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Evaluating the Stability of Spatial Keypoints via
Cluster Core Correspondence Index

Suvadip Mukherjee, Member, IEEE, Thibault Lagache and Jean-Christophe Olivo-Marin, Fellow, IEEE

Abstract—Detection and analysis of informative keypoints is
a fundamental problem in image analysis and computer vision.
Keypoint detectors are omnipresent in visual automation tasks,
and recent years have witnessed a significant surge in the number
of such techniques. Evaluating the quality of keypoint detectors
remains a challenging task owing to the inherent ambiguity over
what constitutes a good keypoint. In this context, we introduce a
reference based keypoint quality index which is based on the the-
ory of spatial pattern analysis. Unlike traditional correspondence-
based quality evaluation which counts the number of feature
matches within a specified neighborhood, we present a rigorous
mathematical framework to compute the statistical correspon-
dence of the detections inside a set of salient zones (cluster
cores) defined by the spatial distribution of a reference set of
keypoints. We leverage the versatility of the level sets to handle
hypersurfaces of arbitrary geometry, and develop a mathematical
framework to estimate the model parameters analytically to
reflect the robustness of a feature detection algorithm. Extensive
experimental studies involving several keypoint detectors tested
under different imaging scenarios demonstrate efficacy of our
method to evaluate keypoint quality for generic applications in
computer vision and image analysis.

Index Terms—spatial analysis, keypoint detection, density es-
timation, level set.

I. INTRODUCTION

COMPUTER vision based automation tasks such as image
retrieval, object tracking, homography estimation and

scene reconstruction often build on efficient detection and
representation of local image features [1]. A fundamental
prerequisite in many such applications is therefore the reduc-
tion of high-dimensional digital signal into a parsimonious
set of distinguishable and informative local measurements or
keypoints. This paper discusses a fundamental problem of
evaluating keypoint quality using a quantitative measure based
on the theory of spatial pattern analysis.

Efficient encoding of the underlying image semantics re-
quire the extracted keypoints to be distinguishable and suf-
ficiently invariant to perturbations [2]. Typical applications
involving keypoint detectors include homography estimation
between scenes [3] via interest point matching [4], robust
tracking of objects in digital video [5]–[7] and feature based
image retrieval [8] from digital databases. In addition to such
traditional computer vision tasks, efficient estimation of local
keypoints is necessary for applications involving unstructured
data such as 3D point clouds [9], [10]. Typically, a keypoint
detection system needs to address two critical subproblems.
First, a detector is used to localize feature points of interest
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which are then associated with a local descriptor to encapsulate
key information either using supervision or via unsupervised
feature modeling. [7], [11]–[14]. Naturally, efficacy of the
system relies heavily on the quality of the extracted keypoints.
This enforces a strict criteria to ensure robustness of keypoint
detectors for such diverse and multi-domain applications,
therefore motivating an objective and methodical assessment
of their quality.

Quantitative assessment is critical for systematic technology
evaluation [15] because it presents an unbiased methodolog-
ical approach to measure the efficacy of a solution. For
example, denoising techniques in image analysis are com-
monly evaluated via the structural similarity metric [16],
while segmentation accuracy can be quantified using the Dice
coefficient or the Jaccard similarity index [17]. However, there
exists few techniques to quantitatively analyze the perfor-
mance of a keypoint detection system. Objective evaluation
of keypoint detectors is considered a hard problem, because
keypoint localizations routinely correspond to abstract and
complex semantics (such as blobs, corners) which are not
reliably identified by the human visual system. Therefore, in
the absence of gold-standard manual annotations, the generic
strategy is to evaluate keypoints’ robustness via a stability
index [4]. The fundamental question here is “how do we
define a mathematically meaningful notion of stability for
keypoint detectors?” Intuitively, stability is a measure of
robustness, and robust detectors produce keypoints which are
largely immune to imaging artifacts and perturbations such
as noise, image contrast and geometric distortions [3], [12].
Common evaluation metrics define stability as a measure of
correspondence between a reference set of keypoints (derived
from an image under normal conditions) versus a perturbed
set of detections which are either obtained when the image is
subject to various modes of imaging artifacts (such as additive
noise, illumination changes, etc.) or related by homography
[3], [4]. For robust detectors, a strong measure of association
is expected between these two sets of spatial data, while a lack
of association implies instability.

The main objective of this research is to develop a reference-
based mathematical index of stability for generic keypoint
detectors, independent of the application. We address a par-
ticular drawback of traditional correspondence based measures
which typically count the number of matched keypoints within
a predefined local neighborhood. Such counting based ap-
proaches [4], [18] do not reflect stability in the true sense,
since positive correspondence may be observed even when
the keypoints are randomly distributed. This over-estimation is
particularly pronounced for dense keypoint localizations, and



has been termed as ’quantity bias’ in [19].We define a notion of
statistical correspondence of the perturbed keypoints to a set of
salient zones (namely cluster cores) derived from the reference
distribution in an unsupervised, null hypothesis framework.
The proposed Cluster Core Correspondence Index or C3I is
designed to eliminate bias accumulating through false positive
correspondences due to randomness in keypoint localizations.
Based on the theory of spatial data analysis [20], C3I quantifies
detector stability as a function of significant accumulation
of keypoints to the cluster cores which is statistically above
the expected value when the keypoint distribution follows a
homogeneous Poisson process (null hypothesis) [21]. Com-
pared to the probabilistic methods for quantifying keypoint
deviation [22], [23], we find that C3I is both robust to small
imperceptible changes in feature localizations, while being
sensitive to more global changes. Another feature of this
methodology is that the proposed is computed analytically
without resorting to computationally demanding Monte-Carlo
techniques for parameter estimation.

C3I is fundamentally a robust alternative to traditional
measures of keypoint stability. Therefore, it would serve as
a generic tool to diagnose, and quantitatively evaluate the
quality of any keypoint detector, irrespective of the specific
downstream application. To the best of our knowledge, this
is the first work to present an objective keypoint evaluation
methodology based on the principle of statistical analysis of
the spatial detections. In the next section common challenges
in quantifying keypoint stability are discussed, followed by a
brief review of relevant research techniques. Technical details
of the proposed work are detailed in section III. We also
observe positive correlation between keypoint stability via C3I
and the end-product quality, which supports our hypothesis
that stable keypoints are essential for robust automation tasks.
Furthermore, C3I could also be viewed as a statistical affinity
measure between spatial point sets which could potentially be
useful for applications beyond keypoint stability measurement.
A few such relevant examples, along with elaborate experi-
mental analyses are furnished in section IV.

II. BACKGROUND AND MOTIVATION

High level semantic concepts such as image features and
keypoints are difficult to formalize in an application inde-
pendent fashion. Keypoints are often informally defined as
“local, invariant geometric structures in images such as blobs
or corners” [1], although this could vary depending on the
specific application espcially when keypoints are defined in
the context of unstructured data [9], [10]. Such keypoints are
typically extracted either via efficient geometrical modeling of
the image manifold [12], [13], [27], [28], or by supervised
machine learning techniques [14], [29]–[31]. To ensure a
robust end product, Thacker et al. [15] advocate a set of
best practices for performance evaluation of computer vi-
sion systems. The authors emphasize on rigorous quantitative
validation of the techniques under different conditions such
as changing illumination, noise levels and imaging artifacts.
Mokhtarian and Mohanna [32] define a keypoint consistency
index that penalizes change in absolute number of keypoint
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Fig. 1: Three hypothetical keypoint detection results are presented which
depict increasing levels of instability from (a)-(c). For each image, the
reference set of points P are shown in black, and the gray points correspond
to perturbed detections Q. The cluster core contours are shown as the black
dotted contour. An ideal detector is presented in (a) where the perturbed
points are completely embedded within the cluster cores. The detector in (b)
performs slightly worse than the one in (a) since a few localizations are outside
the cluster cores. Finally, (c) illustrates an unstable system, where keypoints
localizations are random.

detections, along with an accuracy measure. However, this
evaluation is restricted only to corner detectors because it is
impossible to reach a consensus on precise keypoint locations
by human judges for generic feature detectors. Traditional
reference based evaluation methods determine the level of
association between two sets of spatial keypoints P = {p} and
Q = {q}, p,q ∈ R2. The set P is typically considered to be
the reference, which correspond to the keypoint detector’s re-
sponse to an unperturbed imaging system. The perturbed point
set Q represents the detector’s response to external artifacts
such as noise, illumination change, rotation etc. Therefore, for
an ideal system it is expected that P ≈ Q, where set similarity
is measured according to some spatial deviation index. The
pioneering works of Schmid et al. [33] and Mikolajczyk
et al. [4], and the corner detector performance measure in
[18] propose a measure of local correspondence between
spatial datasets which are related by known homography. In
addition to such techniques, other probabilistic measures of
correspondence have also been developed which are based on
spatial analysis of the keypoint distributions [23], [34]. In the
following subsection, we present an overview of some relevant
reference based keypoint stability evaluators.

