker effect sizes.  

This effect of multigenicity may not be restricted to FC. As an example, Down syndrome, which 

encompasses more than 200 protein-coding genes (61), has an extreme effect size on cognition (a 

mean decrease of 3.3 SD(48,62)) but has been associated with smaller effects sizes on MRI structural 

measures (below 1.65 Cohen’s d (63,64)). Based on our observations, genetic effects on rsfMRI would 

be best observed (with the largest effects) in the context of monogenic variants such as FMR1, 

NRXN1, or CHD8. This would likely apply to other brain modalities.  

Why are polygenic scores associated with such small effect sizes?  

The microscopic effect sizes associated with autism-PRS, SZ-PRS, and intelligence-PRS are possibly 

related to extreme levels of heterogeneity. Our comparison of two PRS-SZ based on GWAS of 
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different sample sizes suggests that further increasing the GWAS sample size will improve the 

detection of significant connections altered by PRS, but will not substantially increase the effect size 

of psychiatric PRS on rsfMRI. 

The CNV-PRS discordance is striking for PRS-IQ which has been associated with moderate to large 

effects on cognitive ability. There are infinite combinations of different common variants that would 

lead to the same PRS score. This may explain why PRS shows minimal convergence on a particular 

connectivity pattern. Of note, both traits (fluid intelligence and neuroticism) also showed similar effect 

sizes suggesting comparable levels of heterogeneity. 

However, alternative interpretations are possible. Current PRS may be vastly improved when larger 

GWAS will be available. Some of the CNVs investigated have small sample sizes which leads to 

inflated effect sizes. Functional connectivity may not represent a relevant intermediate phenotype for 

genetic risk or cognitive traits. 

Limitations  

Genetic heterogeneity is only one of the plausible interpretations that may explain these observations 

such as the survivor effect where large deleterious multigenic CNVs are only observed in resilient 

individuals with disproportionally low alterations at the brain connectivity level. Similarly, bias 

toward less individuals, which have a higher probability of completing the MRI scan coils contributes 

as well to this drop-in effect size. An alternative interpretation that may explain why effect sizes of 

CNVs on FC < Cognition is that FC is a noisy metric and noise could be increased in individuals with 

neurodevelopmental conditions (i.e., head movement despite being carefully adjusted for). 

For PRS, the portability across populations is poor which may contribute to the small effects of PRS 

on FC. Finally, CNVs including intolerant genes are under negative selection, whereas this is likely 

not the case for psychiatric PRS which are the sum of many variants that are individually frequent. 

This fundamental difference may contribute to differences in FC effect sizes observed for a PRS and 

a CNV matched for the level of disease risk.  
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Confounding factors include sex bias and age differences may have influenced some of the results. 

However, carefully conducted sensitivity analyses provided similar results (Supplemental results). 

Larger samples will be required to detect potential interactions between genetic risk and age or sex. 

Conclusion 

Polygenicity may predominantly result in “poly-connectivity”, a scenario where thousands of autism 

or SZ genomic risk variants lead to a diverse set of connectivity patterns associated with the conditions. 

Future studies will require both in-depth partitionings of polygenic scores as well as clustering of rare 

variants - based on relevant gene functions - to obtain mechanistically coherent subgroups of 

individuals. 
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Titles and legends for figures and tables 

Table 1 Demographics 

Legend: CNV carriers (DEL: deletion; DUP: duplication), individuals with idiopathic psychiatric 

conditions (SZ: schizophrenia, ASD: Autism Spectrum Disorder; ADHD: Attention-Deficit / 

Hyperactivity-Disorder, BIP: Bipolar disorder), and controls after MRI quality control. Chr: 

chromosome number, coordinates are presented in Megabases (Mb, Hg19).  

Age (in years); M: male, F: Female. Quantitative variables are expressed as the mean ± SD (standard 

deviation). The cohort column provides the cohorts used to perform case-control studies for each of 

the 29 CWAS (CNP: Consortium for Neuropsychiatric Phenomics, MRG: Montreal rare genomic 
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disorder). IQ loss: mean decrease in IQ points associated with each CNV (7,8). Odd-ratios (OR) for 

the enrichment of CNVs and PRS in autism and schizophrenia were previously published 

(4,5,9,11,26,27,53,66–71). OR for the enrichment of CNVs in ADHD were not available. ‘Control 

PRS’ = non-brain-related PRS. 

The 8 non-psychiatric CNVs were defined as variants without any previous association with 

psychiatric conditions in large cases control studies (4,26–28), and detailed information relative to 

diagnosis, IQ, and motion, are available in eMaterial, Supplement. Information relative to scanning 

sites, motion and diagnoses are also available in eTables2-4, Supplement. All sites scanned controls. 

Abbreviations: PRS: polygenic risk score; CrossD: Cross-disorder, LDL: Low-Density Lipoprotein, 

CKD: Chronic Kidney Disease; IQ: intelligence quotient.  

