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ABSTRACT Fluorescence Recovery After Photobleaching (FRAP) has been extensively used to understand molecular
dynamics in cells. This technique when applied to soluble, globular molecules driven by diffusion is easily interpreted and
well understood. However, the classical methods of analysis cannot be applied to anisotropic structures subjected to directed
transport, such as cytoskeletal filaments or elongated organelles transported along microtubule tracks. A new mathematical
approach is needed to analyze FRAP data in this context and determine what information can be obtain from such experiments.
To address these questions, we analyze fluorescence intensity profile curves after photobleaching of fluorescently labelled
intermediate filaments anterogradely transported along microtubules. We apply the analysis to intermediate filament data to
determine information about the filament motion. Our analysis consists of deriving equations for fluorescence intensity profiles
and developing a mathematical model for the motion of filaments and simulating the model. Two closed forms for profile curves
were derived, one for filaments of constant length and one for filaments with constant velocity, and three types of simulation
were carried out. In the first type of simulation, the filaments have random velocities which are constant for the duration of the
simulation. In the second type, filaments have random velocities which instantaneously change at random times. In the third
type, filaments have random velocities and exhibit pausing between velocity changes. Our analysis shows: the most important
distribution governing the shape of the intensity profile curves obtained from filaments is the distribution of the filament velocity.
Furthermore, filament length which is constant during the experiment, had little impact on intensity profile curves. Finally, gamma
distributions for the filament velocity with pauses give the best fit to asymmetric fluorescence intensity profiles of intermediate
filaments observed in FRAP experiments performed in polarized migrating astrocytes reported in (1). Our analysis also shows
that the majority of filaments are stationary. Overall, our data give new insight into the regulation of intermediate filament dynamics
during cell migration.

AUTHOR SUMMARY Fluorescence Recovery After Photobleaching (FRAP) is a commonly-used technique to analyze
the dynamics of fluorescently-tagged proteins or structures in biology. After photochemical altering the fluorophor in a
specific region, fluorescent material from the surrounding region moves into the photobleached region. Usually applied to
the diffusion of soluble or membrane associate proteins, the existing models of analysis are not suitable for the elucidation
of directional transport of elongated structures. Different modes of motions for the elongated structures with distributed
lengths and velocities in cells are considered. First, we observe that filament lengths can be inferred from the level of
noisiness. We further show the characteristics of fluorescence profile curves mainly depend on the occurrence of changes
in velocities and distributions of velocities; whereas length distributions have negligible impact. Analysis of experimental
data using this new framework indicates intermediate filaments transported by kinesins along microtubules in polarized
migrating cells have gamma distributed velocities changing over time between pausing. Most filaments are found to be
very slow or stationary with a few moving fast. This new computational approach should permit the interpretation of FRAP
experimental data obtained with any directionally moving elongated structures of various lengths.
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1 INTRODUCTION
Living organisms are in constant dynamic equilibrium. In cells, many structures appear generally static but are, in fact, formed
of molecules continuously moving and exchanging with the surrounding. Fluorescence Recovery After Photobleaching (FRAP),
developed in the 1970s, is an essential tool for understanding molecular dynamics within a cell (2–4). The typical setup for a
FRAP experiment involves a fluorescent probe, a microscope, and some method of photobleaching (5). A portion of the domain
where the molecule of interest is present is bleached and the recovery of fluorescence in that region is imaged over time. In order
to gain quantitative information on molecular dynamics, mathematical models of diffusion are typically used. These include
models of diffusion in inhomogeneous media (6), models of diffusion and binding using reaction-diffusion equations (7–9), and
advection-reaction-diffusion models of active transport and diffusion (10). In some instances, when diffusion parameters are
not of interest, simpler ordinary differential equation models are used to elicit information (11). All these models deal with
analysis of soluble, generally globular, molecules. Until now there has been no analysis of FRAP data regarding the dynamics
of filamentous structures.

The main example we have in mind is that of short term transport of mature intermediate filaments (IFs), one of three major
fibrous structural components of the cytoskeleton. They form a filamentous network spreading throughout the cell cytoplasm
and this network together with actin filaments and microtubules, plays a key role in cell polarity and migration (12). In migrating
astrocytes (the type of glial cell used in our migration experiments), the dynamics of the IF network is mainly driven by
microtubule and actin mediated transport (1, 13). Deterministic and stochastic mathematical models have been developed to
describe the motion of IF driven by antagonistic molecular motors along microtubules (14, 15). In (1), FRAP experiments of
IFs were used to better understand how the IF network global dynamics are regulated in migrating and non-migrating glial cells.
They showed that, during cell polarization, IF transport is mainly anterograde, oriented from the cell center to the cell periphery,
and this bias was due to the inhibition of the retrograde transport of IFs by CDC42-driven polarity signaling. However, due to
the high density of the IF network, it was not possible to quantify the dynamics of IFs at the single filament level. Hence, there
is a need for a mathematical model to better understand collective IF transport using FRAP data.

There are two types of data gathered when conducting FRAP experiments. The first is a series of time measurements, called
the profile curves, which show the profile of fluorescence intensity plotted along the direction of migration (X1-direction) across
the bleached region, and integrated along the perpendicular direction (X2-direction) as depicted in Fig 1(a). The second type of
data is the total fluorescent intensity of the bleached region as a function of time (fluorescence intensity vs time after bleaching)
and is called a fluorescence recovery curve. Since the former give more information we focus on those.

Our goal here is to determine what information can be obtained from the profile curves obtained from FRAP data. In
particular, is it possible to infer the mode of filament motion (constant or variable velocity, with or without pausing), or
information about filament velocity and length?

2 METHODS
Experiments were performed in astrocytes (1) which are the major glial cells of the central nervous system. Astrocyte polarization
and migration was induced by a scratch wound. We studied the IF dynamics in cells at the wound 1–2 hours after wounding,
when cells are polarizing and migrate perpendicularly to the wound axis (see Fig 1(a)). IF are transported by molecular motors
along the polarized microtubule network, which is aligned with the front-to-rear polarity axis, with the microtubule minus ends
concentrated near the cell center and the plus-ends growing towards the cell’s leading edge (16). Therefore, IF motion is also
mostly parallel to the direction of migration. The bleached region is rectangular and its height is perpendicular to the protrusion,
i.e. parallel to the wound (see Fig 1(a)). In these conditions, the fluorescence profile curve is asymmetric, due to the inhibition
of the dynein-dependent retrograde transport of IFs and reflects the anterograde transport of IF dominated by kinesin motors
along the polarized network of microtubule (1). Hence in these experiments most of the transported IFs move from the center to
the front of the cell and across the width of the bleached region. This allows us to reduce the problem to one dimension in the
direction of the width of the bleached region (X1 direction in Fig 1(a)). Furthermore, we assume the density of the filaments is
uniform in the direction of the height of the bleached region (X2 direction in Fig 1(a)).

The time scale of the experiments is less than 30 minutes and the fluorescence only comes back from the edges of the
bleached region. Hence we assume diffusion and remodelling of the filaments due to polymerization/depolymerization, subunit
exchange (which occurs on a timescale of hours), fusion or severing are negligible (1, 17). Thus, the length of the filaments is
assumed to be fixed during the observation time and the active transport of filaments moving from the cell center to the cell
front is the major mechanism causing fluorescence recovery. In this model crowding effects or interactions with other filaments
or organelles are not taken into consideration.
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Using FRAP data to uncover filament dynamics

We will use mathematical modeling to determine what information can be obtained from FRAP data in the context of
directional transport of elongated structures. In particular, we will focus on what characteristics of the velocity, length, and
pause of filaments can be deduced from the experimental data. Due to the one directional transport, velocity and speed are
synonymous in this work.

