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Detection of inter-phylogroup hybrids  23 

To define hybrid genomes (i.e., arising from multiple ancestral populations), the 45 reference 24 

genomes representative of the seven phylogroups Kp1-Kp7 (Table S9) were used as models. First, for 25 

each of the 7,388 other genome sequences, the closest reference genome was determined by 26 

estimating the average nucleotide identity (ANI) using FastANI v1.1 1. Every genome x with ANI 27 

percentage > 99% against its closest reference genome y was then classified without ambiguity into 28 

the same phylogroup as the one of y. Second, for each genome classified into a phylogroup (Kp1-29 

Kp7), all its cgMLST alleles were labelled with this phylogroup. Third, for each of the 629 scgMLSTv2 30 

loci, every distinct allele associated to more than one phylogroup labels was unlabeled, given that 31 

such an allele cannot be considered as a reliable representative of a unique phylogroup (e.g., it was 32 

too conserved, or involved in horizontal transfer between phylogroups). Fourth, for each locus, every 33 

unlabeled sequence identical to one of the remaining labelled alleles (i.e., sequence belonging to a 34 

genome that was not assigned to a phylogroup during step 1) was labelled accordingly. Such a 35 

procedure enabled the characterization of a large set of alleles that are each representative of one of 36 

the seven phylogroups Kp1-Kp7.  37 

As a result, almost all cgMLST profiles were mostly made up by alleles belonging to only one 38 

phylogroup label (see Figure S15). However, notable exceptions were observed, with some cgMLST 39 

profiles being composed of alleles belonging to two phylogroup labels (see e.g., Figure S15). To 40 

define putative hybrid profiles, a phylogroup homogeneity index was determined for each profile, 41 

defined as the proportion of loci labelled with the predominant phylogroup (normalized by the 42 

number of non-missing alleles called in the profile). As expected, for each phylogroup Kp1-Kp7, most 43 

profiles are associated with high phylogroup homogeneity indices (see distributions in Figure S12). 44 

However, a total of 138 cgMLST profiles (1.9%; mainly within Kp1, Kp2 and Kp4) were associated with 45 

atypically smaller homogeneity indices, and mapping of allele phylogroup labels along the 46 

chromosome showed that many of these 138 cgMLST profiles appeared to result from large-scale 47 

inter-phylogroup recombination, while a few were made up by many unlabeled alleles (Figure S1).  48 

Large recombination events were detected in 1.9% (138/7198) genomes and mainly involved 49 

phylogroups Kp1, Kp2 and Kp4; we found 42 Kp4 genomes resulting from large-scale recombination 50 

of Kp1 out of the 50 hybrid Kp4 genomes (Figure S1), while others form a multitude of small-scale 51 

recombination events. Next, 17 Kp1 genomes were observed with a large-scale recombination (12 52 

with a Kp2 insertion, 4 with a Kp4 insertion and 1 with a Kp3 insertion), as well as 3 Kp2 genomes 53 

resulting from a large Kp1 insertion. In addition, 42 profiles of phylogroup Kp3 resulted from 54 

horizontal gene transfer (but not large-scale recombination events) from non-KpSC donors (Table 1; 55 
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Figure S2; Table S8). The recombination breakpoints were non-randomly distributed along the 56 

genomes: most (109/126, 86.5%) were localized in the second half of the genome (3 Mb – 5.2 Mb of 57 

NTUH-K2044 genome coordinates), whereas in the first part (0 – 3 Mb) accounted for only 15 58 

breakpoints.  59 

These 138 genomes presenting hybrid profiles (or with multiple alleles of undefined origins) were 60 

therefore discarded during our initial population structure analyses and classification steps, which 61 

were based on the remaining 7,060 genomes that likely arose from vertical evolution. 62 

Outbreak datasets to estimate variation of shallow-level classification groups  63 

We searched for previously published genomic epidemiology studies. These genomic investigations 64 

of outbreaks (or clusters of cases) together comprised 9 sets of isolates defined as related based on 65 

epidemiologically and genomic evidence (Table S7). Distribution of the cgMLST pairwise distances 66 

among isolates within each outbreak cluster was investigated (Tables S6, S7).  67 

 68 

Minimum Spanning tree-based clustering of cgMLST profiles: building and assessment 69 

A pairwise dissimilarity between two cgMLST profiles can be defined by the proportion of loci with 70 

two distinct alleles among the loci where alleles are defined in both profiles. A pairwise dissimilarity 71 

matrix can be computed from n cgMLST profiles, and can be used to build a minimum spanning tree 72 

(MStree; e.g., Kruskal, 1956; Prim, 1957a; Dijkstra, 1959), allowing to infer a clustering of the cgMLST 73 

profiles, defined by the k different connected components obtained by removing from the MStree all 74 

edges of length larger than a specified threshold t. Such an MStree-based clustering is closely related 75 

to the single-linkage classification of the n cgMLST profiles (e.g., Gower and Ross, 1969; Johnson, 76 

