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SUMMARY
The contribution of membrane interfacial interactions to recognition of membrane-embedded antigens by an-
tibodies is currently unclear. This report demonstrates the optimization of this type of antibodies via chemical
modification of regions near themembrane but not directly involved in the recognition of the epitope. Using the
HIV-1antibody10E8asamodel, linearandpolycyclic synthetic aromatic compoundsare introducedatselected
sites.Molecular dynamics simulationspredict the favorable interactionsof these synthetic compoundswith the
viral lipidmembrane, where the epitope of theHIV-1 glycoprotein Env is located. Chemicalmodification of 10E8
with aromatic acetamides facilitates the productive and specific recognition of the native antigen, partially
buried in thecrowdedenvironmentof theviralmembrane, resulting inadramatic increaseof itscapacity toblock
viral infection. These observations support the harnessing of interfacial affinity through site-selective chemical
modification to optimize the function of antibodies that target membrane-proximal epitopes.
INTRODUCTION

Chemical modification of proteins is amethod widely used to en-

gineer proteins and to elucidate their function in the cell (Iseneg-

ger and Davis, 2019; Krall et al., 2016; Sakamoto and Hamachi,

2019). In antibodies (Abs), chemical modifications are generally

introduced to link the protein to a second molecule to generate

functionality, such as in Ab-drug conjugates, or to label the pro-

tein for analytical purposes. In addition, site-selective chemical

modification provides a potential route to optimize Ab function

beyond the limits imposed by the collection of natural amino

acids (Isenegger and Davis, 2019; Krall et al., 2016; Sakamoto

and Hamachi, 2019). Here, we sought to improve Ab recognition

of integral membrane antigens by site-specific chemical conju-

gation of synthetic aromatic compounds.
This is an open access article under the CC BY-N
Integralmembraneproteins represent one of the largest fraction

of antibody-based therapeutic targets under clinical evaluation,

including tumor-associated antigens such as the tetraspanin

CD20, ormembers of several receptor families such as the human

epidermal growth factor receptor tyrosine kinase and the tumor

necrosis factor-related apoptosis-inducing ligand receptors (Hen-

drikset al., 2017),diverse familiesof ion-channels (Hutchingset al.,

2019), G-protein-coupled receptors (Hutchings et al., 2017), and

viral glycoproteins from relevant human pathogens, such as the

Ebola virus or the human immunodeficiency virus type-1 (HIV-1)

(Walker and Burton, 2018). Many Abs targeting these integral

membrane-antigens reportedly bind to membrane-proximal re-

gions, i.e., epitopes that are exposedclose to, or lyingon themem-

brane surface (Flyak et al., 2018;Hutchings et al., 2017; Klein et al.,

2013; Lee et al., 2020; Pahuja et al., 2018; Xu et al., 2005).
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The membrane-proximal epitope MPER, existing in the HIV-1

envelope glycoprotein Env, epitomizes this class of antigen

determinant (Huang et al., 2012; Krebs et al., 2019; Pinto et al.,

2019; Rantalainen et al., 2020; Stiegler et al., 2001; Williams

et al., 2017; Zhang et al., 2019). One Ab that binds to this region,

10E8, has been extensively studied both structurally and func-

tionally (Huang et al., 2012; Irimia et al., 2017; Lee et al., 2016;

Rantalainen et al., 2020; Rujas et al., 2016) and thus is a relevant

candidate for rational optimization by protein engineering. Effec-

tive binding of 10E8 to Env translates into viral neutralization,

hence, higher affinity of this Ab for the antigen would result in

greater capacity to block cell infection (Carravilla et al., 2019).

The evidence accumulated so far suggests that engagement of

Env by 10E8 requires not only the recognition of the proper pro-

tein epitope, but also additional contacts to adjust the Ab surface

to the viral membrane interface (Irimia et al., 2016, 2017; Lee

et al., 2016; Rantalainen et al., 2020; Rujas et al., 2016). Recent

studies reported by us and others have demonstrated that the

neutralization potency of this Ab can be improved �10-fold by

mutating residues located at the contact interface with the viral

membrane (Kwon et al., 2018; Rujas et al., 2018). Furthermore,

super-resolution microscopy studies of intact virions have re-

vealed that the affinity of these mutated antibodies for native

Env increased (Carravilla et al., 2019). In other words, optimal ac-

commodation of the viral membrane onto the Ab surface is a crit-

ical aspect for efficient viral neutralization.

Here, we have examined the hypothesis that 10E8-like Abs

can be rationally optimized by grafting synthetic aromatic com-

pounds at sites that, while remote from the epitope-binding

site, may facilitate its interaction with the viral membrane. The

antibody was specifically modified with iodoacetamide deriva-

tives at specific places predicted to improve the interaction of

10E8 with the viral membrane. As a result, the biological function

of the modified antibody increased dramatically using various

benchmark methodologies and biological assays. Following

the same strategy, mutants of 10E8 of reduced efficacy and a

less potent Ab arising from a different lineage were also modified

achieving much greater potency. Collectively, our data provide a

proof-of-principle to support site-selective conjugation with aro-

matic compounds as a rational approach to improve Ab recogni-

tion of epitopes that are located at membrane interfaces.

RESULTS

Strategy to Optimize Antibody 10E8 by Chemical
Modification with Aromatic Compounds
Our rational approach seeks the promotion of interfacial affinity of

the surface of the anti-HIV Ab 10E8 that comes into contact with

the viral membrane during epitope recognition (Figures 1A and

S1A). The specific positions selected for modification were the

surface-exposed residue H.W100b at HCDR3, and a residue

distant from the epitope binding pocket, L.S65, as structure-

based analyses suggested that these residues insert to some de-

gree into themembrane interface uponbinding to the epitope (Fig-

ure 1A). To carry out the chemicalmodification, 10E8 Fabwas first

engineered to contain a single Cys residue at each position

(L.S65C and H.W100bCmutants). Interaction of the selected res-

idueswith themembrane upon binding to the epitope was probed
2 Cell Reports 32, 108037, August 18, 2020
by conjugation of the introducedCys residueswith the fluorescent

polarity-sensitive probe 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD)

(FigureS1B). TheNBDfluorescence emissionof these two labeled

mutants increased significantly in the presence of proteolipo-

somes, in contrast to the absence of change of signal when the

Fab was modified at a site distant from the membrane.

We next sought to optimize 10E8 interactions with the viral

membrane through chemical modification with aromatic com-

pounds, because this class of chemical groups has a tendency

to engage the interfacial region of the lipid bilayer (McDonald

and Fleming, 2016; White et al., 2001; White and Wimley,

1999; Wimley and White, 1996; Yau et al., 1998). We selected

two different classes of synthetic aromatic compounds for anti-

body modification (Figure 1B). First, a series of molecules con-

taining phenyl moieties linked via flexible spacers of increasing

length were obtained. These linear-flexible compounds, desig-

nated as Lin1, Lin2, and Lin3, were expected to differentially

contribute to the peripheral membrane interaction depending

on their length. Second, polycyclic aromatic compounds, similar

in size (naphthyl group, Fus2) or bulkier (pyrenyl group, Fus4)

than that of the indole group of Trp, were also obtained. These

bulk-rigid molecules were predicted to accommodate at the wa-

ter-membrane interface and not within the disordered acyl re-

gions (Hoff et al., 2005; Loura et al., 2013). Furthermore, their

quadrupole moments augment with the number of fused rings,

presumably benefiting their interaction with the complex envi-

ronment of the membrane interface (McDonald and Fleming,

2016; Yau et al., 1998). All these compounds were obtained as

the iodoacetamide derivative for readily modification of a Cys

introduced by site-directed mutagenesis.

