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diversity of RNA viruses and show that
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10Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Archaeal Virology Unit, 75015 Paris, France
11Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
12Lead contact

*Correspondence: uri.neri@gmail.com (U.N.), doljav@oregonstate.edu (V.V.D.), nckyrpides@lbl.gov (N.C.K.), koonin@ncbi.nlm.nih.gov (E.V.K.),
urigo@tauex.tau.ac.il (U.G.)

https://doi.org/10.1016/j.cell.2022.08.023
SUMMARY
High-throughput RNA sequencing offers broad opportunities to explore the Earth RNA virome. Mining 5,150
diverse metatranscriptomes uncovered >2.5million RNA virus contigs. Analysis of >330,000 RNA-dependent
RNA polymerases (RdRPs) shows that this expansion corresponds to a 5-fold increase of the known RNA vi-
rus diversity. Gene content analysis revealed multiple protein domains previously not found in RNA viruses
and implicated in virus-host interactions. Extended RdRP phylogeny supports the monophyly of the five es-
tablished phyla and reveals two putative additional bacteriophage phyla and numerous putative additional
classes and orders. The dramatically expanded phylum Lenarviricota, consisting of bacterial and related eu-
karyotic viruses, now accounts for a third of the RNA virome. Identification of CRISPR spacer matches and
bacteriolytic proteins suggests that subsets of picobirnaviruses and partitiviruses, previously associated
with eukaryotes, infect prokaryotic hosts.
INTRODUCTION

Viruses are obligate intracellular parasites of living organisms and

are regarded as the most numerous biological entities on Earth

(Mushegian, 2020).Historically, only virusescausingdisease inhu-

mans, livestock, and crops along with model bacterial viruses

(phages) havebeenstudied indetail. Recently, a previously unsus-

pected diversity of DNA viruses has been identified, thanks to ad-

vances in genome sequencing and metagenomics (Call et al.,

2021; Roux et al., 2021). Recognizing metagenomics role in virus

discovery, the International Committee for Taxonomy of Viruses

(ICTV) approved formal recognition of new virus taxa on the basis

of metagenomic sequence analysis (Simmonds et al., 2017).

Compared with DNA viruses, the diversity and role of RNA vi-

ruses in microbial ecosystems is poorly understood. Recently,

however, metatranscriptome surveys (bulk RNA sequencing of

entire microbial communities) uncovered massive amounts of

previously undetected RNA viruses (Krishnamurthy et al., 2016;
Cell 185, 4023–4037, Octo
This is an open access article under the CC BY-N
Zeigler Allen et al., 2017; Dolja and Koonin, 2018). In particular,

analysis of invertebrate transcriptomes resulted in doubling the

number of known RNA viruses (Shi et al., 2016), followed by a

further 2-fold expansion through analysis of the RNA sequences

in the metavirome (sequencing of the subcellular size fraction)

from a single site, implying a vast, barely sampled global RNA vi-

rome (Wolf et al., 2020). Other forays into RNA viromes include

analysis of fungal transcriptomes (Sutela et al., 2020), metatran-

scriptomes of various types of soil (Starr et al., 2019; Wu et al.,

2021), and expansion of the RNA phageome of aquatic environ-

ments (Callanan et al., 2020).

Apart from deltaviruses, all RNA viruses share a single hallmark

protein, the RNA-dependent RNA polymerase (RdRP) (Koonin

et al., 2020). Thus, study of the diversity and evolution of RNA vi-

ruses hinges on detection and analysis of RdRPs. Although due

to the extremesequencedivergenceof theRdRPs, theconfidence

in the deepest branchings in the phylogenetic tree is low, fivewell-

separated, major clades were identified (Wolf et al., 2018; Holmes
ber 13, 2022 ª 2022 The Authors. Published by Elsevier Inc. 4023
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. RNA virus discovery pipeline

(A) RNA virus discovery pipeline.

(B) RvANI90 Rarefaction curves: accumulation of unique clusters as a function of the number of analyzed samples (GOLD field—ITS.PIDs). These values were

obtained via bootstrapping; semi-opaque segments represent the range of measured unique RvANI90 clusters across 25 random subsamplings. The central line

represents the mean of 25 random samples. Colors indicate the environment type (right chart).

(C) Number of RCR90 clusters (left) and RvANI90 (right), whose members are either entirely ‘‘reference’’ (contigs from the ‘‘reference set’’ only), ‘‘novel’’ (only

identified in the analyzed metatranscriptomes), or ‘‘shared’’ (contains members of each type).

See also Figure S1.
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and Duchêne, 2019) and subsequently recognized as phyla

comprising the kingdom Orthornavirae within the realm Riboviria

(International Committee on Taxonomyof Viruses ExecutiveCom-

mittee, 2020; Koonin et al., 2020).

Clearly, an extensive census of RNA virus genomes from

diverse habitats and hosts is crucial for understanding RNA virus

evolution. Here, mining 5,150 metatranscriptomes from various

environments, we expanded RNA virus diversity from 13,282 to

124,873 distinct clusters at a granularity level between species

and genus. We identified two candidate additional phyla and

numerous tentative classes, orders, and families. These include

unreported lineages likely infecting bacteria. Additionally, we

report multiple unexpected protein domains, some of which

are likely to counter antiviral defense.

RESULTS

Identification of RNA viruses from diverse
metatranscriptomes
Here, we devised a computational pipeline for sensitive RNA virus

detectionsuitable for analysisof thousandsofmetatranscriptomes

(Figure 1; see STAR Methods). Briefly, the pipeline first filters out

sequences likely encoded by DNA entities by comparing the

metatranscriptomic contigs to a diverse set of DNA genomes

and metagenomes. Subsequently, the much reduced sequence

set (<1% of the initial set) is iteratively searched for RdRPs, and

confident matches are treated as putative RNA viruses (see

STAR Methods). 3,598 of the 5,150 metatranscriptomes queried,

contained one or more contigs coding an RdRP of sufficient
4024 Cell 185, 4023–4037, October 13, 2022
completeness for further analyses (see STAR Methods). We then

used the RdRP-encoding contigs as bait to identify additional

metatranscriptomic contigs sharing high nucleic similarity with

the RdRP-encoding ones (including outside of the RdRP region).

Altogether, 2,658,344 RNA virus contigs were identified and

supplemented with 27,984 sequences from published sources

(Figure1A).Of these, 348,762contigs representedadeduplicated,

non-redundant sequencesetof lengthR1kbp.Theseweregroup-

ed into 124,743 clusters sharing 90% average nucleotide identity

(RNA Virus ANI90 clusters [hereafter RvANI90]), of which only

13,308 (10.7%) contained at least one previously known

sequence, translating into a roughly 9-fold expansion of the global

RNA virome, at the ANI90 level of diversity.

The RNA virus sequence clusters showed a power law-like

distribution by size, dominated by small clusters, with a long

tail of large clusters, the largest one including 429 contigs (Fig-

ure S1). Based on the accumulation curve, the global diversity

of RNA viruses evaluated at the RvANI90 level showed no sign

of saturation (Figure 1B), with a particularly high richness in soil

environments (Figure 1B). About 5.8% of the RdRP-encoding

contigs showed evidence of utilizing alternative genetic codes

(Figure 2), and about 0.5% showed shuffling of the conserved

motifs (domain permutation) within the RdRP (Figure 2).

RdRP phylogeny and major expansion of RNA virus
diversity
To build a global RNA virus phylogeny, we first collected full-

length RdRP core domain sequences and clustered them

at 90% amino acid identity threshold, arriving at 77,510



Figure 2. Phylogenetic reconstruction of the

global RNA virosphere

An ultrameterized RdRP tree rooted using reverse

transcriptases as an outgroup and visualized with

ggtree and ggtreeExtra (Xu et al., 2021; Yu et al.,

2018). Branches are colored black unless any of

their descendants contain at least one sequence

from the ‘‘reference set’’ (cyan). Tips aligned with

stars indicate evidence of prokaryotic host—

CRISPR spacer match in blue and bacteriolytic

domain in red. Green arcs indicate clades with an

alternative genetic code inR50%of the sequences.

Orange arcs indicate clades with motif permutation

inR50%of the RdRPs. The 5 established phyla and

the proposed candidate phylum p.0002 are color

coded in both the text and the bar-plot in the

outermost ring, which represents the maximum

genome length observed for each RCR90 cluster

(i.e., tree tip). Key taxa are labeled directly on the

tree. Additional visualizations of the tree are avail-

able in the project’s Zenodo repository (see data

and code availability).

See also Figure S2.
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representatives (RCR90 set). Even when reduced to the

RCR90 granularity, the set remained too large and diverse to

be directly amenable for multiple sequence alignment and phylo-

genetic analysis with advanced maximum likelihood phyloge-

netic methods. Therefore, we employed an iterative procedure

in which the tree was reconstructed using an alignment of con-

sensuses of sequence cluster alignments (see STAR Methods).

The resulting RdRP tree comprised 77,520 representative

sequences (77,510 RCR90 sequences and 10 reverse transcrip-

tases [RTs] included as an outgroup; Figure 2). Despite this dra-

matic expansion, the 5 previously established phyla (Wolf et al.,

2018) remained largely monophyletic. In addition, the tree

included two groups below the base of the phylum Kitrinoviri-

cota, which were analyzed in detail (see below).

Monophyly of themajor branches in the RdRP tree, in particular

the 5 phyla, was verified by subsampling. Representatives of virus

families were repeatedly randomly sampled, phylogeny was re-

constructed from themultiple alignment of each sample, the posi-

tions of the phyla clades were traced, and a quantitative measure

of theirmonophylywas calculated (seeSTARMethods). Inmost of

the samples, the 5 phyla stayed largelymonophyletic (FigureS2A).

Sequences that tended to break the phylum-level monophyly

formed a sharply biased subset, with Flasuviricetes being the

most common ‘‘offender.’’ In this work, Flasuviricetes was placed

inside Pisuviricota, whereas in previous analyses, it was the basal

clade of Kitrinoviricota. Nevertheless, the inconsistent position of

flaviviruses in subsampled trees indicates that their phylogenetic

placement remains uncertain. The families Reoviridae, Picobirna-

viridae, Cystoviridae, and several candidate families also often
C

broke away from their respective phyla,

although theconsensus treeplacedPicobir-

naviridae and Cystoviridae confidently

within Pisuviricota (see below).

When the subsampled trees were

reduced to the lowest common ancestor
of each of the five phyla, the deepest branching order was found

to be robust, with Pisuviricota and Kitrinoviricota forming a crown

group in the consensus tree, and Lenarviricota and Negarnaviri-

cotaoccupying basal positions (Figure 2, top right inset). As in pre-

viousanalyses (Wolf etal., 2018),when the treewas rootedbyRTs,

the deepest branchwithinOrthornaviraewas the phylum Lenarvir-

icota that includes leviviruses (positive-sense RNA phages; class

Allassoviricetes) and their apparent direct descendants among

the viruses of eukaryotes, mitoviruses (Howeltoviricetes), narnavi-

ruses (Amabilivirecetes), and botourmiaviruses (Miaviricetes).

Although validating this branching order definitively may not be

feasible, this position of Lenarviricota is biologically plausible,

placing the origin of Orthornavirae in the bacterial domain. In

contrast, the deepplacement ofNegarnaviricotawas unexpected,

given that -ssRNA viruses have been isolated almost exclusively

from animals and plants. Negarnaviricota position might reflect

an ancient origin, but more likely, is a phylogenetic artifact,

perhaps caused by acceleration of evolution at the base of

Negarnaviricota.

Comparison of the phylogenetic depths of the present RdRP

phylogeny and the previously reported tree (Wolf et al., 2020) re-

flected a roughly 5-fold expansion of the global RNA virome as

measured by the total-branch-length (TBL). To convert the RdRP

phylogeny into a tentative taxonomic scheme, we developed a

semi-quantitative approach for assigning taxonomic ranks to un-

classified nodes based on neighboring well-established taxa

(see STAR Methods). Taxa were designated to rank and prefixed

by p, c, o, f, and g for phylum, class, order, family, and genus,

respectively, followed by an ordinal number for proposed taxa of
ell 185, 4023–4037, October 13, 2022 4025



Table 1. Expansion of the global RNA virome

Rank

Number of

known taxa

Updated number

of taxa

Fold

increase

RvANI90

cluster

13,282 124,873 9.4

RCR90

cluster

12,862 77,510 6.0

Family 98 489 4.9

Order 26 121 4.7

Class 19 93 4.9

Phylum 5 7 1.4
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that rank. Taxa that associated with a previously described taxon

were terminated with ‘‘base,’’ e.g., f.0127.base-Noda is the 127th

new family that is basal toNodaviridae in the RdRP tree (Table S1).

This approach resulted in a roughly 5-fold expansion of diver-

sity at all ranks below phylum, compared with the results of the

latest RNA virome analysis (Wolf et al., 2020; Table 1). However,

it has to be emphasized that this estimate was obtained without

taking into account the results of two large-scale RNA virus sur-

veys published since this analysis was performed (see limitations

of the study section) (Edgar et al., 2022; Zayed et al., 2022).

When broken down by phyla, the largest expansion at all

ranks was within Lenarviricota, followed by Kitrinoviricota and

Pisuviricota. By contrast, only a few taxa were added to Duplor-

naviricota and Negarnaviricota (Figure 2; Table S1).

