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ARTICLE

Preclinical characterization and target validation
of the antimalarial pantothenamide MMV693183
Laura E. de Vries 1,25, Patrick A. M. Jansen2, Catalina Barcelo3, Justin Munro4, Julie M. J. Verhoef 1,

Charisse Flerida A. Pasaje 5, Kelly Rubiano6, Josefine Striepen 6, Nada Abla3, Luuk Berning 7,

Judith M. Bolscher7, Claudia Demarta-Gatsi 3, Rob W. M. Henderson7, Tonnie Huijs7, Karin M. J. Koolen7,

Patrick K. Tumwebaze8, Tomas Yeo 6, Anna C. C. Aguiar9, Iñigo Angulo-Barturen 10, Alisje Churchyard 11,

Jake Baum 11, Benigno Crespo Fernández12, Aline Fuchs3, Francisco-Javier Gamo12, Rafael V. C. Guido 9,

María Belén Jiménez-Diaz10, Dhelio B. Pereira 13, Rosemary Rochford14, Camille Roesch 15,16,

Laura M. Sanz 12, Graham Trevitt17, Benoit Witkowski15,16, Sergio Wittlin18,19, Roland A. Cooper20,

Philip J. Rosenthal21, Robert W. Sauerwein1,7, Joost Schalkwijk 2, Pedro H. H. Hermkens22, Roger V. Bonnert3,

Brice Campo 3, David A. Fidock 6,23, Manuel Llinás 4,24, Jacquin C. Niles 5, Taco W. A. Kooij 1,26✉ &

Koen J. Dechering 7,26✉

Drug resistance and a dire lack of transmission-blocking antimalarials hamper malaria elim-

ination. Here, we present the pantothenamide MMV693183 as a first-in-class acetyl-CoA

synthetase (AcAS) inhibitor to enter preclinical development. Our studies demonstrate

attractive drug-like properties and in vivo efficacy in a humanized mouse model of Plasmodium

falciparum infection. The compound shows single digit nanomolar in vitro activity against

P. falciparum and P. vivax clinical isolates, and potently blocks P. falciparum transmission to

Anopheles mosquitoes. Genetic and biochemical studies identify AcAS as the target of the

MMV693183-derived antimetabolite, CoA-MMV693183. Pharmacokinetic-pharmacodynamic

modelling predict that a single 30mg oral dose is sufficient to cure a malaria infection in

humans. Toxicology studies in rats indicate a > 30-fold safety margin in relation to the pre-

dicted human efficacious exposure. In conclusion, MMV693183 represents a promising

candidate for further (pre)clinical development with a novel mode of action for treatment of

malaria and blocking transmission.
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Malaria remains a significant global infectious disease,
caused by parasites of the genus Plasmodium. In the
past two decades there was a major decline in malaria

cases and deaths, however, this progress has stalled, emphasizing
the need for new interventions1. Drug resistance against many
front-line therapies is emerging and spreading around the world,
threatening the efficacy of these drugs1–3. There is an urgent need
for new therapeutics to combat the spread of resistance and to
progress towards malaria elimination. Target product profiles
and target candidate profiles were developed to guide the dis-
covery and clinical development of new antimalarials4. Current
approaches for new malaria treatments aim for a combination of
two or more inexpensive, potent, fast-acting molecules that act on
multiple parasite stages and provide a single dose cure4. Com-
pounds with new modes of action are favored since no pre-
existing resistance in the field would be expected.

Coenzyme A (CoA) is required for numerous processes within
the cell, including lipid synthesis, protein acetylation, and energy
supply, and it is highly conserved among prokaryotes and
eukaryotes5. Plasmodium parasites rely on this pathway by uptake
of the essential nutrient pantothenic acid (pantothenate or vitamin
B5) that is converted into CoA in five enzymatic reactions6–8. The
CoA biosynthesis pathway in Plasmodium species has been con-
sidered a potential drug target since the discovery of the anti-
microbial activity of pantothenic acid derivatives in the 1940s9.
Different libraries of pantothenic acid derivatives have been syn-
thesized since9, however, due to poor stability in human serum
they have never been developed into clinical candidates10–12.

In the past decade, the focus has been on developing stable
pantothenamides (PanAms), in which the terminal carboxyl group
of pantothenic acid is replaced by amides12–14, including our
recently synthesized PanAm with an inverted-amide bond
(iPanAms)15. These stabilized iPanAms have micromolar activity
against gram-positive bacteria16,17, and an IC50 of 0.95 µM against
Toxoplasma gondii18. Furthermore, PanAms are highly potent
against pathology-causing asexual blood stages and transmittable
gametocytes of Plasmodium falciparum, consistent with the
essentiality of several enzymes of the CoA pathway in both life-
cycle stages19–21. This indicates their potential to be developed
into antimalarials that target a wholly novel pathway thereby
curing the disease and blocking transmission to the mosquito host.