2.1 The Mathematical Model
We now mathematically frame the problem under consideration. Given a domain, X1 × X2 ⊂ R

2, we place a fixed number of
filaments parallel to the X1 axis and allow these filaments to move in the positive X1 direction (direction of the width of the
bleached region) independent of the other filaments. Formally the mathematical model of motion can be stated as: let x(t) be
the position of the right endpoint of the fiber at time t, with v ≥ 0 the velocity, x0 the initial position, and ` the fiber length
which does not change in time. Then

x(t) = vt + x0,

and the left endpoint is at x(t) − `. We consider the random variables X0, V , and L, which we assume to be independent,
corresponding to x0, v, and `. We define the corresponding random process X(t) = Vt + X0 (see Fig 1(a) for a depiction of the
setup).

We compare our results with experiments from polarized migrating astrocytes showing asymmetric fluorescence intensity
profile curves with reduced retrograde transport (1). Thus we consider only filaments which move to the right (having non-
negative velocities). Following the observations that neurofilaments, a type of IFs observed in neurons, display a stop-and-go
motion (13, 18), we assume that the filaments can have a stop-and-go behavior, moving for a period of time Tm at a velocity V
and then stopping for a period of time Ts . The cycle repeats, with the motion time, velocity, and stop time for each cycle being
independent of those for the other cycles.

We now consider the experimental process of FRAPing in the context of IFs (or any elongated objects transported
unidirectionally). We assume the right endpoints of the filaments are uniformly distributed on the interval [0, F]. Suppose
that y0 < y1 (the start and end of the bleach zone) and a region [y0, y1] × X2 is bleached. We also assume y0 ≤ F to ensure
that there are filaments in the bleached region at the time of bleaching. The bleaching process does not change the underlying
behavior of the fibers, but the bleached portions of the fibers are no longer visible and do not contribute to the fluorescence
intensity profiles (see Fig 1).

We categorize filaments into three types: unbleached filaments, partially bleached filaments, and entirely bleached filaments.
Since we only use fluorescence intensity data, we only consider the unbleached portions of filaments as these are the parts of
the filaments that fluoresce. For our analysis we restrict the filaments to have non-negative velocities. We need not consider
filaments which do not extend to the left of y0 (i.e., for which x0 − ` > y0; red filaments in Fig 1 (h)) and filaments whose left
endpoint is to right of y1 (none of these filaments are shown in Fig 1 (h)-(j)). The rest of the partially bleached filaments (the
blue filaments in Fig 1 (h)) are defined to have a new right endpoint where the unbleached portion of the filament to the left of
the bleached portion starts (marked by squares on the filaments in Fig 1 (i)). And of course, the unbleached filaments which lie
to the left of the bleached region (the green filaments in Fig 1 (h)-(j)) are considered. Mathematically we say the right endpoints
of the filaments under consideration are defined in the following manner:

x̂0 =

{
y0 if x0 > y0 and x0 − ` < y0,
x0 otherwise.

2.2 Simulations
There are five random variables with their associated distributions in the model. The initial setup of the filaments is determined
by two random variables: the initial position of the right endpoint X0 and the fiber length L. The movement of filaments is
governed by V the filament velocity, Ts the pausing time of the filament, and Tm the time the filament is moving. We denote the
distributions for all the random variables as follows:

• µX0 governs the initial right endpoint X0 of the filaments,

• µL governs the length L of each filament,

• µV governs the velocity V of the filament during each period of motion,
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Fig 1. A schematic of the model and an example of a FRAP experiment. Panel (a) shows the schematic representation of a cell migrating
to the right with several cytoplasmic IFs. Selected velocities are denoted with purple arrows under the filaments. The right endpoints of the
IFs are denoted x0 and one is labeled with its length ` and velocity v. The right endpoints are distributed between 0 and F. Panels (b)-(g)
show data from a FRAP experiment. Panels (b)-(d) show the profile curves for (e)-(g) respectively. The curves in (b)-(d) come from data in a
subregion of (e)-(g); for example the yellow box in (f). Panels (e)-(g) show fluorescence images taken from a FRAP experiment performed on
vimentin-EGFP expressing astrocytes, located at the edge of a wound, 1h after wounding of the monolayer. The rear-to-front polarity axis
similar to the direction of migration is indicated by an arrow in (a), (e) and (h). Data are before (b) and (e), just after (c) and (f), and 2 minutes
after bleaching (d) and (g). Panels (h)-(j) are blowups of the region indicated by the yellow box in (f) and show the domain and setup for the
simulations. For the clarity, the vertical coordinate of each filament stays the same. The photobleached region (shown in white in (i) and (j)) is
between y0 and y1. Several filaments are shown with their initial right endpoint depicted by a dot in (h)-(j). The red filaments are not relevant
for our mathematical analysis and simulations since we consider only right moving filaments. Of the remaining filaments, the green ones are
unbleached and the blue ones are partially bleached. In (i) the squares denoted x̂0 show where the new right endpoints will be after bleaching.
In the mathematical analysis and simulations it is as if all the filaments to the right of y0 are bleached since we only consider right moving
filaments.
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• µon governs the duration of time each filament moves before pausing or changing velocity, and

• µoff governs the duration of time each filament remains stationary (or pausing) before moving again.

The distribution µX0 that governs the initial position of the right endpoint of filaments is always a uniform distribution on the
interval [0, F], for some F > 0 and y0 ≤ F. The distributions of the moving and pausing times, µon and µoff, are also always
uniform and only the parameters are unknown. The distribution types and their characteristic parameters for filament length and
velocity, µL and µV , are also unknown. The types of distributions considered are Dirac delta (or deterministic), uniform, normal,
and gamma distributions. Dirac delta distribution would reflect a case where the velocity of filament is precisely set. Uniform
distribution of velocities would mean that all velocities are equiprobable, and that there is no internal control of filament
velocity within the cell. For example, the velocity could be between 0 and the maximal free load velocity of kinesin motors. The
Gaussian distribution would reflect the case where velocities are distributed symmetrically around an average value, suggesting
that the control of filament velocity is noisy but symmetrical. The gamma distribution would reflect the fact the velocity is
asymmetrically distributed with a higher contribution of slow filaments. The gamma distribution would empirically describe the
asymmetric velocity distributions predicted in the transport of cargoes when friction plays an important role (19, 20), as it is the
case for IF (1). The Dirac distribution depends on one free parameter and the other three have two free parameters. The mean
denoted µ and standard deviation denoted σ are defined in the standard manner for the uniform and Gaussian distributions and
for the gamma distribution µ = kθ and σ =

√
kθ where k and θ are the free shape and scale parameters respectively. Hence the

determination of the appropriate distribution and their relevant parameters to use is the primary objective of this study.
We numerically simulated the FRAP experiments by moving the filaments and calculating how many filaments are in the

bleached region. We did this in three different ways: 1) each filament gets a different velocity determined by µV but it remains
constant throughout the simulation; 2) after Ton time units have elapsed, where Ton is determined by µon, velocities change but
always come from the same distribution, µV ; and 3) filaments have velocities which change, again determined by µV , but they
stop in between velocity changes. Thus, there is a cycle for each filament of duration Ton + Toff where Ton is a µon distributed
random variable and is the time the filament is moving (the motion is on) and Toff is a µoff distributed random variable and is
the time the filament is stationary (the motion is off). We refer to these simulations as type 1, 2, and 3 simulations. Fig 2 depicts
three filaments for each type of simulation. Depending on the simulation the length of the filaments is either fixed or uniformly,
normally, or gamma distributed. Similarly, the velocity is either fixed or uniformly, normally, or gamma distributed. For the
velocity the normal and gamma distributions are truncated so no velocities are greater than 40 microns per minute (and for the
normal distribution the velocities are all positive). For type 2 simulations the lengths of time during which velocity is fixed are
uniformly distributed with a specified mean τon. For type 3 simulations the stop and run times are uniformly distributed with
specified means τoff and τon.