A. Local correspondence based keypoint stability analysis

In this category of evaluation methods, the stability index
between P = {p} and Q = {q} is proportional to the
total number of one-to-one correspondences between the two
sets. A prominent work to evaluate keypoint detectors is
due to Schmid et al. [33] which identifies the fraction of
keypoints which are repeated in the common regions of two
images. To account for the uncertainty in detection, the authors
propose a stability index ρs to detect correspondence in a
local r-neighborhood (where r is a user-defined local distance
parameter) in the following manner:

ρs(r) = |L(r)|/min{|P |, |Q|} (1)

where, L(r) = {(p,q) :
∣∣∣∣p− q

∣∣∣∣ ≤ r}
Despite its popularity, finding such local correspondence is
complicated by dense accumulation of the keypoints, and
makes this index sensitive to the neighborhood size. Another
overlap-based stability criteria is used in [18] which is con-
ceptually similar to the Mander’s overlap coefficient [35]. This



is written as ρm(r) = |Pr ∩ Qr|/min{|Pr|, |Qr|}, where
Pr = {∪pr} where pr = {x ∈ R2 : ||x − p||2 ≤ r}
and Qr is also defined similarly. Again, the parameter r is
difficult to estimate, although there have been a few rule-of-
thumb proposals [4]. Lack of precision in parameter selection
impacts the evaluation of the detection system. For example,
significantly small value of r would result in elevated false
negatives and would impact specificity, while the number
of false positives increases if r is too large. Other feature
matching criteria such as the nearest-neighbor approach used
in [36] also rely on ad-hoc threshold parameters which are
not easy to estimate. Also, the aforementioned measures do
not take into account the potential stochasticity of detector
algorithms, and such robustness measures are biased due to
the false positive correspondence of the perturbed keypoints.

B. Keypoint stability via spatial density analysis

In contrast to local keypoint correspondence analysis, a
few works have adopted a framework to identify the change
in detections by comparing the probability density functions
derived from the spatial positions. Zhang et al. [37] and
Jaremo et al. [23] propose to distinguish between two spatial
point clouds by measuring the Kullback–Leibler divergence
between the probability density estimates of the samples.
Similar density based techniques have been used in [22], [38],
[39]. Formally, let PP (x, y) and PQ(x, y) be two probability
density functions corresponding to the sets P and Q, which
have been computed via parametric or non-parametric prob-
ability density estimation [40]. The Kullback–Leibler (KL)
divergence based stability index of the set Q from P is defined
as:

ρKL =

∫
PP (x, y) log

(PP (x, y)

PQ (x, y)

)
dxdy (2)

We would analyze the properties of this index in more details
later, but we mention that for clustered detections, this index
is capable of identifying the changes in keypoint distribution.
However, for more homogeneous point distribution, the index
in eq. (2) is less sensitive to local spatial deviation of the
samples.

In a related topic, Bostanci et al. [34] propose a no-
reference keypoint quality measure by analyzing the spatial
coverage of the feature detections. In particular, the first order
spatial statistic due to Ripley [20] is used to determine cluster
properties of the point distributions. Feature coverage is an
essential attribute for a keypoint detector [39], but this criteria
cannot be considered as the sole metric for performance
evaluation as it does not account for the stability to local
variations or sensitivity to more global changes. Therefore,
such no-reference metrics are typically used in conjunction
with other reference based stability measures for an accurate
representation of the efficacy of the keypoint detection system.

C. Motivation and outline of the proposed method

From the preceding discussions it becomes clear that the
prevalent methods are either too local, or scale poorly to
more global spatial variations. Another criticism of the cor-
respondence seeking methodologies is that such techniques

merely count the number of feature matches, and would report
false associations (for randomly distributed target points) by
disregarding their spatial distribution. Statistical analysis of
such spatial point-sets is indeed essential for robust stability
measurement. Stable detectors are largely unaffected by imag-
ing artifacts and spatial sets (P and Q) of stable keypoints are
expected to be strongly correlated. In contrast, spatial indepen-
dence between the point-sets implies no statistically significant
association, which is a strong indicator of instability. A close
analogy is that of a binary classifier which randomly cate-
gorizes target data with probability 0.5. As the prior on the
point-set distribution is unknown, complete spatial randomness
(CSR) of the perturbed keypoints (realized via homogeneous
Poisson process [21]) provides a suitable null hypothesis to
test the degree and significance of association between the
point-sets. Under this null hypothesis, association of perturbed
keypoints to the reference data is statistically insignificant– an
attribute of detector instability where imaging artifacts lead to
unreliable and stochastically distributed keypoints.

Our proposed solution encapsulates these concepts in a two
stage pipeline. First, a set of salient zones or cluster cores
are computed based on the probability density function of
the reference point cloud. This is defined in section III-B.
Next we develop the mathematical framework to statistically
estimate the degree of spatial correspondence of the perturbed
keypoints to the cluster cores (see Fig. 1 for illustration) in
section III-C, and subsequently define C3I as a measure of
keypoint stability in section III-D. The technical details of our
method are presented next.

III. METHOD

The first step of our algorithm is to define a set of salient
zones on the image domain Ω ⊂ R2, based on the spatial
distribution of the reference set of keypoints S0 = {ζ0

i ∈
Ω}, i ∈ [1, n1]. Intuitively, the cluster cores define a set of
closed subregions which encapsulate the local clusters of the
points in S0, and they represent salient regions in the image
with high local concentration of keypoints. Eventually, we
are interested in finding the degree of correspondences of the
perturbed keypoints in S = {ζj ∈ Ω}, j ∈ [1, n2] to these
cluster cores.

A simple strategy is to define the cluster cores as the union
of local neighborhood regions ∪ni=1br(ζ

0
i ), where br(ζ

0
i ) is

a r-neighborhood around each ζ0
i ∈ S0. The drawback of

this approach is that the parameter r is difficult to choose
in practice. We present a method which is inspired by the
dynamic clustering technique by Yip et al. [41]. A multi-scale
methodology using deformable models is used to detect and
represent the cluster core regions as the zero level set of an
embedding function. This implicit representation using level
sets [17] enables us to define the keypoint correspondence
statistic for closed regions with arbitrary geometry. The math-
ematical details of our technique are presented in the following
subsection.

A. Cluster core computation via level sets

Let us define a smooth, non-negative, and isotropic (2D)
kernel function K(z) = e−z

2

, z ∈ R2. For the reference set
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Fig. 2: FAST corner keypoints [45] on the house image are shown in red dots
in (a). The kernel density estimates of the keypoints at different resolutions
(s=1, 4, and 8) are shown in (b)-(d). The scale space density image via eq. 4
is shown in (e). The computed cluster core contours are displayed in white
color in (f).