The exact mechanism of action of PanAms has been debated
extensively, with pantothenate uptake, pantothenate kinase or
CoA-utilizing processes as possible targets7,8,15,21–23. The latest
studies have indicated that the latter is the likely target. PanAms
are metabolized by three enzymes of the CoA biosynthesis
pathway, and form analogs of CoA pathway metabolites,
including 4’P-PanAm, dP-CoA-PanAm and CoA-PanAm15,21,22.
A combination of biochemical and genetic approaches have
demonstrated that these antimetabolites likely target the down-
stream enzymes acetyl-CoA synthetase (AcAS; PF3D7_0627800)
and acyl-CoA synthetase 11 (ACS11; PF3D7_1238800), thereby
inhibiting the synthesis of acetyl-CoA15. However, definitive
proof of drug-enzyme interactions remained elusive.

Here, we describe the generation of the novel pantothenamide
MMV693183 and demonstrate that its CoA-PanAm metabolite
targets AcAS. Moreover, MMV693183 has improved potency and
metabolic stability, and a prolonged killing effect in a humanized
mouse model of P. falciparum in comparison to previously
described PanAms, and thus meets the requirements for further
(pre)clinical development4.

Results
MMV693183 is a potent antimalarial drug candidate. We
recently synthesized a novel class of iPanAms with an inverted-

amide bond that resulted in compound MMV689258 (1) with a
limited predicted half-life in humans15. Therefore, we continued
chemical optimization, and a subseries of potent compounds with
a (hetero)aromatic ring directly coupled to the inverted amide
was generated24. In general, nitrogen-containing heteroaromatics
such as pyrrole and pyridine showed relatively poor potency
(Supplementary Tables 1 and 2). Indoles exerted reasonable
activity, with attachment at the 3-position slightly dominant over
the 2-position. The most active heterocycle was a 3-substituted
benzofuran with an IC50 of 3.9 nM against P. falciparum asexual
blood-stage parasites. Exploration of phenyl substitutions showed
a preference for F, Cl, and CN over polar groups like amines and
sulphones. Combinations showed best activity for 2,3 and
1,4 substitutions or 1,3,4-trifluoro or 1,3-fluoro, 4-chlorine. A
subset of these iPanAms with an average IC50 of < 16 nM against
asexual blood stages was further profiled and five of these showed
lower clearance in human primary hepatocytes compared to
MMV689258, potentially leading to a longer half-life in humans.
In addition, they showed activity against sexual blood-stage P.
falciparum parasites with an average IC50 value of ≤ 31 nM except
for one PanAm that was not active up to 1 µM against gameto-
cytes (Table 1).

As previous experiments have shown that the in vivo efficacy of
MMV689258 outlives its plasma exposure25, we performed a single
dose survey to investigate to what extent the new iPanAms show a
similar effect. To this end, humanized mice were infected with P.
falciparum and treated with a single dose of 50mg/kg of PanAm
by oral gavage. For all compounds, blood concentrations decreased
rapidly over time and were either below or near the detection limit
(5 ng/ml) after 24 h. In spite of the rapid elimination, MMV693183
(2), MMV884962 (3), and MMV1542001 (4) reduced parasitemias
below detectable levels over the course of three days, while
parasitemias were not fully cleared upon treatment with
MMV689258, MMV693182 (5), and MMV976394 (6) (Fig. 1a;
Table 1; Supplementary Table 3). Attempts to obtain crystalline
forms of the six iPanAms, important for future drug formulation
in tablets, were only successful for MMV689258, MMV693183,
and MMV693182 (Supplementary Fig. 1), and resulted in favorable
melting temperatures for the latter two compared to MMV689258
(Table 1). MMV693183 was selected as an advanced lead
compound for further study, as it combined all improved
characteristics. Furthermore, it was highly soluble in PBS, as well
as in fasted- and fed-state simulated intestinal fluids (7.1, 9.2,
9.1 mg/ml, respectively) (Supplementary Table 4). MMV693183
was also chemically stable after storage under stress conditions
(40 °C, 75% relative humidity in an open and closed container or at
60 °C) (Supplementary Fig. 2).