The Ab subject to chemical modification, 10E8, binds to its

epitope embedded in the HIV membrane. Thus, MD simulations

in bilayers made of a virus-like (VL) lipid mixture (Huarte et al.,

2016) (see STAR Methods) were carried out to confirm that the

synthetic aromatic moieties interact with the highly packed viral

membrane (Figures 1C, S2, and S3; Table S1). MD simulations

in bilayers made of the lipid POPC were employed as reference

(Figure S3; Table S1). The MD simulations showed a tendency

of the selected compounds for partitioning from an aqueous envi-

ronment into the viral membrane interface and revealed a distinc-

tive distribution according to their molecular shape and rigidity.

Chemical modification of the Fabwith these compounds at the

selected positions was obtained by treating the Fab portion of

the antibody with iodoacetamide synthetic derivatives. Conjuga-

tion was verified for the most hydrophobic and bulkier com-

pounds of each series (i.e., Lin3 and Fus4) bymass spectrometry

(Figure S4A). These modifications did not appreciably diminish

the thermostability, the secondary structure composition of the

antibody, or their ability to recognize the epitope peptide in

ELISA (Figures S4B and S4C; Table S2).

Aromatic Grafting Enhances 10E8 Anti-Viral Potency
We next performed a functional screening using Fabs chemically

modified with the aromatic compounds against two HIV-1 pseu-

doviruses (PsVs) bearing Env JRCSF (Tier-2) or PVO.4 (Tier-3),

which display different degrees of sensitivity to the Ab 10E8 (Fig-

ure 2). Some of the compounds induced a dramatic increase in

potency, as determined by the abrupt reduction of doses



Figure 1. Chemical Modification of Fab 10E8 at Selected Residues within the Membrane-Proximal Area

(A) Structure-guided selection of residues within the Fab surface that accommodates the viral membrane upon engagement with the epitope. The positions of the

L.S65 and H.W100b residues selected for substitution with Cys are indicated (see also Figure S1).

(B) Basic properties and structural formulae of the synthetic aromatic compounds Lin1, Lin2, Lin3, Fus2, and Fus4 selected for the chemical modification of the

antibody.

(C) Molecular dynamics simulations of the aromatic moieties composing Lin1, Lin2, Lin3, Fus2, and Fus4 in virus-like lipid bilayers: Left: snapshots taken at

500 ns. Center: positions of the center ofmass of themolecules along the z axis over time (representative examples of single molecules are shown); the position of

the phosphate groups is followed by the black thick line. Right: mass density profiles of lipids and compounds in the VL lipid bilayer.

See also Figures S2 and S3 and Table S1.
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required to block virus entry into cells (IC50 values) with respect

to the wild-type (WT) Fab.

The modification with the linear compounds Lin1, Lin2, and

Lin3 at position L.S65C significantly increased the potency of

10E8 (Figure 2A, left, black traces in dose-response curves).

The modifications with the longest compounds Lin2 or Lin3
weremore effective (ca. 20- to 30-foldmore potent thanWT anti-

body) whereas Lin1 did not induce significantly greater inhibition

than the unmodified antibody. When the antibody was modified

with the polycyclic compounds Fus2 and Fus4, widely different

observations were made (Figure 2A, left, red traces in dose-

response curves). Whereas modification with Fus2 led to small
Cell Reports 32, 108037, August 18, 2020 3
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Figure 2. Effect of Site-Specific Chemical Modification with Aromatics on the Anti-Viral Activity of Fab 10E8

(A) Cell-entry inhibition assays against JRCSF (Tier-2) and PVO.4 (Tier-3) PsVs comparing unmodified WT Fab with Fabs modified with the synthetic aromatic

compounds. The top panels depict the position of the modifications with Lin3 or Fus4 (see also Figure S4). PL denotes the position of a phospholipid molecule

added to mark the level of the membrane interface. In the dose-response curves below, the dotted blue lines follow the activity of theWT Ab. Modifications of the

linear and fused series are shown in black and red solid lines, respectively. Empty circles, triangles, and squares correspond to Lin1, Lin2, and Lin3, respectively.

Data for Fus2, Fus4, and Trp are shown with red-filled circles, triangles, and squares, respectively, and correspond to mean values (±SD) from two replicate wells

in a representative experiment.

(B) Increases in potency over theWT Ab (mean IC50 fold decrease ± SD), as determined from cell-entry inhibition data, are shown as a function of the position and

the compound used for chemical modification. IC50 values were interpolated from dose-response curves obtained from three independent experiments as those

shown in (A).
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improvements with respect to WT antibody and comparable to

introducing a Trp at that position, the inhibitory potency of

10E8 modified with Fus4 resulted in a dramatic potentiation

(>80- to 100-fold), far beyond our initial expectations. These re-

sults indicate that synthetic compounds linked to the Fab sur-

face that accommodates the membrane enhance the functional

performance of 10E8, beyond the level attainable by mutation

with the natural amino acid Trp.

Chemical modifications at H.W100bC of the HCDR3 had a

lower effect more complex to analyze (Figure 2A, right). The

modification with the shortest and longest linear compounds,

Lin1 and Lin3, decreased the potency of the antibody, whereas
4 Cell Reports 32, 108037, August 18, 2020
the modification with Lin2, of intermediate length, enhanced the

potency of the Fab, but only to a small degree. The increase in

potency achieved by modification with Fus4 of residue

H.W100b is much less marked than that observed at the

L.S65 position, although still significant (ca. 5-fold), specially

taking into account the proximity of this residue to the key re-

gion recognizing the epitope peptide and its environment,

and the fact that the substituted Trp residue is itself a large ar-

omatic residue. The modification of the same position with

Fus2 mostly recapitulated the activity of the WT Fab, under-

scoring the idea that the nature of the compound is relevant

for the level of Ab optimization.



Figure 3. Block of Primary CD4+ T Cell Infection by Chemically Modified Fab 10E8

(A) Levels of intracellular HIV-1 p24, determined by flow cytometry, in CD4+ T cells isolated from donor 1 and donor 2 three days after infection with HIV-1 BaL.

Infections were done in the absence or in presence of WT, L.S65C-Fus4, or L.S65C-Lin3 versions of 10E8 Fab.

(B) Means and SD values of experiments (n = 3 replicates) conducted with cells from 3 donors.
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These results are summarized in Figure 2B. Our approach

identified aromatic compounds Lin2, Lin3, and Fus4 as robust

enhancers of 10E8 anti-viral activity, when placed at a region

that remains proximal to the viral membrane in the Fab-epitope

complex. Moreover, we found that the chemical modification

of this area with Fus4 led to an extremely potent Ab 10E8. The

smaller and heterogeneous effect of the modification at the tip

of HCDR3 compared to that at the membrane-proximal area is

consistent with a greater sensitivity of the Ab when being modi-

fied in the epitope recognition loop (Rujas et al., 2016).

Chemical Modification with Aromatic Compounds
Enhances Suppression of Primary Virus Infection
We next corroborated the functional improvement generated by

the chemical modification with aromatic compounds in an exper-

imental setting relevant for the natural infection process (Figure 3).