S0 = {ζ0
i }, the probability density function is computed for

every pixel x ∈ Ω as follows:

fh(x) =
1

n1h2

n1∑
i=1

K

(
x− ζ0

i

h

)
(3)

The kernel bandwidth h determines the smoothness of the
estimated density function. Optimal choice of the bandwidth
parameter is a challenging problem in pattern recognition. A
popular method is due to Scott [40] who proposed a parameter
selection strategy based on the effective number of points
and the dimension of the data. Unfortunately, this has a
tendency to estimate over-regularized solutions especially for
multimodal distributions. Inspired by the scale-space medial
axis detection technique in [42], we propose a multiscale
approach to enhance the cluster core regions. If h̄ is the
bandwidth parameter estimated by Scott’s technique, we define
a scale-space as Θ = {hs}, where hs = h̄/s and s is
a positive integer. The corresponding density estimates at
different scales are represented as {fhs

}ps=1 where fhs
is

computed by substituting h = hs in eq. (3). Based on the
multi-scale response, the optimal scale space kernel density
estimate (KDE) response image is computed as follows:

f(x) =
1

|Θ|
∑
s∈Θ

fhs(x) (4)

The multi-scale KDE image via eq. (4) is used to compute the
cluster core contours using geometric active contours [43] by
solving the following partial differential equation:

∂φ

∂t
= div

((
1

1 + |∇f |

) ∇φ
|∇φ|

)
|∇φ| (5)

Here, φ : Ω 7→ R is a Lipschitz function which assumes
positive values inside its zero level contour, and negative out-
side. The initial condition of eq. (5) is defined by segmenting
f(x) using Otsu’s technique [44]. The geodesic active contour
framework defined in eq. (5) evolves the curves to produce
smooth contours which are attracted to the high gradient
regions of f(x). Cluster cores are represented implicitly as
the zero level set of the function φ. Fig. 2 illustrates the

computation of the multiscale kernel density image. Fig. 2(b)-
(d) show the density estimate obtained at coarser scales. The
scale space response via eq. (4) is shown in (e), and the cluster
core regions obtained via eq. (5) are shown in Fig. 2(f).

We acknowledge that besides the aforementioned solution,
there exists other attractive techniques to extract such salient
regions in an unsupervised fashion. An alternative would be
to detect cluster cores using outlier detection methods such
as isolation forests [46] and one-class SVM [47], or via
density based clustering methods such as DBSCAN [48],
although each method comes with their own set of intricacies.
We prefer the proposed solution because it is a simple, yet
elegant implicit representation of the cluster cores which is
fully unsupervised. The segmentation model in eq. (5) is
parameter free, and is automatically initialized by thresholding
the multiscale density response using Otsu’s technique [44].
Few iterations are required for convergence as the scale space
KDE image already enhances the cluster cores and leads to
precise contour initialization. The only free parameter in C3I
is the scale space in eq. (4), and a good initialization (h̄) of
the scale parameter is obtained using Scott’s technique. The
scale space is computed as Θ = {h̄, . . . , hs = h̄/s}. Typically
s = 2m (m ∈ N+), and we have observed experimentally that
our algorithm is quite robust to the choice of this parameter
for 3 ≤ m ≤ 5. Sensitivity of C3I to this parameter is reported
in section IV-A, and Fig. 4(b) illustrates robustness of C3I to
parameter selection. Based on this experimental evidence we
set m = 4 for all our experiments to optimize between speed
and accuracy.

B. Spatial analysis of perturbed keypoints

The key ingredient of our stability measure is the ability to
reject false keypoint correspondences due to random chance.
As discussed earlier, instability is implied when the point-sets
S and S0 are spatially independent. This is mathematically
realized by defining a null hypothesis where the spatial points
in S are distributed according to the homogeneous Poisson
law [21]. Homogeneous Poisson process is a special case of
the generic Poisson point process (see Appendix for details)
where the intensity function λ : Ω 7→ R+ is a positive scalar,
i.e. λ(x, y) = λ0,∀x, y ∈ Ω. Under this condition, the process
mean simplifies to be µ(B) = λ0|B|, where B ⊆ Ω is a
closed sub-domain, and µ is a bounded Lebesgue measure.
Mathematically, if NB is a random variable which represents
the number of events in B, the probability distribution of NB
is given as

Pr{NB = k} =
e−λ0|B|

(
λ0|B|

)k
k!

(6)

Homogeneous Poisson point processes are characterized by
the special property of complete spatial randomness (CSR) i.e.
the spatial location of a point is independent of another point
in the process. Point samples from a homogeneous Poisson
process are uniformly distributed over the sampling domain,
which makes this an ideal candidate to model random spatial
distribution of keypoints. With this model of randomness,
we now define a correspondence statistic to the cluster core



regions, and analyze its characteristics when the keypoint
distribution follows the homogeneous Poisson law.

C. Cluster core correspondence statistic

Let us denote the set of zero level contours of φ as C =
{Ck}, where each non intersecting curve Ck encloses a region
ωk ⊆ Ω and k is a non-negative integer. We further define a
set membership indicator function IS [y] = 1 if y ∈ S and
zero otherwise.

Definition 1. Given a set of closed hypersurfaces ω =
⋃
k

ωk

and a set of spatial keypoints S = {ζ}, the cluster core
correspondence statistic is defined as follows:

Kω =

∫
x∈Ω

IS [x]

λ (x)
H (φ (x)) dx (7)

Here λ(x) denotes the intensity function of the Poisson point
process and H(φ) is the Heaviside function defined as H(z) =
1 if z ≥ 0 and zero otherwise.

The cluster core correspondence statistic in eq. (7) is there-
fore proportional to the number of keypoint correspondences
inside the cluster core regions obtained as ω = {x

∣∣φ(x) ≥ 0}.
We investigate eq. (7) when the set of perturbed keypoints
S = {ζ1, . . . , ζn2

} follows a homogeneous Poisson process
and analyze its statistical properties when the keypoint lo-
calizations are random. Under this assumption of complete
spatial randomness, we substitute λ(x) = λ0 = n2/|Ω| in
eq. (7) and define a region indicator function χω such that
χω(y) = 1 if y ∈ ω (or H(φ(y)) ≥ 0) and zero otherwise.
Substituting these results in eq. (7), we simplify the statistic
for the homogeneous case as follows:

Kω =
|Ω|
n2

n2∑
j=1

χω(ζj) (8)

The statistic in eq. (8) is proportional to the number of points
of the point process which are inside the cluster core region
ω. The definition of Kω bears resemblance to the Ripley’s
K-function used in [34] which also counts the number of
occurrences within a local neighborhood of the points. In fact,
eq. (8) could be considered as a more generic form of the
spatial statistic in [34] because it is defined for regions (ω)
of arbitrary geometry. Additionally, the level set formulation
does not require additional processing to analyze events near
the domain boundary which makes the proposed statistic quite
powerful and versatile.

Proposition 1. If the set of spatial keypoints S =
{ζ1, . . . , ζn2

} exhibits complete spatial randomness in Ω, Kω
asymptotically converges to a Gaussian distribution.

Proof. The proof follows from the analysis of the following
random variable:

χ =

n2∑
j=1

χω(ζj) (9)

In (9), χω is Bernoulli random variable, and therefore the
sum of Bernoulli variables χ follows Binomial distribution
(see (22) in Appendix for additional details) . Formally,

χ ∼ Bin(n2, pω) where n2 = |S|, and the parameter of this
distribution can be derived for homogeneous Poisson process
as follows:

pω = µ(ω)/µ(Ω) =

∫
ω
λ(x, y)dxdy∫

Ω
λ(x, y)dxdy

=
1

|Ω|

∫
Ω

H(φ)dxdy

= |ω|/|Ω| (10)

We denote the area of the cluster core regions as |ω| =∫
Ω
H(φ)dxdy. To analyze the statistical characteristics of the

correspondence statistic defined in (8) under CSR, we note that
the asymptotic convergence of Binomial distribution towards
the Normal distribution ensures that χ is a Gaussian random
variable [49]. Since Kω is a scaled version of χ, it follows that
Kω ∼ N (mω, sω), where mω and sω are the parameters of
the distribution. The discussion for the convergence criteria
closely follows the argument provided in [49] and further
details are not furnished here. This property plays an important
role in analysis since by virtue of the Gaussian distribution
of the statistic, it is possible to characterize the clustering
property of the point process if the parameters can be derived
analytically.

Corollary 1. Under the assumption of uniform random distri-
bution of the spatial keypoints, the parameters of the normal
distribution of the statistic Kω can be computed analytically
to be mω = |ω| and s2

ω = |ω| (|Ω| − |ω|) /n2.