Asexual blood-stage parasites treated with MMV693183 in a
parasite reduction rate (PRR) assay showed rapid killing activity.
Parasitemia was reduced within 24 h and to below the detection
limit within 48 h (Supplementary Fig. 3). This profile is similar to
artemisinins26 that constitute the fastest-acting class of clinical
antimalarials available to date. MMV693183 was active against
both early and late asexual blood stages (Supplementary Fig. 4),
but was not efficacious against liver stages (Supplementary Fig. 5),
similar to previous findings15. Treatment of gametocytes 24 h
before feeding to A. stephensi, inhibited oocyst formation with an
IC50 value of 38 nM (Fig. 1b), but treatment with 1 µM directly at
the time of the mosquito feeds did not inhibit midgut infection
(Fig. 1c), confirming the gametocytocidal mode of action.
MMV693183 specifically inhibited female gametocyte activation
with an IC50 value of 12 nM, whereas male gamete formation was
inhibited much less with an IC50 value of 1 µM (Fig. 1d). We also
performed ex vivo activity assays against P. falciparum and
P. vivax field isolates from Uganda and Brazil and against
artemisinin-resistant P. falciparum Cambodian field isolates
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adapted to in vitro culture. Encouragingly, all isolates were
sensitive to the drug, with low nanomolar IC50 values (Fig. 1e;
Supplementary Fig. 6).

A role for AcAS in the mechanism of action of MMV693183.
In vitro evolution and whole-genome analysis (IVIEWGA)
experiments identified a single point mutation in AcAS
(PF3D7_0627800) resulting in a T648M amino acid change
(dT648M) in P. falciparum Dd2-B2 and NF54 strains pressured at
sublethal concentrations of MMV693183 (Supplementary Tables 5
and 6). Exposing different inocula of Dd2-B2 parasites to the
compound cleared parasites within a few days up to an inoculum
size of 1×108 and yielded no parasite recrudescence when
followed for 60 days. At an inoculum of 1×109 Dd2-B2
parasites did not fully clear and MMV693183 resistant parasites
emerged over the course of 30 days (Supplementary Table 5,

Supplementary Fig. 7). These resistant parasites showed a 13-77×
IC50 shift against MMV693183 in an asexual blood-stage growth
assay and also resulted in resistant gametocytes (> 50× IC50 shift)
(Fig. 2a) that were able to transmit to mosquitoes (Supplementary
Fig. 8a-c). CRISPR-Cas9 engineering of this mutation in wild-type
parasites (cT648M) confirmed the resistance phenotype observed
for the T648M mutation (dT648M) in both asexual and sexual
blood stages (49× and > 50× IC50 shift, respectively), and con-
ferred cross-resistance to previously generated iPanAms (Fig. 2a,
Supplementary Fig. 9)15. In addition, mutant parasites with
a previously described T627A mutation in AcAS15 were also
resistant to MMV693183 (Fig. 2a). Metabolomic profiling showed
that MMV693183 was metabolized into three CoA-precursors
(Fig. 2b, bottom panel, Supplementary Fig. 10) and reduced
acetyl-CoA and 4-phosphopantothenate levels in infected RBCs
in a dose-dependent manner (Fig. 2b, upper panel). This is in line

Table 1 Physicochemical characteristics and in vitro activities of pantothenamides.

Compound Chemical structure Asexual
blood
stage IC50

range (N)

Gametocyte
IC50 range
(N)

Human
hepatocyte
CLint (µl/min/
106 cells)

Molecular
Weight
(g/mol)

Crystalline Melting
temperature (°C)

(1)
MMV689258

5* nM 12* nM 0.8 354.4164 Yes 48.1

(2)
MMV693183

2.1-2.8 (4)
nM

17.8-
38.8 (3) nM

0.4 362.3441 Yes 91.6

(3)
MMV884962

7.4-12 (2)
nM

2.2-5.9 (2)
nM

0.3 333.3822 No N/A

(4)
MMV1542001

1.9-2.4 (2)
nM

2.0-9.9 (2)
nM

0.5 326.3632 No N/A

(5)
MMV693182

6.2-7.5 (2)
nM

21.4-
32.9 (2) nM

0.2 351.3727 Yes 107.9 (1-1)
112.7 (1-2)

(6)
MMV976394

6.2-
24.9 (2)
nM

> 1 µM (2) 0.2 337.3461 No N/A

IC50 values were determined using a nonlinear regression with four-parameter model and the least-squares method to find the best fit. The IC50 range is shown from two to four independent experiments
(N) with technical duplicates measured in a 72-h asexual growth assay or sexual viability assay. Crystallization of MMV693182 resulted in two polymorphs. *Data retrieved from Schalkwijk et al.15. N/A:
not applicable. Source data are provided as Source Data file.
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with previous observations of PanAm antimetabolite generation
and suggests inhibition of AcAS function.