To that end,wemeasured the antiviral effect ofWT and chemically

modified Fabs in viral infection assays by using primary host cells

and the infectious CCR5-tropic HIV-1 BaL strain. Primary CD4+
T cells isolated from donors have heterogeneous susceptibility to

HIV-1 infection and are less permissive to Env-mediated cell entry

than TZM-bl cells overexpressing viral receptor CD4 and co-re-

ceptor CCR5 (Wei et al., 2002), thus providing a culture system

more relevant for the natural process of HIV-induced cell infection.

CD4+ T cells were isolated from fresh peripheral blood mono-

nuclear cells (PBMCs) from different donors, activated during

3 days with phytohemagglutinin-L and IL2, and challenged

with a fixed infectious dose of R5 HIV-1 (BaL) (Sáez-Cirión

et al., 2010; Valle-Casuso et al., 2019) in the presence or

absence of the Fabs. As expected, CD4+ T cells from different

donors displayed different levels of susceptibility to HIV infec-

tion, as inferred from intracellular HIV-1 Gag levels at day 3 after

infection (Figure 3A). 10E8 Fabs conjugated with the compounds

Lin3 and Fus4 exhibited more potent antiviral activity than the

WT Fab, independently of the level of infection achieved on the

CD4+ T cells in the absence of Fabs (Figure 3B). As in the cell-en-

try inhibition assays, modification with compound Fus4 ap-

peared to have a more marked effect than Lin3.
Cell Reports 32, 108037, August 18, 2020 5
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Mechanistic Insights and Specificity of the Potentiation
Effect
To gain insights into the specificity and mechanism underlying

the increase in Ab potency after site-selective chemical modifi-

cation, we next explored the effects of the most potent com-

pound Fus4 in a variety of experimental conditions (Figures 4

and S5). First, to rule out potential site-dependent interactions

not mediated by membrane, we determined the effects of Fus4

placed at different positions on the 10E8 surface that accommo-

dates the viral membrane. The selected positions L.S30, L.N52,

and L.S65 were all distant from the MPER epitope (alpha-car-

bons at 14, 18, and 22 Å from the epitope, respectively) (Figures

4A and S5A). As a control for no-interaction with the membrane,

we also tested the effect of Fus4 linked to the C-terminal residue

H.C216, which is predicted to remain exposed to the aqueous

solution upon engagement with the MPER epitope. These posi-

tions weremodifiedwith the Fus4 one by one and the activities of

the resulting chemically modified variants compared in cell-entry

inhibition assays (Figure 4B). As expected from the absence of

membrane insertion, modification with Fus4 at residue H.C216

had no effect on the activity of the Ab. For the rest of the

positions, L.S30, L.N52, and L.S65, the observed functional im-

provements were comparable to each other, suggesting that a

particular location of the chemical modification at the mem-

brane-accommodating area is not important to improve the

anti-viral function of 10E8.

Chemical conjugation with Fus4 was also efficient in the

context of a paratope that has been altered by classical site-

directed mutagenesis to reduce the activity of 10E8 (Figure 4C).

The mutation H.W100bG removes the side chain of the Trp res-

idue at the tip of theHCDR3, producing a substantial reduction of

the antiviral activity of 10E8 (Carravilla et al., 2019; Rujas et al.,

2016). Thus, we performed cell-entry assays to establish

whether adding Fus4 at a distant site through chemical conjuga-

tion could rescue functionally the mutation at the tip of the

HCDR3 loop. As shown in Figure 4C, Fus4 linked at L.S65C po-

sition also increased the activity of the deficient H.W100bG

mutant.

We also investigated the effect of attaching Fus4 to Abs

already engineered to increase their potency (Figure S5). The ef-

fect of the chemical modification is not additive, because the

incorporation of a second molecule of Fus4 within the mem-

brane-proximal Ab region did not result in greater neutralization

potency (Figures S5A and S5B). However, the attachment of

Fus4 to an electrostatically optimized 10E8 Fab resulted in a

certain degree of potentiation of the antiviral activity (Figures

S5C–S5E). The 3R 10E8 mutant combines substitutions S30R,

N52R, and S67R at the surface where the antibody accommo-

dates the viral membrane. These mutations were rationally de-

signed to enhance the electrostatic interactions between the

Fab and the membrane (Carravilla et al., 2019; Rujas et al.,

2018). Notably, the combination of this triple mutation with the

Fus4-based chemical modification, rescued completely the

loss of activity of the poorly active variant bearing the

H.W100bG mutation at the epitope-binding site.

Together, these observations highlight a significant flexibility

to introduce chemical modifications at various positions of the

membrane-proximal region of 10E8, but they also highlight the
6 Cell Reports 32, 108037, August 18, 2020
difficulty to attain additive effects by combining modifications

at multiple sites. Notably, they also suggest that chemical modi-

fication can functionally complement a deleterious mutation

introduced at the distant epitope-binding site.

Assuming that membrane compositions of different HIV-1 iso-

lates are comparable, we next tested whether the potentiation

effect observed for L.S65C-Fus4 10E8 could be extended to a

wide range of Env antigens (Table 1; Figure S6). To that end, anti-

viral activity of 10E8 L.S65C-Fus4 was evaluated against a PsV

panel of eight HIV-1 isolates used previously as an indicator of

cross-clade neutralization breadth (Simek et al., 2009). A

decrease in IC50 was observed with all tested isolates when

comparing the chemically modified 10E8 variant L.S65C-Fus4

to 10E8-WT, ranging between 10- and 700-fold with a mean

value of >200-fold (Table 1). In addition, to make sure that this

remarkable potency enhancement was due to improved recog-

nition of the specific target HIV-1 Env, and not to some off-target,

unspecific effects, we also tested the antiviral activities of the

Fabs 10E8 WT and S65C-Fus4 against HIV-2 and SIV used as

negative controls (Table 1; Figure S6). We did not detect any

neutralization against the negative controls in these assays,

thereby confirming the specific activity of the chemically modi-

fied Fab. In conjunction, these results provide support that

chemical modification with compound Fus4 confers Ab 10E8

higher, but specific, antiviral efficacy against a broad collection

of HIV-1 Env isolates.

Aromatic Grafting Stimulates Binding to the Integral
Membrane Antigen
To gain further insights into the molecular basis explaining the

antiviral potentiation of 10E8, we next determined the effects of

chemical modification with Fus4 on the antigen-binding function

of the Ab (Figure 5). We employed quantitative super-resolution

fluorescence stimulated emission depletion (STED) microscopy

aspreviously reported (Carravilla et al., 2019), to establishwhether

grafting Fus4 affects the binding of the antibody to native Env in

intact virions (Figures 5A and 5B). STED microscopy provides

mechanistic information at two levels (Carravilla et al., 2019). First,

by detecting the fluorescent foci over the virion surface, one can

determine the number of Env clusters recognized by the Abs.

Thus, this technique has the potential to monitor off-target Ab in-

teractions that might occur with membrane areas devoid of anti-

gen. And second, emission intensity analyses on the virion images

allow the quantitative comparison of affinities toward the integral

membrane-antigen of modified versus unmodified Abs. Due to

the linear nature of STED, the number of photons emitted is pro-

portional to the number of fluorescent molecules.