In addition to the expansion reflected in the RdRP phyloge-

netic tree, some of the RNA viruses (39,000 contigs that formed

24,742 RvANI90 clusters) identified in this work via the RdRP-

based profile searches were discarded from the phylogenetic

analysis as the boundaries and some of the motifs of the core

RdRP domain could not be reliably identified.

Putative additional phyla and classes
As there is currently no official guidance from the ICTV for the for-

mation of RNA virus phyla and classes, we opted for criteria

similar to the ones used for shallower ranks (see STARMethods),

that is, to form a phylum or class, a group was required to branch

outside of the existing phyla or classes. Two of the most diver-

gent clades identified here were positioned below the base of Ki-

trinoviricota in the RdRP phylogeny and, in principle, can be

included in an expanded version of this phylum. The first of these

deep branches, p.0001, included only 3 RCR90 clusters and

therefore was not analyzed further. The second one, p.0002,

possess distinct features that appear more compatible with a

candidate phylum designation rather than expansion of Kitrino-

viricota. This putative phylum consisted of 234 contigs from 30

RCR90 clusters, the most complete ones encoding �10 ORFs

with mean length of about 12 kb. Except the RdRP, only one of

the ORFs (conserved in one of the two tentative families in

p.0002) had significant similarity to a known protein domain,

specifically to M15 or M35 family of zinc metallopeptidases

implicated in cell lysis (see below). The ORFs in p.0002 genomes

are tightly spaced and preceded by ribosome-binding motifs

(Shine Dalgarno [SD]) involved in prokaryotic translation initiation

(Figure 3A). Taken together, p.0002 appears to consist of
4026 Cell 185, 4023–4037, October 13, 2022
bacteriophages, supporting the group’s phylum designation as

all isolated Kitrinoviricota members infect eukaryotes.

Another highly divergent candidate RNA phage phylum was

RvANI90_0011770, one of the viral clusters omitted from the phy-

logeny effort as they distorted the RdRP alignment (hence, no p

designation). All RvANI90_0011770 members originated from 27

different active sludge samples,where the largest of these 55 con-

tigs were 10–12-kb long, encoding 7–9 closely spaced ORFs with

no conserved SD motifs. Similarly to p.0002, the only recognized

protein domains included the RdRP and a predicted lysis enzyme

(see below).

A substantial increase in class-level diversity (see STAR

Methods) was observed in 4 of the 5 established phyla, including

14 classes versus 4 known in Lenarviricota, 18 classes over the 4

known inPisuviricota, 20 classes versus 3 known inKitrinoviricota,

and 18 classes versus 6 known inNegarnaviricota. InDuplornavir-

icota, only two candidate class-level clades were identified in

addition to the two recognized classes. Overall, the 5 phyla ofOr-

thornavirae contained 91 classes comparedwith the 19 previously

established ones and 489 families compared with the previously

recognized 98 (Table 1; Table S1). Someof these additional candi-

date taxa included previously reported, divergent viruses that so

far eluded placement and lacked ICTV designation.

Major expansion of the range of RNA viruses associated
with bacteria
So far, most RNA viruses have been associated with eukaryotic

hosts, with only two groups known to infect bacteria, leviviruses

(Leviviricetes), and cystoviruses (Vidaverviricetes). Until recently,

leviviruses and particularly cystoviruses, included small numbers

of viruses with narrow host ranges. Here, we expandCystoviridae

diversity from the 8 published RCR90 clusters to 132 RCR90 clus-

ters. Levivirus diversity, which was recently expanded (Callanan

et al., 2020) to 1,940 RCR90 clusters, was further increased

here by an additional 13,512 RCR90 clusters.

The expanded phylum Lenarviricota now accounts for over a

third of the RNA virus RCR90 clusters, including the four largest

families (Figure 2; Table S1), the first and fourth of these, Steitz-

viridae and Fiersviridae, respectively, are bona fide Leviviricetes

phages. The second-largest family, Botourmiaviridae, consists

of eukaryotic viruses that appear to have evolved from a

common ancestor with Leviviricetes, with the capsid-lessNarna-

viridae and Mitoviridae (the third largest family of RNA viruses)

as intermediates (Koonin et al., 2020). In addition to the major

expansion of Lenarviricota, converging lines of evidence sug-

gested reassignment to bacterial hosts for several groups of vi-

ruses previously thought to solely infect eukaryotes (Figure 3B).

Phages now appear to be interspersed with those infecting eu-

karyotes within Pisuviricota. Specifically, the family Cystoviridae,

which migrated from Duplornaviricota to Pisuviricota in the cur-

rent RdRP phylogeny, forms a strongly supported branch with

picobirnaviruses and partitiviruses (double-stranded RNA

[dsRNA] families embedded in the midst of the +ssRNA viruses

[Figure 2)). Within this Durnavirales order, several clades showed

unexpected conservation of SD motifs in the 50 untranslated re-

gions (UTRs), suggesting that these viruses infect bacteria (Ba-

hiri Elitzur et al., 2021; Hockenberry et al., 2018). These putative

phages includemembers ofPicobirnaviridae, for which presence
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Figure 3. Diversity and abundance of prokaryotic RNA viruses

(A) Genome map of viruses from the tentative family f.0278 of the proposed phylum p.0002. ORFs are colored based on functional annotation and predicted SD

motifs are indicated with colored arrows.

(B) Overview of recognized (underlined) and predicted prokaryotic RNA viruses. For each group, the type of evidence supporting its association with prokaryotic

hosts is indicated. Clades were considered as likely composed primarily of phages if R50% of the predicted ORFs were associated with an SD motif, after

excluding genes predicted on the edges of contigs. Ltase, lytic transglycosylase, lysozyme superfamily fold; SGL, ‘‘single-gene lysis’’ (cell wall synthesis in-

hibitors); PRO-M15, Zn-DD-carboxypeptidase (sensu PF08291.13); PRO-M35, M35 family zinc metalloendopeptidase; PRO-M23, M23-family metal-

lopeptidases; Amidase, N-acetylmuramoyl-L-alanine amidase; Endopep, L-alanyl-D-glutamate endopeptidase.

(C) CRISPR spacer landscape of Roseiflexus sp. RS-1 in Yellowstone hot springs, including spacers matching genPartiti.0019 genomes. Left panel displays the

total number of spacers identified for each type of Roseiflexus sp. RS-1 CRISPR arrays (see Figure S3). The right panel presents phage type (dsDNA, ssDNA, or

RNA) for which hits to CRISPR spacers were identified for each CRISPR type.

(D) Example of a predicted pair of RdRP and capsid-encoding segments from a genPartiti.0019 phage. Top panel: CRISPR spacer matches are indicated

alongside a genomic map for each segment. The number of mismatches is shown on the y axis, and the position of the hit is indicated on the x axis. The bottom

panel displays the relative abundance of both segments across a metatranscriptome time series.

(E) Relative abundance of different prokaryotic RNA virus groups across biomes. Only datasets dominated by prokaryotic sequences (‘‘P-dominated’’) containing

at least 10 prokaryotic RNA viruses were considered. The right panel shows a breakdown of the biome distribution for each group, calculated from a balanced

dataset composed of random subsamples of 50 samples per environment (random subsampling was performed 100 times, and the mean values were plotted).

See also Figures S3 and S4.
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of SD motifs was previously noted (Boros et al., 2018; Krishna-

murthy and Wang, 2018), along with two cysto-like families

(f.0114.base-Cysto and f.0112.base-Cysto) and two additional

genera within Partitiviridae (genPartiti.0029, genPartiti.0019.-

base-Deltapartitivirus) (Table S2; Figure 3B).

Another evidence of bacterial association for some of the

identified viral groups is the conserved occurrence of bacterio-

lytic proteins (Figure 3B). Many dsDNA Phages and dsRNA

cystoviruses encode lytic enzymes (endolysins) degrading bac-

terial peptidoglycan (Cahill and Young, 2019). In contrast, levi-

viruses induce host lysis by inhibiting peptidoglycan synthesis

via small proteins termed single-gene lysis (Sgl) (Cahill and

Young, 2019). Leviviruses sgl are typically overlapping or

nested within other genes (Chamakura and Young, 2020).

Here, we used a collection of such lysis domains to detect

metatranscriptomic viral genomes potentially infecting bacteria

(see STAR Methods) (Figure 3B). This search yielded 546 signif-

icant matches to lysis protein profiles, mostly in Leviviricetes
(469) and Cystoviridae (17). Although known cystoviruses

encode lytic transglycosylases of the lysozyme superfamily

(SF) fold (Dessau et al., 2012), some of the cysto-like families

identified here encoded other peptidoglycan-digesting en-

zymes. Specifically, some f.0114.base-Cysto viruses encode

N-acetylmuramoyl-L-alanine amidases, whereas viruses of

f.0112.base-Cysto encoded metallopeptidases of the M15 or

M23 families (Table S2), both often found in dsDNA phages

and are known to cleave bonds of cross-linking peptides (Oli-

veira et al., 2013). Some f.0112.base-Cysto viruses also en-

coded lipases that may further induce host lysis. Finally,

f.0115.base-Cysto viruses encoded an L-alanyl-D-glutamate

endopeptidase that commonly functions as endolysins in

dsDNA phages (Cahill and Young, 2019; Oliveira et al., 2013).

This clade-specific distribution of endolysins in cystoviruses in-

dicates that, as in dsDNA phages, lysis genes are subject to

frequent non-homologous replacement, potentially linked to

host range change.
Cell 185, 4023–4037, October 13, 2022 4027
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Two other groups of RNA viruses were found to encode lysis

proteins, picobirnaviruses and family f.0278 in the proposed

phylum p.0002. Six picobirnaviruses encode either lytic transgly-

cosylases or M23-family metallopeptidases. Members of f.0278

encode either M15 or M35 family zinc metallopeptidases

(Table S2). M15 family enzymes are involved in host lysis in

some dsDNA phages (Kutyshenko et al., 2021) and in some

ssDNA bacteriophages (Roux et al., 2012), whereas M35-family

enzymes have not been previously linked to phage egress. Given

that the two enzymes are mutually exclusive in f.0278 and the

corresponding genes occupy equivalent positions, we propose

that M15 and M35 family proteins function as endolysins. The

conservation of M15 and M35 proteins in f.0278 strongly sup-

ports bacterial host assignment. Finally, RvANI90_0011770, a

putative phylum of RNA bacteriophages identified by the RdRP

searches not included in the present phylogeny, showed similar

conservation of M23-family metallopeptidases.

The final line of evidence for prokaryotic host assignment was

the detection of matches between RNA viruses and CRISPR

spacers. Although most known CRISPR systems target DNA

templates, a large subset of type III CRISPR systems encode

RT and can protect bacteria against RNA bacteriophages (Ma-

karova et al., 2020; Silas et al., 2017). We compared all identified

RNA virus genomes with the IMG database of R50 million

spacers (see STAR Methods), detecting spacer matches for

161 RNA viruses from 23 RvANI90 clusters, across two clades:

Leviviricetes, and genPartiti.0019 (Figure 3B; Table S2). All

matches to Leviviricetes viruses were from short contigs derived

from IMG metagenomes, with no reliable taxonomic information

or adjacent cas genes (Table S3). By contrast, matches to

genPartiti.0019 viruseswere specifically associatedwith popula-

tions of Roseiflexus sp. RS-1 and were further analyzed. This

filamentous anoxygenic phototrophic bacterium of the phylum

Chloroflexi is a dominant member of microbial mats in Mush-

room Spring (Davison et al., 2016), from which the genPar-

titi.0019 sequences were obtained. The genome of Roseiflexus

sp. RS-1 contains four CRISPR loci, with one subtype III-B en-

coding a RT fused to the Cas1 protein (see Figure S3) (van der

Meer et al., 2010). Compiling spacers across 16 metagenomes,

each of the CRISPR arrays could be associated with z1,000–

40,000 spacers, yet all but one spacersmatching genPartiti.0019

sequences were detected in the RT-encoding III-B array,

suggesting that these were acquired from RNA templates (Fig-

ure 3C). These CRISPR spacer matches were observed in sam-

ples spanning 9 years and showed dynamic spacer gain/loss

through time, indicative of virus-host association (Figure S3).

Because all genPartiti.0019 contigs encoded RdRP alone,

whereas related partitiviruses have segmented genomes, where

the capsid and other proteins are encoded in separate seg-

ments, we searched the Mushroom Spring metatranscriptomes

for contigs encoding the corresponding capsid proteins (CPs).

Combining matches to spacers from the RT-encoding type

III-B array ofRoseiflexus sp. RS-1, the absence of corresponding

sequences in the Mushroom Springs DNA metagenome, and

strong relative abundance correlation (>0.9) to at least one gen-

Partiti.0019 RdRP-encoding sequence, we identified 88 poten-

tial capsid-encoding contigs (Figure 3D; Table S3), of which 86

encoded proteins with best alignment to HMM profiles of known
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partitiviruses capsids (Figure S3). Thus, genPartiti.0019

members are most likely segmented RNA phages infecting

Roseiflexus sp. RS-1.

Interestingly, in datasets dominated by prokaryotic hosts

(‘‘P-dominated,’’ see below), most potential RNA phages were

detected across a broad range of biomes, where Leviviricetes

was by far the most abundant group of prokaryotic RNA viruses,

except in some Yellowstone hot springs dominated by genPar-

titi.0019 (Figure 3E).