We use MATLAB to perform the simulations. This work is driven by experimental data, however the variables of interest
(velocity, length, pausing, and moving time) are not observable. Hence we model the variables of interest as random variables
with underlying distributions. As previously motivated we use 4 types of distributions. We estimate only the parameters (mean
and variance) of these distributions. Hence we fit the simulated fluorescence intensities to FRAP data by calibrating these
distributions using the MATLAB function fmincon, a nonlinear optimizer which finds the minimum of a constrained nonlinear
multivariable function. The result of our fitting specifies which type of distribution to use and its relevant free parameters for
each variable of interest (velocity, pausing, and moving times). We found that information about length is not encoded in the
profile curves, thus, to reduce the model complexity during the fitting process, we fixed the length to be a uniformly distributed
random variable with µ = 5.025.

2.3 Experiments
Cell culture - Primary rat astrocytes were prepared as previously described (21) according to the guidelines approved by
the French Ministry of Agriculture and following European standards. For scratch-induced migration assays, cells were
seeded on poly-L-ornithine-precoated coverslips for immunofluorescence or 35-mm glass-bottomed culture dishes (MatTek
Corporation) for videomicroscopy. Cells were grown to confluence in DMEM with 1 g/l glucose and supplemented with 10%
FBS (Invitrogen), 1% penicillin–streptomycin (Thermo Fisher Scientific), and 1% amphotericin B (Thermo Fisher Scientific).
On the day of the experiment, cells were scratched with a blunt-ended microinjection needle, creating a 300-µm-wide wound to
trigger cell migration.

Cell transfection - Starting from a 10 cm diameter petri dish, primary astrocytes grown to confluence were trypsinized
and electroporated with a Nucleofector machine (Lonza) using 5 µg of vimentin-EGFP DNA. We have previously shown
that EGFP-tagged vimentin co-polymerizes with the endogenous IF proteins and fluorescently labels the whole astrocytic IF
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network. Therefore labeling vimentin fluorescently is enough to follow the dynamics of the complete/whole IF network (1).
Medium was changed the day after transfection.

Live-cell imaging - Nucleofected primary astrocytes were seeded on 35-mm glass-bottomed dishes and grown to confluence
for 4 days. On the day before wounding, the medium was changed to a phenol red–free DMEM supplemented with 10%
serum. The monolayer was wounded and cells were monitored between 1 and 2 hours after wounding, allowing them to grow
a polarized protrusion (22). Videos were acquired on a spinning-disk confocal microscope (PerkinElmer) equipped with an
electron-multiplying charge-coupled device camera and either a 63×, 1.4 NA objective or a 100×, 1.4 NA objective.

3 RESULTS
In this section we give the results of the mathematical theory, the three types of simulations, and the experimental data. We
divide it into five main subsections: first, we explain the theoretical results; second, we consider what can be learned from
the initial setup; third, we compare type 1 simulations (where the velocity for each filament is fixed for the duration of the
simulation but each filament’s velocity can be different) with the theoretical results derived in equation (4) and (5); fourth, we
compare results from type 1 simulations (where each filament can have a different but fixed velocity) with type 2 simulations
(where the velocity can abruptly change to a new value during the simulation) and with type 3 simulations (where the filament
pauses before changing velocity); and finally, we compare the theory and results from simulations of type 1 and type 3 with
experimental data.

3.1 Theoretical Results
Based on the filament motion model assumed in this work and the description of the experimental setup described above, we
are now deriving closed forms for the profile curves. Two simplifications allow the derivation of two equations for the profile
curves valid under the corresponding assumptions. First, we assume that all the filaments have the same fixed velocity (a special
case of type 1 simulations where all the filaments have a fixed velocity which is the same, i.e., a Dirac delta distribution which
gives all the filaments the same velocity, see Fig 2(d)). Thus the velocity is deterministic and no longer random. We then derive
the corresponding profile curves in equation (4). Second, we used a random non-fixed velocity and we fix an identical filament
length for all filaments, see Fig 2(e). This allows us to derive equation (5).

Let y represent an arbitrary point in the bleached zone, i.e., y ∈ [y0, y1]. The probability that some part of the filament is at
y is given by

P({X(t) > y} ∩ {X(t) − L < y}).

Recall we are interested only in filaments which enter the bleached region from the left. There are two types of filaments, ones
which are not bleached and ones which are partially bleached. Thus we define two sets, given y and t. Let

U(t, y) = {(x0, v, `)|x0 + vt > y and x0 + vt − ` < y and x0 < y0} (1)

be the set of values corresponding to filaments that are not bleached, because their right endpoints are located before the
bleached region (the green filaments in Fig 1 (h)-(j)). Likewise let

B(t, y) = {(x0, v, `)|y0 + vt > y and y0 + vt − (` − (x0 − y0)) < y (2)
and x0 > y0 and x0 − ` < y0}

be the set of values corresponding to the non-bleached region of filaments that are only partially bleached (the blue filaments in
Fig 1 (i) and(j)). We note that these two sets are disjoint so

P((X0, V , L) ∈ U(t, y) ∪ B(t, y)) = P((X0, V , L) ∈ U(t, y)) + P((X0, V , L) ∈ B(t, y)).

If we let P be the distribution of (X0, L, V), and let E be the corresponding expectation, then the first probability becomes

P((X0, V , L) ∈ U(t, y)) = E(1U(t,y)) =
∫

1U(t,y)(ω) dP(ω) =
∫

1U(t,y)(x0, v, `) dP(x0, v, `),

and we can obtain the second probability similarly. The profile curves are scaled versions of

H(t, y) =
∫ ∫ ∫

(1U(t,y)(x0, v, `) + 1B(t ,y)(x0, v, `)) dµX0 (x0) dµL(`) dµV (v), (3)
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while the fluorescence recovery curve is a scaled version of G(t) =
∫ y1
y0

H(t, y) dy.
Recall that it is assumed that filaments right endpoints are uniformly distributed; so let X0 be uniformly distributed on the

interval [0, F] with F ≥ y0. Moreover, define

f (t, y, `, v) =
∫
[0,F]
(1U(t ,y)(x0, v, `) + 1B(t,y)(x0, v, `)) dµX0 (x0).

In order to compute H(t, y) explicitly, we make one of two simplifying assumptions. First, suppose V = v with probability one
(see Fig 2(d)). In this case it is convenient to work in traveling wave coordinates so we let w := y − vt. In this scenario we find

H(t, y) =
∫

f (t, y, `, v) dµL(`) =



1
F

[∫ F−w

−w

(w + `) dµL(`) +
∫ ∞

F−w

F dµL(`)
]

if w ≤ 0, (4a)

1
F

[∫ F−w

0
` dµL(`) +

∫ ∞

F−w

(F − w) dµL(`)
]

if 0 < w ≤ y0, (4b)

0 if y0 < w. (4c)
Note that H depends on (t, y) through the traveling wave coordinate w.

Second, suppose instead that all filaments have the same length ` with probability one (see Fig 2(e)). In this case the only
genuine random variables are X0 and V . Then we have

H(t, y) =



1
F

[∫ y+`
t

y−F+`
t

` dµV (v) +
∫ y−F+`

t
y−y0

t

(F − y + vt) dµV (v)

+
∫ y+`

t
y
t

(y − vt) dµV (v)
]

if ` ≤ y0 and F ≤ y0 + `,

1
F

[∫ y+`
t

y−y0
t

` dµV (v) +
∫ y+`

t
y
t

(y − vt) dµV (v)
]

if ` ≤ y0 and F > y0 + `,

1
F

[∫ y+`
t

y−F+`
t

(y − vt + `) dµV (v) +
∫ y−F+`

t
y−y0

t

F dµV (v)

+
∫ y

t
y−y0

t

(vt − y) dµV (v)
]

if ` > y0 and F ≤ y0 + `,

1
F

[∫ y+`
t

y−y0
t

(y − vt + `) dµV (v) +
∫ y

t
y−y0

t

(vt − y) dµV (v)
]

if ` > y0 and F > y0 + `.