Proof. It is straightforward to derive that the indicator func-
tion χω is a Bernoulli random variable with expected value
E [χω] = pω = |ω|/|Ω|. Since the spatial points follow an
uniform random distribution over Ω due to CSR, we proceed
to analytically compute the mean and variance of the statistic
Kω as follows:

mω = E [Kω] =
|Ω|
n2

n2∑
j=1

E [χω(ζj)]

=
|Ω|
n2

n2∑
j=1

|ω|/|Ω| = |ω| (11)

Here E [.] represents the expected value of a random variable.
Finally, we compute the variance as follows:

s2
ω = E

[
(Kω −mω)

2
]

= E
[
K2
ω

]
−m2

ω

=
|Ω|2
n2

2

(
n2∑
m=1

E
[
χ2
ω(ζm)

]
+

n2∑
m=1

n2∑
n=1
n 6=m

E [χω(ζm)χω(ζn)]− n2
2p

2
w

)
(12)

Since χω is a Bernoulli random variable, the term
E
[
χ2
ω(ζm)

]
= pω . Furthermore, the CSR property of the

point process ensures that the spatial location of a point ζm
is independent of another point ζn, when m 6= n. Therefore,
owing to this independence property, it can be further inferred



that E [χω(ζm)χω(ζn)] = E [χω(ζm)]E [χω(ζn)]. Therefore,
eq. (12) can be further simplified to

s2
ω =

|Ω|2
n2

2

(
n2pω + n2(n2 − 1)p2

w − n2
2p

2
w

)
= |ω| (|Ω| − |ω|) /n2 (13)

From eq. (11) and eq. (13), we observe that the behavior spatial
properties of the keypoint positions is fully characterized
by the area of the cluster core regions |ω| and the number
of points n2. The area of the cluster cores is defined as
|ω| =

∫
Ω
H(φ)dxdy, and can be computed in the discrete

domain using morphological connected component analysis.
Therefore the parameters of the distribution of Kω can be
calculated analytically without resorting to computationally
intensive Monte Carlo techniques [50]. In the following sec-
tion, we introduce the correspondence index which provides
evidence of the amount of statistically significant coupling of
the noisy keypoints to the reference.

D. Cluster Core Correspondence Index (C3I )

From Corollary 1, we obtain Kω ∼ N (mω, sω), and the pa-
rameters of the normal distribution are computed analytically
in eq. (11) and eq. (13). Based on these analytic descriptions,
we define a standardized statistic K̃ω ∼ N (0, 1) as

K̃ω = (Kω −mω) /sω (14)

A large positive value of K̃ω (>> 0) suggests evidence of
accumulation of the keypoints to the cluster cores, whereas
a smaller magnitude (≤ 0) indicates either a homogeneous
spatial distribution, or significant dispersion of the keypoints.
We further denote the variable z ≥ 0 as

z = K̃ω1
[
K̃ω
]

(15)

where 1 [u] = 1 if u > 0, and zero otherwise. The cluster
core correspondence index ρC3I ∈ [0, 1] between a reference
S0 and a point cloud set S is defined as:

ρC3I [S0||S] =
1

β
κ(z)sωz (16)

where κ(z) =

√
2

π

∫ z

−∞
e
−
(

u2

2

)
du− 1 (17)

The factor κ ∈ [0, 1] provides evidence of keypoint corre-
spondence and κ ≈ 1 when the keypoints are significantly
coupled to the cluster cores, but assumes a lower value when
the spatial distribution is more uniform. Here, β is a constant
which normalizes the index to the range [0, 1]. If we denote the
pre-normalized index between a reference S0 and a noisy set
of measurements S to be ρ [S0||S] = κsωz, the normalization
factor is computed as β = ρ [S0||S0].

E. Remarks

The fundamental aspect which distinguishes C3I from tradi-
tional evaluation studies is the manner in which keypoint sta-
bility is defined. Unlike most correspondence-based methods
which essentially count the number of true feature matches
within a pre-specified neighborhood, the mean mω and the

variance sω of the correspondence statistic serve as a baseline
to indicate clustering or dispersion of the detections. We
argue that spatial randomness of the detected keypoints is a
strong indicator of algorithm instability, although most existing
evaluation techniques disregard this aspect. For example, if
sω is finite, the variable z in eq. (16) is non-zero only when
the number of correspondences in the cluster core region is
statistically above the expected number of points under CSR.
C3I scores favor the cases where Kω > mω , weighted by
the confidence of accumulation κ. If the keypoint distribution
is random, or if the keypoints are significantly dispersed from
the cluster cores, Kω ≤ mω , and consequently ρC3I = 0. This
distinguishes C3I from counting based measures such as eq. (1)
which are not equipped to handle randomness. An example
of such behavior of the different evaluation techniques is
observed in Fig. 6. In the following section we present a
set of experiments to compare and validate the proposed
methodology against the state-of-the-art keypoint evaluation
techniques.

IV. EXPERIMENTS

In addition to the illustrations in Fig 2, in this section we
provide experimental evidence to evaluate the robustness of
keypoint detectors using both simulation studies and analysis
on real-world datasets. This section is organized as follows.
First, we discuss an experimental setup to quantitatively
compare the performance of four different keypoint stability
indices: (i) C3I (plotted in blue), (ii) the stability/repeatability
index ρs (magenta) defined in eq. (1) [4], (iii) the KL-
divergence index (green) [23], [37] ρKL defined in eq. (2),
and finally (iv) the Mander’s coefficient for binary images ρm
(black) [18]. To compute ρKL we have used non-parametric
kernel density method to estimate the spatial distribution,
where the kernel bandwidth is selected using Scott’s technique
[40]. Since both ρm and ρs rely on the local radius parameter,
we perform experiments with different values of r. This study
(on both simulated test-cases and real-world examples) in
illustrated in Sec. IV-A

In Sec. IV-B to IV-D, we further analyze how C3I is useful
in assessing the robustness of keypoint detectors when the data
is subject to varying degrees of imaging and measurement
artifacts (such as noise, keypoint drift and in-plane rotation).
In Sec. IV-E we use C3I to evaluate the performance of five
state-of-the-art keypoint detection systems on an open-source
natural image database under different imaging conditions.
Further studies are presented in Sec. IV-F to show how
C3I could also be interpreted as an effective measure of
end-application (such as image matching, point cloud reg-
istration) performance evaluation. Finally, we demonstrate a
few potential applications of C3I beyond keypoint stability
analysis in Sec. IV-G. The following mathematical notations
are used throughout this section. The reference set of keypoints
(detected on non-corrupted data) is denoted by S0, and the
corresponding perturbed keypoint localizations are represented
by the set S.
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Fig. 3: Experimental analysis of correspondence estimation. (a)-(c) illustrates the keypoints extracted via Blob detector, ORB and FAST. The four robustness
indices ρ

C3I (blue), ρKL(green), ρs(magenta) and ρm(black) are plotted in (a1)-(c1) for r = 1.5 and r = 2.5 pixels and σd = 1 pixel. The corresponding
results for σd = 2 pixels are presented in (a2)-(c2). The mean and standard deviation of the indices are shown, obtained via thirty Monte Carlo iterations for
each value of the correspondence level α.

A. Quantitative evaluation of stability indices

Earlier we mentioned that statistical correspondence of
keypoints provides insight regarding the stability of keypoint
detectors, and robust descriptors are typically associated with
high degree of association to the reference set. In this subsec-
tion we describe a set of experiments to study the behavior of
the above mentioned correspondence indices. Three feature
detectors are used to extract the keypoints - the wavelet
based spot detector [28], Oriented and Rotated Brief (ORB)
feature descriptor [13], and Harris’ corner detector [51]. The
reference detection due to the aforementioned detectors are
shown in Fig. 3(a)-(c) respectively. We quantitatively analyze
the efficiency of the above mentioned methods to estimate
the degree of correspondence of the keypoints in S to the
reference S0. In this regard, we design a set of experiments
where the elements in S are generated according to a Thomas
process [21] to simulate spatial clustering of keypoints. Ideally,
a stability index is expected to accurately infer the degree
of correspondence of the perturbed set S to the reference,
where S is a realization of a Thomas process with parameter
α ∈ [0, 1] (coupling level, that indicates the level of association
of the simulated spatial points to S0). Therefore, an objective
comparison of different stability indices may be performed
by calculating the squared error between a stability index ρ(.)

and the true correspondence level α as e = |ρ(.) − α|2. For a

statistically meaningful interpretation, average reconstruction
error is reported over N independent Monte-Carlo trials.