Figure 5A displays micrographs of individual eGFP-labeled

viral particles incubated with Fab 10E8 WT or chemically modi-

fied Fab 10E8 L.S65C-Fus4 (top panels). Binding to Env on the

viral particles was visualized using a secondary dye-labeled

Ab. In this setting, the Ab/Env complexes were visualized in

the super-resolved STEDmicroscopy mode (magenta), whereas

the eGFP signal was recorded in conventional confocal mode to

identify the individual viral particles (green). Analysis of the punc-

tate pattern revealed the number of antibodies/Env foci per virus,

whose distribution was similar for Abs WT and L.S65C-Fus4,

demonstrating similar engagementwith clusteredEnv (Figure 5A,



Figure 4. Effects of Fus4 Conjugated at Different Membrane-Proximal Sites

(A) Lateral views displaying the positions of the residues chemically modifiedwith Fus4 (residues depicted in red) and the bound epitope-peptide (helix depicted in

orange). Distances to the Ca-s of modified Fab residues were calculated from that of Lys683 at the bound helical epitope. The bottom panel displays the position

of H.216C used as negative control for Fab-membrane interaction.

(B) Comparison of the antiviral activities of 10E8 Fabs modified with Fus4 at the different membrane-proximal positions indicated in the previous panels. The left

and right panels correspond to the entry inhibition assay using JRCSF and PVO.4 strains, respectively. Solid black and red lines (and symbols) correspond to

unmodified and chemically modified antibody, respectively. Otherwise, same conditions as in Figure 2A.

(C) Effects of L.S65C-Fus4 modification on the Ab carrying the deleterious H.W100G mutation (see also Figure S5). Symbols and lines are defined as in (B).
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lower panels). In the absence of Env (Env(�) particles), the modi-

fied antibody did not engage with the viral membrane as evi-

denced by the lack of antibody signal (Figure 5A, middle panels).

Analysis of the signal intensity in every individual virion revealed

an increased binding to Env for L.S65C-Fus4 compared to the

WT Ab. In contrast, the signal on the Env(�) particles was undis-

tinguishable from the background signal (Figure 5B).
The absence of Ab signal in particles devoid of Env reveals an

important mechanistic aspect (i.e., that the chemical modifica-

tion does not promote spontaneous partitioning of the Ab into

the bare viral membrane). This conclusion was further supported

by experiments employing VL model vesicles, which confirmed

that Fus4 can spontaneously insert into membranes in the free

form, but not appreciably as part of the Fab-Fus4 conjugate
Cell Reports 32, 108037, August 18, 2020 7



Table 1. Fus4 Conjugation-Induced 10E8 Neutralization

Improvement against a Variety of HIV Isolates

Clade Tier

10E8 IC50 (mg/mL)

WT

L.S65C-

Fus4

Fold

Enhancement

92UG103 A 2 0.37 0.015 25

92BR020 B 2 0.19 0.0046 41

IAVI C22 C 2 0.14 0.0002 708

92RW020 A 2 0.98 0.048 20

92TRH021 AE 2 0.016 0.00006 286

16055 C 2 0.22 0.0011 207

BG505 A 2 2.1 0.27 7.7

ADA-CM B 2 0.15 0.0046 33

JRFL B 2 0.015 0.000099 151

HIV-2 HIV-2 2 >5 >5

SIVmac239 SIV 2 >5 >5

IC50 values were interpolated from dose-response curves (see also

Figure S6).
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(Figure S7). Thus, even if Fus4 was by itself capable to partition

into VL membranes, both in simulations and in an experimental

set-up, the small modification of the Fab (<1% of its total

mass) does not confer the capacity for spontaneous insertion

into the viral membrane to the Ab-Fus4 conjugate.

Even though 10E8 is generally assumed not to be polyreactive

in comparison with other MPER-targeting Abs (Huang et al.,

2012), and despite the subtle effect exerted by the modification

on membrane partitioning in vitro, the possibility of Fab 10E8

L.S65C-Fus4 interacting nonspecifically with more complex

cell structures could not be excluded. Thus, we also tested the

polyreactivity and cytotoxicity upon incubation of the chemically

modified Fab with cells (Figures 5C and 5D). In the polyreactivity

assay, a dim fluorescence signal above background was

observed in the HEp-2 cells incubated with the Fab 10E8

L.S65C-Fus4, suggesting that the chemical modification results

in low-level, non-specific Ab binding (Figure 5C). In contrast, the

incubation with the chemically modified Fab appeared not to

exert toxic effects on the TZM-bl host cells (Figure 5D).

Collectively, the results displayed in Figure 5 suggest that

Fus4 effects on 10E8 function mostly operate during or after

the specific recognition of the Env epitope by the paratope.

These data also caution on the possible off-target effects when

dealing with complex biological matrices (see Discussion

below).

Successful Modification of a Second Antibody
To prove the effectiveness of functional optimization with Fus4 in

the context of a paratope arranged differently, we next examined

the effects induced by grafting this compound in an Ab arising

from a different lineage. Although less potent, the HIV antibody

4E10 also embodies a surface that accommodates the viral

membrane in Fab-epitope complexes, which in this case is

composed by heavy-chain residues (Irimia et al., 2016; Rujas

et al., 2017). A chemicallymodified version of 4E10was prepared

following an analogous approach to that of antibody 10E8 (Fig-

ure 6A; Table S2). In parallel, we studied the effect of chemical
8 Cell Reports 32, 108037, August 18, 2020
modification with Fus4 on a deletion mutant in which the

HCDR3 apex was ablated (termed DLoop, Figure 6B) (Rujas

et al., 2015). This mutant is characterized by the complete

absence of neutralizing activity and lack of binding ability to

the native, integral membrane antigen Env (Carravilla et al.,

2019).

Despite the different docking angle of 4E10 to the helical

epitope-peptide, and the different Fab chain that composes

the membrane-proximal area with respect to 10E8, modification

with Fus4 also enhanced the antiviral potency of 4E10 to a great

extent (Figure 6C). Remarkably, introducing a single chemical

modification with Fus4 (also at H.S28) was sufficient to fully

rescue the inhibitory potency of the inactive DLoop mutant to

levels comparable to those of WT (Figure 6C).

We investigated if antibody optimization with Fus4 was also

correlated with an increased binding of 4E10 to native Env by us-

ing STEDmicroscopy (Figures 6D and 6E). Similarly to the results

presented in Figure 5A for themodification of 10E8, STEDmicro-

scopy data for 4E10 displayed individual puncta of antibody-Env

complexes (Figure 6D), whose intensity analysis confirmed that

the functional improvement induced by site-specific modifica-

tion with Fus4 correlated with an increase in binding to native

Env on virions (Figure 6E). Furthermore, the functionally restored,

chemically modifiedDLoop variant, showed levels of Env binding

comparable to those measured for the WT 4E10 (Figures 6D and

6E). Here again, signal on the Env(�) particles was only back-

ground-like.

DISCUSSION

Approaches to Ab optimization are generally based on (and

limited by) modifications with function-enhancing natural amino

acid residues. In this work, we sought to optimize the function of

Abs that target integral membrane antigens with site-selective

chemical modification, using rationally designed synthetic mole-

cules (Krall et al., 2016), thus unconstrained by the restrictions

when only using natural amino acid residues. The Ab subject

for modification, 10E8, contains a surface to accommodate the

viral membrane in the formation of the Ab-antigen complex (Iri-

mia et al., 2017; Kwon et al., 2018; Lee et al., 2016; Rantalainen

et al., 2020; Rujas et al., 2016, 2018). To improve affinity and anti-

viral function of the Ab, we attached at selected sites of this sur-

face aromatic compounds, which were selected and designed

on the basis of their capacity for partitioning from water into

membranes and the preferential interactions that they stablish

with the different regions of the lipid bilayer (White et al., 2001;

White and Wimley, 1999; Wimley and White, 1996).