(5)

Hence equation (4) represents the density of fluorescent filaments at time t and location y, or the theoretical profile curves,
when the velocity is fixed, and equation (5) represents the density of the fluorescent filaments (or profile curves) when the
length is fixed. The details of these calculations are found in Appendix 1.

3.2 Initial Setup
As will be shown in Section 3.3, the mathematical theory indicates that data from FRAP experiments reveals little information
about filament length distributions, however some information can be obtained. By knowing how the density of the filaments
changes in time and space some limited information about filament length can be deduced. In order to explain this we consider
the initial setup for the system and distinguish between the initial distribution of the right endpoints of filaments and the
distribution of filament densities. The first is independent of filament length ` and the second is not. For our mathematical
setup we consider the filaments where the right endpoints are uniformly distributed in the interval [0, F] (see Fig 1(a)). The
normalized density of filaments as a function of space depends on the length of filaments; two examples are shown in Fig 3.
The normalized density of filaments as a function of space will increase until it reaches 1 and then remain constant until some
point before F where it will decrease to 0 at F and remain 0 from there on. The regions of increase and decrease are determined
by the length distribution of the filaments. These types of regions may be found near the cell membrane. In panel (a) of Fig 3
the filament lengths have a larger mean (50, ±5µm (SD) from a Gaussian distribution) and thus have a gentle slope. In contrast,
in panel (b) of Fig 3 the lengths have a smaller mean and standard deviation (0.5, ±0.05µm (SD) from a Gaussian distribution),
resulting in a much sharper transition. In addition, if the filaments are long, the density measured from data will be smoother
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(less variability, with fewer filaments) but if the filaments are short, the measured density will be noisy (more variability which
will require more filament measurements to smooth the density signal) as seen in panel (b).

To summarize, filaments with a short average length will give density measurements with greater variability and spatial
derivatives. Measurements near the cell membrane may give an idea of average filament length due to the boundary.

3.3 Type 1 Simulations and Theory
In type 1 simulations the velocity for each filament does not change with time (see Fig 2). First we consider a special case of
this, namely when the velocity is the same for all the filaments and the filament length, which does not change during the course
of the experiment (here we do not model filament assembly or disassembly), is random. Then we consider fixed lengths and
random (but constant) velocities. Finally we consider both random velocities and random lengths.

3.3.1 All Filaments have the Same Constant Velocity

For fixed velocity, equation (4) shows that the profile curves are traveling waves since they depend only on the traveling wave
coordinate w = y − vt. In other words, the shape of the profile curve does not change but rather is shifted to the right over time.
When the bleached region is where the filament density is constant (see Fig 3(a)-(b)) the profile of the traveling wave will not
give much information about the length distribution. Recall that we assume the right endpoints of the filaments are uniformly
distributed in the region [0, F]. Because we are placing the right endpoints in [0, F], the density of filaments ramps up from
zero to a constant, remains constant from zero to some value below F, and then ramps down to zero at F (see Fig 3(a)-(b)).
Thus equation (4a) relates to the region left of the right endpoint placement (for instance Fig 3(a) left of 0) where the density is
zero or ramping up. Equation (4b) describes the wave in the rest of the domain up to the bleached region, and equation (4c)
describes the wave to the right of the left edge of the bleached region. We consider only positive velocities and values in the
bleached region, the main variations of concern are the transition from the non-bleached region to the bleached region, that is
values near y0. For values of w such that F − w > u where u is a value such that

∫ u

0 dµL ≈ 1, the first integral in equation (4b)
dominates and is the mean filament length. In this scenario, the wave front is far enough away from F so the profile curve is
constant (the boundary effects are negligible - see Fig 3 and Fig 4). Thus the profile curve will be a wave which jumps down
from a constant value (determined by the first integral in equation (4b)) to zero (when equation (4c) is used) and the only
information about the length distribution that can be determined is the integral condition given above which says something
about the length of the interval “containing" most of the density of L.

As an example see the first row of Fig 4. In Fig 4(a), curves of a scaled version of equation (4) are shown with data from
simulations where the bleached region is in the region where the filament density is uniformly distributed (not just the right
endpoints). The filament density is shown for the full domain before bleaching in the inset. The region to be bleached, between
y0 = 50 and y1 = 60, is shown as grey. The profile curves are constant with a jump at the transition to the bleached region. In
Fig 4(b) the bleached region is in a region near the right end of the interval where the filaments are located. In this region the
filament density is not uniform and the profile curves are not constant before they drop down to zero. In Fig 4(c) the bleached
region is at the right end of the region where the filaments are initially located y0 = F = 150. The profile curves here are
continuous and have no abrupt transition to zero. Regardless of the length distribution, if the bleached zone is in the region of
the domain where the filament density is constant, the profile curves are constant with an abrupt change to zero.

To summarize, typically, if the filament velocities are constant the wave profile will have a front at y0 which moves forward
into the bleached zone without changing shape and there is almost no information about the length distribution. It may be
possible to learn something about the filament lengths if the bleach region is near the cell membrane where the filament density
may not be constant due to the boundary imposed by the membrane.

The fluorescence intensity profiles obtained experimentally are not traveling waves (see Fig 8). They have an abrupt
transition at the time of bleaching from the fluorescent region to the bleached region, but as time evolves the transition becomes
smoother and less abrupt. In order to explain the experimental data, we explored the effects of random filament velocity on the
curves. From now on, the bleached region will always be in the “plateau" region where both the right endpoints of filaments and
the filament density are uniformly distributed to avoid boundary effect in the theoretical and simulated results. Since we only
consider filaments moving to the cell periphery, the right side of the profile curves and simulations do not give any additional
information.

The rest of section 3.3 will show a primary result of this work - that the fluorescence intensity profile is affected only by
filament velocity, and not by filament length.
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3.3.2 Filaments with Random Velocity and Fixed Length
The filament velocity distribution affects the fluorescence intensity profiles profoundly. The equation derived for fluorescent
filament density with random velocities and fixed length filaments (equation (5)) is compared to numerical simulations of type
1 in Fig 4 panels (d)-(l). When the velocity is uniformly distributed the profiles are piecewise linear with the slope changing
with time. For Gaussian distributed velocities the profiles are smooth curves with more abrupt transitions than the uniformly
distributed velocities. The profile curves are also smooth curves in the case of gamma distributed velocity but the transitions are
not as abrupt as when the Gaussian distribution is used.

We then turned our attention to how changes in the fixed length parameter affects the results of type 1 simulations. It is clear
from Fig 4(d)-(l) that as the length of the filaments increases the profiles from simulations approach the theoretical curve which
is determined by the velocity distribution. If the length is small, there is more variation in the simulated results due to the
random nature of the simulations but that variation can be averaged out giving profiles which are similar to those with filaments
of longer lengths.

Fig 5 (c)-(e), shows how the standard deviation of type 1 simulations vary with the filament lengths. In these simulations
(similar to those shown in Fig 4) the averages of 50 simulations are plotted with error bars indicating the standard deviation for
simulations with filaments of varying lengths and with uniformly distributed velocities. Clearly the variation increases as the
filament length decreases. Depending on the quality of the data it may be able to surmise length information based on the noise
in the data.