Differential distribution of RNA viruses across samples
and habitats
Our RNA virus survey spanned the entire globe, reflecting the

ubiquity of RNA viruses on Earth (Figure 4A). Metagenomic

studies have shown that DNA virus distribution is shaped by

the environment type and host community composition (Gregory

et al., 2019; Martinez-Hernandez et al., 2017; Roux et al., 2016),

and the same factors likely determine the RNA virus distribution.

For metatranscriptomes, the sample processing protocol can be

another factor, namely, whether the total RNAwas sequenced or

whether any specific preprocessing was used (such as mRNAs

enrichment via poly(A) amplification, or rRNAs depletion) (Gann

et al., 2021). Here, most of the datasets analyzed were rRNA-

depleted (67%, Figure S4). Although the poly(A)-enriched and to-

tal RNA datasets were dominated by eukaryotic sequences, the

rRNA-depleted datasets consisted mostly of sequences from

prokaryotes (Figure S4). The datasets were separated into

three groups: ‘‘Eukaryote(E)-dominated’’ (811), ‘‘Prokaryote(P)-

dominated’’ (2,706), and ‘‘Mixed’’ (452), based on the taxonomic

composition of non-viral contigs. Most RNA virus classes

showed clear distribution patterns across dataset types and en-

vironments, likely reflecting the distribution of their primary host

groups (Figures 4B and 4E). For instance, Leviviricetes were

consistently enriched in P-dominated samples from engineered,

rhizosphere, and soil habitats (Figure 4B). This implies an uneven

global ecological distribution of RNA phages, supporting previ-

ous findings (Callanan et al., 2020). Also among Lenarviricota,

Miaviricetes which infect mostly fungi, invertebrates, and plants

were associated with E-dominated and Mixed datasets,

whereas Howeltoviricetes members, including mitoviruses,

were common in all sample types but found preferentially in

plant-associated datasets also rich in fungi.

Although assigning specific eukaryote hosts to RNA viruses is

a challenging task not addressed in this work, we suspect that

many of the detected viruses infect diverse unicellular eukary-

otes, as they utilize alternative genetic code (see below).

Assuming that the broad host assignment (plants, animals, or

fungi) of viruses can be extended over minor sequence dissimi-

larity (less than 10%), we identified only 1,038 metatranscrip-

tomic contigs that belonged to the same RvANI90 cluster as

viruses from VirusHostDB (MIhara et al., 2016) assigned to plant

or animal hosts, indicating low prevalence of viruses infecting

these hosts in the analyzed datasets. Additionally, specific

host assignment to plants can be made for 1,038 metatranscrip-

tomic contigs (in 6 families: Tombusviridae, Virgaviridae,

Betaflexiviridae, Alphaflexiviridae, Benyviridae, and Mayoviri-

dae), encoding movement proteins (MPs), which enable viruses

to pass through plasmodesmata.



Figure 4. Global distribution of RNA viruses

(A) locations of analyzed samples containing RNA viruses. For each sample, the circle size reflects the number of distinct RvANI90, and the circle color indicates

the proportion of sequences predicted as phages.

(B) Relative proportion of (proposed) RNA virus classes (x axis) detected across ecosystem types (y axis). To take into account the total number of genomes

detected for each class and the total number of samples for each ecosystem type, the counts are represented as enrichments compared with the expected

number of genomes assuming even distribution of all classes across all ecosystems. The datasets were divided into ‘‘E-dominated’’ (mostly composed of

eukaryotic transcripts), ‘‘P-dominated’’ (mostly composed of prokaryotic transcripts), and ‘‘Mixed’’ (see Figure S4). Enrichments are shown only for combinations

of ecosystem and dataset type (e.g., ‘‘Marine P-dominated’’) for which at least 20 metatranscriptomes with R1 RNA virus were detected.

See also Figure S4.
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Modular evolution of RNA virus genomes
Here, we performed a comparative analysis of viral genomes

from related clades, identifying instances of genomicmodularity,

such as fusion of genome segments, rearrangement of proteins,

and segmentation of polyproteins. Common genomic rearrange-

ments involving the structural module were observed in Picorna-

virales, where CPs were encoded both downstream or upstream

of the genome replication module, as part of the same polypro-

tein or as separate proteins (Figure S5, Genome maps). Known

viruses of Benyviridae, Picobirnaviridae, and Botourmiaviridae

typically encode the CP and RdRP on different segments.

Here, we identified members of these families where the RdRP

and CP are on the same segment.

Wedetectedmultiple cases of structural genemodule displace-

ment by non-homologous counterparts. For instance, although

members of Potyviridae, Benyviridae, and Matonaviridae encode

3 unrelated CPs and form helical filamentous, rod-shaped, or en-

veloped virus particles, respectively, someof the lineages branch-

ing near these viruses encode single jelly roll (SJR) CPs expected

to form non-enveloped icosahedral virions. Given this lineage

basal position, SJR CPs were likely ancestral in all three virus

groups. In the f.0226.base-Beny group, several viruses encode

both SJR and tobacco mosaic virus (TMV)-like CPs that can be

predicted to form icosahedral and helical capsids, respectively

(Figure S5), suggesting these viruses probably acquired the sec-

ond CP yet retained the ancestral one. Exaptation of one of the

CPs appears likely, as previously described for closteroviruses

(Doljaetal., 2006).Non-homologousCPswerealso identified in lin-
eages basal to Togaviridae (f.0271.base-Toga and f.0273.base-

Toga), where the typical Togaviridae icosahedral forming CPs

were replaced by TMV-like CPs, likely forming rod-shaped helical

virions, suggesting TMV-like CPs emerged in a common ancestor

of Hepelivirales and Martellivirales. Conversely, in two identified

Virgaviridae contigs (ND_191857 and ND_019381), the TMV-like

CP was replaced by structural proteins of Kitaviridae. In

f.0268.base-Toga, the typical Togaviridae structural module

(including genes for CP and class II fusion [CIIF] protein) was re-

placed by a class I fusion protein and M protein of nidoviruses

(ND_164660; Figure 5). Similar replacement of amembrane fusion

glycoprotein was also identified in Xinmoviridae contigs, where

CIIF protein replaced the typical class III fusion protein, yet retain-

ing the typical mononegaviral nucleocapsid protein.

We identified several virus groups basal toHypoviridae (capsid-

less mycoviruses) encoding CPs homologous to those of flexible

helical viruses (f.0066.base-Hypo) or SJR CPs of icosahedral vi-

ruses (f.0067.base-Hypo, f.0068.base-Hypo, f.0069.base-Hypo),

suggesting these families ancestor is likely capsid encoding. Simi-

larly, we identified Deltaflexiviridae relatives encoding SJR CPs

(ND_196199 and ND_246366 from f.0215.base-Deltaflexi) similar

to those of tymoviruses, suggesting that Deltaflexiviridae evolved

fromamemberofTymoviridae following the switch to fungal hosts.

The recurrent appearance of the SJR CP in base lineages of

several groups of structurally diverse viruses is compatible

with the proposed origin of most RNA viruses of eukaryotes from

a simple ancestor that encoded RdRP and SJR CP (Koonin

et al., 2020).
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Figure 5. Diversity of protein domains in RNA viruses

Homologous domains are shown as boxes of the same color (see key on the right). Domains not commonly found in RNA viruses are shown in red and are labeled

above the corresponding boxes. Virus taxa and contig identifiers are noted to the left of each virus genome. At the bottom, scale indicating the length in nu-

cleotides. Abbreviations: NUDIX, nucleoside diphosphate-X hydrolase; BIR_IAP, baculoviral IAP repeat (BIR) domains of the inhibitor of apoptosis (IAP); HAM1,

inosine triphosphate pyrophosphatase; M15, M23, and M34, peptidoglycan-digesting peptidases of MEROPS families M15, M23, and M34, respectively;

RNAPa-s70_CTD, a fusion of C-terminal domain of the a subunit of bacterial DNA-dependent RNA polymerase and C-terminal domain of s70 factor; STKc,

serine/threonine protein kinase; 20-PTransferase, tRNA 20-phosphotransferase; DEDDh, DEDDh-superfamily 30-50 exonuclease; RdRP, RNA-dependent RNA pol

polymerase; Misc, miscellaneous.

See also Figures S5, S6, and S7.
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Originally described in Permutotetraviridae and Birnaviridae, a

distinct rearrangement (known as ‘‘domain permutation’’) occurs

within theRdRPdomain,where theorder of themotifs (A,B,C.) dif-

fers from the canonical form.Here,�2.9%of theRCR90RdRPset

(2,241) were identified as permuted. Our analysis suggests that

motif swapping was ancestral in two classes (Figure 2), candidate

class c.0017 in Pisuviricota (which includes Permutotetraviridae,

Birnaviridae, and 14 other tentative families [f.0088-f.0101])

and candidate class c.0032 in Kitrinoviricota (covering 8

putative families [f.0167–f.0174], including many viruses from

the Yangshan assemblage [Wolf et al., 2020]). Outside of Pisuviri-

cota and Kitrinoviricota, we detected only a small clade

consisting of 2 permuted RCR90 RdRPs within Botourmiaviridae

(Lenarviricota).

Expansion of the protein domain repertoire of RNA
viruses
Here, we annotated the identified viruses via an extensive search

for protein domains (see STAR Methods and Figure S3). In line

with previous studies (Wolf et al., 2020), the frequencies of the

detected domains followed a power law-like distribution, where

most domains only occurred in specific viral groups (Figure S7).

Of the few hallmark domains that were widespread across the

RNA viral tree, the most ubiquitous was the RdRP, followed by

different types of CPs (CP_SJR, CP_levi), RNA helicases (SF1,

SF2, SF3), and serine/cysteine proteases (Figure S7). Apart

from the aforementioned lysis domains, we identified several do-
4030 Cell 185, 4023–4037, October 13, 2022
mains predicted to modulate virus-host interactions and sup-

press the host antiviral response.

Several Tobaniviridae members, which primarily infect verte-

brates, encoded homologs (HHpred p = 100%) (Zimmermann

et al., 2018) of the cytokine receptor-associated Janus kinase

(JAK) TYK2, which upon activation triggers host immune re-

sponses (Haan et al., 2006). These viral JAKs lacked the FERM

and SH2 domains of typical TYK2 and may function as dominant

negative inhibitors of the cellular JAKs via their pseudokinase

domain. The only other RNA viruses predicted to encode a

serine/threonine kinase are partitiviruses (Figure 5), although

that kinase is unrelated to JAKs. Members of f.0059.base-Poty

and f.0167 families encode homologs of cytokine receptors of

the tumor necrosis factor receptor SF, known to be involved in

apoptosis and inflammation (Gravestein and Borst, 1998). The

viral homologs may act as decoys of the host counterparts,

sequestering the cytokines.

Some Dicistroviridae members, and several lineages basal to

Solinviviridae (f.0024.base-Solinvi, f.0014.base-Solinvi, f.0017.

base-Solinvi, f.0018.base-Solinvi) and Polycipiviridae (f.0008.

base-Polycipi), contained homologs of baculoviral IAP repeat

(BIR) domain (baculovirus inhibitor of apoptosis), known to func-

tion in cell cycle control and death (Clem, 2015).

Nucleoside diphosphate-X hydrolase (NUDIX) SF hydrolases

are common in all domains of life and in dsDNA viruses (Vasude-

van and Ryoo, 2015). Here, we identified NUDIX hydrolases

in 13 different RNA virus families (Flaviviridae, Nodaviridae,
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Cystoviridae, and several candidate families). Apart from the

bacteria-infecting Cystoviridae, we suspect these RNA virus-en-

coded NUDIX hydrolases function like those of dsDNA viruses,

acting as decapping enzymes promoting shutoff of host protein

synthesis (Kago and Parrish, 2021).

In 11 diverse RNA virus families from the phyla Kitrinoviricota

and Pisuviricota, we identified the J domain, the active moiety

of DnaJ (Hsp40) co-chaperone (Laudenbach et al., 2021). In

these viruses, the J domain is part of the virus polyproteins

and might facilitate polyprotein folding and processing and/or

virion assembly.

We also identified several enzymatic domains implicated in

RNA repair and metabolism, including RtcB-like 30-phosphate
RNA ligase (Hughes et al., 2020), HAM1-like pyrophosphatase

(Simone et al., 2013), DEDD-SF 30-50 exonuclease that could

be involved in immune suppression, as in arenaviruses (Hastie

et al., 2011), and tRNA 20-phosphotransferase implicated in

tRNA splicing (Sawaya et al., 2005). In cellular organisms, the

latter enzyme is often encoded with NAD and ADP-ribose

(NADAR) domain proteins implicated in NAD metabolism, in

the context of RNA processing (de Souza and Aravind, 2012).

NADAR domains have been originally detected in Roniviridae

(+ssRNA viruses) and giant dsDNA viruses (de Souza and Ara-

vind, 2012). We identified NADAR domains in RNA viruses

from 12 families, emphasizing the potential importance of this

domain for RNA virus replication.