The set S is generated via Thomas process simulation for
a given α = α′ as follows. We first select a random set
of α′|S0| keypoints {p}, and generate a set of perturbed
locations {p′ = p + η} where η ∼ N (0, σd) is a random
variable. The remaining (1− α′)|S0| keypoints are uniformly
distributed over the image domain. The degree of association
between the elements of S and S0 correlates positively with
the parameter α. Therefore, α = 0 signifies spatially random
keypoints, while α = 1 simulates spatial keypoints which are
significantly associated to S0. Stability indices between S0 and
S are shown in Fig. 3(a1), (b1), and (c1) for σd = 1 pixels,
and in Fig. 3(a2), (b2) and (c2) for σd = 2 pixels. Also, as
mentioned earlier, the indices ρs and ρm rely on the radius
parameter r, and we show the results for both r = 1.5 and
r = 2.5 pixels as suggested in [3] and [18]. For our studies,
α is sampled in [0, 1] to obtain twenty discrete values, and
we perform N = 30 iterations of Monte Carlo simulations
for each α. The average robustness index and the associated
variance are presented in Fig. 3. A qualitative analysis of the
plots of the different correspondence indices in Fig. 3 suggests
a largely linear trend for C3I , whereas the other metrics are
unable to capture the degree of association of to the desired
level of precision. It can be observed that the indices ρs and



TABLE I: Mean squared error for correspondence estimation

Mean Squared Error

ρm(r) ρs(r)

Detector ρKL r = 1.5 r = 2.5 r = 1.5 r = 2.5 ρ
C3I

σd = 1
Blob 0.29 0.16 0.07 0.09 0.003 0.0001
ORB 0.009 0.081 0.02 0.058 0.001 0.0008
FAST 0.22 0.16 0.04 0.10 0.0002 0.0001

σd = 2
Blob 0.29 0.25 0.15 0.24 0.09 0.003
ORB 0.008 0.14 0.04 0.15 0.02 0.008
FAST 0.23 0.26 0.13 0.24 0.08 0.006

(a) (b)

Fig. 4: The boxplots in (a) show the distribution of (squared) errors for
correspondence prediction on the de-raining dataset. The vertical axis is
plotted in the log10 scale for better visualization. Parameter sensitivity
analysis is shown in (b). Mean and standard deviation of C3I response is
plotted against the different values of the scale parameter m. the solid lines
show C3I correspondence estimated for three independent Thomas processes
with α = 0.2 (black), α = 0.5 (blue) and α = 0.8 (magenta) The dotted
horizontal lines show the ideal correspondence values.

ρm are quite sensitive to the choice of the parameter r. The
density based index ρKL exhibits a desirable linear trend when
the feature detectors are clustered (see Fig. 3(b)), but it exhibits
a significant presence of bias when the reference are more
homogeneously distributed.

A quantitative description of the experiments is presented
in Table-I, which reports the mean squared error (MSE =∑
e/N ) of estimated correspondence computed over N = 30

Monte Carlo trials. The density based estimate ρKL is more
applicable to situations where the reference detections are clus-
tered, which is the case for ORB keypoints. An interesting as-
pect of this density based metric is that it is relatively immune
to the local keypoint drift σd, although the performance lacks
sensitivity when the spatial distribution is more homogeneous
(for Blob detector and FAST). The quantitative evaluations
also support the fact that both ρm and ρs rely heavily on
the parameter r. Unfortunately, although in this case it may
appear that increasing r could stabilize the results, we would
demonstrate in the following experiments that the parameter
needs to be chosen accurately for meaningful depiction of
the point process. Finally, we find that C3I outperforms the
remaining techniques in terms of accuracy with the mean
squared error less than 8×10−4 and 7×10−3 for σd = 1 and
2 respectively. This shows that C3I is more adept at estimating
the theoretical level of correspondence between interacting
point processes, with significantly less error in correspondence
estimation, except for the case of clustered ORB features
where ρKL yields comparable performance.

We further perform additional experiments to analyze the
performance of C3I on a large open-source database of natural
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Fig. 5: Analysis of local feature drift. (a)-(c) shows the blobs detected via
[28] in red due to a feature drift ud = ±1.5,±3.5& ± 5.5 pixels. The
reference set of keypoints are shown as white blobs. The four robustness
indices ρ

C3I (blue), ρKL(green), ρs(magenta) and ρm(black) are plotted in
(d)-(f) corresponding to r = 1.5, 3.5&5.5 pixels. The mean and standard
deviation of the indices are shown, obtained via thirty Monte Carlo iterations
for each value of ud.

images [52]. One hundred images are selected at random, and
the reference keypoints are computed on each image using
the ORB algorithm for feature detection. The perturbed set is
generated corresponding to each reference spatial dataset via
Thomas process modeling as earlier, where the correspondence
parameter α is chosen randomly between [0, 1] for each image
in the dataset. Thomas process noise parameter σd is set to
2 pixels and following the trend in the previous experiments,
r = 2.5 is chosen for both ρs and ρm. Similar to the previous
experimental setup, squared error in correspondence prediction
is calculated for the four stability indices. The prediction error
statistics are summarized by the boxplots (plotted in log10

scale) in Fig. 4(a), where the median error for each index is
shown, and the box boundaries represent the 25th and 75th

percentiles of the error distribution. The average squared error
due to C3I is calculated to be 4× 10−3, which is significantly
better than the remaining three evaluation methods (ρKL,
ρs, ρm) that result in average errors of 0.04, 0.05 and 0.03
respectively.

Finally, we perform experiments to justify the selection of
the scaling factor s = 2m in eq. (4). We first select an image
at random from the aforementioned dataset, and extract ORB
keypoints for that image. The C3I values are computed for
m = 2, 3, 4 and 5, where the perturbed set is generated via
Thomas process, with α = 0.2, 0.5 and 0.8. The mean and
variance of the C3I response are shown in Fig. 4(b), computed
over thirty Monte Carlo trials. This experimental data reveals
that C3I shows a stable trend in the range of experimental
values of m, which makes it quite robust to its parameter.

B. Sensitivity to keypoint drift

The experiments in this section are performed to support
our earlier claim that an ideal robustness index should be
responsive to significant variation in keypoint position, while
being robust to insignificant drifts. Although it is difficult
to formally define what constitutes a significant change in
localization, as a rule of thumb a spatial drift of less than three
pixels is generally considered insignificant [4]. It is therefore
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Fig. 6: Qualitative and quantitative analysis of corner detectors to additive Gaussian noise. (a1)-(c1) illustrates the keypoints extracted on the cameraman image
for three noise levels corresponding to ORB, FAST and Harris’ detector. The four robustness indices ρ

C3I (blue), ρKL(green), ρs(magenta) and ρm(black)
are plotted in (a2)-(c2) corresponding to different noise levels, and for r = 1.5 and r = 2.5 pixels. The mean and standard deviation of the indices are
shown, obtained via thirty Monte Carlo iterations for each value of σn.

expected of a robustness index to follow a smooth decaying
trend with respect to the magnitude of drift in features when
the change in position is no longer insignificant. For the
experiments, we first compute a reference set of keypoints via
the spot detector [28] on a simulated image of biological cells
which was used for analysis in [49], [50]. Additionally, we
define a drift factor ud (pixels) and compute the set of drifted
keypoints as S = {p + η|p ∈ S0}, where η ∼ U(−ud, ud).
Here U(a, b) represents a uniform probability density function
in [a, b].