1967). 77 

In order to determine optimal thresholds t, several criteria can be used. Among these criteria, the 78 

average silhouette coefficient St assesses the ability of an MStree-based clustering to consistently 79 

represents in k class(es) the ‘natural' grouping of the cgMLST profiles 7,8. When St is close to 1, the 80 

clustering can be considered as accurate. A confidence interval for St can be also obtained by 81 

considering the distribution of the average silhouette coefficients of different clustering computed 82 

from the distance matrix with ‘noised’ entries. 83 

Further, in order to assess whether an MStree-based clustering Ct (using threshold t) is robust to any 84 

subsampling biases, a simple approach is to build another MStree-based clustering Ct’ from a 85 

subsample of cgMLST profiles, and to measure the agreement between the cgMLST profile partitions 86 
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induced by Ct’ and Ct. When the level of agreement remains high for different subsampling rates, the 87 

corresponding threshold t can be considered as being leading to stable clustering. Among different 88 

agreement metrics between partitions, the second adjusted Wallace coefficient w 9,10 estimates the 89 

probability of observing a pair of profiles in the same class in Ct when they are clustered in the same 90 

class in Ct’. In order to derive a single coefficient Wt from a range of different subsampling rates r (= 91 

10% to 90%), different coefficients w were estimated and averaged for each rate r; the area under 92 

the resulting curve (i.e., rates r on X-axis; coefficient w on Y-axis) was computed and normalized 93 

(using its maximum expected value). Such a normalized area Wt is close to 1 when the different 94 

adjusted Wallace coefficients w (i.e., derived from varying subsampling rates) are all close to their 95 

maximum value, therefore showing that the corresponding MStree-based clustering (based on the 96 

threshold t) is robust to any subsampling biases. A confidence interval for Wt can be also obtained 97 

using the same approach as for St (see above). 98 

The MStree-based clustering of cgMLST profiles, as well as the two consistency and stability indices St 99 

and Wt, respectively, were implemented in the MSTclust tool 100 

(https://gitlab.pasteur.fr/GIPhy/MSTclust). For more details, see 101 

https://gitlab.pasteur.fr/GIPhy/MSTclust/-/blob/0.21b/Technical.Notes.pdf).  102 

https://gitlab.pasteur.fr/GIPhy/MSTclust
https://gitlab.pasteur.fr/GIPhy/MSTclust/-/blob/0.21b/Technical.Notes.pdf
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Nomenclature inheritance algorithm 103 

In order to attribute to each clonal group (CG), an identifier that would maximally reflect the widely 104 

adopted 7-gene ST identifier of the corresponding isolates, we developed a set of naming rules that 105 

prioritize the most abundant ST observed among isolates of each CG, as well as some supplementary 106 

rules in case of ties. This algorithm is summarized below, and its implementation as a Python script is 107 

provided at https://gitlab.pasteur.fr/BEBP/inheritance-algorithm. Figure S15 illustrates the process 108 

for an example. 109 

Here the process for the CG level is described, but the algorithm was also applied to the SL level. 110 

Briefly, the data (e.g., a list of CG-ST pairs) can be formalized as a bipartite graph, in which each CG 111 

and ST are nodes, and each non-empty CG-ST intersection is an edge. The weight of each edge is 112 

equal to the number of isolates sharing the corresponding CG and ST identifiers. Based on this 113 

representation, the algorithm will consist of following all edges in the input graph, in the order of 114 

decreasing weight. The approach prioritizes the most frequent ST/CG pairs of isolates, i.e., those that 115 

are predominant in the dataset and thus naturally transfers to the CG nomenclature, the identifiers 116 

of the highest frequency STs. Rules were implemented to treat the cases of equality of 117 

representation of two or more STs connected to the same CG. Once all edges were removed from 118 

the graph, it may be that some CGs were not named, for example, because the identifier of their 119 

unique corresponding ST was already attributed to another CG. For these orphan CGs, iteratively, the 120 

attributed identifier corresponds to the maximal CG identifier already attributed, plus one (Figure 121 

S15). 122 

Definitions and notations 123 
Let G = (U, V, E) be a weighted bipartite graph where: 124 

 U is a set of clonal groups (CG) inferred from a cgMLST scheme 125 

 V is the set of sequence types (ST) induced by a MLST scheme 126 

 E is the set of edges {u, v} with u ∈  U and v ∈  V   127 

 w({u, v}) is the weight of the edge {u, v}, i.e., the number of isolates inside u ∩ v 128 

Let L(v) be the label associated to node v (i.e., the ST identifier), and L(u) the one to determine for u 129 

(i.e., the CG identifier). 130 

Let dG(v) be the degree of a node v inside the graph G, i.e., the number of edges incident to node v. 131 

Let s(u) := Σv∈V w({u, v}) be the size of u, i.e., the number of strains belonging to the CG u. 132 

Let Γ(G) be the edge-induced subgraph of a graph G defined by the edge(s) of maximal weight in G. 133 

Let ΔG(u) be the set of nodes v that are joined to u inside the graph G and of minimum degree, i.e.,  134 