Table 2 Connectome-wide association study summary 

Legend: The number of significantly altered connections (FDR corrected) for each connectome-wide 

association study (n=29) (eTable 5 in supplement). ‘Control PRS’ = non-brain-related PRS; min-max: 

minimum-maximum of z-scored beta values; Top-dec beta values: Effect-size of genetic risk, 

conditions, and traits on connectivity defined as the top decile of the 2080 absolute β values. pval 

effect= empirical p-value obtained by conducting a permutation test, shuffling the genetic or clinical 

status labels of the individuals included in each connectome-wide association study (5,000 

permutations). We estimated the empirical p-value by calculating the frequency of obtaining an effect 

size equal or greater than the original observation.  

Abbreviations: DEL: deletion; DUP: duplication; SZ: schizophrenia, ASD: Autism Spectrum 

Disorder; ADHD: Attention-Deficit / Hyperactivity-Disorder, BIP: Bipolar disorder, CrossD: Cross-

disorder, LDL: Low-Density Lipoprotein, CKD: Chronic Kidney Disease; IQ: intelligence quotient, 

IBD: Inflammatory bowel disease, PRS: polygenic risk score; Connection pos: number of positive 

connections surviving FDR; Connection neg: number of negative connections surviving. 
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Figure 1: Method flowchart 

GP: General population, QC: Quality Control, ROI: region of interest, MIST: Multiresolution Intrinsic 

Segmentation Template  

Figure 2. Relationship between effect sizes of CNVs on cognition & connectivity 

(A-D) Effect size of genetic risk, conditions and traits on functional connectivity. Effect sizes of (A) 

CNVs, (B) idiopathic psychiatric conditions, (C) traits, (D) Polygenic scores (PRS) on functional 

connectivity. Each dot (or diamond) is the mean of estimates in the top decile (the 208 connections 

with the highest beta estimates). X-axis values represent the effect sizes z-scored on the variance of 

the control group. Full dots represent significant effect sizes (the intersection of FC profiles with 

altered connections surviving FDR and empirical p values using 5000 permutation tests q<0.05, Table 

2) and empty diamonds are non-significant effect sizes. CI: confidence interval. 

(E) Ratio of effect sizes between genetic risk, conditions, and traits 

Ratios are only computed for groups that have significant effect sizes on functional connectivity. The 

ratio is the line (numerator) divided by the column (denominator). CI95 for each ratio was computed 

using a bootstrap procedure (43,46) (Method). Boxes with black borders highlight CNVs and PRS that 

should have similar effects on connectivity because they are matched for effect size on cognition or 

risk for disease. We also highlight CNVs that have effect sizes on cognitive ability equal or smaller 

than 1 z-score to highlight the discordance with effect of 1 z-score of fluid intelligence on connectivity. 

(F) Effect sizes of CNVs on IQ and FC 

We used previously published effect sizes of CNVs on IQ (7). X-axis: decrease in IQ associated with 

each CNV. Y-axis: effect sizes of CNVs on FC (top decile of estimates). 

G) Effect sizes of CNVs on IQ and FC for 12 functional networks  

 X-axis: decrease in IQ associated with each CNV. (7) Y-axis: effect sizes of CNVs on FC for 12 

functional networks (mean of the top decile of network-wide estimates) (For a representation of each 

network individually, see eFigure 5 in supplement). 

(H) Effect sizes of CNVs on FC and risk for autism or SZ  
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Correlation between previously published effect sizes of CNVs on autism or SZ risk (4,26,28,53) and 

their effect sizes on FC. We used the highest risk conferred by each CNV for either autism (26,28) or 

SZ (4,53)). X-axis: Odd ratios for autism (▲) or SZ (◾ ). Y-axis: effect sizes on FC (top decile of 

estimates). 

Abbreviations: ASD: autism spectrum disorder, SZ: schizophrenia, NT: neuroticism, Del: deletion, 

Dup: duplication, Fluid intel: fluid intelligence, IQ: intelligence quotient, ADHD: Attention-Deficit / 

Hyperactivity-Disorder, LDL: Low-Density Lipoprotein; CKD: Chronic Kidney Disease, DMN: 

Default Mode Network. 

Figure 3. Similarities at the network level across genetic risks, psychiatric conditions, and traits 

Legend: Sankey plot shows effect sizes across 12 networks for genetic risk (left), conditions, and traits 

(right). The thickness of the connecting lines represents these effect sizes, which were defined as the 

mean beta value of all significant connections within the network and between the network and the 

other 11 networks. The length and color of rectangles on either side of each network in the middle of 

the Sankey plot represents the sum of effect sizes across all genetic risks, conditions and traits for that 

particular network. For each network, effect sizes values are summarized in the 12 boxes (bottom of 

the figure). Brain maps represent the max estimate value for each functional region (Table 2). Red = 

overconnectivity ; blue underconnectivity. Color bars represent the beta value.  

