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Abstract: This review focuses on the molecular glycovaccine concept, a promising option to develop
a Shigella glycoconjugate vaccine. Subsequent to original developments involving, as main vaccine
component, the detoxified Shigella lipopolysaccharide randomly conjugated at multiple sites to a
carrier protein, novelty stems from the use of rationally designed, well-defined chemically synthesized
oligosaccharide haptens conceived as functional surrogates of the main surface antigen, linked
via single-point attachment onto a carrier. The concept and design of such a fine-tuned Shigella
glycovaccine are presented by way of SF2a-TT15, a neoglycoprotein featuring a synthetic 15-mer
oligosaccharide, which constitutes an original vaccine prototype targeting Shigella flexneri 2a, one
of the predominant circulating strains in endemic settings. The clinical testing of SF2a-TT15 is
summarized with the first-in-human phase I trial in young healthy adults showing a good safety
profile and tolerability, while inducing bactericidal antibodies towards S. flexneri 2a bacteria. The
proof-of-concept of this novel approach being established, an ongoing phase IIa clinical study in the
nine-month-old infant target population in endemic area was launched, which is also outlined. Lastly,
some challenges to move forward this original approach toward a multivalent cost-effective Shigella
synthetic glycan conjugate vaccine are introduced.

Keywords: carbohydrates; conjugate vaccines; glycoconjugates; O-antigens; Shigella; synthetic
glycans

1. Introduction

Diverse strategies have been pursued to develop a Shigella vaccine over the past 100
years. Only two of them have reached phase III clinical trials, namely, orally administered
live attenuated strains and parenterally administered polysaccharide-protein conjugates.
Stemming from their previous achievements in the field of Haemophilus influenzae b (Hib)
vaccination, the concept of Shigella polysaccharide-protein conjugate vaccines was originally
introduced by John B. Robbins and colleagues [1]. Briefly, bacterial polysaccharides that are
key targets of the naturally induced immunity are well-known T-cell independent antigens.
Their conjugation to a carrier protein enables the induction of the desired T-cell dependent
humoral immunity, including priming of the host memory B cells (for a review see [2]). Of
note, several multivalent conjugate vaccines have been successfully implemented against
diseases caused by capsulated bacteria, the highest strain coverage being achieved so far
with the 13-valent Streptococcus pneumoniae licensed vaccine (for a review see [2]).

For Shigella, the main target of protective antibodies is the capsular polysaccharide
when present or the O-antigen (O-Ag) part of the lipopolysaccharide (LPS) [3]. Having
hypothesized in the early 1990s that serum antibodies to Shigella O-Ag could provide
protection by transudation to the intestinal mucosal surface and bacteria inactivation in
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the intestine [1,4], the Robbins’ and Schneerson’s group at the National Institutes of Health
(NIH) extensively investigated the use of detoxified LPSs as the basis for parenteral Shigella
glycoconjugate vaccines. A diversity of “lattice”-type Shigella conjugates—abbreviated as
NIH conjugates—in which the detoxified LPS and the carrier protein are covalently linked
at multiple sites, were generated. The proof of concept of their safety, immunogenicity
and protective efficacy was established in young adults and children (for a review, see [5]).
However, the lack of efficacy of the most advanced S. sonnei NIH vaccine prototype in the
main target population of Shigella infection, i.e., one-to-two-year-old children, encouraged
the search for alternatives to this first generation of conjugate vaccines [5]. Going from
concept to phase II clinical trial, the following provides an overview of our achievements in
the field of synthetic glycan-based Shigella vaccines with focus on SF2a-TT15, a “sun”-type
synthetic glycan-tetanus toxoid (TT) conjugate conceived as a promising S. flexneri 2a
(SF2a) vaccine candidate. Diverging from other options under investigation, the concept of
synthetic carbohydrate hapten takes advantage of the versatility of chemical synthesis and
its potential when aiming at immunogens fine-tuned to drive the antibody response towards
the key protective determinants of the native surface polysaccharide. Providing support
to developments ongoing at Institut Pasteur was a report in 1999 by the NIH team on
the superior immunogenicity of synthetic oligosaccharide-HSA (Human Serum Albumin)
“sun”-type conjugates compared to a “lattice”-type counterpart targeting S. dysenteriae 1 [6].