In certain cystoviruses, we detected a protein with an N-termi-

nal domain homologous to the C-terminal domain (CTD) of

sigma70 factors (a subunit of the bacterial RNA polymerase

holoenzyme, that directs the RNA polymerase to specific pro-

moters; Paget and Helmann, 2003). The CTD of this cystoviral

protein is similar to the C-terminal region of bacterial RNA poly-

merase alpha subunit. The CTDs of sigma70 and RNA polymer-

ase alpha are known to interact (Chen et al., 2003), suggesting

that this cystoviral protein reconstitutes this interaction interface

and may participate in transcriptional takeover during infection,

potentially overcoming the host antiviral defenses.

The identification of these diverse domains in RNA viruses

of one or several lineages implies multiple mechanisms of

virus-host interaction and, in particular, counter-defense, which

remain to be investigated.

Alternative genetic codes in RNA viruses
Previous surveys identified several RNA virus groups utilizing

non-standard genetic codes, suggesting they infect hosts with

matching codes, such as ciliates (Wolf et al., 2020). Here, of

the 77,510 RCR90 representatives, 5,843 (�7.5%) showed evi-

dence of alternative genetic codes, indicated by the presence

of canonical STOP codons within the RdRP core domain coding

region (see STAR Methods). Although in most cases, it is impos-

sible to identify the specific alternative code, of the cases where

it was feasible, the most common codes were 6 (UAA and UAG

coding Gln) and 14 (UAA and UGA coding for Tyr and Trp,

respectively, along with recoding of three sense codons) that

have been identified in ciliates (Ring and Cavalcanti, 2008) and

flatworm mitochondria (Ross et al., 2016), respectively. Unlike

many DNA viruses that use alternative genetic codes which

actively reprogram the host cell’s translation machinery for their
benefit (Ivanova et al., 2014; Yutin et al., 2021), in RNA viruses,

such codes are likely to represent adaptation to the host transla-

tion machinery. This phenomenon is well-known for multiple iso-

lated mitoviruses that use the mitochondrial genetic code (UGA

recoded from stop to Trp) and replicate inside mitochondria (Ni-

bert, 2017), and indeed, �51% of the viruses within the much

expanded (2,553 of 5,006 RCR90) Mitoviridae use code 4 that

is common in fungal mitochondria. Apart from mitoviruses, con-

tigs with alternative genetic codes were detected in most of the

large RNA virus groups, typically at frequencies of a few percent.

We identified virus lineages enriched (>50%) in such codes,

throughout the phylogenetic tree of the RdRPs (Table S5, green

arcs in Figure 2). No coherent phylogenetic signal of alternative

code was detected in Duplornaviricota and Negarnoviricota.

Contrastingly, we detected 19 families of Pisuviricota that typi-

cally contained one or two small branches (8–30 RCR90 mem-

bers) with apparent protist codes (UAA and/or UAG code for

an amino acid). Dicistroviridae (monopartite +ssRNA arthropod

viruses) stood out with 12 such branches, suggesting some of

these dicistroviruses may be protists infecting, potentially

arthropod-associated ones. Finally, in Kitrinoviricota, we

observed a surprising distribution of alternative codes: 7 families

included small branches with alternative codes, whereas 7 other

families consisted exclusively (f.0150, f.0177–f.181) or primarily

(f.0176) of viruses using alternative protist-like codes. In line

with previous findings (Wolf et al., 2020), the present analysis

suggestsKitrinoviricota includes a substantial, previously unsus-

pected, diversity of protist viruses.

DISCUSSION

Metagenomes and metatranscriptomes have become the prin-

cipal sources of DNA and RNA virus discovery, respectively

(Call et al., 2021; Simmonds et al., 2017). Here, we analyzed

more than 2.5 million RNA virus contigs recovered from 3,598

diverse metatranscriptomes. Metatranscriptome analysis is

prone to artifacts that stem, in particular, from chimeric RNA

assemblies. Therefore, it is important to emphasize that all

conclusions of this work are based on analysis of evolutionary

conserved groups of RNA virus sequences, and not singletons,

under the assumption that appearance of the same chimera in

different assemblies is highly unlikely; several other safeguards

against chimeric assemblies were implemented (see STAR

Methods).

Our analysis resulted in a 9-fold-increase in the number of

90% RvANI clusters (between the species and genus ranks), a

5-fold increase in the total phylogenetic depth, an almost

6-fold increase in the number of representative RdRP sequences

(RCR90), and a 5-fold increase in the number of putative taxa at

the levels from family to class. In contrast, at the phylum level,

the RNA virus taxonomy remained essentially stable, with the

exception of adding two candidate phyla to the previously estab-

lished 5.

Most of the previous assignments of RNA virus families to

phyla remained stable, albeit with notable exceptions. Thus,

Cystoviridae expanded by an order of magnitude and relocated

from Kitrinoviricota to Pisuviricota, where it now forms a strongly

supported clade with other dsRNA viruses, picobirnaviruses,
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and partitiviruses. Given the greater reliability of phylogenetic

analysis with the expanded family and the plausibility of the

monophyly of these three groups of dsRNA viruses, the current

position of Cystoviridae is likely to be valid. However, the

placement of several other families, notably, Flaviviridae, was

unstable. Although this family also moved from Kitrinoviricota

to Pisuviricota, in this case, the actual affiliation remains

uncertain.

Classification of the kingdomOrthornavirae into phyla appears

to be robust, but the resolution of the phylogeny of the RdRP

near the root might be insufficient to decipher the relationship

among the phyla. The previously proposed scenario of the origin

of dsRNA viruses from within positive-sense RNA viruses on

multiple independent occasions and of negative-sense RNA vi-

ruses (Negarnaviricota) from the Duplornaviricota (Wolf et al.,

2018) remains biologically plausible. However, phylogenetic

analysis of the expanded set of RdRPs failed to vindicate this

scenario in its entirety, although multiple origins of dsRNA vi-

ruses were supported. The basal position of Negarnaviricota

observed here, albeit robust to the performed tests, most likely,

is an artifact of deep phylogenetic analysis. In contrast, the basal

position of Lenarviricota in the tree rooted with RT likely reflects

the origin of the rest of the RNA viruses from a common ancestor

with this phylum within the bacterial domain. This scenario ap-

pears particularly plausible considering the major expansion of

the bacterial RNA virome in this work. Considering the size and

diversity of the analyzed dataset, it appears likely that the infor-

mation contained in the RdRP sequences is indeed insufficient to

resolve the deepest relationships among RNA viruses. This

problem will merit revisiting once sufficient diversity of RdRP

structures accumulates, possibly, providing for a better phyloge-

netic resolution.

The present analysis eliminates the long-standing bias in the

RNA virome toward eukaryote-infecting viruses (Koonin et al.,

2015). Apart from the major expansion of the diversity of levi-

like viruses, we obtained indications that multiple additional

groups of viruses infect bacteria—in particular, picobirnaviruses

and several clades of partitiviruses. A key line of evidence sup-

porting this possibility is the discovery of numerous CRISPR

spacers targeting RNA viruses, both members of Leviviricetes

and a group of candidate RNA phages within partitiviruses.

The present results strongly suggest that drastic host shifts,

known as horizontal virus transfer (HVT), between distantly

related hosts, even crossing the prokaryote-eukaryote divide,

is a major route of RNA virus evolution (Dolja and Koonin,

2018). The HVT events likely occurred on multiple, independent

occasions within different phyla, classes, and possibly even or-

ders of RNA viruses. In that regard, the small group of viruses,

for which multiple CRISPR spacer matches were detected and

that therefore was tentatively assigned to the Roseiflexus bacte-

rium as the host, is notable. This narrow virus group from a

unique habitat, likely, a genus, is lodged deeply within partitivi-

ruses, many of which are known to infect fungi, plants, and inver-

tebrates (Cross et al., 2020; Shi et al., 2016; Vainio et al., 2018).

In addition to the major expansion of the global RNA virome,

this work also substantially expands the catalog of protein do-

mains encoded in RNA virus genomes. The common theme

among these domains that are each represented in narrow line-
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ages of RNA viruses appears to be counter-defense via diverse

molecular mechanisms. These findings imply that, despite their

typically smaller genomes, RNA viruses are more similar to

DNA viruses with respect to the exaptation of host genes than

previously appreciated (Koonin et al., 2022).

In summary, the results greatly expand the diversity of the

kingdom Orthornavira, in particular that of RNA viruses associ-

ated with bacteria, while introducing relatively minor changes

into the latest taxonomic scheme, supporting its general robust-

ness. Additionally, multiple protein functionalities were predicted

in RNA viruses. The large amount of sequence and derivative

data generated in this work is available through the companion

website (riboviria.org) or via the Zenodo deposit. We expect

this resource to enable researchers to gain meaningful and

comprehensive context when describing new RNA viruses in

future studies, for example, by offering insights into the ecolog-

ical distribution of specific viral lineages or via the clade-specific

protein domain annotations. Furthermore, this resource can help

researchers identify key RNA virus genomes to be characterized

experimentally.

Limitations of the study
Our approach to the detection of RNA viruses relied heavily on

the presence of an RdRP via profile searches that can miss

extremely distant homologs with altered canonical sequence

motifs. Furthermore, several RNA viruses possess ‘‘split’’

RdRPs, where the motifs are encoded in different ORFs or

even genomic segments (Sutela et al., 2020; Chiba et al.,

2021). Another drawback of our RdRP-based discovery is the

lack of a systematic identification effort for segmented RNA virus

genomes (as the non-RdRP coding segments would be unre-

ported). Presently, genomic segments other than that encoding

the RdRP were identified by co-occurrence analysis only for the

group of bacteria-infecting partiti-like viruses targeted by

CRISPR. Comprehensive detection of segmented RNA virus ge-

nomes is a task for future analyses, as is the assignment of

different segments to each other/specific viral genome.

Two studies conducted concurrently with this work generated

related insights. A large-scale survey of RNA-sequencing ar-

chives reporting numerous novel RNA viruses has been pub-

lished by the Serratus team (Edgar et al., 2022), and a large-scale

metatranscriptome analysis of oceanic RNA viruses has been

published by the Tara Oceans project (Zayed et al., 2022). A

comprehensive comparison of the results of the three studies

that differed in many methodological aspects, including the

scope of the analyzed metatranscriptomes, remains a major

task for the future. However, to quantify the overlap among the

results of the three projects and accordingly assess the novelty

of each, we performed an automated comparison of RdRP clus-

ters obtained with two clustering thresholds, 0.9 for fine grain

and 0.5 for coarse grain classification (see STAR Methods).

The results of this comparison (Table S8 ‘‘cluster intersec-

tions’’) detected relatively small numbers of clusters shared by

all three projects and showed that thousands of clusters were

unique to each. At fine grain (threshold of 0.9), the greatest num-

ber of unique clusters was identified in the Serratus data, as

could be expected given that this project included a consider-

ably larger data set than the other two. However, at coarse grain

https://riboviria.org
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(threshold of 0.5), our present results included more unique clus-

ters than the other two studies taken together, indicating that our

work covers a substantially greater phylogenetic depth of RNA

viruses. This comparison supports our conclusion that the

current sampling of the global RNA virome is far from reaching

saturation. Thus, the three studies are complementary, and

incorporation of the results into a single phylogenomic frame-

work and synthesis of the conclusions should substantially

advance our knowledge of the RNA virosphere.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

All original data and code produced in

this work

This paper https://doi.org/10.5281/zenodo.6553771

Original code produced in this study This paper https://github.com/UriNeri/RVMT

accompanying interactive web portal This paper https://riboviria.org

Software and algorithms

MMseqs2 Steinegger and Söding, 2017 https://github.com/soedinglab/MMseqs2

NCBI BLAST+ suite Altschul et al., 1997; Johnson et al., 2008 https://ftp.ncbi.nlm.nih.gov/blast/

executables/blast+/LATEST/

DIAMOND Buchfink et al., 2015 https://github.com/bbuchfink/diamond

bbmap v38.81 Bushnell, 2014 https://sourceforge.net/projects/bbmap/

MUSCLE v.5 Edgar, 2021 https://www.drive5.com/muscle/

downloads.htm

Mafft v7.407 Katoh and Standley, 2013 https://mafft.cbrc.jp/alignment/software/

HH-Suite Steinegger et al., 2019 https://github.com/soedinglab/hh-suite

HMMER Söding, 2005; Potter et al., 2018 http://hmmer.org/

CD-HIT Fu et al., 2012 https://github.com/weizhongli/cdhit

MCL Enright et al., 2002 https://micans.org/mcl/index.html

ggtree Yu et al., 2018 https://bioconductor.org/packages/

release/bioc/html/ggtree.html

ggtreeExtra Xu et al., 2021 https://bioconductor.org/packages/

release/bioc/html/ggtreeExtra.html

IQ-Tree Nguyen et al., 2015 http://www.iqtree.org/

dustmasker (v1.0.0) Morgulis et al., 2006 https://www.ncbi.nlm.nih.gov/IEB/

ToolBox/CPP_DOC/lxr/source/src/app/

dustmasker/

etandem (v6.6.0.0) Rice et al., 2000 http://emboss.open-bio.org/rel/rel6/apps/

etandem.html

R The R Project for Statistical Computing https://cran.r-project.org/

Python Python Software Foundation https://www.python.org

Igraph Csardi and Nepusz, 2006 https://igraph.org/

Prodigal (v2.6.3) Hyatt et al., 2010 https://github.com/hyattpd/Prodigal

tRNAscanME2 Chan et al., 2021 https://github.com/UCSC-LoweLab/

tRNAscan-SE
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and additional data should be directed to and will be fulfilled by the lead contact,

urineri@mail.tau.ac.il (U.N.).