The results of the experiments are shown in Fig. 5. We
perform experiments for 0 ≤ |ud| ≤ 8.0 pixels, and for each
value of ud, thirty Monte Carlo iterations are performed to
compute the mean and variance of the stability indices. Fig. 5
(a)-(c) are provided to perform a visual inspection of the
feature drifts for ud = 1.5, 3.5 and 5.5 pixels. The reference
keypoints S0 are plotted as white blobs on the images, and
the keypoints in S are plotted in red to show the difference in
localization. It may be noted that the keypoint drifts are almost
imperceptible in Fig. 5 (a), but it becomes more pronounced
as ud increases. The quantitative robustness indices are shown
in Fig. 5 (d)-(f) corresponding to r = 1.5, 3.5 and 5.5
pixels for both ρs and ρm. We observe that while almost

all the indices show a decaying trend, ρm and ρs are indeed
affected by the choice of the radius. The index ρm tends to
penalize even insignificant drifts, while ρs is more sensitive
to the choice of the parameter r which effectively controls its
sensitivity. Unfortunately, as previously discussed, selection of
this parameter is non-trivial and this restricts the use of such
indices for heterogeneous applications. Another observation
is that the index ρKL does not show any perceptible change
even when ud is significant. This is because the detected spots
are distributed homogeneously in the image, and therefore the
spatial density function in eq. (3) does not show perceptible
change even with local feature drifts. Interestingly, C3I is less
reliant on external parameters, and exhibits a smooth decaying
trend which is in agreement with the visual perception of drift
in feature localization.

C. Sensitivity to noise

Noise is omnipresent in most practical image analysis
applications, and noise invariance is a particularly desirable
property of a keypoint detector. The objective of this set of
experiments is to compute, and compare the performance of
feature detectors in the presence of additive Gaussian noise.
In particular, we evaluate three corner detectors: ORB [13],



FAST [45] and Harris’ second-moment matrix based technique
[51]. It is documented that Harris’ method is very well suited
to applications where noise is predominant, whereas FAST
is known to be more sensitive to such artifacts. ORB is
essentially an improved version of FAST which combines the
accuracy of Harris’ method with the speed of FAST. As earlier,
the reference keypoints extracted from an image h(x, y) is
represented by the set S0, and the set S comprises of the
keypoints extracted from a noisy image h̃(x, y) = h(x, y)+η,
where η ∼ N (0, σn). We analyze the behavior of the above
mentioned algorithms for σn ∈ [0, 0.15] (image intensities are
normalized to [0, 1].). As earlier, we perform thirty Monte
Carlo iterations for each value of σn and the mean and
variance of the keypoint stability indices are shown in Fig. 6.
As expected, the most stable performance is observed in
ORB, which is well regarded for its robustness to additive
noise. Remarkably, the algorithm is found to be stable to
significant level of noise (σn > 0.1 pixels) and this could
be verified both qualitatively in Fig. 6(a1), and quantitatively
from Fig. 6(a2). A contrasting behavior is observed for FAST,
which unlike ORB is found to be quite sensitive to noise both
from a qualitative ( Fig. 6(b1)) and quantitative perspective
(Fig. 6(b2)). In fact, when the noise is significant, FAST
keypoints tend to exhibit spatial randomness, which is reflected
via ρC3I < 0.1 for σn > 0.07. Here we make the observation
that the response due to both ρKL and ρs appear to saturate
even though the keypoint deviation is significant, although
all four indices suggest an overall lack of stability of the
algorithm to additive Gaussian noise. The results due to Harris’
corner detection algorithm are shown in Fig. 6(c1)-(c2). While
this technique is more robust compared to FAST, it is less
adept than ORB at handling significant noise, resulting in a
reduced stability index (less that 0.7) beyond a noise standard
deviation of 0.07 pixels. This behavior can be explained by the
fact that Harris-keypoints are detected at a single predefined
scale which affects the stability for significant noise. This
performance is verified qualitatively in Fig. 6(c1), where it
is observed that a few noisy keypoints are extracted by the
detector when the input is noisy, eventually yielding random
localization when σn > 0.14 (see Fig. 6(c2)). We note that
C3I quantifies the expected stability of an algorithm which
is verified qualitatively as well. The results suggest stability
of ORB over Harris’ technique and FAST, which is well
known and has been reported in [11], [32]. An interesting
phenomenon is observed when the spatial keypoints in S tend
to be randomly spread for high noise levels as shown in
Fig. 6(b1)-(b2) and Fig. 6(c1)-(c2). The plots of the different
stability indices reveal that C3I is capable of identifying system
instability (especially when σn > 0.1), and penalizes such
cases by reporting a significantly low value.

D. Assessment of rotational invariance

In this section, we describe a set of experiments to quan-
tify the rotational invariance property of four popular corner
detector algorithms, namely ORB, FAST [45], Harris’ corner
detector [51], and the KLT method [6]. Apart from FAST,
the remaining three algorithms are known to be resilient
to image rotations. FAST is a real time corner detection
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Fig. 7: Analysis of rotational invariance of corner detectors (a) ORB, (b)
FAST, (c) Harris, and (d) KLT. The four robustness indices ρ

C3I (blue),
ρKL(green), ρs(magenta) and ρm(black) are plotted for features extracted
from an image rotated by θ ∈ [0, 20] degrees. The mean and standard
deviation of the indices are shown, obtained via thirty Monte Carlo iterations
for each value of θ. Sensitivity of FAST and ORB keypoints to in-plane
rotation are illustrated in (e) and (f) respectively.

technique and it known to be sensitive to noise and geometric
artifacts, a drawback which is later addressed [13]. These
experiments are performed by extracting the reference set S0

via a corner detector on the ‘house’ image shown in Fig. 3(c).
Let us represent this image as h(x, y) and denote hθ(x, y)
to be a rotated version of the image, θ signifying the degree
of rotation. Let {pθ} denote the set of keypoints obtained
on the rotated version of the image. We now compute the
set S = {R−1

θ pθ} where Rθ is the rotation matrix. The
quantitative analysis of the keypoint robustness indices are
presented in Fig. 7. It is observed that ORB is most robust
to rotations (see Fig. 7(a)), and the performance of Harris’
technique and the KLT method are almost similar (Fig. 7(c and
(d)). As expected, we observe a large change in the robustness
index for FAST which is not particularly adept at handling
geometric deformations (see Fig. 7(e)-(f) for comparison).
In these studies we have set r = 2.5 for both ρm and ρs
as prescribed in the literature. As earlier, for each value of
θ, we perturb it by adding a Gaussian noise with standard
deviation of five degrees, and perform thirty iterations of
Monte Carlo simulations to compute the mean and variance of
the robustness indices. It may be observed that while almost all
four indices show a similar trend, ρs and more specifically ρm
incorrectly suggest lack of robustness in Fig. 7(a), (c) and (d).
This mostly due to the fact that the above mentioned indices
are sensitive to insignificant change in keypoint localization,
and therefore report a pessimistic quantification of the well
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(a) Keypoint detection and corresponding C3I evaluated on the de-raining dataset

Rain Contrast + speckle Additve Noise

(b) Boxplot of the C3I scores for different artifacts

Fig. 8: Keypoint detections on three sample images from the dataset are shown in (a). Each detector is tested under the following degradation: rain artifacts,
contrast change + speckle noise and additive Gaussian noise, and the detected (perturbed) keypoints are shown in red. The reference keypoints on the non-
perturbed image is shown (in magenta) in the first columns. In (b), the performance of the keypoint detectors for the three different imaging artifacts (viz.
rain, contrast, and additive noise) are summarized via boxplots.

known rotational invariant corner detectors.

E. Analysis of keypoint detectors on benchmark datasets

The following experiments are designed to show how C3I
could be effectively used to measure keypoint quality for
natural images captured under varying external conditions.
For this study, one hundred images are taken from the open
source dataset provided by Zhang and Patel [52]. In addition
to a variety of both indoor and outdoor reference scenes,
this dataset also provides an additional set of images with
appended rain-streak artifacts to simulate the effect of rain on
digital captures. Such rain-streak effects degrade the image
quality (SSIM = 0.71 ± 0.11) and present challenges for
reliable keypoint estimation. We further augment the dataset
by introducing contrast variations due to histogram equaliza-
tion, and the image quality is further degraded by adding
speckle noise to the data. This yields a dataset presenting
significant illumination artifact with SSIM = 0.64 ± 0.11.
Finally, a third set of perturbed data is generated by adding i.i.d

Gaussian noise to the image pixels, yielding noise-corrupted
image data with SSIM = 0.64 ± 0.07. Therefore, for every
reference image in the dataset, three additional sets of artifact
appended data is presented with varying degrees of image
degradation. A montage of three representative images are
shown in Fig. 8(a), where the first columns show the reference
images, followed by corresponding effects introduced by rain
artifacts, illumination variation and additive intensity noise.