2. From Polysaccharide Antigens to SF2a-TT15, a Shigella Synthetic Glycan Conjugate
Vaccine Prototype
2.1. Concept: Synthetic Glycans as Surrogates for Shigella O-Ags

Bacterial O-Ags are defined by linear or branched repeats made of up to eight monosac-
charide residues. They feature tremendous disparities in terms of chain length and often
owing to the presence of non-stoichiometric labile and/or phase-associated substitutions,
which may be essential components of the protective epitopes. By essence, detoxified
LPSs are therefore highly heterogenous molecules. Moreover, despite major improvements
over the past decades, conjugate manufacturing is not without risk. The chemical manip-
ulations necessary for LPS extraction, detoxification, and subsequent conjugation of the
polysaccharide material to a suitable carrier contribute to deliver complex poorly defined
glycoconjugates, especially when involving random conjugation at multiple sites on the
polysaccharide component. Key epitopes may be altered and labile O-Ag substitutions
may not survive the process whilst neo-epitopes may be generated. As a result, partial loss
of immunogenicity is not unexpected and quality control is a highly demanding process.
In contrast, the use of a well-defined synthetic O-Ag surrogate, preferably a fine-tuned
oligosaccharide, equipped with a unique orthogonal reactive moiety provides neoglyco-
proteins, whereby a suitable carrier protein is covalently attached to multiple versions of
the selected hapten under a controlled manner. The foundation of the strategy resides in
the early acknowledgement that despite bacterial polysaccharides being large polymers,
anti-polysaccharide monoclonal antibodies recognize glycotopes made of up to six-eight
residues and that sera induced in mice by a disaccharide-protein conjugate could confer re-
sistance to a challenge with S. pneumoniae type 3 bacteria in rabbit. The obtained “sun”-type
glycoconjugates are best defined in terms of protein, oligosaccharide and linker components
as well as conjugation chemistry, site of covalent attachment, and oligosaccharide:protein
molar ratio, respectively (Figure 1). Available data suggest that these different parameters
are inter-related and that they all contribute to the immunogenic properties of the obtained
glycoconjugates [5].
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Figure 1. Key parameters governing the design of “sun”-type synthetic glycan-based conjugates
exemplified for SF2a-TT15. Top left: SF2a-TT15. Bottom right: Biological repeating unit of the SF2a
O-Ag [7]. A = B = C: L-rhamnopyranose, D: N-acetyl-D-glucosamine, E: D-glucopyranose, Ac: acetyl,
TT: tetanus toxoid.

As implemented, the identification of the oligosaccharide component was best achieved
according to a stepwise strategy synergizing between medicinal chemistry, structural vac-
cinology and immunochemistry. Of note, knowledge of the exact nature of the O-Ag
repeating unit is an absolute pre-requirement that governs hapten selection according to
this multidisciplinary strategy. Besides chain length, which translates into the number of
basic O-Ag repeating units, the nature of the endchain residue and the possible presence of
non-carbohydrate substitutions are essential features to take into consideration (Figure 1).

2.2. Design and Properties of SF2a-TT15, a “Sun”-Type Synthetic Oligosaccharide-Based
Conjugate

The SF2a O-Ag is defined by a branched pentasaccharide basic repeating unit, depicted
as AB(E)CD (Figure 1), partially O-acetylated at two sites [7]. At the time the NIH conjugates
were developed, the O-acetylation pattern and the detailed structural elements composing
the protective epitopes were unknown. Taking advantage of TT as a well-established carrier
for human vaccines, focus was on the identification of a suitable synthetic O-Ag surrogate.
This was achieved by use of five murine protective monoclonal IgG antibodies (mIgGs)
and a large panel of synthetic O-Ag substructures, up to a 20-mer oligosaccharide i.e., a
four-repeat O-Ag segment. A two-step process was engaged whereby oligosaccharides
pre-selected in vitro as potential antigenic O-Ag mimics were turned into glycoconjugates
for in vivo assays and fine selection as functional mimics, i.e., for their ability to induce high
titers of protective anti-SF2a LPS IgG antibodies in mice [5]. Briefly, important conclusions
were as follows:

- While the branched B(E)CD segment was identified as a minimal antigenic deter-
minant, the B(E)CD-TT conjugate did not induce any anti-SF2a LPS antibodies in
mice despite eliciting high anti-B(E)CD IgG antibody titers. This discrepancy be-
tween antigenic mimicry and functional mimicry provided a strong support to a
deeper molecular investigation on larger O-Ag segments, also taking into account
conformational and structural mimicry.

- Antibody binding increased with chain length to reach a plateau for oligosaccharides
larger than B(E)CDAB(E)C, suggesting that antigenic mimicry required oligosaccha-
rides longer than one repeat. This observation was comforted by the determination
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of the crystal structure of a mIgG in complex with a synthetic 15-mer ([AB(E)CD]3)
segment. The antibody binding site accommodates a 9-mer glycotope. Six residues
located on two adjacent repeats make direct contact with the antibody, suggesting that
a suitable O-Ag surrogate should comprise at least two contiguous repeats to achieve
structural O-Ag mimicry.

- NMR data in solution revealed strong signal overlap for internal residues only within
the 10-mer ([AB(E)CD]2) and 15-mer ([AB(E)CD]3) segment, suggesting that O-Ag
conformational mimicry was best reached for the latter.

- Recognition of [AB(E)CD]3 by sera from naturally infected or vaccinated individuals,
was superior to that of [AB(E)CD]2 and paralleled that of the LPS isolated from the
SF2a strain used to generate mIgGs.

- Moreover and comforting the above findings, binding data for all five mIgGs revealed
that O-acetylation was not a critical feature of SF2a protective epitopes.

- The blockwise synthesis established at the lab scale of the ready-for-conjugation
15-mer oligosaccharide equipped with an aminolinker at its reducing end [8] was
not considered more demanding than that of the 10-mer equivalent, suggesting that
chemical synthesis was not a limiting factor.

- The immunogenicity of a non-adjuvanted [AB(E)CD]3-TT conjugate far exceeded that
of a [AB(E)CD]2-TT conjugate featuring a similar average oligosaccharide:TT molar
ratio, while no detrimental anti-linker antibody titers were detected. In addition,
conjugates encompassing larger O-Ag synthetic segments or oligosaccharides differ-
ing by their endchain residue did not surpass the 15-mer conjugate (Mulard et al.,
unpublished data).

On this basis, the synthetic 15-mer [AB(E)CD]3, representing three basic O-Ag bi-
ological repeats, was selected as a promising antigenic, structural, conformational, and
functional mimic of the natural antigen. Advantageously for manufacturing purpose,
[AB(E)CD]3 is not O-acetylated, suggesting an enhanced chemical stability and easier qual-
ity controls than for the natural O-Ag, as underlined for classical polysaccharide conjugate
vaccines [9]. Taking advantage of the high-yielding thiol-maleimide conjugation chemistry,
an optimal glycoconjugate composition, named SF2a-TT15 (Figure 1), was identified in
the form of an oligosaccharide:protein molar ratio of 17 (± 5) giving rise, when formu-
lated with aluminum hydroxide (AlH), to long-lasting protective SF2a LPS-specific IgGs in
mice [10]. The original synthesis of SF2a-TT15 was scaled up successfully. A GMP batch
was produced [11]. SF2a-TT15GMP was immunogenic in rabbits and passed all toxicity
criteria [11]. Moreover, SF2a-TT15-induced sera in mice recognized a large panel of SF2a
strains circulating worldwide [11]. Based on these data, this original vaccine prototype was
move forward into a first-in-human evaluation.