Materials availability
This study did not generate new unique reagents, physical samples, or specific biological material. As a computational project, the

input for this study is publicly available as detailed below in ‘‘metatranscriptome acquisition’’. All results and output of this study are

described below in the ‘‘data and code availability’’ section.
e1 Cell 185, 4023–4037.e1–e10, October 13, 2022

mailto:urineri@mail.tau.ac.il
https://doi.org/10.5281/zenodo.6553771
https://github.com/UriNeri/RVMT
https://riboviria.org
https://github.com/soedinglab/MMseqs2
https://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/
https://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/
https://github.com/bbuchfink/diamond
https://sourceforge.net/projects/bbmap/
https://www.drive5.com/muscle/downloads.htm
https://www.drive5.com/muscle/downloads.htm
https://mafft.cbrc.jp/alignment/software/
https://github.com/soedinglab/hh-suite
http://hmmer.org/
https://github.com/weizhongli/cdhit
https://micans.org/mcl/index.html
https://bioconductor.org/packages/release/bioc/html/ggtree.html
https://bioconductor.org/packages/release/bioc/html/ggtree.html
https://bioconductor.org/packages/release/bioc/html/ggtreeExtra.html
https://bioconductor.org/packages/release/bioc/html/ggtreeExtra.html
http://www.iqtree.org/
https://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/app/dustmasker/
https://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/app/dustmasker/
https://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/app/dustmasker/
http://emboss.open-bio.org/rel/rel6/apps/etandem.html
http://emboss.open-bio.org/rel/rel6/apps/etandem.html
https://cran.r-project.org/
https://www.python.org
https://igraph.org/
https://github.com/hyattpd/Prodigal
https://github.com/UCSC-LoweLab/tRNAscan-SE
https://github.com/UCSC-LoweLab/tRNAscan-SE


ll
OPEN ACCESSResource
Data and code availability
All original data and code produced in this work is freely and fully available through several venues (DOIs also listed in the key re-

sources table):

d All the data, code, results produced in the course of this project, as well as the latest release of the accompanying interactive

web portal (https://riboviria.org), are available via CERN’s Zenodo repository (https://doi.org/10.5281/zenodo.6553771). This

project is intended to serve as a community wide resource. As such, the Zenodo repository includes the additional information

and various intermediary results and secondary analyses, such the predicted coding sequences, host assignments, phylogeny

and taxonomic affiliation, raw domain hidden markov model (HMM) search matches, additional domain profile databases

generated in this work (e.g. alignments, HMMs, original seed sequences and predicted function) as well the nucleic sequences

for both the expanded (2.6Mmetatranscriptome derived) contig set and themanually consolidated ‘‘Reference Set’’ (see STAR

Methods).

d As noted above, the Zenodo deposit includes the original code produced in this study, which corresponds to the latest version

of the project’s GitHub repository, which is available under the open-source MIT License at https://github.com/UriNeri/RVMT.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
METHOD DETAILS

Metatranscriptome acquisition
The identification of RNA viruses was performed on a total of 5,150 publicly available, pre-assembled metatranscriptomes, that were

retrieved from IMG/M in January 2020 (Chen et al., 2021; Mukherjee et al., 2021). As previously described, the majority of these were

assembled using MEGAHIT (Li et al., 2016) (see Table S4 for information referring to the assembler used in the different samples, and

when available, reference to the study where the samples were originally published).

Primary Filtering process
For convenience, we summarized the final tools and cutoffs of the Primary and secondary filtration process in Table S6 - Discovery

pipeline search and filtration thresholds.

Our initial criteria for contigs acquired from the IMG/M portal discarded sequences shorter than 1,000 nt or encoding rRNA genes

(the remaining contigs were dereplicated at 99% sequence identity via mmseqs easy-linclust) (Steinegger and Söding, 2017).

To filter out sequences that were highly unlikely to represent RNA viruses, we compared the obtained metatranscriptome contigs

to a compendium of DNA sequences built from 1,831 metagenomes originated from the same studies as 1,306 of the metatranscrip-

tomes. We selected metagenomes that shared the metadata attribute of ‘‘Study_ID’’ with the 5,510 metatranscriptomes in the Ge-

nomes OnLine Database (GOLD) portal (Mukherjee et al., 2021) as these DNA assemblies would cover a similar range of habitats as

the analyzed metatranscriptomes. Using multiple sequence search tools (specifically, MMseqs2 (nucleic - nucleic (search type 3)

(Hauser et al., 2016; Steinegger and Söding, 2017), DIAMOND (translated nucleotide versus the IMG sourced DNA metagenomic

predicted ORFs (diamond blastx) (Buchfink et al., 2015), and NCBI BLAST (nucleic - nucleic - blastn) (Altschul et al., 1997; Camacho

et al., 2009; Johnson et al., 2008)) in an iterative manner, we identified and excluded metatranscriptomic contigs that matched se-

quences in the DNA sequence dataset (Figure 1A), based on the assumption that RNA viruses would not be present in DNA assem-

blies — which would be comprised of cellular organisms, DNA-based mobile elements, and integrated retroviruses. The iterative

search was performed such that each iteration gradually increased the search sensitivity (e.g., through decreased word length

(BLASTn) and higher sensitivity value (MMseqs2 ‘‘–sensitivity’’)), while discarding all sequences from the metatranscriptomes collec-

tion that produced reliable matches to sequences in the ‘‘DNAome’’, before advancing with the filtered output to the next iteration.

This process was repeated for a total of five iterations, though we should note the initial iterations were mainly exploratory (used for

crude tuning of the procedure).

Secondary Filtering process
To further filter the contig set, we supplemented the above filtering process output with 5,954 RNA viral sequences from reference

databases and performed an additional iterative filtering procedure using public databases (NCBI NT/NR and IMG/VR) as the DNA

set. To prevent the exclusion of bona fide RNA virus sequences, we masked entries of the public databases that matched reference

RNA viruses from subsequent iterations. All discarded contigs were aggregated and supplemented with manually identified DNA

encoded contigs, creating a database of ‘‘false positives’’, that was used to further filter the metatranscriptome dataset through

exclusion of sequences with producing passable matches to the ‘‘false positive’’ set. The procedure of collecting the discarded

matches to further refine the working set was repeated three times.

Estimation of DNA remnants in intermediate sets
To evaluate remnants of DNA sequences in the working set through the filtration process, we routinely analyzed random contig

subsets by (1) computing the RdRP to reverse-transcriptase domain ratio as a proxy to the RNA virus to DNA-encoded contigs;

(2) manually inspecting the presence of the most frequent non-RNA virus-related domains. Of note, several specific domains
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recurred frequently during this performance evaluation, and manual examination revealed these to be domains of known repeats.

Mostly, these contigs were fully populated with matches to such repeat domains, and that these had cellular matches in the public

DBs, whose alignment values were just below our reporting or acceptance criteria. Hence, we decided to discard these contigs if

they were completely coding for multiple repeats, as there would be no sufficient coding space for these to encode an identifi-

able RdRP.

Following the below RdRP identification step (described in the section below) approximately 130 reverse-transcriptases had

passed the various filtration processes and were manually removed. MMseqs2, the PFamA Database (Mistry et al., 2021) and the

RdRP and RT collection from Wolf et al. (2018), were used in all the profile searches performed in this evaluation.

RdRP identification
Previously published multiple sequence alignments of RdRPs and reverse-transcriptases (Wolf et al., 2018, 2020) were formatted as

tool-specific subject databases, and employed as queries to search a sequence database consisting of the 6-frame end-to-end

translations of contigs passing the above-described filtering processes, using PSI-BLAST, hmmsearch, DIAMOND and MMseqs2.

To estimate the desired search cutoffs, we supplemented the query set with non-RdRP sequences likely to produce false matches

(termed ‘‘true-negative’’ set), constructed as follows: (1) using a large set of RdRPs as queries for an hhsearch (from the HH-Suite)

against the PDB70 database (2019), collecting all matches of bitscoreR 20 that were not from RNA viruses, that aligned with at least

2 RdRPs; (2) fetching PDB entries clustered with those at 70% identity, (via ftp://resources.rcsb.org/sequence/clusters/bc-70.out);

(3) fetching Pfam entries relating the resulting PDB IDs, and sequences linked to the Pfam entries; (4) collapsing highly similar se-

quences to a single representative (MMseqs2 minimum coverage: 100%, minimum ident.: 90%). Subject RdRP profiles capable

of producing alignments to any sequence from the ‘‘true-negative’’ set were discarded. Otherwise, acceptance criteria for the

RdRP profiles searches were: profile coverage R 50%, E-value % 1e-10 and score R 70. These stringent parameters were then

fine tuned to represent the best possible value a non-RdRP sequence was able to achieve.

Subsequently, reliable RdRPmatches were trimmed to the approximate core domain, which we operationally defined asmotif A–D

(see ‘‘Motif A–D identification’’ below). The extracted RdRP core sequences were pre-clustered (CD-HIT, coverageR 75%,% IDR

90) (Fu et al., 2012), passed to an all vs. all (DIAMOND BLASTp) run, formatted for use with MCL using mcxload (–stream-mirror

–stream-neg-log10 -stream-tf "ceil(200)"), clustered (MCL, Inflation value between 3.6 and 2.8), aligned (MUSCLE), and formatted

as profile databases as described above (Altschul et al., 1997; Buchfink et al., 2015; Edgar, 2021; Enright et al., 2002; Steinegger

and Söding, 2017). This process was repeated twice. Subsequently, contigs with putative RdRPs were used to recover additional

contigs from the entire metatranscriptomic collection, which were highly similar yet shorter than the initial search length criteria

(see below ‘‘Comprehensive identification’’ for details). Of the resulting collection, sequences covering R 75% of an RdRP profile,

or with identifiable motifs A–D, were considered sufficiently complete for downstream phylogenetic analysis.

Identification of the RdRP catalytic motifs A–D
A custommotif library (available in the project Zenodo archive, see data and code availability) was built by semi-manual partitioning of

the previously published RdRP MSAs noted in the ‘‘RdRP identification’’ section. To identify the motifs along the individual RdRP

sequences, a similar iterative search as described above for the full length RdRP domain was performed.

Correction of putative frameshifts
A set of 1,656 contigs contained a clear RdRP domain signature on more than one frame, commonly separated by < 20 nucleotides

(n=1,118). In order to avoid the omission of these signatures as simple incomplete, we addressed these in two manners: (1) if any of

one of the signatures coveredR75% of the subject RdRP profile, or coding for the desired catalytic motifs A–C, that signature would

be used; or (2) by concatenation of the two signatures into a single amino acid sequence.

Contig set augmentation with published genomes
To assess the novelty of our findings in terms of the number and diversity of newly predicted viral genomes, and in order to avoid the

exclusion of established viral lineages that may be underrepresented in environmental metatranscriptomes, we aggregated and

compiled a collection of ‘‘previously published’’ viral genomes termed ‘‘Reference Set’’. These include RdRP-carrying sequences

identified in NCBI’s NT database (NCBI Resource Coordinators, 2018), as well as sequences not indexed (at the time of writing) in

such public databases, that were identified in several previous large scale and notable RNA virus surveys and transcriptomic atlases.

Our criteria for addition of these supplementary sequences required that they originate from peer reviewed publications, and that all

underlying sequences were entirely publicly available, with no restrictions. The NCBI NT sequences were identified via an RdRP scan

procedure similar to the procedure described above (see RdRP identification). The previously published set was made from an

expansive set of Leviviricetes described by Callanan et al. (2020), the ‘‘Yangshan-assemblage’’ and other described by Wolf et al.

(2020), and the proposed Plastroviruses group described by Lauber et al. (2019), as well as several RdRPs identified in the ocean

atlas of genes (Carradec et al., 2018; Salazar et al., 2019). Following their aggregation, these sequences underwent a similar proced-

ure described for the metatranscriptomic sequences identified in this work (i.e. length filtration, clustering, and RdRP core domain

extraction). The eventual sequence set was labeled as ‘‘Known’’ (i.e. not novel), and noted as such in the data generated by this work

(e.g. branch colour in Figure 1). The processed ‘‘supplemental sequence set’’ was merged into the main sequence set (those
e3 Cell 185, 4023–4037.e1–e10, October 13, 2022

ftp://resources.rcsb.org/sequence/clusters/bc-70.out


ll
OPEN ACCESSResource
identified in this study) and the combined set (termed ‘‘VR1507’’) was used in all downstream analysis (phylogenetic reconstruction,

domain analysis etc).