MD simulations demonstrated that the selected compounds

partition from the aqueous solution into lipid bilayers that

emulate the rigid viral membrane, where they distribute accord-

ing to their properties. Rigid polycyclic aromatic compounds

Fus2 and Fus4 adopted a shallow location oriented parallel to

the bilayer normal, whereas linear compounds Lin1, Lin2, and

Lin3 distributed homogeneously across the bilayer with no-pref-

erential orientation. We successfully showed that chemical

modification with the two different classes of synthetic com-

pounds, at rationally designated sites, increased significantly

the potency of the Ab 10E8.



Figure 5. Binding Specificity of Chemically

Modified Fab

(A) Binding to the integral membrane Env antigen by

STEDmicroscopy. Top: representative images of the

binding of antibodies (KK114, STED modus,

magenta) in the presence of Env JR-CSF or Env(�)

HIV-1 virions (Vpr.GFP, confocal modus, green).

Scale bars, 100 nm. Bottom: distribution of the

number of antibody foci detected per individual Env

JR-CSF virions.

(B) Emission intensity of WT and 10E8 L.S65C-Fus4

antibodies measured on individual Env JR-CSF

(black) and Env(�) (blue) HIV-1 virions as determined

from the STED microscopy images (from left to right,

n = 282, 629, 369, and 315). The intensity was

normalized to that of 10E8 WT after background

signal subtraction. Points represent normalized

photon counts obtained for single virions. Circles

represent median photon counts of each indepen-

dent experiment, which were used for hypothesis

testing. Two sample t tests were performed for

values obtained in five independent experiments

using two independent virus preparations. Results

are additionally shown in boxplots (center line, me-

dian; box, interquartile range [IQR]; whiskers, SD).

(C) Fus4 effect on polyreactivity (see also Figure S7).

Panels correspond to an immunofluorescence

staining experiment using Fab 10E8 WT and chemi-

cally modified 10E8 L.S65C-Fus4 against HEp-2

cells.

(D) Absence of toxicity induced by chemically

modified Fab on TZM-bl host cells. The CytoTox 96,

non-radioactive cytotoxicity assay (Promega) was

carried out following the instructions of the manu-

facturer. The cytolytic toxin fragaceatoxin C was

used as positive control. Mean values (±SD) from

three replicates are shown.
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Functional screenings and evaluation of the effects on the bio-

logical activity of the Ab provided information relevant for under-

standing the possible mechanisms underlying the effectiveness

of the procedure. Chemical modification with the bulkiest and

rigid molecule Fus4 generated an extremely potent 10E8 Ab.

The modification involves the addition, at a single position, of a

synthetic molecule %300 Da. The extent of the resulting modifi-

cation is very small in comparison to the size of the antibody, and

yet the effect on Ab function was remarkable (more than two

orders of magnitude in standard neutralization assays). We hy-

pothesize that the comparatively higher efficacy of this com-

poundmight be originated from the combination of its hydropho-

bicity and orientation at the water-membrane interface, which

could contribute to stabilize the docking of the Ab to the helical

epitope with a favorable geometry. This favorable arrangement

might correspond to one of the conformational states visited

by the pre-fusion Env glycoprotein (Carravilla et al., 2019; Munro

et al., 2014). In this regard, it is tempting to speculate that binding

of the chemically optimized Fab would induce more favorably an

initial tilting of Env relative to the membrane surface, and/or sub-
sequently stabilize the trimer in a position

lifted off the membrane (Rantalainen et al.,

2020). Alternatively and/or complementary,

the favorable membrane partition charac-
teristics could facilitate the transient residence of the Ab at the

membrane interface promoting the recognition of the epitope.

The applicability of this procedure was further demonstrated

with a second Ab, 4E10, which wasmodified by analogous strat-

egy and principles. Notably, the efficacy of this approach is such

that it did not only improve the potency of the WT antibody by

chemical modification with Fus4, but also rescued a completely

inactive variant (termed DLoop) to WT-like neutralization levels.

In view of these evidences, we conclude that promoting favor-

able interactions with the membrane interface through chemical

modification with synthetic aromatic compounds could be a

more general procedure for potentiating the molecular recogni-

tion of membrane-proximal epitopes.

This class of epitopes has been found in relevant therapeutic

targets, including other viral glycoproteins, tumor-associated

antigens, ion-channels, and G protein-coupled receptors. The

optimization strategy described herein could be employed to

analyze the structure-function relationships of integral mem-

brane antigens and the Ab adaptations conducive to their molec-

ular recognition at membrane surfaces. A potential drawback of
Cell Reports 32, 108037, August 18, 2020 9
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this methodology employing compounds with a greater ten-

dency to partition in membranes is the increase of unspecific

binding of the antibody to membranes, which could possibly

compromise binding specificity in living tissues, and, therefore,

its straightforward clinical use. We surmise that in those cases,

additional protein and/or chemical engineering cycles seeking

to promote functional efficacy, while driving down putative off-

target effects, may be necessary.

In summary, chemical modification dramatically improves the

performance of anti-HIV-1 antibodies potentially providing a tool

to inform vaccine and immunotherapeutic Ab design. Moreover,

we believe site-selective chemical modification using aromatic

compounds may be employed to optimize not only Abs acting

at or near biological membranes but other types of Abs and

even other classes of proteins and peptides of various functions

and therapeutic profiles.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Donkey anti-Human IgG Abberior STAR

RED

Abberior STRED-1054; RRID: Not defined

Goat anti-Human IgG, AP Invitrogen 31312; RRID: AB_228274

Anti-Human IgG (Fab specific) Sigma I5260; RRID:AB_260206

Mouse anti-goat IgG-HRP Santa Cruz Biotechnology sc-2354; RRID:AB_628490

CD3-eFluor450 eBiosciences Cat#48-0036-42 (SK7);

RRID:AB_11217677

CD4-alexaFluor700 eBioscience Cat#56-0048-82 (OKT-4);

RRID:AB_657741

Anti-HIV-1 Core Antigen Antibody-FITC Beckman Coulter Cat#6604665 (KC57); RRID:AB_1575987

Bacterial and Virus Strains

E. coli T7Shuffle New England Biolabs C3026J

HIV-1 Bal strain (R5) NIH AIDS reagent program Cat#510

Biological Samples

Blood samples from non-infected donors Etablissement Français du sang https://dondesang.efs.sante.fr/

Chemicals, Peptides, and Recombinant Proteins

2-Iodo-N-phenylacetamide (Lin1) Ark Pharm AK148507

2-Iodo-N-(pyren-1-yl) acetamide (Fus4) Life Technologies P29

gp41 MPER peptide ProteoGenix N/A

1-palmitoyl-2-oleoylphosphatidylcholine

(POPC)

Avanti Polar Lipids 42773

1-palmitoyl-2-

oleoylphosphatidylethanolamine (POPE)

Avanti Polar Lipids 01991

1-palmitoyl-2-oleoylphosphatidylserine

(POPS)

Avanti Polar Lipids 840034C

N-palmitoylsphingomyelin (SM) Avanti Polar Lipids 85615

Cholesterol (Chol) Avanti Polar Lipids C8667

DNase I PanReac AppliChem A3778,0010

EDTA-free protease inhibitor mixture Roche 11873580001

IANBD Amide (N,N’-Dimethyl-N-

(Iodoacetyl)-N’-(7-Nitrobenz-2-Oxa-1,3-

Diazol-4-yl)Ethylenediamine)