3. SF2a-TT15: Safety, Tolerability, and Immunogenicity in a First-in-Human Phase
I Study

A dose-escalating, single-blind, observer-masked, randomized, placebo-controlled
study was performed at the Tel Aviv Sourasky Medical Center in Israel (ClinicalStud-
ies.gov, NCT02797236) [12]. A summary of the study design as well as key safety and
immunological outcomes are presented below.

Two cohorts of 32 participants each were settled to receive 2 µg (cohort 1) and 10 µg
(cohort 2) carbohydrate dose of SF2a-TT15 non-adjuvanted or adjuvanted with AlH or
matching placebos, administered as three intramuscular injections, 28 days apart. Thus,
in each cohort, 12 participants received the adjuvanted vaccine and 12 received the non-
adjuvanted formulation, while two groups of four participants each received the matching
placebos. The tolerability and safety profile were good at both doses with no occurrence of
serious or severe adverse events. This is consistent with the general good safety record of
polysaccharide-protein conjugate vaccines and specifically with that of the NIH SF2a-rEPA
conjugates [5] and more recently Flexyn2a, a bioconjugate vaccine candidate [13].
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All the immunological outcomes evaluated in this clinical study show that both the
low and high oligosaccharide doses of SF2a-TT15, adjuvanted or not, are immunogenic. No
variation over time in the baseline for the tested immunological parameters was noticed
in placebo recipients, indicating the absence of natural exposure to SF2a LPS or any cross-
reacting antigens in the study population during the follow-up. Therefore, the observed
immune response results exclusively from the stimulation of the host immune system by the
vaccine candidate. Focusing on the anti-SF2a LPS IgG response, IgG2 titers predominantly
increase, followed by IgG1 titers, similarly to the pattern elicited by the first generation
of SF2a conjugates and natural SF2a infection. Compared with the low dose, the 10 µg
carbohydrate dose is much more potent, inducing stronger anti-SF2a LPS IgG titers both
in magnitude and percentage of responders, from the first injection with no additional
effect of the subsequent ones. The absence of boosting has also been reported following
vaccination of Israeli adult volunteers with the NIH SF2a conjugates [5] administered
at higher doses, and more recently in American adult recipients of Flexyn2a at a 10 µg
polysaccharide dose regimen [13]. Adjuvanting with AlH improved the anti-SF2a LPS
IgG titers induced by the low, but not the high SF2a-TT15 dose. It also contributed to the
sustained antibody response measured at three months after the third injection for both
doses. These results differ from the observation that AlH had no impact on the immune
response of adult volunteers, at least 28 days after one or two injections, to the SF2a lattice-
type conjugate and bioconjugate vaccines, respectively [5,13]. In the case of SF2a-TT15, both
the evaluation of a lower carbohydrate dose and the longer follow-up after the 10 µg dose
might have uncovered the added value of the use of AlH as adjuvant. The functionality of
vaccine-induced antibodies as measured by serum bactericidal activity (SBA) was robust
whatever the saccharide dose used. A strong correlation was reported between SBA and
the magnitude of the SF2a-TT15-induced anti-SF2a LPS IgG response. Significant rises
in the anti-SF2a LPS IgG memory B-cell percentage was observed for both doses, with
the high dose formulations out-performing the low ones, suggesting a successful priming
and longevity of the anti-SF2a immune responses induced by this fine-tuned synthetic
glycan-based conjugate. While no data are available for the first Shigella polysaccharide
conjugates, such a memory B-cell priming was recently reported for Flexyn2a [14].