3.3.3 Filaments with Random Velocity and Random Length
Next, we allowed the length to vary according to different distributions with the same mean while keeping the velocity
distribution fixed as a gamma distribution. We do not have a theoretical curve to compare with these type 1 simulations because
both velocity and length are random. Fig 5(a), curves obtained with the three different distributions (uniform, Gaussian and
gamma with the same mean length) for lengths are almost superimposed. In panels (f)-(h) the length distribution was left the
same (a uniform distribution) but the mean length was altered from 0.5, 2, 4 microns. Again when the filaments have shorter
lengths the data is noisier but still follows the same basic curve (determined by the velocity distribution).

3.4 Comparing Type 1, 2, and 3 Simulations
Here we compare results from type 1, 2, and 3 simulations with fixed filament length and various random velocities. Recall
we simulated the velocity in three ways: type 1 each filament gets a different velocity but it remains constant throughout the
simulation, type 2 velocities change after Ton time units have elapsed but always come from the same distribution, and type 3
filaments have velocities which change after Ton time units but then they stop in between velocity changes for Toff time units.

Simulations of type 1 match the results from equation (5) (Fig 6(a), (d), and (h)). For type 2 simulations, the initial part
of the wave front is slower (the filaments with larger velocities on average do not maintain the large velocity and thus they
do not move as far into the bleached region as before) but the back of the wave front is faster (on average the filaments with
slow velocities do not remain slow). The overall effect of the change is to make the transition from the bleached region to
the unbleached region more abrupt than before (Fig 6)(b), (e), and (i)). This has the largest effect in the case of the uniform
distribution where the transition is linear for type 1 but nonlinear and sharper for type 2 (Fig 6(b)). For type 3 simulations,
filaments paused for a period of time before changing velocity. The pausing time follows a uniform distribution with mean 0.5
minutes. The resulting profile curves are similar to the profiles of simulations of type 2 (without the pausing) except the velocity
of the profiles is multiplied by the fraction of filaments that are moving,

τon
τon + τoff

, where τon is the mean time the filaments
have a fixed velocity and τoff is the mean time the filaments are paused before changing velocity (Fig 6(c), (f), and (j)). The
profiles are somewhat advanced at the front end and somewhat delayed at the back end. The pausing seems to slightly ameliorate
the sharpening of the wave caused by the velocity changes. Type 2 and type 3 simulations give similar results. When filament
velocity is a random variable, the simulated profile curves are not traveling waves and the abrupt change at the time of
bleaching is smoothed out as time advances as is seen in the experiments.
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Theory: Eq 4
same constant velocities,

random lengths

Theory: Eq 5
random constant velocities,

same lengths

Type 1
random constant velocities,

random lengths

Type 2
random velocities,

no pausing,
random lengths

Type 3
random velocities,

pausing,
random lengths

(a) (b) (c)

(d) (e)

Fig 2. A diagram depicting the different theory and simulation types and cases solved theoretically. In each panel, kymographs of
three typical filaments are shown. Panels (a)-(c) depict the three types of simulations where all the filaments have random velocities and
random lengths. Panel (a) shows type 1 where the filaments have random velocities which are constant for the duration of the simulation.
Panel (b) shows type 2 simulations where the filaments have random velocities which instantaneously change at random times. Finally, (c)
shows type 3 simulations where filaments have random velocities and exhibit a pausing behavior between velocity changes. Panel (d) shows
the particular situation/case of Type 1 simulations theoretically solved in equation (4) where all filaments have the same fixed velocity but
random (time-independent) lengths. Panel (e) the particular situation/case of type 1 simulations theoretically resolved in equations (5) where
all the filaments have the same length but different (time-independent) velocities that are randomly selected.
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Fig 3. Impact of filament length on the density of filaments. This figure shows how filament length affects density measurements of the
initial setup (before bleaching, all filaments are fluorescent). The mean length of filaments in (a) is 50 microns and in (b) 0.5 microns. One
filament is highlighted in cyan in (a). The red lines show the density of filaments computed from the data shown above (calculated using bin
sizes of 0.1 in (a) and 0.09 in (b)), normalized using the maximum bin value (a) and average non-zero bin value (b), and the dashed blue line
shows the theoretical density of filaments using equation (4), where y0 is set to be greater than F (this is the one exception to the assumption
that y0 ≤ F), thus there is no bleached region in the panels. The filaments’ right endpoints are uniformly distributed on [0, 200] and the
filaments have lengths which come from a Gaussian distribution with standard deviation 5 in (a) and 0.05 in (b). Equation (4a) is for w-values
less than 0, where the density is lower since the right endpoints of filaments are not initially placed to the left of 0 (see panel (a)). For panel
(a), if F − w > 60 (the mean length plus 2 standard deviations), the w coordinate is far enough to the left of F = 200 that the boundary effects
(due to placement of the right endpoints) do not affect density. If y0 is in the plateau region, the front of the traveling wave will be sharp.
Different length distributions show the same qualitative features. Panel (c) shows the standard deviation of the filament density for different
lengths of filaments and for four different values of total number of filaments. The simulations in (c) have filament lengths which are Gaussian
distributions with varying length and the standard deviation is one tenth the length. The standard deviation is taken only for data on the plateau.
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Fig 4. Impact of velocity distributions and filament length on FRAP intensity profile curves from the theory and type 1 simulations.
The solid curves in (a)-(c) are plots of a scaled version of equation (4) and in (d)-(l) they are a scaled version of equation (5) such that
‖ f ‖∞ = 1. The x’s are simulated results. The mean velocity for all simulations is 1 micron per minute and for (g)-(l) the standard deviation of
the velocity is 0.25. In (a)-(c) the velocity is fixed and the insets show the simulated profile curves for the entire domain before bleaching and
the region to be bleached is shown in grey. The bleached region is 50-60, 120-130, and 150-160 respectively. In (d)-(f) the velocity is
uniformly distributed, (g)-(i) have Gaussian distributions, and (j)-(l) have gamma distributions. Panels (d), (g), and (j) have filaments with
length 10 microns; (e), (h), and (k) have filaments with length 0.5 microns; and (f), (i) and (l) shows the average of 50 simulations (each a
different realization) with filament length 0.5 microns. In these simulations, each filament has a velocity which does not change for the
duration of the simulation. Each simulation in (a)-(c) has 200,000 filaments and in (d)-(l) 20,000. The right endpoints are uniformly
distributed in (a)-(c) from 0 to 100 and in (d)-(l) from 0 to 470. The bleached region in (d)-(l) is from 200 to 210. The curves and x’s represent
times 0.5 (blue and red), 1 (light blue and orange), 3 (lighter blue and light orange), and 5 minutes (cyan and yellow). The y axis is
fluorescence intensity (a.u.) in all panels.