Thermo Scientific D2004

MEM Non-essential Amino Acid Solution Thermo Scientific 11140050

Sodium Pyrubate Thermo Scientific 11360070

Opti-MEM I Reduced-Serum Medium Thermo Scientific 11058021

KOD-Plus mutagenesis kit Toyobo SMK-101

Bright-Glo luciferase reagent Promega E2610

PEI, MW 25 kDa Polysciences 23966-1

DMEM Growth Medium Life Technologies 10313-039

Fetal Bovine Serum Life Technologies 10437-028

NuPAGE 3-8% Tris-acetate Gels Life Technologies EA03755BOX

Tris-glycine Native Sample Buffer Life Technologies LC2673

Coomassie Brilliant Blue G250 Sigma 27815

n-Dodecyl-beta-Maltoside (DDM) Pierce 89903

(Continued on next page)

e1 Cell Reports 32, 108037, August 18, 2020

https://dondesang.efs.sante.fr/


Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

ECL Plus Western Blotting Substrate Pierce 32132

Sinapinic acid [4-Hydroxy-3,5-

dimethoxycinnamic acid] MALDI matrix

Alfa Aesar A15676

Trifluoroacetic acid Thermo scientific 28904

Water, Optima LC/MS grade Fischer chemical W6-1

Acetonitrile, Optima LC/MS grade Fischer chemical A955-212

Protein Calibration Standard 1 mixture Bruker Daltonics 206355

Poly-L-lysine solution Sigma-Aldrich P8920

Bovine Serum Albumin (fatty acid free) Sigma-Aldrich A7030

RPMI 1640 GlutaMAX GIBCO Cat#61870-010

PBS1x without calcium and magnesium Thermo Fisher Cat#12037539

Fetal Calf Serum Eurobio Cat#CVFSVF00-01

PenStrep GIBCO Cat#15140-122

Lymphocyte Separation Medium (LSM) Eurobio Cat#CMSMSL01-01

Human IL-2 IS premium grade Miltenyi Cat#130-097-748

Phytohemagglutinin-L PHA-L Roche Cat#11249738001

Fixation/PermeabilizationSolution Kit

(Cytofix/Cytoperm)

BD Biosciences Cat#554714

4% paraformaldehyde Thermo Fisher Cat#J61899

Critical Commercial Assays

LIVE/DEADTM Violet Viability dye Thermo Fisher Cat#L34955

Kallestad HEp-2 Complete Kits BioRad 32583

EasySep Human CD4 positive selection kit

II

Stem Cell Technology Cat#17852

HIV-1 p24 enzyme-linked immunosorbent

assay

XpressBio Cat#XB-1000

Experimental Models: Cell Lines

Human: HEK293T Cells ATCC CRL-3216

Human: TZM-bl Cells NIH AIDS Reagent Program 8129

Recombinant DNA

pCOLADuet-1 expression plasmid Sigma-Aldrich 71406

10E8 Fab pCOLADuet-1 wild-type and

mutants

This paper N/A

4E10 Fab pCOLADuet-1 wild-type and

mutants

This paper N/A

pWXLP-GFP Patricia Villacé, CSIC N/A

pCMV8.91 Patricia Villacé, CSIC N/A

PVO, clone 4 (SVPB11) Expression plasmid NIH AIDS Reagent Program 11022

JRCSF Expression plasmid Jamie Scott, SFU N/A

pSG3DEnv NIH AIDS Reagent Program 11051

ADA.CM Expression plasmid Leaman et al., 2013 N/A

92RW020.5 Expression plasmid NIH AIDS Reagent Program 3097

94UG103 Expression plasmid D. Burton, Scripps; Simek et al., 2009 N/A

92BR020 Expression plasmid NIH AIDS Reagent Program 1780

92TH021 Expression plasmid D. Burton, Scripps; Simek et al., 2009 N/A

IAVI C22 Expression plasmid D. Burton, Scripps; Simek et al., 2009 N/A

BG505 Expression plasmid NIH AIDS Reagent Program 11518

JRFL Expression plasmid Zwick et al., 2003 N/A

SIVmac239 Expression plasmid J. Binley, SDBRI; Crooks et al., 2008 N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

HIV-2 7312A Expression plasmid Zhang et al., 2019 N/A

pEGFP.Vpr NIH AIDS Reagent Program 11386

Software and Algorithms

Image Lab Bio-Rad N/A

Prism GraphPad N/A

flexControl 3.0 Bruker Daltonics N/A

flexAnalysis 3.0 Bruker Daltonics N/A

NAMD2.12 Phillips et al., 2005 N/A

Pymol Molecular Graphics System Schrödinger N/A

CHARMM GUI Jo et al., 2008 http://www.charmm-gui.org/

STED analysis program Galiani et al., 2016 https://doi.org/10.5281/zenodo.1465920.

OriginPro 2019b (9.6.5.169) OriginLab Corporation N/A

biorender biorender.com https://biorender.com/

Other

ZipTip� C4 micro-columns Millipore ZTC04S096

Ground Steel massive 384 MALDI target

plate

Bruker Daltonics 8074115

Nickel-nitrilotriacetic acid (Ni-NTA) affinity

column

GE-Healthcare 10431065

MonoS ion exchange chromatography (IEC)

column

GE-Healthcare 17516801
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Jose

Nieva (joseluis.nieva@ehu.es)

Materials Availability
All unique/stable reagents generated in this study are available from the Lead Contact with a completed Materials Transfer

Agreement

Data and Code Availability
This study did not generate any unique datasets or code.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

T cell donors: Blood samples from were obtained from the French blood bank (Etablissement Français du Sang) as part of a collab-

oration agreement with the Institut Pasteur (C CPSL UNT, number 18/EFS/041). Anonymous, non-HIV-infected donors showed stan-

dard values of susceptibility to infection.

Escherichia coli T7-shuffle strain was grown in Luria Broth medium following the specifications of the supplier.

HEK293T and TZM-bl cells were cultured in DMEM (Dulbecco’s Modified Eagle Medium), supplemented with 1 mM sodium py-

ruvate, 1 mM MEM Non-Essential Amino Acids Solution and 10% FBS, in a humidified incubator at +37�C, supplied with 5% CO2.

METHOD DETAILS

Chemical compound synthesis
Compounds Lin1 and Fus4 were commercially available, whereas Compounds Lin2, Lin3, and Fus2 were produced by synthesis (re-

action schemes and individual details of the synthetic procedure are indicated in Methods S1). Reagents and solvents were obtained

from commercial suppliers and usedwithout further purification, unless otherwise stated. Reactions were carried out under a positive

atmosphere of nitrogen, unless otherwise stated. Reactions weremonitored by thin layer chromatography (TLC) carried out onMerck

TLC Silica gel 60 F254, using shortwave UV light as the visualizing agent and phosphomolybdic acid in EtOH and heat as developing
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agent. Flash column chromatography was performed using Kanto Chemical Silica gel 60 N (spherical, 40-50 mm). 1H NMR spectra

were recorded on Varian Unity Plus 400MHz spectrometer or Bruker Avance III HD 500MHz spectrometer and were calibrated using

residual undeuterated solvent as the internal references (CDCl3: 7.26 ppm; MeOH-d4: 3.31 ppm, acetone-d6: 2.05 ppm; DMSO-d6:

2.50 ppm). The following abbreviations were used to explain NMR peak multiplicities: s = singlet, d = doublet, t = triplet, q = quartet,

p = pentet, m = multiplet, br = broad. Low-resolution and high-resolution mass spectra were recorded on Bruker micrOTOF focus II

mass spectrometer using electrospray ionization time-of-flight (ESI-TOF) reflectron experiments.