Abbreviations: BG Thal: Basal Ganglia Thalamus; MOT: Somatomotor network; FP: Frontoparietal 

network; VIS: Visual network; DMN pm: Default mode network posteromedial; CER: Cerebellum; 

DM l: Default mode network lateral; VVIS DVIS: Ventral and dorsal visual network; AUD PINS: 

auditory network and posterior insula; DM am: Default mode network anteromedial; VATT SAL: 

Ventral attentional and Salience network; LIM: Limbic network; ASD: autism spectrum disorder, SZ: 

schizophrenia, BIP: bipolar disorder, NT: Neuroticism, PRS: Polygenic score, Del: deletion, Dup: 

duplication, Fluid intel: fluid intelligence, CrossD: Cross-Disorder. 

Figure 4. Relationship between multigenicity and connectivity  

(A) Number of genes and severity score 



 

29 

Bar plot showing for each CNV, the number of genes encompassed, and the sum of genes weighted by 

their intolerance score (sum of 1/LOEUF). The sum of 1/LOEUF values of all genes encompassed in 

a CNV is highly predictive of the effect size of CNVs on cognitive ability.  

(B) Relationship between effect sizes on FC and number of genes.  

Y-axis: Effect size of CNVs on FC. X-axis: Number of genes in each CNV. 

(C) Relationship between effect sizes on FC and severity score. 

Y-axis: Effect size of CNVs on FC. X-axis: Severity score for each CNV. 

(D) Adjusted effect sizes on FC and multigenicity (genes) 

Y-axis: mean effect of one gene on FC (CNV effect sizes on FC adjusted for number of genes). X-axis: 

Number of genes in each CNV. 

 (E) Adjusted effect sizes on FC and multigenicity (severity score)  

Y-axis: mean effect on FC of one point of severity score (CNV effect sizes adjusted by the severity 

score). X-axis: Severity score for each CNV. 

(F) Genetic heterogeneity within a CNV 

Genes encompassed in the 16p11.2 CNV color-coded based on their LOEUF score. Two scenarios 

are represented: Right, genes converge on shared brain patterns: the effect size of the CNV increases 

linearly with the number of intolerant genes and is large. Left, genes within a CNV are associated 

with distinct patterns: the resulting effect size is weaker. 
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1q21.1 DEL 1 11 -1.07 0.62 0.44 0.002 
1q21.1 DUP 4 0 -0.62 0.84 0.48 0.002 
15q11.2 DEL 1 0 -0.29 0.36 0.2 0.01 
16p11.2 DEL 124 149 -0.98 1.67 0.57 <2e-4 
16p11.2 DUP 4 3 -1.04 0.55 0.38 0.002 
22q11.2 DEL 4 13 -1.48 1 0.65 <2e-4 
22q11.2 DUP 0 2 -0.78 0.69 0.43 0.04 

 
N

on
-p

sy
ch

ia
tr

ic
 C

N
V

s TAR DUP 0 0 -0.48 0.51 0.28 ns 
2q13 DEL 0 0 -0.15 0.19 0.11 ns 
2q13 DUP 0 0 -0.34 0.26 0.18 ns 

13q12.12 DEL 0 0 -0.54 0.5 0.34 ns 
13q12.12 DUP 0 0 -0.53 0.48 0.31 ns 
15q11.2 DUP 0 0 -0.24 0.24 0.16 0.04 
15q13.3 DUP 0 0 -0.20 0.18 0.11 ns 

16p13.11 DUP 0 0 -0.42 0.40 0.26 ns 

Po
ly

ge
ni

c 
sc

or
e 

Cross Dis 23 22 -.02 .03 0.01 <2e-4 
Autism 3 1 -.02 .02 0.01 0.04 

Schizophrenia 30 27 -.02 .03 0.01 <2e-4 
Bipolar 16 2 -.02 .03 0.01 0.002 

IQ 74 42 -.02 .02 0.01 <3e-4 

C
on

tr
 

ol
 P

R
S LDL 0 0 -.02 .02 0.009 ns 

CKD 0 0 -.02 .02 0.01 ns 

Ps
yc

hi
at

ri
c 

co
nd

iti
on

s 

Autism 51 55 -0.26 0.36 0.16 <2e-4 
Schizophrenia 221 258 -0.41 0.51 0.30 <2e-4 

Bipolar 33 24 -0.66 0.65 0.43 <2e-4 
ADHD 0 0 -0.22 0.22 0.15 <2e-4 

IBD 0 0 -0.16 0.16 0.11 ns 

 Tr
ai

ts
 

Fluid Intel 311 281 -.04 .04 0.02 <2e-4 
Neuroticism 208 208 -.03 .04 0.02 <2e-4 

 