 ΔG(u) := {v’ ∈  V : {u, v’} ∈  E,  dG(v’) = min{u, v}∈E dG(v)}. 135 

Algorithm 136 

https://gitlab.pasteur.fr/BEBP/inheritance-algorithm
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 137 
(a)  ∘ λ := maxv∈V L(v) 138 
(b)  ∘ while E ≠ ∅ 139 
       do  140 
(c)     ∘ for each connected component G = (U’, V’, E’) of Γ(G) 141 
          do  142 
(d)        ∘ if U’ = {µ 143 
             then 144 
(e)           ∘ ν := argminv’∈V’ L(v’) 145 
             else 146 
(f)           ∘ U’’ := argminu’∈U’ s(u’) 147 
(g)           ∘ if U’’ ≠ {µ} 148 
                then 149 
(h)              ∘ µ := argminu’’∈U’’ L(u’’) 150 
(i)           ∘ ν := argminv’∈ΔG’(µ) L(v’) 151 
(j)        ∘ L(µ) := L(ν) 152 
(k)        ∘ removing µ and ν from G, as well as nodes v such that w({µ, v}) = w({µ, ν}) 153 
(l)  ∘ for each µ ∈ U 154 
       do  155 
(l)     ∘ λ := λ + 1 156 
(m)     ∘ L(µ) := λ  157 
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Impact of strains input order on LIN codes, and use of Prim’s algorithm 158 

By design, the input order of genomes into the cgLINcode nomenclature system influences their 159 

attributed code, as is the case for the original LIN code system 12. We evaluated this impact by 160 

quantifying the variation in the number of partitions at a given threshold, as defined by the number 161 

of distinct prefixes: for each threshold varying from 1% to 99%, a LIN encoding was defined using this 162 

threshold, and the 7,060 high-quality, non-hybrid cgMLST profiles were encoded 500 times with 163 

random input orders. This experiment made it possible to determine (i) the threshold values 164 

associated with a stronger variability in the final number of values; and (ii) the magnitude of this 165 

variability. In the example illustrated in Figure S10, we observed that the number of distinct prefixes 166 

was affected by the order of encoding, especially in the 450 - 530 mismatches range. Note that this 167 

experiment can help to select position thresholds, for example, by favoring those that minimize the 168 

variance of the number of partitions (i.e., are less affected by input order). 169 

We next sought to minimize this problem by defining an optimal input order. The one that answered 170 

our expectations is the input order guided by a Prim's algorithm 3. More precisely, the number of 171 

categories in a given LIN encoding bin is minimal (i.e., identical to the number of groups created by a 172 

single-linkage clustering using the threshold associated to the bin) when the profiles are encoded 173 

following the order induced by the traversal of an MStree. Indeed, when following such an order, 174 

when a new profile is considered for encoding, then its closest profile is already encoded (by 175 

definition of a tree traversal). The optimal order we suggest is therefore verified by noting that the 176 

Prim’s (1957) algorithm to infer a MStree induces such an MStree traversal.  A comparison between 177 

the MLSL approach and the cgLIN codes was performed (cgLIN codes in optimal versus arbitrary 178 

order). We found that the partitioning created by the MLSL approach and that created by the cgLIN 179 

codes according to the optimal order, were identical (Table S1).  180 

We generated 500 random input orders and then generated cgLIN codes with two bins (the first 181 

varies from 1 to 100% with a step of one allelic difference i.e. 100/629, and the second fixed at 182 

100%). Then we counted the number of prefixes, up to the first bin, that were created. We observed 183 

that the 10 identifier bins differ in their sensitivity to input order (Figure S10). The most affected bins 184 

correspond to regions of the pairwise distance distribution with high density; in particular around 185 

485 mismatches, before the mode that corresponds to inter-sublineage distances.  186 

The algorithm below was used to define the input order, without even having to construct an 187 

MStree. Indeed, thanks to a simple traversal of the matrix of dissimilarities between profiles, the 188 

algorithm makes it possible to quickly determine the optimal order for LIN encoding. 189 
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Algorithm 190 
 191 
(a) ∘ Create a set "mstSet" that keeps track of vertices already included in MST 192 
(b) ∘ Assign a key value to all vertices in the input graph. Initialize all key 193 

values as  . Assign key value as   for the first vertex so that it is 194 
picked first. 195 

(c) ∘ while "mstSet" doesn’t include all vertices  196 
      do 197 
(d)   ∘ Pick a vertex u which is not there in "mstSet" and has minimum key value. 198 
(e)   ∘ Include u to "mstSet". 199 
(f)   ∘ Update key value of all adjacent vertices of u. To update the key values, 200 

iterate through all adjacent vertices. For every adjacent vertex v, if 201 
weight of edge u – v is less than the previous key value of v, update 202 
the key value as weight of u – v. 203 

 204 

Note that using key values enables to pick the minimum weight edge from cut. The key values are 205 

used only for vertices which are not yet included in MStree; the key value for these vertices indicate 206 

the minimum weight edges connecting them to the set of vertices included in MStree. The time 207 

complexity required by Prim’s (1957) algorithm is O(E log V) where E is the number of edges and V is 208 

the number of vertices.  209 

  210 
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