We study the behavior of five state-of-the-art keypoint
detectors under the aforementioned imaging conditions.
In addition to the three feature detectors used before
(Harris, FAST, and ORB), we further include two state-
of-the-art techniques: AKAZE [53], and SuperPoint
[7]. The latter is a semi-supervised deep convolutional
neural network, pre-trained (implementation available on
https://github.com/magicleap/SuperPointPretrainedNetwork.git)
on a set of synthetically generated objects with varying levels
of geometric and visual complexities. Keypoints identified
by each detector are shown in Fig. 8(a), where the reference



set of keypoints S0 are plotted in magenta, and the red
keypoints constitute the perturbed set S. Stability of the
detection algorithm measured by C3I are plotted for each
image when subject to the different imaging conditions.
A summary of the quantitative evaluation is presented in
Fig. 8(b) via boxplots, where the box boundaries represent
the 25th and 75th percentile C3I scores, and the whiskers
indicate the range of C3I values. Statistically, ORB is found
to be the most stable detector which yields the highest median
C3I score. The performance of ORB is closely followed by
AKAZE, while FAST keypoints are found to be sensitive
to significant changes in imaging conditions. Harris’ corner
points are also susceptible to lighting changes as the hessian
based corner response function is known to be sensitive to
intensity inhomogeneity.

It is specially interesting to analyze the semi-supervised
SuperPoint algorithm. While statistically ORB and AKAZE
are more stable than SuperPoint, it is noteworthy that the
latter’s stability could be significantly improved by fine tuning
the neural network model on samples from this particular
dataset. However, even when trained on a set of synthetic data,
SuperPoint yields stable keypoints (with little variation in C3I
distribution). Indeed, the algorithm is less robust to rain-streak
artifact, but this is expected because this particular imple-
mentation of SuperPoint is not supervised on data containing
similar variability. However, it is quite interesting to note that
traditional unsupervised detectors are still quite powerful from
the perspective of keypoint stability and robustness.

F. Correlating C3I with downstream task performance

C3I is a generic measure of keypoint quality, which enables
validation of keypoint detectors irrespective of the deployed
end-application. We hypothesize that robust keypoints are
paramount to the success of any specific downstream task
which uses the said detector in its pipeline. We present the
following case studies to demonstrate this correlation between
keypoint robustness (evaluated via C3I ) and the quality of the
final solution.

1) Keypoint based image alignment: Keypoint detectors are
extensively used for finding correspondence between image
pairs and to determine the homography matrix that defines
the geometric transformation between the image-pairs. Such
tasks require keypoints to be robust to imaging nuisances
such as noise or contrast variations. The image pairs shown
in Fig. 9 are geometrically related by an identity homography
matrix, but reference image is a de-noised version of the noisy
capture of an ameoba which is imaged via fluorescence mi-
croscopy. Keypoints are detected on both the reference image
and its noisy counterpart due to Harris’ corner detector in
Fig. 9(a) and SuperPoint [7] detector in Fig. 9(b). The BRIEF
[54] descriptor is associated with each spatial localization,
and keypoint pairs are matched by a brute-force nearest-
neighbor based matching technique. Correct correspondences
(computed between same reference keypoints) are shown in
the first column of Fig. 9(a) and (b). From the set of matched
features, the RANSAC [55] algorithm is used to predict the
affine transformation parameters. The alignment results of the
noisy image to the reference are illustrated in Fig. 9(c). As

(a) Harris keypoint matching, reference-reference (left) vs reference-noisy (right)

(b) SuperPoint keypoint matching, reference-reference (left) vs reference-noisy (right)

(c) Estimated homography

Fig. 9: Effect of noise on feature matching and subsequent homography
estimation. (a) Harris keypoints (shown as white dots) are matched both in
absence and presence of noise, using brute force nearest-neighbor matching.
Results for SuperPoint keypoints (red dots) are shown in (b), where the
correspondences are more accurately recovered. In (c), feature based image
alignment results are shown for both sets of keypoints using RANSAC
for transformation estimation. Two such instances are shown to reflect the
sensitivity of the final results on the keypoint quality.

RANSAC is stochastic in nature, two sets of predictions are
shown. Since the actual homography matrix is identity, it
becomes evident that SuperPoint-keypoints are more robust to
noise than Harris’ method. This end-result is validated from
the C3I scores which is significantly better for SuperPoint with
ρC3I = 0.79, compared to Harris’ method (ρC3I = 0.33)
which explains the latter’s sensitivity to intensity noise.

In addition to noise, contrast sensitivity is an important
criteria while deciding on the appropriate detector for image
alignment tasks. In Fig. 10, we further compare Harris’ key-
points to the SuperPoint localizations for aligning image pairs
with significant contrast variations. The HPatches database
[56] contains images where the same scenery is imaged
under different lighting conditions, as shown in Fig. 10 (top
row). The first image (a) is captured under natural lighting
conditions, and serves as the reference image for this exper-
iment. Keypoints detected using Harris’ corner response and
SuperPoint method are shown in Fig. 10, with the reference
keypoints S0 plotted in the second row, and the corresponding
keypoints S on the perturbed data are shown in the third
row. The C3I scores computed between the image pairs are
presented as well. Significant contrast variation is known
to affect traditional hessian-based corner detectors, and this
is verified by a low stability score of ρC3I [a, c] = 0.56.
To find keypoint correspondence, the detected landmarks are
first associated with the BRIEF descriptor, and then matches
are found using a brute-force nearest neighbor search. The
homography matrix relating the image pairs is then computed
using RANSAC as earlier, and the final alignment results



Harris-keypoints SuperPoint-keypoints

Fig. 10: Correlating C3I with keypoint-based image alignment using RANSAC
under contrast variations. Keypoint matches and the final alignment results are
shown for Harris’ keypoints and SuperPoint.

are shown in the bottom row of Fig. 10(a) and (b). The
error in alignment is most prominent in the third example
in Fig. 10(a) which is caused by the contrast sensitivity of
the Harris-keypoints. The final image alignment results in
Fig. 10(bottom row) strongly agree with the C3I scores, and
the RANSAC based alignment estimation is only slightly
affected by the SuperPoint method which is more stable to
such illumination artifacts. This provides further evidence to
connect the keypoint stability measure C3I with the end-
product efficacy for image alignment operations.

2) Point-cloud registration using Coherent Point Drift:
The keypoint stability measure proposed in this work also
extends to unstructured spatial objects such as point clouds.
Here, we consider a point cloud of spatial coordinates of a
Drosophila neuron obtained from an open-source digital atlas
of neuron tracings: NeuroMorpho [57]. The spatial points are
sub-sampled, and projected on a 100 × 100 discrete grid,
shown in red color in Fig. 11(a). We consider a second set
of points which is translated from the red points by 2 units,
and this translated set is plotted in green in Fig. 11(a). Our
objective is to register the green points to the red samples
using the Coherent Point Drift (CPD) algorithm [26]. Indeed,
when the green points are unperturbed (ρC3I = 1) the points
are related by simple translation, and can be registered using
CPD with little error (see Fig. 11(b)). However, registration
is non-trivial when the spatial coordinates of the green points
xg are perturbed as x′g = xg + η, where η ∼ U(−ud, ud)
units. Such random perturbation often occurs in practice due
to uncertainty in localizing the individual points. Effects of
this uncertainty in keypoint localization are reflected in the
registration performance, which gradually worsens for higher
values of ud. This phenomena is well captured by the gradual
lowering of C3I , illustrated in Fig. 11(b)-(f). This further
supports our hypothesis that keypoint quality measure via C3I
is a good indicator of downstream performance.