Comprehensive identification of RNA virus contigs across metatranscriptomes
Becausemetatranscriptome assemblies can often yield incomplete genomes that would not fulfil the criteria for de novoRdRPdetec-

tion (see above), we used the ‘‘VR1507’’ contig set (see above), we initiated a secondary ‘‘sweeping’’ scan for additional RNA virus

contigs from the non-clustered, non-filtered (length, DNA similarity, RdRP presence) ‘‘bulk-set’’ of metatranscriptomic contigs (Fig-

ure 1). To this end, the ‘‘VR1507’’ was used as bait for highly similar contigs in the ‘‘bulk-set’’, using an non-sensitive mmseqs search

(mmseqs search –search-type 3 –min-aln-len 120 –min-seq-id 0.66 -s 1 -c 0.85 –cov-mode 1) followed by stringently filtering the

recovered matches (E-value < 1e-9, Identity > 95%, target-Coverage R 95%). These criteria were selected as a quality assurance

measure, so that the recovered contigs would bemostly contained within the ‘‘VR1507’’ contig counterpart (this large expansive data

set is available in project’s Zenodo repository, see data and code availability). This envelopment criteria was added to avoid capture

of chimeric, or otherwise uncertain, nucleic regions that extend over the ‘‘VR1507’’ query. The filtered bulk contig set was combined

with ‘‘VR1507’’ and consisted of 2,658,344 contigs (termed ‘‘Add1507’’). To ascertain that this procedure was adequately stringent in

avoiding the capture of false positives, we verified if we carried it out on non-RNA virus containing DNA metagenome, no contigs

would be captured. For this end, we used a recently published high quality bovine (Rumen) DNA metagenome (i.e. long-read, HiFi

assemblies) (Bickhart et al., 2022), selected as it was not part of the DNA-sequence set used in the primary and secondary filtration

steps used in the discovery pipeline, making it a reliable benchmark. In this search, not a single contig passed our alignment threshold

of 95% identity (a single contig produced a short alignment of 72% ID).

Phylogenetic reconstruction
We selected a diverse set of representative RdRPs for the phylogenetic analysis by performing a preliminary MMseqs2 clustering run

(see Table S6, sheet ‘‘Clustering information), on a subset of the sequences which contained complete or near-complete RdRPs.

These representatives were termed RCR90, and went through several iterations of clustering (MMseqs2 with sequence identity

threshold of 0.5), alignment (MUSCLE5) (Edgar, 2021) and profile-profile comparison (HHsearch) (Steinegger et al., 2019), as

described below. ‘‘Permuted’’ RdRPs (sequences with transposed motif C, following the C-A-B-D configuration) were identified

and ‘‘de-permuted’’ (i.e. the loop, containing motif C, was cut from the sequence and reinserted downstream from the motif B).

Once all identified sequences with transposed motifs were brought into the canonical A-B-C-D configuration, the following proced-

ure was employed to produce a multiple sequence alignment consisting of all RCR90 set:

d Sequences were clustered using MMseqs2 with sequence identity threshold of 0.3; sequences in the resulting 4,514 clusters

were aligned using MUSCLE5; profile-profile comparison of the cluster alignments using HHSEARCH produced a 4,514x4,514

distance matrix (the distances were estimated as dAB = -ln(SAB/min(SAA, SBB)), where SAB is the HHSEARCH score for compar-

ison of the profiles A And B); a maximum-linkage tree was produced from the distance matrix using the R function hclust();

d The tree was cut at the depth threshold of 1.5, producing 1,360 subtrees;

d Each of the subtrees was used as a guide to hierarchical alignment of the corresponding profiles using HHALIGN, producing

1,360 alignments;

d 1,360 consensus sequences (excluding sites with more than 2/3 of gap characters) were extracted from these alignments and

aligned using MUSCLE5;

d Each position in the alignment of consensus sequences was expanded to the corresponding column of the original alignment,

producing an alignment of 77,510 RdRps (where the original RdRp sequences were reduced to a set of positions, matching

their local consensus);

d Sites with >90%of gap characters were removed from this alignment; the resulting alignment was aligned with the alignment of

ten RTs (five group II intron sequences and five non-LTR retrotransposon sequences) using HHALIGN.

The alignment of RdRps and RTs was used to reconstruct an approximate maximum likelihood tree using the FastTree (V.2.1.4

SSE3, Price et al., 2010) program (WAG evolutionary model, gamma-distributed site rates) and rooted between RTs and RdRps.

Taxonomic affiliation of clades
Tree leaves with existing taxonomic information were identified by mapping (MEGA-BLAST, E-value < 1e-30, query coverage R

95%, subject coverageR 95%, Alignment length > 200, IdentityR 98%, (Alignment_length)/Query_length > 0.95) VR1507 sequence

set to the latest ICTV data at the time of analysis (July 20, 2021 release of the Virus Metadata Repository (VMR) file, corresponding to

MSL36, and available at https://talk.ictvonline.org/taxonomy/vmr/m/vmr-file-repository/13175). Overall, 2,765 contigs were map-

ped, and the ICTV taxonomic information was cloned to the VR1507 queries based on the highest score. For the reminder of

VR1507 contigs, we performed a similar procedure using the NCBI’s NR database (these amount to an additional 6,878 mapped

contigs, though a non-negligible amount of those lacked taxonomic information or matched abolished taxonyms).

The procedure to establish the taxonomic affiliation of internal nodes on the tree (i.e. clades) relies on the above taxonomic

assignment of reference tree leaves, as well all on two principles:
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d All sequences, descending from the last common ancestor of reference leaves, assigned to a taxon T, also belong to taxon T;

sequences descending fromdeeper tree nodes, do not belong to taxon T and, therefore, and should be assigned to a new taxon

(taxa) of the same rank;

d The depth, at which a tree clade splits into taxa of the given rank, is defined by existing taxa of the same rank and is locality-

dependent (e.g. the characteristic depths of families could be different for different phyla);

Application of these principles assumes that the existing taxonomy is non-contradictory with respect to the tree, i.e. the reference

sequences, assigned to taxa, formmonophyletic clades that are non-overlapping and non-nested within the same rank (e.g. a family

clade can’t be embedded into another family). An inspection of the taxonomic affiliation of reference leaves showed that this assump-

tion, while typically satisfied, is violated in multiple places. This necessitates disentangling the conflicting relationships first. To this

end, the following procedure was applied to all taxa of the given rank (i.e. separately for phyla, classes, etc):

d The tree was pruned to contain only leaves with this rank defined (e.g. all leaves without a family assignment are stripped); leaf

weights (wi) were derived from the pruned tree;

d For each taxon T, present in the tree, the total weight of leaves in this taxon was calculated (WT = Swi across the leaves, as-

signed to T);

d For any tree clade in the tree, the total weight of leaves in this cladewas calculated (WC =Swi across the leaves, belonging toC);

d For each combination of cladeC and taxon T, the clade-taxonweight was calculated (WCT =Swi across the leaves, belonging to

C and assigned to T); then a precision-like and recall-like measures can be calculated (PCT =WCT /WC andRCT =WCT /WT) and

combined into a quality index QCT = PCT * RCT.

d For each taxon T, present in the tree, the cladeCT = argmaxQCTwas identified as the ‘‘native’’ location of the taxon T (the clade,

where the maximum weight of taxon T is concentrated with the minimal intrusion of other taxa); leaves, belonging to clade CT,

but not assigned to T, and leaves, assigned to T, but not belonging to clade CT, were labeled as ‘‘intruding’’ or ‘‘outlying’’

respectively;

All tree-incompatible taxonomic assignments were examined and resolved. In most cases the most agnostic way to resolve the

conflict was used (i.e. stripping the taxonomic labels from the corresponding leaves). In one case, most of the families within Timlo-

virales order of Lenarviricota, were found to be nested inside a very deep-branching family of Blumeviridae. For the purpose of this

work, we retained the Blumeviridae label on the largest clade of Timlovirales that didn’t have conflicting family assignments and

removed the Blumeviridae label from the rest of Timlovirales. In a few other cases where small families were wholly nested into larger

ones (e.g. a solo leaf classified as Sunviridae inside a large Paramyxoviridae clade) the embedded family label was removed for the

purpose of subsequent analysis and restored post hoc. Once the taxonomic labels of all leaves were brought into compatibility with

the tree, the following procedure was performed to assign new taxonomic labels to unlabeled leaves for each taxonomic rank

separately:

d All nodes of the tree were assigned depth, defined as the longest node-to-leaf path across all leaves, descending from

this node;

d In the full tree of 77,510 leaves the last common ancestor node of each taxonwas determined; depths of the taxa, defined as the

depth of the LCA node plus the length of the incoming tree edge, was recorded; all unlabeled leaves, descending from the taxon

LCA, were assigned to this taxon;

d All clades outside of existing taxa were isolated; for each such clade the depths of all existing sister taxa were determined; if a

clade has only one sister taxon, the search for the closest relatives was extended toward the root until at least another related

taxon was identified; the threshold depth was calculated as the average for the set of related taxa;

d Clades outside of existing taxa were dissected at the threshold depth; each resulting (sub)clade was assigned to a new taxon of

the given rank;

d New taxa that have a single existing taxon as a sister are labeled as associated with this taxon.

The novel taxa were given names, indicating rank (i.e. prefixed by p, c, o, f and g for phylum, class, order, family and genus respec-

tively), followed by an ordinal number for new taxa of this rank, and optionally, terminated with a label for taxa that are associated with

a previously described taxon (e.g. f.0127.base-Noda is the 127th new family that is basal to Nodaviridae in the RdRP tree).

Robustness of deep phylogeny
To assess the robustness of deep phylogenetic reconstruction, the following procedure was performed:

d a list of 201 families with at least 20 RCR90 sequences was collected

d a random representative of each family and from RT set was sampled

d a sub-alignment of 202 sequences for the sample was extracted from the master alignment

d a phylogenetic tree was reconstructed using the IQ-Tree program (Nguyen et al., 2015) with an automatically selected best

fitting model

100 independent samples were analyzed in the following manner:
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First, clades with the highest quality index (QI, described above in the Taxonomic affiliation of clades section) were identified for

each of the five known phyla; the quality index values were used as a measure of the phylum monophyly under the subsampling.

Families, involved in breaking the monophyly of the respective phyla (note that a leaf can be both an outlier with respect to its

own phylum and an intruder into another phylum), were recorded.

Second, the subsampled trees were collapsed to the phylum level; 15 (out of 100) trees with paraphyletic phyla were excluded

(those, where e.g. the highest-quality clade for Pisuviricota was embedded within the highest-quality clade for Kitrinoviricota). An

extended majority-rule consensus tree was constructed for the remaining 85 trees with (largely) monophyletic phyla using the IQ-

Tree program; branch support values were multiplied by 0.85 (the fraction of such trees among the whole sample).

Assignment of individual contigs to RCR90 clusters
Once the novel areas of the RCR90megatree described above were fully populated by themajor taxonomic ranks (Phylum/Genus),

we proceeded to affiliate contigs from the larger VR1507 set (see above - contig sets). Contig affiliation was performed in a gradual

manner by separation into the following 4 levels:

Level A. are contigs encoding the RdRPs used to create the tree. Level B. consists of contigs encoding RdRPs with exceptionally

high amino acid identity to RdRPs from level A, (via best BLASTp match with Identity R90%, Query-Coverage R75%, and

E-value < 1e-3). Level.C consisted of contigs from the same RvANI90 cluster (see definition below) as contigs from levels {A, B},

and Level D. consists of contigs sharing high nucleic similarity to those from levels {A - C}, (via best dc-MEGABLAST hit at Identity

R90%, Query-Coverage R75% OR Nident R 900nt and E-value < 1e-3). Based on the distribution of ICTV-labeled RdRPS in the

above noted levels, we estimate that the majority contigs affiliated in this manner, would roughly share the same taxonomic ranks

down to genus level.

Of note, for level C., we devised custommeasurement unit, RvANI, which is an extension of standard average nucleic identity (ANI)

clustering, designed to accommodate the fragmented nature of metatranscriptomic assemblies, thus avoiding an overestimation of

novelty caused by the relatively low pairwise coverage of related sequences. Briefly, RvANI is calculated as follows: Initially, mmseqs

is used to calculate all pairwise sequence alignments in the contig set, which are then used for the traditional ANI and alignment

fraction (AF) calculations, where:

ANI = ð%ID 3 AlignmentlengthÞOMinðlengthofcontigm:; lengthofcontign:Þ
AF = MinðAlignmentcoverageofcontigm:; Alignmentcoverageofcontign:Þ
Given all pairs of ANI and AF (for prokaryotes 95-96% ANI is the commonly accepted species boundary, with similarly granular

definitions for certain viruses (Nayfach et al., 2021; Richter and Rosselló-Móra, 2009) clusters are defined as connected components

in a nucleic similarity graph pruned for pairwise alignments with ANI R90% and AF R90%. RvANI corrects for uneven genome

coverage in metatranscriptomes by reinserting specific pairwise alignments to the pruned nucleic similarity graph, even if their AF

is below the required cutoff, as long as the underlying pairwise alignment fulfill these criteria: %ID R 99, Alignment Length R 150

[bp], and the alignment occurs between the edge of the contigs, i.e. the alignment covers the 5’ or 3’ termini of each contig).

Subsequently, we defined RvANI90 clusters as the different connected components (using R-igraph package) in the nucleic sim-

ilarity graph processed as described above (Csardi and Nepusz, 2006).