Molecular Dynamics simulations in lipid bilayers
The preferred interactions and distributions of a series of the phenyl-based linear compounds (Lin1, Lin2, Lin3) and polycyclic

aromatic compounds (Fus2 and Fus4) were studied in two model membranes: 1) a virus-like (VL) membrane made of 14% 1-palmi-

toyl-2-oleoylphosphatidylcholine (POPC), 16% 1-palmitoyl-2-oleoylphosphatidylethanolamine (POPE), 7% 1-palmitoyl-2-oleoyl-

phosphatidylserine (POPS), 17%N-palmitoyl sphingomyelin (PSM) and 46%cholesterol (Chol) (VL-3 surrogate of the viral membrane

described in Huarte et al. [2016]); and 2) a neutral POPC bilayer that was used as standard reference (Wimley and White, 1996). Bi-

layers were built using CHARMM-GUI web with a surface area of 100 3 100 Å2 (Jo et al., 2008). The lipid bilayers were solvated to

produce a simulations box of 1003 1003 100 Å3 composed of�54,300 atoms for the POPC system and�94,000 for the VL bilayer.

25 compound molecules were introduced randomly in the water layers of the two systems. The system was neutralized with Sodium

Chloride and a concentration of the 0.15 mM was set up. The systems were run at a temperature of 298 K. A summary of the sim-

ulations with the produce time is shown in Table S1.

The software NAMD2.12 was employed to perform the molecular dynamics simulations (Phillips et al., 2005). The CHARMM36

force field was used to model the lipids and compound molecules (Klauda et al., 2010). Standard CHARMM parameters were

used for ions (MacKerell et al., 1998), and the TIP3P model for water (Jorgensen et al., 1983). Pressure was maintained at 1 atm

by a Langevin piston (Feller et al., 1995), with a damping time constant of 50 ps and a period of 100 ps. A semi-isotropic pressure

coupling method was used in all the simulations. For the NAMD calculations, the pressure of the piston acted independently in

each dimension, but maintained a constant ratio in the x,y axis, corresponding to the plane of the membrane. The temperature

was maintained constant by coupling the system to a Langevin thermostat, with a damping coefficient of 5 ps-1. The particle

mesh Ewald (PME) algorithm was used for the evaluation of electrostatic interactions beyond 12 Å, with a PME grid spacing of

1 Å, and NAMD defaults for spline and k values (Darden et al., 1993).

Both electrostatics and van der Waals forces were smoothly switched off between the switching distance of 10 Å and the cut-off

distance of 12 Å, using the default switching function in NAMD. A Verlet neighbor list with pair-list distance of 16 Å was used to

evaluate non-bonded neighboring forces within the pair-list distance (Verlet, 1967). The multi-time step algorithm Verlet-I/r-RESPA

(Tuckerman et al., 1992; Verlet, 1967) was used to integrate the equations of motion. The timestep was set to 2 fs. The systems were

subject to 10,000 steps of energy minimization.

Production and site-selective chemical modification of Fabs
Antibody Fab sequences were cloned in the plasmid pColaDuet and expressed in Escherichia coli T7-shuffle strain. Recombinant

expression was induced at 18�C overnight with 0.4 mM isopropyl-D-thiogalactopyranoside when the culture reached an optical den-

sity of 0.8. Cells were harvested and centrifuged at 8,000 3 g, after which they were resuspended in a buffer containing 50 mM

HEPES (pH 7.5), 500 mMNaCl, 35 mM imidazole, DNase (Sigma-Aldrich, St. Louis, MO) and an EDTA-free protease inhibitor mixture

(Roche, Madrid, Spain). Cell lysis was performed using an Avestin Emulsiflex C5 homogenizer. Cell debris was removed by centri-

fugation, and the supernatant loaded onto a nickel-nitrilotriacetic acid (Ni-NTA) affinity column (GE Healthcare). Elution was per-

formed with 500 mM imidazole, and the fractions containing the His-tagged proteins were pooled, concentrated, and dialyzed

against 50mMsodiumphosphate (pH 8.0), 300mMNaCl, 1mMDTT, and 0.3mMEDTA in the presence of purified protease Tobacco

etch virus (Kawai et al., 2011). Fabs were separated from the cleaved peptides containing the His6 tag by an additional step in a Ni-

nitrilotriacetic column. The flow-through fraction containing the antibody was dialyzed overnight at 4�C against sodium acetate (pH

5.6) supplemented with 10% glycerol and subsequently loaded onto a MonoS ion exchange chromatography (IEC) column (GE

Healthcare). Elution was carried out with a gradient of potassium chloride and the fractions containing the purified Fab concentrated

and dialyzed against a buffer containing 10 mM sodium phosphate (pH 7.5), 150 mM NaCl, and 10% glycerol.

Site-selective fluorescence labeling and chemical conjugation was carried out as previously described (Carravilla et al., 2019;

Heuck et al., 2000; Shepard et al., 1998). In brief, a cysteine-substituted Fab derivative was first generated by site-directed mutagen-

esis using the KOD-Plus mutagenesis kit (Toyobo, Osaka, Japan). Mutant Fabs bearing Cys residues at defined positions were sub-

sequently modified with sulfhydryl-specific iodoacetamide derivatives of the polarity-sensitive probe NBD (Figure 1A) or the aromatic

compounds listed in Figure 1A. Conjugation wasmonitored by emission of fluorescence (NBD), and bymatrix-assisted laser desorp-

tion/ionization (MALDI) mass spectrometry (Figure S3).

Fluorescence emission spectra
Fluorescence-emission spectra were obtained by fixing the excitation wavelength at 470 nm. An emission spectrum of a sample lack-

ing the fluorophore was subtracted from the spectrum of the equivalent sample containing the fluorophore. Fluorescence spectra of
Cell Reports 32, 108037, August 18, 2020 e4
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NBD were obtained upon incubation of NBD-labeled Fab (0.5 mM) with liposomes (total lipid concentration 250 mM) that contained

1.7 mM of the epitope peptide KKKNWFDITNWLWYIKLFIMIVGGLVKK.

Mass spectrometry
Prior to the measurement, all Fab preparations were desalted using ZipTip� C4 micro-columns (Millipore) (2 mL sample) with 0.5 mL

SA buffer (sinapinic acid, 10 mg/ml in [70:30] Acetonitrile:Trifluoroacetic acid 0.1%), and arrayed onto a Ground Steel massive 384

target plate (Bruker Daltonics). Mass determinations were performed in a matrix-assisted laser desorption/ionization (MALDI), tan-

dem time-of-flight (TOF/TOF) spectrometer Autoflex III (Bruker Daltonics). Mass calibration was performed externally with a Protein

Calibration Standard 1 mixture (Bruker Daltonics) in the same mass range as the samples. Data acquisition, peak peaking and sub-

sequent spectra analysis were performed using flexAnalysis 3.0 software (Bruker Daltonics).

Functional screening
Functional screening for the most effective chemical conjugates was carried out in pseudovirus (PsV)-based cell-entry assays

(Bobardt et al., 2008). HIV-1 PsVs were produced by transfection of human kidney HEK293T cells with the full-length Env clone

JRCSF (kindly provided by Jamie K. Scott and Naveed Gulzar, Simon Fraser University, BC, Canada) and the PVO.4 molecular clone

(obtained from the AIDS Research and Reference Reagent Program (ARRRP)). Cells were co-transfected with vectors pWXLP-GFP

and pCMV8.91, encoding a green fluorescent protein and an Env-deficient HIV-1 genome, respectively (provided by Patricia Villace,

CSIC, Madrid, Spain). After 24 h, the medium was replaced with Optimem-Glutamax II (Invitrogen Ltd, Paisley, UK) without serum.