G. Other potential applications and perspectives

Here we present two potential use cases outside the domain
of keypoint stability quantification where C3I could be suc-
cessfully integrated. The first application involves using C3I
as a loss function for registering point clouds. We demonstrate
a few experimental cases to illustrate how C3I could be useful
as a registration metric to be used in conjunction with other

(a) (b) C3I =1 (c) C3I =0.9

(d) C3I =0.82 (e) C3I =0.62 (f) C3I =0.45

Fig. 11: Correlating C3I values with CPD-based point cloud matching
performance for different levels of local perturbations ud of the spatial
localizations. Initial spatial locations of the two different point clouds are
shown in (a). The reference point cloud is plotted in red. The green points
are perturbed locally by ud pixels, and the final registration results (green
markers) are shown in (b)-(f) corresponding to progressively higher values of
ud = {0, 1.5, 2.0, 3.0, 4.0} pixels respectively. The C3I scores are found to
be in agreement with the efficacy in registering the point-clouds.

similarity measures such as the minimum mean squared error
or KL divergence between the point cloud densities. Another
application is described, where we extend C3I to understand
the similarity between different feature detectors.

1) C3I as a loss function for point-cloud registration: We
consider two special cases where we compare two different
data distributions. The first example illustrated in the first row
of Fig. 12, shows two point clouds X ∼ N (0,Σ) (plotted in
green) and a rotated set Xθ ∼ N (0,Σθ) (in blue). Here θ
is the rotation parameter, Σθ is the covariance matrix for the
rotated dataset which is computed as follows:

Σθ = RtθΣRθ (18)

Here Rθ is the standard rotation matrix. We consider X to
be the reference dataset, and the cluster cores are computed
based on this distribution (shown as the contour line in black).
We perform experiments by sampling 500 points from each
distribution for θ ∈ [0, π] and analyze the effect of rotation
of data on the C3I . For sensitivity analysis, observations are
sampled thirty times for each value of θ, and the average C3I
index is plotted in the last column (top row) along with the
standard deviation. The plot of ρC3I shows a monotonic trend,
where the response is maximum when the two datasets are
optimally aligned (for θ = 0 or θ = π). Similarly, we also
analyze the response of C3I to translation, where the translated
data are assumed to be a realization of Xd ∼ N (µd,Σ) where
µd = [0, d] is the translated mean and d ∈ [−10, 10] units.
The plot of ρC3I increases monotonically as the point-cloud
separation approaches zero, which corresponds to the peak re-
sponse. Next, we perform similar experiments on a real-world
2D point cloud data of Drosophila neuron reconstructions
available from the online repository: www.neuromorpho.org.
The target point set P = {xp} is created by projecting the
discrete neuron traces to a 100×100 grid (shown in red color in
Fig. 12(c)). We further compute a second set of source points
(blue) Q = {xq} related to the target set by the following
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Fig. 12: C3I scores are shown for registering rotated and translated 2D
Gaussian data in (a) and (b) respectively. The target set (red) and the source
set (blue) for point-set registration are illustrated in (c). In (d), C3I values
during the successive iterations of CPD algorithm is plotted for five distinct
registration experiments.

affine relation xq = µxp + γ, where µ ∼ U [0.6, 1.2] and
γ ∼ U [0, 3.0]. A representative scatter-plot of the point sets
is presented in Fig. 12(c). Our objective is to register the
source points to the target set using the CPD [26] algorithm
for point set registration. CPD is an iterative technique to find
both rigid and non-rigid deformations between point clouds
using a density estimation strategy. At each iteration of CPD,
we record the C3I values between the target points P and the
deformed source point-set. The experiment is performed five
times and the C3I responses are plotted for each CPD iteration
in Fig. 12(d). It is observed that over the iterative procedure,
the CPD algorithm maximizes the C3I response between
the two point clouds while seeking the optimal deformation
parameters. While these experiments are preliminary, the
results indicate that C3I could be used to identify the statistical
deviation between point clouds for point cloud registration
problems. Following the recent trend in using deep learning to
estimate the registration parameters, it would be a future work
to integrate C3I as a differentiable loss function in learning
based algorithms [25], [58] which could be used either by
itself, or in conjunction with other measures of point cloud
similarity.

2) C3I as a keypoint similarity measure: The final set
of studies are designed to illustrate an application of C3I
which would be useful to understand the similarity (or the
difference) between different feature detectors. This could be
useful to characterize and cluster algorithms which exhibit
similar characteristics. We show via examples that C3I could
be used to understand the relationship between two or more
feature detectors. We use four keypoint detector algorithms
for this proof-of-concept study, which consists of two corner
detectors (Harris and KLT) and two blob detectors (Laplacian
of Gaussian or LoG and Difference of Gaussian or DoG) filters
[1]. We first define a symmetric similarity index between the

(a) (b)

(c) (d)

Fig. 13: The confusion matrices illustrate the keypoint similarity via the
symmetric C3I metric. Two corner detectors (KLT and Harris) are compared
against two blob detectors (LoG and DoG) for four imaging scenarios corre-
sponding to noise level σn = 0, 0.01, 0, 03 and 0.1 in (a)-(d) respectively.
The quantitative metric reveals high intra-class and low inter-class similarity.

keypoint sets S1 and S2 to be

ρ
′

C3I
=

1

2

(
ρC3I [S1||S2] + ρC3I [S2||S1]

)
(19)

In Fig. 13, the symmetric C3I index in eq. (19) is shown
when the keypoints extracted by via one detector (say LoG) is
compared to the keypoint localization due to a second detector
(say ORB). The responses are plotted in Fig. 13(a)-(d) for
different levels of additive noise, and we observe an average
within-class similarity measure > 0.82 while the average inter
class similarity is less than 0.15. This strongly indicates that
C3I is able to quantify the similarity between algorithms,
which could be used to cluster the feature detection tech-
niques into different semantic categories (corners and blobs
for this specific case). This is more crucial in understanding
the behavior of some end-to-end learning based detectors by
associating the more abstract, yet rich keypoints to the low
level cues in the image, such as blobs, corners, junctions, etc.
This would be beneficial to further our knowledge about the
intrinsic behavior of such algorithms which are unfortunately
often used as a black box, thereby allowing users to choose
the more appropriate technology for a specified task.

V. CONCLUSION

In this paper we have introduced a technique which builds
on the theory of spatial pattern analysis and quantifies a
detector’s robustness by computing statistical correspondence
of keypoints to the cluster core regions of the reference. The
efficacy of C3I has been established via both quantitative and
qualitative assessment on various experimental studies which
suggest a wide applicability of the solution. C3I is application
agnostic, and could be used universally as a test-bench to
evaluate the robustness and stability of feature detectors. A



future extension to the presented study would be to detect
feature correspondence in a high dimensional space, such as
the intermediate projection subspace for deep autoencoders.
While C3I is designed specifically for spatial keypoints (in
R2), extension to a higher dimension will be possible provided
a suitable distance metric for such instances. This is indeed
an exciting research prospect which will be discussed in more
detail in our subsequent research.

APPENDIX

The mathematical preliminaries of a Poisson point process is
presented here. Let λ : Ω 7→ R denote an integrable intensity
function on the domain Ω which represents the number of
events per unit area. Based on this definition, a bounded
Lebesgue measure µ can be defined on any subset A ⊆ Ω
as follows:

µ(A) =

∫
A

λ(x)dx (20)

Now let us consider a singleton point process {ζ} which
is characterized by a probability density function f(ζ) =
λ(ζ)/µ(Ω). It is straightforward to verify that

∫
Ω
f(ζ)dζ = 1.

Therefore, for the region A, we can define the probability pA
for ζ ∈ A as follows:

pA = Pr{ζ ∈ A} =

∫
A

f(ζ)dζ =
µ(A)

µ(Ω)
(21)

If NA denotes the number of events in A, the conditional
probability of NA(conditioned on NΩ = |S|) can be expressed
via the binomial law as follows:

Pr{NA = k|NΩ = |S|} =

(|S|
k

)
pkA (1− pA)

|S|−k (22)

According to eq. (22), the i.i.d. spatial point set S defines
a binomial process over the space Ω conditioned on the
cardinality of the point set. When |S| is not specified, the
spatial points follow a Poisson point process [20] described
as NB ∼ Poisson (µ (B)), where µ(B) < ∞ and B is any
bounded subset of Ω. Formally,

Pr{NB = k} =
e−µ(B)µ(B)

k

k!
(23)

Here the mean of the Poisson process µ(B) denotes the
expected number of points in B.
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