The potential of Shigella glycoconjugate vaccines to stimulate the immune system
of naive individuals is a matter of debate. In particular, concern arose from the lack of
immunogenicity, correlated to the lack of protection, observed in recipients of the NIH
S. sonnei conjugate under the age of three, whereas older children and young adults,
supposedly immunologically primed by natural infection, were protected [15]. In this
context, the impact of pre-existing immunity on the immunogenicity of SF2a-TT15 comes
into question. However, detectable serum IgG antibodies to SF2a do not necessarily mean
pre-exposure to homologous bacteria. They can reflect cross-reactivity with LPSs from
other Enterobacteriaceae, shown to increase with age and reported in previous Shigella
vaccine studies in the USA or Europe [3]. More importantly, the extent of the naive status
in the target population, i.e., nine-month-old infants in LMICs, is being questioned. Indeed,
accumulating epidemiological data [16] show that there is already substantial exposure to
SF2a at three to six months of age. Therefore, conducting a phase IIa study in the target
population in endemic settings is the only option to assess the real potential of this unique
type of Shigella vaccine.

4. SF2a-TT15: Ongoing Phase IIa Clinical Study to Assess Safety, Tolerability and
Immunogenicity in the Target Infant Population Living in Endemic Areas

Based on the good safety profile and immunogenicity of SF2a-TT15 in young adults
in a high-income country setting, together with its suitable stability profile, a single site,
double-blind, observer-masked, randomized, placebo-controlled, age-descending phase
IIa study was launched at Kenya Medical Research Institute (KEMRI), Kericho, Kenya
(ClinicalTrials.gov Identifier: NCT04602975). The purpose of this study is to examine in
nine-month-old infants, the safety and immunogenicity of two vaccine doses—2 µg and
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10 µg of oligosaccharide equivalent adjuvanted or not with AlH, respectively, as previously
tested in the phase I trial [12]—after two intramuscular injections three months apart,
followed by a third injection six months later. Of note, at the second and third injections,
the infants will be concomitantly administered with SF2a-TT15 and a measles-rubella (MR)
vaccine (one per arm) to match with the MR kenyan expanded program of vaccination.
Based on safety and tolerability evaluation after the first injection, an independent data
safety monitoring committee (IDMC) will give recommendation to move from the adult
cohort 1 (18–50-year-old subjects, 12 vaccinees receiving the 10 µg oligosaccharide dose
of the vaccine formulated with AlH and four placebos) to the children cohort 2 (two-to-
five-year-old subjects, same dosing and number of subjects as cohort 1), and then to the
nine-month-old infants cohort 3. For the latter, IDMC recommendation will allow to move
from cohort 3A receiving the 2 µg oligosaccharide dose with and without AlH (40 subjects
each plus 10 subjects for each matching placebo, thus a total of 100, cohort 3A) to cohort 3B
receiving the 10 µg oligosaccharide dose adjuvanted or not, with the same distribution of
subject number as for cohort 3A.

The study has started in October 2020 and is progressing well: cohorts 1 and 2 have
received the three injections, cohorts 3A and 3B have received the second and first injection,
respectively. The final report, including a 6-month follow-up after the third injection, is
expected by mid-2023.

Not the least and in complement to the above, a controlled human infection model
study (CHIM, phase IIb clinical trial) was approved to assess the protective efficacy of SF2a-
TT15 while confirming its tolerability, reactogenicity, and immunogenicity in supposedly
Shigella non-exposed western volunteers. The study was launched at the Center for Vaccine
Development (CVD, University of Maryland, Baltimore, MD, USA) in February 2022
(ClinicalTrials.gov Identifier: NCT04078022).