Two days after transfection, the PsV particles were harvested, passed through 0.45 mm pore sterile filters (Millex� HV, Millipore NV,

Brussels, Belgium) and finally concentrated by ultracentrifugation in a sucrose gradient. HIV entry was determined using

CD4+CXCR4+CCR5+ TZM-bl target cells (ARRRP, contributed by J. Kappes). To that end, HIV PsVs were first diluted to 10%–

20% tissue culture infectious doses in DMEM supplemented with inactive serum, and added to the modified andWT Fabs. Infection

levels after 72 hours were inferred from the number of GFP-positive cells as determined by flow cytometry using a BD FACSCalibur

Flow Cytometer (Becton Dickinson Immunocytometry Systems, Mountain View, CA).

Binding to integral membrane Env by super-resolution fluorescence stimulated emission depletion (STED)
microscopy
Purified virus particles were adhered to poly-L-lysine (Sigma) coated glass coverslips for 15 min. Coverslips were blocked using 2%

fatty acid free bovine serum albumin (BSA) (Sigma)/PBS for 15 min. Fabs (25 ng/mL) were incubated for 1 h in blocking buffer and

revealed upon incubation with anti-human Abberior STAR RED (KK114) conjugated Ab. Immuno-stained particles were washed

and mounted in PBS, followed by STED analysis. All steps were carried out at RT.

Imaging was performed on a STEDmicroscope based on a modified Abberior Instrument RESOLFT QUAD-P super-resolution mi-

croscope (Abberior Instruments GmbH). The fluorescence excitation and collection were performed using a 100 3 /1.40 NA UPlan-

SApo oil immersion objective (Olympus Industrial, Southend-on-Sea, UK). The fluorescence signal was descanned, passed through

an adjustable pinhole (Thorlabs Limited, Ely, UK) and detected by a single photon counting avalanche photo diode (SPCM-AQRH-13,

Excelitas Techologies) with appropriate fluorescence filters (AHF Analysentechnik). All acquisition operations were controlled by Im-

spector software (Abberior Instruments). Resolution was typically around 40 nm. Emitted photons were recorded line by line in STED

microscopy mode, and Vpr.eGFP was next imaged in confocal mode to determine the location of HIV-1 virions.

Image analysis was performed using Python scripting language and custom written functions, based on a previously developed

program (Carravilla et al., 2019; Galiani et al., 2016). Individual viral particles were identified from the Vpr.eGFP channel using an in-

tensity maximum finding algorithm on a Gaussian smoothed image (s = 2.0). Detection of maxima was kept consistent throughout

using a noise tolerance parameter of 10. A circular region (diameter, 20 pixels; 400 nm) was then superimposed on each detected

location, and all of the regions were saved for subsequent analysis. For every detected region, a random location was also generated

to sample areas where Vpr.eGFP staining and thus HIV-1 virions were not likely to be present. This was achieved by randomly trans-

lating each of the detected regions to a different point within a 90-pixel radius of the original location but constrained so as not to pick

an existing region, which might contain another fragment of Vpr.eGFP fluorescence. This method was effective at finding random

regions that were close to virions but not overlapping and so ensured accurate comparisons between virion-containing and non-

virion regions. These randomly perturbed regions were saved and their intensity subtracted from the intensity in virion (eGFP positive)

regions.

Viral infection of primary CD4+ T cells
CD4+ T cells were purified (> 90%) from freshly isolated PBMCs by positive selection with antibody-coated magnetic beads (Easy-

Sep Human CD4 Positive Selection Kit Ref.17852) using a RoboSep instrument (Stemcell Technology). Cells were cultured in RPMI

1640 containing GlutaMAX, 10% FCS, penicillin (10 UI/ml) and streptomycin (10 mg/ml) in the presence of IL-2 (Miltenyi) at 200 IU/ml

and stimulated for three dayswith 4 mg/ml of PHA-L (Roche, Ref. 11249738001). CD4+ T cells werewashed and seeded in triplicate in

96-U-well plate (100ml/well at 106/ml). WT or chemically-modified Fabs were added at different concentrations (dilutions of 10 to 10,

range from 10 to 0.1 mg/ml) to the cultures, which were then exposed to HIV-1 BAL strain (R5) (10 ng p24/ml). After spinoculation at

1200 x g, 1 hour, the cells were incubated at 37�C, 5% CO2 for 72 h in presence of IL2. HIV infection levels of CD4+ T cells were
e5 Cell Reports 32, 108037, August 18, 2020
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monitored by intracellular p24 staining as previously described (Sáez-Cirión et al., 2010). Cells were stained for viability (AquaFluo,

Invitrogen #L32957) and surface expression of CD3 (clone UCHT1, eFluor 450, eBiosciences, #480003642) and CD4 (clone OKT4,

Alexa Fluor 700, Invitrogen,#56-0048-82). Cells were then fixed and permeabilized (BD Cytofix/Cytoperm) and stained for intracel-

lular p24 (p24-FITC (clone KC57, Coulter). Cells were analyzed with a LSR II instrument (BD Bioscience) and the data processed with

Kaluza Analysis software (v2.1, Beckman Coulter).

Standard assays for neutralization breadth
To evaluate the effects of chemical modification on the Ab capacity to neutralize a broad spectrum of HIV variants, a panel of PsVs

was employed based on a previous study (Simek et al., 2009). Here, HIV-1 PsVs, were generated by co-transfection of 293T cells with

Env plasmid DNA and the HIV-1 backbone plasmid pSG3DEnv (Wei et al., 2003), as previously described (Leaman et al., 2010). Env

proteins and their sources were as follows: JRFL was from the NIH ARRRP; 92RW020, 94UG103, 92BR020, 92TH021, IAVI C22 and

BG505 were from D. Burton (Scripps) and 16055 was from R. Wyatt (Scripps), and SIVmac239 was from J. Binley (SDBRI). HIV-2

7312A envwas subcloned from the 7312Amolecular clone plasmid (Gao et al., 1994) into pSVIIIexE7pA� using KpnI-XhoI restriction

sites as previously described (Zwick et al., 2001). Most genes encoding Env were contained in the plasmid pSVIII; ADA-CM, by

exception was contained in pcDNA. Neutralization was determined using a single-cycle infectivity assay with CD4+CXCR4+CCR5+

TZM-bl cells as target cells. Antibodies were added to virus in cell culture media (DMEM supplemented with 10% FBS, 2mM L-gluta-

mine, 100 U/mL penicillin, and 100 mg/mL streptomycin) and incubated for 1h at 37�C prior to addition to target cells. Following a 72 h

incubation at 37�C, cells were lysed, Bright-Glo luciferase reagent (Promega) was added, and luminescence in relative light units

(RLUs) was measured using a Synergy H1 plate reader (BioTek).

QUANTIFICATION AND STATISTICAL ANALYSIS

STED images were analyzed and quantified using Python script language and custom written functions as detailed in the methods

section. Statistical analysis was performed using OriginPro 2019. Two sample t tests were performed for values obtained in five in-

dependent experiments using two independent virus preparations.
Cell Reports 32, 108037, August 18, 2020 e6
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