Length: Row one - Gaussian, µ = 50, σ = 5 microns. Rows 2,3, and 4 - fixed.
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Fig 5. Impact of length distributions on FRAP intensity profile curve data (type 1). This figure compares the simulated results with
random velocity and different length distributions. In panel (a) the type of length distribution changes, in panels (c)-(e) the length changes,
and in (f)-(h) the mean length changes. Panel (b) is a blowup of the boxed region in panel (a). In panel (a) the average length for all
distributions is 10 microns and for the Gaussian and gamma distributions the standard deviation is 0.2. In panels (c)-(e) the solid curves are
plots of scaled equation (5) such that ‖ f ‖∞ = 1 and the error bars are type 1 simulated results. The length of the error line is twice the
standard deviation of the 50 realizations centered at the average of the realizations. The curves and error bars in (c)-(e) are profiles at times
0.5 (blue and red), 1 (light blue and orange), 3 (lighter blue and light orange), and 5 minutes (cyan and yellow). The y axis is fluorescence
intensity (a.u.) in all panels. Length: (a) - varied distributions, (c)-(e) - fixed, (f)-(h) - uniform. Velocity: (a),(b), (f)-(h) gamma µ = 1,
σ = 0.25; (c)-(e) - uniform on interval [0, 2].
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Fig 6. Impact of velocity changes and pauses on intensity profile curves. This figure shows how simulations differ between type 1, 2, and
3. The solid curves are plots of scaled versions of equation (5) such that ‖ f ‖∞ = 1 and the x’s are simulated results. The curves and x’s
represent times 0.5 (blue and red), 1 (light blue and orange), 3 (lighter blue and light orange), and 5 minutes (cyan and yellow). Panels (a), (d),
and (h) show type 1 simulations with x’s and theoretical curves from equation (5) (panels are the same as (d), (g), and (j) of Fig 4). Panels (b),
(e), and (i) show type 2 simulations with x’s where the filaments change velocity after a random time chosen from a uniform distribution with
mean 1 minute (the theoretical curves are for comparison with column 1). In (c), (f), and (j) the blue x’s show results from type 3 simulations
where the stop time comes from a uniform distribution with mean 0.5 (on average 2

3 of the initial filaments are moving, τon
τon+τoff

= 2
3 ) and the

yellow x’s show results from type 2 for comparison (with the mean velocity 2
3 of the comparable type 3 simulation). In (a)-(c) the velocity is

uniformly distributed, in (d)-(f) it has a Gaussian distribution, and in (h)-(j) it has a gamma distribution. All simulations have filaments with
length 10 microns. The other parameters are the same as in Fig 4. The y axis is fluorescence intensity (a.u.) in all panels. Length: All - fixed
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3.5 Fitting Theory and Simulations to the Data
We have a theoretical formula (equation 5), and three types of simulations to compare to experimental data. We do not compare
type 2 simulations to the data for two reasons. First, the results from the last section show that simulations of type 2 and type 3
are similar. Second, for long τon (i.e., longer than the duration of the experiment) type 2 and type 3 simulations are the same.
We now optimize the parameters in the theory, type 1, and type 3 simulations to fit the experimental data.

We fit thirteen data sets from five different experiments. All the data was from polarized migrating astrocytes showing
asymmetric profiles of fluorescence recovery indicative of the polarization of the microtubule driven transport of IFs (1).

In all the simulations, filament length is uniformly distributed on the interval [.05, 10] with mean 5.025 microns. For
computational convenience we shifted the distribution away from 0. For the theory and type 1 simulations we optimized over
the average velocity, µ, for the uniform distribution, the average velocity, µ, and standard deviation, σ, for the Gaussian and the
gamma distributions which is parameterized by the shape parameter k and the scale parameter θ. (Recall the mean µ = kθ and
the standard deviation σ =

√
kθ.) Both the Gaussian and the gamma distributions are truncated so the velocities do not exceed

40 microns per minute (and are not negative for the Gaussian). For type 3 simulations the mean off, τoff, and mean on time, τon,
are also free parameters. Thus type 1 simulations have one or two free parameters and type 3 simulations have three to five free
parameters. The type 1 and type 3 simulations are stochastic processes so we optimized 30 realizations for each data set. The
objective function minimized was

E =

N∑
i=1

M∑
j=1

|s(ti , xj) − d(ti , xj)|
MN

where s(ti , xj) is the fluorescence intensity of the simulated data, d(ti , xj) is the experimental data, N is the number of time
points, and M is the number of spatial points. Fig 7 shows the average of the minimum of the objective function E (best fit
simulation) for each of the data sets. Our model comparisons are only based on how well the model data fits the experimental
data. As the models considered are not nested, statistical tests are not applicable for comparison.

Although, both type 1 and type 3 simulations fit the data well, the best fits come from type 3 simulations as can be seen, for
one data set, in Fig 8. Furthermore, in all cases we successfully simulated most of the fluorescence curves using a truncated
gamma distribution for the velocities. This is not surprising since the videos of FRAP experiments clearly show a strong
disparity in the filament speeds, with only a few filaments moving very fast and a large majority moving very slowly (see videos
(1)). The gamma distribution is the only asymmetric distribution considered thus allowing for a fat tail.

Using the scenario (type 3 simulations with gamma distributed velocities) representing the best experimental intensity
profile curves, information about the filament dynamics can be extracted from the 13 data sets considered. Fig 9(a) summarizes
the filament velocity distributions, the mean velocities of all filaments and only moving filaments (Fig 9(b)), the filament mean
off and on times, and the percentage of stationary filaments (Fig 9(c)). The mean velocities of moving filaments are found to
range from 0.004 to 0.05 microns per second (with an average over the 13 data sets of 0.0194) and the average velocities of all
the filaments (including moving and stopped filaments) and range from 0.003 to 0.025 microns per second (with an average of
0.0108). On average the percentage of stopped fibers at steady state is

τoff
τon + τoff

. Thus the data shows that in nine of the 13 data
sets over half the filaments at any time are stationary (panel (c) of Fig 9).

4 DISCUSSION
The work here builds a theoretical framework to quantitatively analyse the directed transport of anisotropic structures and
allows the reconstruction of fluorescent profile curves generated by FRAP experiments. Here the focus is on IFs but the work
is more generally applicable to all kind of anisotropic structures, such as mitochondria which are also actively transported
along microtubules (23). We show that data from FRAP experiments on IF, namely fluorescence intensity profile curves, reveal
important information for determining the velocity of the filaments including mean velocity and shape of the distribution. In fact,
the most important distribution governing the shape of the intensity profile curves is the distribution of the filament velocity, µV .
Profile curves which are observed to be traveling waves would suggest that all filaments are moving with the same constant
velocity. On the contrary, profile curves which are piecewise linear with the slope changing in time suggest that the filament
velocity is constant in time and uniformly distributed. Profile curves which are sigmoidal indicate velocities are normally or
gamma distributed. Finally, we found that the filament length distribution has no impact on the global dynamics of filaments.

Our results show that for polarized migrating astrocytes with reduced retrograde transport, a gamma distribution for the
velocity of the filaments best matches the data. Allowing the filaments to pause and restart with new velocities, gives the
best experimental fit. In fact, in most of the data sets over half the filaments are stationary and most of the moving filaments
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Fig 7. Comparison of how well the different types of simulations fit the experimental data. The results of the optimization are shown.
The box color indicates velocity distribution used: red - uniform, green - Gaussian, and purple - gamma. The line in the box gives the average
of the objective function, E for the best fit (out of 30) for each of the 13 data sets, the width of the box shows the upper and lower quartile, and
the whisker lengths are about ±2.7σ where σ is the standard deviation. The circles are outliers. Using the Wilcoxon signed rank test: * for
p < 0.022;** for p < 0.0012; *** for p < 0.0005. All possible pair combinations are statistically significant except the 6 possible pairings of
Theory uniform, Theory Gaussian, Type 1 Uniform, and Type 1 Gaussian. In addition the difference between Theory gamma vs Type 3
uniform and Theory gamma vs Type 3 Gaussian are not statistically significant. The theory uses equation (5). Length: Theory - fixed with
µ = 10, Type 1 and 3 - uniform with µ = 5.025 microns.
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Type 1 Type 3
uniform Gaussian uniform Gaussian

gamma gamma
t = 1.5 min t = 3 min t = 1.5 min t = 3 min
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Fig 8. Fitting simulations to the experimental data. This figure compares the simulated results (red shades) with experimental data (blue
shades) for one data set. The figure has been separated into three regions showing results from the theoretical model, type 1 simulations, and
type 3 simulations. Panels (a)-(e), (j), and (k) show all the time data together, whereas the rest show the time data in individual panels. When
optimizing only the data in the unshaded area is used. The minimum value of the objective function is 0.0511, 0.0525, and 0.0139 for type 1
and for type 3 0.0415, 0.0404, and 0.0131 for uniform, Gaussian, and gamma distributed velocity respectively. The y axis is fluorescence
intensity (a.u.) in all panels. Length: All - uniform with mean 5.025 microns.
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τoff τon stopped