5. Toward a Multivalent Synthetic Glycan-Based Shigella Vaccine Providing Broad
Strain Coverage

Besides promoting the phase II clinical trials, the feasibility and successful outcome
of the phase I study with the monovalent SF2a-TT15 vaccine prototype revealed the strat-
egy and fostered its further development to provide a multivalent Shigella glycovaccine
suited to answer the need in the field, i.e., to cover a highly diverse panel of circulating
strains. In fact, promising original preclinical data obtained early on for SF2a-TT15 [17]
incited upstream investigation to identify O-Ag synthetic oligosaccharide mimics of the
predominant Shigella circulating strains as updated [18], also considering the potential for
cross-reactivity based on O-Ag repeats and polysaccharide dynamics [7,19]. As briefly
highlighted below, the very diverse O-Ags under consideration (Figure 2) generated major
synthetic challenges, all of which were overcome to achieve convincing synthetic glycan-
based immunogens and promising combinations thereof (Mulard et al., unpublished data).
Of special interest, the S. sonnei O-Ag represents a unique challenge owing to its zwitteri-
onic disaccharide repeat [20]. Nevertheless, oligosaccharides representing O-Ag segments
of various composition and length were synthesized [21,22], paving the way to a library of
neoglycoconjugates demonstrating remarkable immunogenicity in mice [23]. Alternatively,
the synthesis of a large set of S. flexneri 6 (SF6) oligosaccharides enabled the identification
of an immunodominant epitope central to further developments (Chassagne et al., unpub-
lished data) [24]. Promising immunogenic SF6 conjugates differentiated by their synthetic
oligosaccharide component were achieved (Bouchet et al., unpublished data). Likewise,
the SF2a experience was exploited for S. flexneri 3a (SF3a). This work underlined the need
for oligosaccharides comprising multiple O-Ag repeats [25]. The synthetic feasibility of
such larger SF3a oligosaccharides diverging by their endchain residue and O-acetylation
pattern was demonstrated [26,27] and highly immunogenic TT-conjugates thereof were
delivered (Hu et al., unpublished data). A bivalent SF2a/SF3a vaccine candidate was
shown to be highly immunogenic in mice and no immune interference was detected [28].
Finally, well-defined frame-shifted oligosaccharides representing the S. flexneri 1b (SF1b)
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O-Ag were obtained (Le Guen et al., unpublished data) [29], on the way to promising SF1b
glycoimmunogens. These remarkable advancements allowed the preclinical testing of sets
of combinations of synthetic oligosaccharide-based conjugates representing the four Shigella
strains to be targeted for the first licensed Shigella vaccine (International Shigella Vaccine
meeting, Bill and Melinda Gates Foundation, Seattle, 2017). Available immunogenicity data
support the concept (Phalipon et al., unpublished data). This constitutes a promising step
towards the feasibility of this synthetic oligosaccharide-based strategy for developing a
multivalent Shigella vaccine.
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GlcpNAc (D): 2-acetamido-2-deoxy-glucopyranose (N-acetyl-glucosamine), Glcp (E): glucopyra-
nose, GalpA (C’): galactopyranuronic acid, GalpNAc (D’): 2-acetamido-2-deoxy-galactopyranose
(N-acetyl-galactosamine), AltpNAcA (A”): 2-acetamido-2-deoxy-altropyranuronic acid (N-acetyl-
altrosaminuronic acid), FucpNAc4N (B”): 2-acetamido-4-amino-2,4,6-trideoxy-galactopyranose
(AAT).

6. Conclusions

Despite numerous promising preclinical data [30], the fear of chemical synthesis—
essentially owing to anticipated cost of goods and complexity—has somewhat impaired
the development of the synthetic glycan-based vaccine strategy. It is noteworthy that
Quimi-Hib® [31] is so far the sole licensed vaccine of that type. However, this is without
considering major recent developments in glycan chemical synthesis [30] and the increas-
ingly acknowledged input of glycan chemoenzymatic synthesis [32], an alternative already
explored successfully to obtain the SF2a 15-mer hapten [33]. With these groundbreaking
and rapid technological advancements, the strategy represents more than ever a poten-
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tially cost-effective option for the design of high promise vaccines against major human
infectious diseases. The demonstration of the proof of concept in humans for SF2a-TT15
assuredly contributed to the promotion of this approach. Obviously, the awaited findings
of the ongoing phase II clinical studies, if supportive, will further strengthen its potential.
A first-in-human evaluation of the quadrivalent formulation fulfilling all identified criteria
will be the ultimate stage to assess the future of this original rationally designed synthetic
oligosaccharide-based conjugate strategy for a broadly distributed Shigella vaccine.
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