Identification of reliable CRISPR spacer hits
RNA virus sequences were compared to predicted bacteria and archaea CRISPR spacer sequences to (i) identify which viruses may

infect a prokaryotic host, and (ii) possibly predict a specific host taxon for these viruses. First, non-redundant RNA virus sequences

were compared to 1,568,535 CRISPR spacers predicted from whole genomes of bacteria and archaea in the IMG database (Chen

et al., 2021) using blastn v2.9.0 with options ‘‘-dust no -word_size 7’’. To minimise the number of false-positive hits due to low-

complexity and/or repeat sequences, CRISPR spacers were excluded from this analysis if (i) they were encoded in a predicted

CRISPR array including 2 spacers or less, (ii) theywere% 20bp, or (iii) they included a low-complexity or repeat sequence as detected

by dustmasker (v1.0.0) (Morgulis et al., 2006) (options ‘‘-window 20 -level 10’’) or a direct repeat of R 4bp detected with etandem

(v6.6.0.0) (Rice et al., 2000) (options ‘‘-minrepeat 4 -maxrepeat 15 -threshold 2’’). To link RNA viruses to CRISPR spacers, only blastn

hits with 0 or 1 mismatch over the whole spacer length were considered. The spacer and array with hits were further inspected to

check (i) whether the spacers were of consistent length throughout the array, and (ii) whether Cas and/or RT genes were found in

the putative host genome, and if so whether these were adjacent to the CRISPR array with the hit. To expand the search for

CRISPR link beyond bacteria and archaea for which a draft genome is available, we next used the same approach to compare

non-redundant RNA virus sequences to 53,372,161 CRISPR spacers predicted from metagenome assemblies available in the

IMG database. Spurious spacers were filtered out using the same methods as for the genome-derived CRISPR arrays (see above),

and only hits for which the RNA virus and the CRISPR spacers originated from the same ecosystem (as defined in the GOLD data-

base) were retained. Since CRISPR spacer arrays are often assembled on short contigs without any other gene, we used the repeat

sequence of the arrays to link them to a putative host. Repeat sequences frommetagenome-derived CRISPR arrays with at least 1 hit
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to anRNA virus sequencewere compared to all IMGBacteria and Archaea genomes using blastn (v2.9.0) with options ‘‘-perc_identity

90 -dust no -word_size 7’’. The location of these hits in the putative host genome was then checked for the presence of a predicted

CRISPR spacer array, Cas genes, and RT genes. When individual RNA virus sequences or spacers were putatively linked to multiple

host genomes, these were prioritized based on the following criteria: (i) the spacer array is identified next to an RT-encoding CRISPR

array, (ii) an RT-encoding CRISPR array is identified elsewhere in the genome, (iii) the spacer array is identified next to a Type III

CRISPR array, (iv) a Type III CRISPR array is identified elsewhere in the genome, (v) another type of CRISPR array is identified in

the genome, and (vi) no identifiable Cas gene can be identified in the genome.

The spacer content of CRISPR arrays encoded by Roseiflexus sp. RS-1 in Mushroom Spring was further studied as follows. First,

the CRISPR arrays of 17 metagenomes sampled from microbial mats in Mushroom Spring (Table S3) were specifically assembled

using the dedicated tool Crass v1.0.1 with default parameters (Skennerton et al., 2013). Next, all arrays based on repeats corre-

sponding to known CRISPR arrays in Roseiflexus sp. RS-1 (Table S3) were identified and the corresponding spacers collected

and filtered as previously described. RNA virus sequences as well as DNA virus sequences from the IMG/VR v3 database (Roux

et al., 2021) were compared to this database of Roseiflexus sp. RS-1 spacer arrays using blastn (v2.9.0) with options ‘‘-dust no

-word_size 7’’. Sequences from putative RNA phages infecting Roseiflexus sp. RS-1 were first identified based on hits to R 1

RS-1 spacer with % 1 mismatch across the whole spacer length. For these selected phages, hits with up to 4 mismatches across

the spacer length were then collected to enable the detection of more distant virus-spacer hits.

Candidate capsid segments of Roseiflexus sp. RS-1 clade genPartiti.0019 viruses were identified based on 3 criteria: spacer

match to the RNA-targeting CRISPR array, no corresponding DNA sequence, and high coverage correlation to R 1 RdRP contig

across the metatranscriptome time series. First, a similar blastn comparison to Crass-assembled spacers (blastn with options

‘‘-dust no -word_size 7’’ and% 1 mismatch allowed) was used to identify putative capsid-encoding contigs i.e., excluding all contigs

encoding an RdRP or a CRISPR array, in the same metatranscriptomes targeted by the Roseiflexus sp. RS-1 Type III-RT CRISPR

array (n=3,958). Next, candidates with R 1 spacer match were compared to all contigs from Mushroom Spring DNA metagenomes

(blastn (v2.9.0) with options ‘‘-task megablast -max_target_seqs 500 -perc_identity 90’’), and all candidates with a matching DNA

contig (R 90% identity) were considered to be likely DNA phages and excluded (n=3,650). Finally, the coverage of all genPartiti.0019

RdRP contigs and all candidate capsid segments was obtained using read mapping as described below (bbmap.sh (v.38.90) with

options ‘‘vslow minid=0 indelfilter=2 inslenfilter=3 dellenfilter=3’’), and candidates with a Pearson correlation of R 0.9 across the

42 Mushroom Spring metatranscriptomes were retained as likely capsid segments (n=88). To evaluate the gene content of these

capsid segments, cds were predicted de novo using Prodigal (v2.6.3) (Hyatt et al., 2010) (option ‘‘-p meta’’), and clustered using

a standard blast-mcl pipeline (blastp (v2.9.0) with default options, hits selected based on score R 50, MCL clustering (v.14-137)

with an inflation value of 2). For the three largest protein clusters, a sequence alignment was built using MAFFT v7.407, (Katoh

and Standley, 2013) and used as input to an hhsearch against the virus-focused uniprot public database (uniprot_sprot_vir70),

and a customdatabasemade from capsids of known partitiviruses and picobirnaviruses (available in the project’s Zenodo repository,

see data and code availability ‘‘Partiti_Picob_CP.tar.gz’’ and PC1_PROMALS3D_new.hhr).

Habitat distribution and relative abundance estimation
For visualisation purposes, location, ecological, and taxonomic information for each metatranscriptome were obtained from the IMG

and GOLD databases. Specifically, GPS coordinates and ecosystem classification were obtained from GOLD, with the ecosystem

information further grouped in custom categories (Table S4). To roughly estimate the host diversity present in each metatranscrip-

tome, the taxonomic information of all contigs as predicted by the IMG annotation pipeline (Clum et al., 2021) was queried at the

domain level, i.e. Bacteria, Archaea, Eukarya, and Viruses. The ratio between the number of contigs assigned to Bacteria and

Archaea and the number of contigs assigned to Eukarya was then used as a proxy to determine ‘‘Prokaryote-dominated’’ from

‘‘Eukaryote-dominated’’ datasets. Specifically, datasets with a ratio of Eukaryote-affiliated to Prokaryote-affiliated contigs % 0.3

or R0.7 were considered as ‘‘Prokaryote-dominated’’ or ‘‘Eukaryote-dominated’’, respectively, while other datasets were consid-

ered as ‘‘Mixed’’. The map was drawn using the packages matplotlib v3.3.4 and basemap v1.2.2 for python 3.8.5 (Hunter, 2007).

For read mapping, a dereplicated set of RNA virus sequences (95% ANI over 95% AF, established using CheckV anicalc.py and

aniclust.py scripts; Roux et al., 2021), was established, hereafter ‘‘NR-mapping’’ dataset. Quality-trimmed reads (sensu; Clum et al.,

2021) from 3,998metatranscriptomes (Table S4) were thenmapped to this dataset as follows. First, contigs from eachmetatranscrip-

tome were compared to the NR-mapping dataset using blastn v2.9.0+ (E-value % 0.01). All contigs with cumulated blast hits of R

90% average nucleotide identity covering R 80% of the shortest sequence were considered as putative RNA viruses. All reads

mapping to contigs identified as putative RNA viruses and all unmapped reads were extracted from the existing IMG read mapping

information, and mapped de-novo on the NR-mapping dataset using bbmap v38.81 (Bushnell, 2014) with the following options:

‘‘vslowminid=0 indelfilter=2 inslenfilter=3 dellenfilter=3’’. This step was done to reduce the computing time and the risk of false-pos-

itive mapping by excluding all reads mapping to non-viral metatranscriptome contigs. The resulting bam files were then filtered with

FilterBam (https://github.com/nextgenusfs/augustus/tree/master/auxprogs/filterBam) retaining only mapping atR50% identity and

R50% coverage, and genomecov from bedtools v2.30.0 (Quinlan, 2014) was used to calculated the average coverage depth for

each contig in each sample. The relative proportion of a taxon was then calculated as the cumulated coverage for the taxonmembers

divided by the total accumulated coverage of all predicted RNA virus contigs in this dataset.
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Genetic code assignment and ORF calling
Presently, ORF identification software designed for diverse metagenomic data are limited to the standard genetic code (11) or the

Moldmitochondrial genetic code (4) (opted when the predicted ORFs are unnaturally short). To identify clades likely to use alternative

genetic codes, we extracted the RdRp core footprints and scanned them for in-frame standard stop codons.

We first separated all RdRP-encoding contigs into two subsets: ‘‘standard’’ and ‘‘non-standard’’ if any canonical stop codons

occurred within the narrow coordinates of the RdRP core. Then, the ‘‘standard’’ set was subjected to metaprodigal CDS prediction

using default parameters (via Prodigal’s (v2.6.3) metagenomic mode (‘‘anonymous’’)) (Hyatt et al., 2010). In the ‘‘non-standard’’

subset, the stop codon usage patterns were aggregated across the contigs, associated with each tree leaf, and classified into

‘‘mitochondrial’’ (using UGA as a sense codon), and ‘‘protist’’ (other patterns). Prevalence of patterns (relative frequency among

the descendant leaves) was calculated for internal tree nodes; clades with high prevalencewere noted and investigated. For practical

purposes, the ORFs predictions of the ‘‘non-standard’’ subset were performed by using the first genetic code enabling the entire

RdRP core to be translated. Cases for which none of the available genetic codes enabled the uninterrupted translation of the

RdRP core were assigned the general ‘‘non-standard’’ value and were predicted using the mitochondrial genetic code (4).

To discard the possibility of active recoding of tRNAs by these predicted RNA viruses, the VR1507 set was subjected to a single

pass of tRNAscanME2 (Chan et al., 2021), using the ‘‘global’’ flag (for non-specific domain of life tRNA prediction). No tRNAs were

identified on any of the viral contigs predicted to use an alternative genetic code, suggesting these are most likely an adaptation to

their host rather than an element of a virus-host arms race, as seen in some dsDNA phages (Ivanova et al., 2014).

RBS identification and quantification
Using VR1507 as input, the RBSquantification was performed as described in Schulz et al. (2020). Briefly, Prodigal (v2.6.3) was run as

described above (see ‘‘genetic code assignment’’) (Hyatt et al., 2010; Schulz et al., 2020), we then sourced the ‘‘rbs_motif’’ field from

Prodigal’s GFF output files, and classified the different 50 UTR sequences as either ‘‘SD’’ (for motifs similar to AGGAGG, the canonical

Shine-Dalgarno), ‘‘None’’ and ‘‘Other’’ (for details, see data and code availability,

‘‘RBS_Motif2Type.tsv’’). Then, for each contig, we defined the ‘‘%SD’’ as the ratio between all ‘‘SD’’ ORFs, and all ORFs with a true

start (i.e. not truncated by the contigs’ edge, field ‘‘start_type’’ different from ‘‘Edge’’).

Domain annotation
To perform an initial domain annotation of the proteins encoded by RdRP-containing contigs, we used hmmsearch (from the HMMER

V3.3.2 suite) (Finn et al., 2011; Wheeler and Eddy, 2013) to match these proteins to hidden markov models (HMMs) gathered from

multiple protein profile databases using a maximal E-value of 0.001 (PFam 34, COG 2020 release, CDD v.3.19, CATH/Gene3D

v4.3, RNAVirDB2020, ECOD 2020.07.17 release, SCOPe v.1.75) (Andreeva et al., 2014, 2020; Cheng et al., 2015; Galperin et al.,

2021; Lu et al., 2020; Mistry et al., 2021; Sillitoe et al., 2021; Wolf et al., 2020). We supplemented this set of HMMs with a custom

collection of profiles with bacteriolytic functions (termed ‘‘LysDB’’ - available in the project’s Zenodo repository, see data and

code availability). LysDB was built from (1) manually reviewed profile entries from public databases which we could link to GO terms

related to cell lysis by viruses, or virus exit from host cell, and (2) custom profiles for ‘‘Sgl’’ proteins, which were experimentally

demonstrated by Chamakura et al to induce cell lysis (Chamakura et al., 2020). Additionally, we used InterProScan (v.5.52-86.0)

to scan the protein sequences using MobiDBLite (v2.0), Phobius (v.1.01), PRINTS (v. 42.0), TMHMM (v.2.0c) (Attwood et al., 2012;

Jones et al., 2014; Käll et al., 2004; Käll et al., 2007; Krogh et al., 2001; Potenza et al., 2015).