(a) (b)
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Fig 9. Information on filament dynamics approximated from 13 experimental data sets. Panel (a) shows the non-truncated velocity
distributions as predicted by type 3 simulations (giving the minimum cost function of the 30 realizations) for each data set in a different color.
All simulations used a truncated gamma distribution for the velocities. The black dotted line shows the gamma distribution with parameters
which are the average of the parameters for the 13 other curves. Panel (b) shows the mean velocities. The squares to the left are velocities for
moving filaments von and the squares to the right are velocities for all the filaments i.e., v = von

τon
τon+τoff

. Panel (c) shows the mean on and off
times predicted by type 3 simulations for the 13 data sets considered. The squares to the left are the mean off times, τoff, and the squares to the
right are the mean on times, τon. The black circles are the averages of mean off and on times over the 13 data sets. The grey region shows the
percent of filaments which are stopped (the horizontal coordinate is randomly perturbed for viewing purposes). Both on and off times are
uniformly distributed. The lines connect values from the same data sets. The colors indicate the same data set. Length: All - uniform with
mean 5.025 microns

.
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have a small velocity. However, some filaments have a large velocity as indicated by the long tails in the velocity probability
densities in Fig 9(a) and the long tails in the profile curves in Fig 8. This is consistent with IF transport by one directional motor
molecules with friction and with IF experiments where velocities were described to be non Gaussian with a high propensity of
slow filaments in previous work (19, 20, 24). Moreover, average velocities extracted from the fit of the profile curves with
gamma distributions are consistent with values published in the literature (25), but lower than the range described for the
transport of isolated small filaments called squiggles (25, 26) and longer filaments measured in (17). The distributions are
consistent with filaments having a large range of velocities which is seen experimentally (25). All of these velocities are lower
than the maximum velocity of an individual kinesin-1 molecule of 0.668 microns per second (27) but which depends on the
concentration of ATP and can be as low as 0.045 microns per second for low concentrations. Additionally, increasing the load
on the kinesin molecule will decrease the velocity (27). Long pauses have also been observed to last up to 25-80 percent of the
time (25). This matches our model predictions that at any one time fewer than half of the filaments are moving and the average
percentage of time the filaments are paused ranges from 25 to 73 (with an average of 53.5).

The very slow speeds are not surprising because there are a lot of sources of friction for the transport of IF mainly driven by
kinesin motors: interaction with other organelles, crosslinking proteins between microtubules and intermediate filaments such
as plectin, or dyneins, although dynein activity has been shown to be inhibited (1). Maintaining a network of filaments that is
constantly being restructured requires a delicate balance where a portion of the network is stable, a portion is being dismantled,
and a portion is being constructed.

Our results in the case of one directional transport also predict that other types of profile curves can be recovered with
velocities which are not gamma distributed. These predictions could be used in other types of experiments investigating different
cell conditions not described in (1). For example, when the friction in the system is reduced, we expect the velocity distributions
to be more symmetrically distributed (Gaussian) because only one motor is involved. This could be achieved by reducing the
cross-linking of the filaments. Two possible methods would be to inhibit plectin, or completely inhibit dynein. Uniform and
Dirac velocity distributions are ideal cases which were examined for the sake of comparison and are less biologically motivated.

There are several possible causes that would inhibit filament motion. Physical obstacles could hinder filament transport
including the crowding from other filaments or crosslinking to other filaments. Stalled velocity due to the tug-of-war caused by
motor molecules of opposing types could be another possible reason. Mathematical modeling shows that there are several
scenarios where the majority of filaments remain in a state where the tug-of-war is unresolved resulting in stalled filaments (15).
Filaments detaching and staying detached from the microtubule would also be stalled. Finally there are direct and indirect
interactions with actin which could cause anchoring of the filaments (17). Overall, the data suggests that many of the fluorescent
filaments are in the static portion of the network or in the process of being disassociated or associated with it. Thus the majority
of filaments are stationary or moving with very slow velocities. This does not preclude the possibility that many filaments
which are not associated with the stationary portion of the network are also pausing for long periods of time.

Assembly and disassembly of IF occurs on a time scale of hours in neurons (28); whereas, the FRAP experiments take
place on the time scale of minutes. Yet in epithelial cells, keratin assembly/disassembly occurs at the time scale of minutes
(29). But in our experiments the profile curves remain low in the middle of the bleached region indicating that assembly is not
playing an important role. Preliminary results of simulations with length changes suggest that the results presented here are
robust. This is not surprising since length does not substantially affect the profile curves. Of course, in systems where filament
length can change at a time scale comparable to that of active transport, our analysis is not appropriate and the profile curves
will have different characteristics.

Let’s consider three possible refinements to model. First, we could allow filament transport in two directions. This would
be important when considering symmetric profile curves, for example those observed in astrocytes 8 hours after wounding,
when cell polarity is well established (1). Two directional analysis would indicate whether the filament velocity has the same
characteristics in both directions. When there are no non-fluorescent moving filaments, the bleached region is symmetric,
and the velocities are equal in magnitude but opposite in direction no new information is gained. If there are non-fluorescent,
moving filaments the profile curves will be distorted but in a symmetric manner. If the velocity distributions are the same but
with different mean velocities (still in opposite directions) the moving non-fluorescent filaments could break the symmetry.
Second, we could allow the filament velocity to be correlated with filament length (14). How this correlation would alter the
profile curves is hard to predict without knowing how the length and speed are related. Third, we could consider the elastic
nature of IFs. The elasticity of the filaments has two possible relevant effects: length change and speed change (14). The first
should not affect the profile curves but the second could. Finally, by combining the information about filament velocities found
here with models of filament transport (14, 15), it should be possible to elucidate properties of motors involved in the transport.
Additionally, when the cell is stationary, while the filament network is very dynamic, there is no net change in filament density.
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In future mathematical models, we plan to investigate conditions which would allow a steady state density and give insight
into how the cell maintains a dynamic network with no net filament transport. Further mathematical analysis could be done using
other mathematical formalization. A standard method would be to use the Chapman-Kolmogorov equation, but for our problem
that requires simplification. All three types of simulations can naturally be thought of as realizations of stochastic processes.
With some work and simplifying assumptions, they can be framed asMarkov processes. Type 1 simulations, while certainly
stochastic, have all of the randomness front-loaded at time 0. Consequently, they are trivially Markovian because the state of
the system at each strictly positive time depends deterministically on the state at any previous time. The easiest way to frame
type 2 and type 3 simulations as Markovian is to consider only the velocity process and to require the elapsed time between
velocity jumps to be exponentially-distributed (rather than uniform), leaving us with classical examples of continuous-time,
time-homogeneous Markov processes. For interested readers the resulting Chapman-Kolmogorov equation and other related
formulas are given in Appendix 2.

In summary, the modeling framework proposed in this work provides an in-silico platform to study the impact of IF protein
post-translational modifications (30) or mutations (31), depleting or silencing one motor type, or altering the IF network
composition on the IF transport and organization in cells.

5 ACKNOWLEDGEMENT
We would like to thank the Pasteur Imaging plateform (Imagopole, C2RT) for help with data acquisition. This work was
supported by the La Ligue contre le cancer (S-CR17017), Centre National de la Recherche Scientifique and Institut Pasteur and
the agence nationale de la recherche (ANR 16-CE13-009, CL). SP is supported by a Discovery Grant of the Natural Sciences
and Engineering Research Council of Canada (RGPIN-2018-04967) and a Burroughs Wellcome Fund 2020 Collaborative
Research Travel Grant.