Because the public protein profile databases that were used for initial annotation might contain HMMs that represent polyproteins,

which span multiple functional domains, we developed and employed a procedure to identify such profiles which were masked from

the subsequent annotation process. For this procedure, we first used the hmmemit command to convert HMMER profiles into mul-

tiple sequence alignments, which were then used as input to an all-versus-all profile comparison performed using HH-Suite. Next,

putative polyprotein profiles were identified by flagging the profiles that encompassed at least two other non-overlapping profiles

(‘‘get_polyproteins.ipynb‘‘ script, see data and code availability). The unmatched regions between the polyprotein domains were ex-

tracted to create a set of conserved, yet unknown domains, termed ‘‘InterDomains’’. Additionally, profiles with over 1000 match

states (defined as columns with less than 50% gaps) were manually examined using HHpred. Several of the identified polyprotein

profiles were split into their constituent domains. Subsequently, all hmmsearch results were aggregated and profile matches were

prioritized based on their classification level (uncurated profiles, or ones of unknown function (e.g. ‘‘DUF’’) were deprioritized) and

by their relative alignment statistics. To improve the quality of the functional annotation of the domain profiles and to assign functions

to unannotated profiles we identified clusters of similar profiles (clans, hereafter). First, profiles with at least one hit in the initial anno-

tation pass were extracted from their original DB, reformatted as HH-Suite’s HHMs (as described above) and used for an additional

all-versus-all step. The output of this profile comparison was then used as input to a graph-based clustering process using the Leiden

algorithm (‘‘get_clan_membership.ipynb’’ script, see data and code availability), which identifies clans as communities of highly

similar domains. Clan membership was then used to improve the coverage of the functional annotation by transferring annotation

from functionally annotated profiles to other clan members. Briefly, this procedure followed a consensus-based label assignment.

For example, a clan with 12 profiles labeled as ‘‘RdRP’’, and 2 ‘‘unclassified’’ profiles, was set as an ‘‘RdRP’’ clan and the 2 unclas-

sified members were reclassified as ’’RdRP’’. Cases of conflicts were either left unresolved, or by opting to the lowest denominator.

For example, a clan with 4 ‘‘unclassified’’ profiles, that also had 12 member profiles labeled ‘‘Super family 2 Helicase’’ and an
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additional 10 member profiles labeled ‘‘Super family 1 Helicases’’, was set to ‘‘Helicase-uncertain’’, and this label was extended to

those 4 ‘‘unclassified’’ members.

All subsequent profile matches passing a predefined cutoff (E-value % e-7, score R 9, alignment length R 8[AA]). were used to

generate a new custom profile database, in a process similar to the one used for RdRPs (see above). Only clusters with R 10 se-

quences, sharing the same functional classification, were used to generate HMMs. This profile set was then supplemented by

most of the profiles from the above-mentioned RNAVirDB2020 database, as well as several dozen select profiles from the other da-

tabases (this final profile database termed ‘‘NVPC’’ is available via the projects Zenodo repository, see data and code availability).

Finally, we queried the six-frame translations of the 330k contig set using hmmsearch as described above, using the newprofile data-

base. (Figure S3 - Annotation pipeline). Subsequently, we generated tentative genome-maps for z4-20 representative contigs for

each of the 400+ identified families (novel and established) using GGGenomes (https://github.com/thackl/gggenomes), which

were then manually examined to identify novel domains as well as uncommon domain fusion and segmentations.

Quality control and reliability of metatranscriptomic assemblies
Metagenomic assemblies are prone to various types of artifacts that can result in apparent contigs in the assembly that do not repre-

sent any existing nucleic acid molecules in the original biological sample (Arroyo Mühr et al., 2020). Notoriously, chimeras (contigs

mis-assembled from at least two different nucleic molecules) can be amajor setback for novelty claims and can be difficult to identify

and separate from real genetic entities. We addressed this concern by implementing several stringent procedures to avoid anymisin-

terpretation that could stem from the analysis of potentially chimeric contigs:

1. Firstly, no claims in this work are based on singletons. Rather, we only report observations based on the analysis of evolution-

arily conserved stemming groups of sequences (two or more alignable contigs, ideally, from multiple assemblies) or from

features conserved at the coarse phylogenetic level (family-level and above). The likelihood of the chimera recurring across

multiple assemblies appears negligible.

2. Secondly, when unexpected observations weremade, such as those on genome rearrangement, gene fission and gene fusion,

we manually inspected each case at the read level, that is, traced the original sequencing runs and mapped (via the procedure

described above in the section ‘‘Habitat distribution and relative abundance estimation’’) the raw Illumina short reads to the

contigs in question, and examined the distribution of reads along the assembled contigs, checking that the contigs (and

not only the RdRP-coding region) were well covered. Contigs in which some portions showed abnormally low coverage or

skewed GC% content were deemed unreliable and discarded.

3. We observed and removed several dozen contigs from the set we built by aggregating published sources as likely chimeras

(mostly, part levivirus, part rRNA). Prompted by this observation, we searched the entire VR1507 contig set against the SILVA

rRNA database (BLASTn against SILVA SSU& LSURef NR99, default parameters) (Quast et al., 2013), andmanually examined

40 contigs encoding ribosomal proteins identified in the ‘‘domain annotation’’ section, to ribosomal protein profiles in the public

databases (e.g. Ribosomal protein L3 PF00297.24) Over all, we flagged 75 potential chimeras of these types, (23 of which

originate from the previously published sources, see Table S6, sheet ‘‘rRNA_summary’’ for details). Only the RdRPs of these

suspect contigs were used in downstream analyses, whereas the rest of the contig was disregarded.

4. The DNA subtraction we performed drastically reduced the abundance of chimeras that consisted in part from RNA virus se-

quences and in part from DNA encoded ones, whether rRNA or mRNA. Obviously, however, this procedure cannot eliminate

chimeras that consist of portions of different RNA virus genomes. Because such chimeras would be difficult to differentiate

from bona fide recombinant virus genomes, we employed a heuristic to identify these using the domain annotations to detect

contigs with duplicated full-length RdRP footprints. These were deemed chimaeric because RNA viruses normally encode a

single (full length) RdRP. We found a single such case, ND_250651, a chimera that is part levivirus, part cystovirus.
Quantitative comparison with recently published RNA virus discovery endeavors
44,779 RdRPs from the Tara project were downloaded from https://datacommons.cyverse.org/browse/iplant/home/shared/iVirus/

ZayedWainainaDominguez-Huerta_RNAevolution_Dec2021. Serratus project RdRPs were represented by 296,623 unique PalmDB

sequences that were downloaded from https://github.com/rcedgar/palmdb repository. The Serratus sequences represent a tightly

defined RdRP core (containing only motifs A, B and C) with a median length of 107 (compared to the 453 aa for the RCR90 set). Of

note, our study, the Tara project, and the Serratus projects, each defined differently which regions of the RdRP could be used forMSA

and subsequent phylogenetic analysis. Hence, we restricted our comparison to the RdRP region closest to a lowest commondenom-

inator between the studies, which is the region shared and defined by palmDB. We performed this by using all 329,202 unique RdRP

sequences from this study and the 44,779 RdRPs from the Tara project, for a BLASTP search (e-value 0.0001) against the PalmDB

set, using the best hit to trim the query (specifically, with the query of length K and the hit footprint of p1..p2 against the subject of

length L and the hit footprint of q1..q2, the query was trimmed to max(1,p1-q1-1)..min(K,p2+L-q2) to account for missing parts of the

subject). Queries without a significant hit to PalmDB were left untrimmed. The full set of sequences was pooled together and

clustered using MMseqs2 with sequence identity thresholds of 0.9 and 0.5 (–min-seq-id 0.5/0.9 -c 0.333 -e 0.1 –cov-mode 1 –clus-

ter-mode 2). All sequences were classified into four categories: i) "known" (GenBank and other published sources from the current
e9 Cell 185, 4023–4037.e1–e10, October 13, 2022

https://github.com/thackl/gggenomes
https://datacommons.cyverse.org/browse/iplant/home/shared/iVirus/ZayedWainainaDominguez-Huerta_RNAevolution_Dec2021
https://datacommons.cyverse.org/browse/iplant/home/shared/iVirus/ZayedWainainaDominguez-Huerta_RNAevolution_Dec2021
https://github.com/rcedgar/palmdb


ll
OPEN ACCESSResource
dataset (see STAR Methods ‘‘contig set augmentation with published genomes’’), ii) "RVMT" (RNA Virus MetaTranscriptomes from

the current dataset), iii) Serrarus and iv) Tara. Clusters were examined for the presence ofmembers from each of the four sets, and the

cluster set intersections are listed in Table S8.

QUANTIFICATION AND STATISTICAL ANALYSIS

Exact thresholds, including the expect value (E-values), for all analyses derived from sequence searches or alignments procedures

(e.g domain prediction, CRISPR spacer matching, etc) are provided in the relevant main text or in method details, and in Table S6

(sheet ‘‘filtration thresholds’’ for E-values used in DNA filtration process, and sheet ‘‘Clustering_information’’ for clustering thresholds

and associated quantification).

ADDITIONAL RESOURCES

In hope of providing a long lasting community resource, we created an accompanying interactive web portal (riboviria.org) that allows

users to download portions of the data generated in this work based on phylogeny and data type (e.g., a subset of the domain an-

notations for all contigs affiliated with a certain family). Both programmatic and graphical access to the data are supported through

the web portal. The website’s code is also available under the MIT License at github.com/Benjamin-Lee/riboviria.org. For all taxo-

nomic levels, this platform includes raw nucleic sequence, phylogenetic trees, metadata, and annotations.
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Supplemental figures

Figure S1. Distribution of contigs in RCR90/RvANI clusters, related to Figures 1B and 1C and Table 1

Each panel displays the total number of clusters (left panel RCR90, right panel RvANI90) on the horizontal axis (logarithmic scale) against their size (total number of

membering contigs) on the vertical axis (logarithmic scale).
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Figure S2. Robustness of deep phylogenetic reconstructions, related to Figure 2
(A) Quality index (the product of the fraction of phylum members that form a monophyletic clade and the fraction of other phyla members in this clade). The bar

shows themedian value across 100 independent samples of onemember of a family with at least 20members; the whiskers indicate the 5%and 95%percentiles.

(B) The virus families, most often involved in monophyly violations (where a leaf is either outside of the clade of its phylum or inside a clade of the other phylum).

The number of violations is shown.

(C) The extended majority consensus tree of the five previously known phyla. The consensus tree was recovered from 85 (out of 100) samples that have non-

embedded monophyletic phyla, and the support values were multiplied by 0.85.
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Figure S3. Roseiflexus sp. RS-1 CRISPR arrays and related viruses, related to Figure 3

(A) Map of the 4 CRISPR-Cas regions in Roseiflexus sp. RS-1 (NC_009523.1) including predicted CRISPR arrays (red diamonds) and Cas genes (colored genes).

(B) Coverage heatmaps across Mushroom Spring and Octopus Spring metagenomes, for spacers associated with Roseiflexus sp. RS-1 (see Table S3). Spacers

matching predicted RNA phages are displayed on the left, and spacers matching DNA phages are displayed on the right for reference.

(C) Example of alignment obtained with hhpred for a putative capsid protein from a predicted novel RNA phage infecting Roseiflexus sp. RS-1 and the closest

publicly available homolog: fig cryptic virus capsid protein.
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Figure S4. Identification of different metatranscriptome types and associated virus types, related to Figures 3 and 4

(A) Distribution of the ratio of viruses predicted to infect prokaryotic hosts across individual samples.

(B) Distribution of non-viral contigs affiliated as eukaryotes or prokaryotes (hosts) across samples, separated based on the protocol used to generate the

metatranscriptome. The protocol information was obtained from the Gold, and summarized as follows: ‘‘poly(A) selection’’: transcript enrichment based on

poly(A) tail, ‘‘rRNA depletion’’: use of a kit(s) and/or protocol(s) for depletion of rRNA templates, ‘‘total RNA’’: cDNA library prepared from the extracted RNA with

no poly(A) selection or rRNA depletion step, ‘‘unknown’’: no information available.

(C) Relationship between the ratio of eukaryote/prokaryote RNA viruses (x axis) and the ratio of eukaryote/prokaryote host contigs (y axis). Each dataset type is

presented in a separate panel.
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Figure S5. Acquisitions and replacements of structural modules in RNA viruses, related to Figure 5

‘‘Picobirnaviridae; ND_299612’’ and ‘‘f.0226.base-Beny; ND_172503’’ exemplify fusions of genomic segments encoding capsid proteins (CPs) and RdRPs, which

are encoded on separate segments in previously described picobirnaviruses and benyviruses. ‘‘f.0066.base-Hypo; ND_049849’’ and ‘‘Deltaflexiviridae;

ND_196199’’ encode Flexi/Phlebo-like CP and single jelly roll (SJR) CPs, respectively, although other members of the respective families comprise capsid-less

viruses. ‘‘f.0271.base-Toga; ND_366069’’ and ‘‘Virgaviridae; ND_191857’’ represent genomes with non-homologous replacements of the CP genes. In ‘‘Xin-

moviridae; ND_221687,’’ class III fusion glycoprotein gene, typical of xinmoviruses, has been replaced by a gene encoding a class II fusion glycoprotein (CIIF).

Abbreviations: Env, envelope protein; GP, glycoprotein; PRO-Pap/vOTU, papain-like protease; SF1, superfamily 1; Cap_MTase-GTase, capping enzyme with

methyltransferase-guanylyltransferase activities.
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Figure S6. Extended annotation pipeline, related to Figure 5

Flowchart diagram visualizing the procedures used in the domain identification and functional annotation sections of the project.
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(legend on next page)
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Figure S7. Identified domain distribution, related to Figure 5

The predicted viral function or structure of the final domain hits (vertical axis, slanted text labels), against the total number of reliable observed HMM search

matches (horizontal axis, logarithmic scale).
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