20 Manuscript accepted PLOS Computational Biology



Using FRAP data to uncover filament dynamics

APPENDIX 1
Consider the first probability P((X0, V , L) ∈ U) = E(1U ) =

∫
1U (ω) dP(ω) =

∫
1U (x0, v, `) dP, where P is the distribution of

(X0, V , L) and E is the corresponding expectation. The profile curves in FRAP are scaled version of

H(t, y) =
∫
V

∫
L

∫
X0

(1U(t,y)(x0, v, `) + 1B(t,y)(x0, v, `)) dµX0 dµL dµV . (6)

The intensity curve is a scaled version of G(t) =
∫ y1
y0

H(t, y) dy. Assuming X0 is uniformly distributed on the interval [0, F],
F ≥ y0 and w = y − vt, then

f (t, y, `, v) =
∫
X0

(1U(t ,y)(x0, v, `) + 1B(t,y)(x0, v, `)) dµX0

=

∫
X0

1[w,∞)∩(−∞,w+`]∩(−∞,y0](x0) dµX0

+

∫
X0

1(−∞,y0](w)1(−∞,w+`]∩[y0,∞)∩(−∞,y0+`](x0) dµX0

=
1
F

[∫ a

0
1[w,∞)∩(−∞,w+`]∩(−∞,y0](x0) dx0

+

∫ a

0
1(−∞,y0](w)1(−∞,w+`]∩[y0,∞)∩(−∞,y0+`](x0) dx0

]
=

1
F
(I + I I).

We consider the two integrals separately.

I) If ` ≤ y0

∫ F

0
1[w,∞)∩(−∞,w+`]∩(−∞,y0](x0) dx0 =


0 if w ≤ −`

w + ` if − ` < w ≤ 0
` if 0 < w ≤ y0 − `

y0 − w if y0 − ` < w ≤ y0
0 if y0 < w

(7)

else if y0 < `

∫ F

0
1[w,∞)∩(−∞,w+`]∩(−∞,y0](x0) dx0 =


0 if w ≤ −`

w + ` if − ` < w ≤ y0 − `
y0 if y0 − ` < w ≤ 0

y0 − w if 0 < w ≤ y0
0 if y0 < w

(8)

II) If F ≤ y0 + `

∫ F

0
1(−∞,y0](w)1(−∞,w+`]∩[y0,∞)∩(−∞,y0+`](x0) dx0 =


0 if w ≤ y0 − `

w + ` − y0 if y0 − ` < w ≤ F − `
F − y0 if F − ` < w ≤ y0

0 if y0 < w

(9)

else if y0 + ` < F

∫ F

0
1(−∞,y0](w)1(−∞,w+`]∩[y0,∞)∩(−∞,y0+`](x0) dx0 =


0 if w ≤ y0 − `

w + ` − y0 if y0 − ` < w ≤ y0
0 if y0 < w

(10)
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Integrating these with respect to the non-negative random variable ` gives

∫
1
F

I dµL =


1
F

[∫ y0−w

−w
(w + `) dµL +

∫ ∞
y0−w

y0 dµL
]

if w ≤ 0
1
F

[∫ y0−w

0 ` dµL +
∫ ∞
y0−w
(y0 − w) dµL

]
if 0 < w ≤ y0

0 if y0 < w.

Also ∫
1
F

II dµL =

{
1
F

[∫ F−w

y0−w
(w + ` − y0) dµL +

∫ ∞
F−w
(F − y0) dµL

]
if w ≤ y0

0 if y0 < w

Thus ∫
f (t, y, `, v) dµL =


1
F

[∫ F−w

−w
(w + `) dµL +

∫ ∞
F−w

F dµL
]

if w ≤ 0
1
F

[∫ F−w

0 ` dµL +
∫ ∞
F−w
(F − w) dµL

]
if 0 < w ≤ y0

0 if y0 < w

(11)

If we integrate with respect to the non-negative random variable V instead we get for ` ≤ y0∫
1
F

I dµV =
1
F

[∫ y−y0+`
t

y−y0
t

(y0 − y + vt) dµV +
∫ y

t

y−y0+`
t

` dµV +
∫ y+`

t

y
t

(y − vt + `) dµV

]
for ` > y0 ∫

1
F

I dµV =
1
F

[∫ y
t

y−y0
t

(y0 − y + vt) dµV +
∫ y+`−y0

t

y
t

y0 dµV +
∫ y+`

t

y+`−y0
t

(y − vt + `) dµV

]
For F ≤ y0 + ` ∫

1
F

II dµV =
1
F

[∫ y−F+`
t

y−y0
t

(F − y0) dµV +
∫ y+`−y0

t

y−F+`
t

(y − vt + ` − y0) dµV

]
and if F > y0 + ` then ∫

1
F

II dµV =
1
F

[∫ y−y0+`
t

y−y0
t

(y − vt + ` − y0) dµV

]
Thus if ` ≤ y0 and F ≤ y0 + `∫

f (t, y, `, v) dµV =
1
F

[∫ y+`
t

y−F+`
t

` dµV +
∫ y−F+`

t

y−y0
t

(F − y + vt) dµV +
∫ y+`

t

y
t

(y − vt) dµV

]
If ` ≤ y0 and F > y0 + ` ∫

f (t, y, `, v) dµV =
1
F

[∫ y+`
t

y−y0
t

` dµV +
∫ y+`

t

y
t

(y − vt) dµV

]
If ` > y0 and F ≤ y0 + ` then if F − ` < 0∫

f (t, y, `, v) dµV =
1
F

[∫ y+`
t

y−F+`
t

(y − vt + `) dµV +
∫ y−F+`

t

y−y0
t

F dµV +
∫ y

t

y−y0
t

(vt − y) dµV

]
or ` > y0 and F ≤ y0 + ` then if F − ` > 0∫

f (t, y, `, v) dµV =
1
F

[∫ y+`
t

y−F+`
t

(y − vt + `) dµV +
∫ y−F+`

t

y−y0
t

F dµV +
∫ y

t

y−y0
t

(vt − y) dµV

]
Finally if ` > y0 and F > y0 + `∫

f (t, y, `, v) dµV =
1
F

[∫ y+`
t

y−y0
t

(y − vt + `) dµV +
∫ y

t

y−y0
t

(vt − y) dµV

]
(12)
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APPENDIX 2
In type 2 and 3 simulations, if we discard the position process, retaining only the velocity process V(t), and if we assume that
velocities are valid for exponentially distributed durations then we have classical examples of time-homogeneous Markov
processes. Additionally for type 3 simulations we will assume that there are only two velocity: 0 and a non-negative speed s.

One way Markov processes are commonly analyzed is using the Chapman-Kolmogorov equation. Let the transition kernel,
K be defined as

K(t, v, Γ) := P(V(t) ∈ Γ | V(0) = v);

then the Chapman-Kolmogorov equation is

K(t + s, v, Γ) =
∫

K(s, y, Γ)K(t, v, dy).

For type 2 simulations K is
K(t, v, Γ) = 1Γ(v) exp(−t/τon) + µV (Γ)(1 − exp(−t/τon)).

For type 3 K is

K(t, v, Γ) =
1

τon + τoff
{1Γ(0)[1{0}(v)(τoff + τong(t)) + τoff1{s}(v)(1 − g(t))]

+1Γ(s)[1{s}(v)(τon + τoffg(t)) + τon1{0}(v)(1 − g(t))]}

where g(t) = exp(− t
τon
− t
τoff
), (see, e.g., (32)). Then K can be simplified to

K(t, v, Γ) = 1Γ(0)

+ (1Γ(s) − 1Γ(0))
[(

1 − exp
(
−

t
τon
−

t
τoff

)) (
τon

τon + τoff
− 1{s}(v)

)
+ 1{s}(v)

]
.
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