To further confirm a role for AcAS in the mechanism of action
to MMV693183, we used the previously generated AcAS
conditional knockdown parasite line27 based on the TetR-DOZI
system that allows repression of translation of the target gene
when the drug anhydrotetracycline (aTc) is removed28,29. We
cultured conditional knockdown AcAS parasites (AcAS-cKD)
and control knockdown parasites (control-cKD) in low aTc (1.5
or 0 nM aTc, respectively) or high aTc (500 nM) conditions and
exposed them to different doses of MMV693183. The IC50 for the
AcAS-cKD parasite line decreased 5-fold upon knockdown
conditions (low aTc), showing hypersensitivity of these parasites
to the compound, while there was no difference in sensitivity for
the negative knockdown control (Fig. 2c). This supports our
hypothesis that PanAms inhibits P. falciparum growth in an
AcAS-dependent manner.

CoA-PanAm targets AcAS. To provide conclusive evidence that
iPanAms directly bind to AcAS, thereby inhibiting AcAS activity,
we used the recently developed cellular thermal shift assay
(CETSA)30,31 to test the thermal stability of AcAS upon treatment
with iPanAms. Rabbits were immunized with a recombinant
AcAS fragment and the induced anti-serum was used to detect
AcAS (Supplementary Fig. 11). Following incubation of asexual
blood-stage lysate with compounds for 30 min, neither the parent
compound MMV693183 nor its derivative 4’P-MMV693183
affected AcAS stability. However, the CoA-MMV693183 meta-
bolite clearly stabilized AcAS upon temperature increase (Fig. 3a).
This supports the notion that iPanAms form active CoA-PanAm
antimetabolites that target AcAS. To provide further evidence
that CoA-PanAm targets AcAS, we immunopurified AcAS from
wild-type and cT648M parasite lysates and established an AcAS
activity assay. CoA-MMV693183 inhibited wild-type AcAS
activity with an IC50 of 300 nM, while it only weakly inhibited
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Fig. 1 Antimalarial activity of the pantothenamide MMV693183. a In vivo activity of novel pantothenamides. NSG mice were infected with P. falciparum
on day 0. Mice were treated with pantothenamides by oral gavage (50mg/kg) (N = 2/compound) on day 4 (arrow) and parasitemia was quantified every
day from day 3 onwards (top panel). The corrected concentration of pantothenamides in blood is indicated in the bottom panel. b The activity of
MMV693183 on P. falciparum (NF54-HGL) stage V gametocytes treated for 24 h before mosquito feeding in a single experiment with two replicates
(feeder 1, 2). Oocyst intensity was measured by luminescence eight days after the feed. c Oocyst intensities in mosquito midguts when P. falciparum
(NF54-HGL) stage V gametocytes were exposed to 1 µM MMV693183, 100 nM atovaquone, or 0.1% DMSO within the mosquito blood meal. Oocyst
intensity was quantified by luminescence eight days after feeding in a single experiment with two replicates (feeder 1, 2). d Dual gamete formation assay
upon treatment of female or male gametocytes with MMV693183 in four independent experiments (±SD). Typically, 150-250 exflagellation centers or
2000-3000 female gametes per field were recorded in the negative controls. e Ex vivo activity of MMV693183 against field isolates of P. falciparum from
Uganda (N = 230) in a parasite growth assay and against field isolates of P. falciparum (N = 6) and P. vivax (N = 5) from Brazil in a schizont maturation
assay. Median IC50 values and 5-95 percentile are shown in a Box-Whisker plot for the field isolates from Uganda. Minimum: 0.3 nM, maximum: 11.0 nM,
box: 25-75 percentile, whiskers: 5-95 percentile. CQ, chloroquine. Source data are provided as Source Data file.
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mutant AcAS. 4’P-MMV693183 only showed poor or no activity
against wild-type or mutant AcAS, respectively (Fig. 3b). This
shows for the first time that the CoA-PanAm is the active
metabolite that inhibits AcAS.

AcAS is predicted to provide acetyl-CoA for a variety of
processes in the parasite, including fatty acid elongation in the
endoplasmic reticulum and post-translational modifications in
the cytosol and nucleus27,32–35. To begin to explore whether
inhibition of AcAS could affect these downstream pathways,
we studied the localization of AcAS using an endogenous GFP-
tagged AcAS parasite line (Supplementary Fig. 12a-b). AcAS-
GFP demonstrated a widespread, undefined intra-parasitic
localization, although it was unclear whether it is also
expressed in the nucleus in P. falciparum (Fig. 3c), as
previously observed in apicomplexan parasites27,32,36,37. We
also stained wild-type parasites with AcAS immune serum. A
possible perinuclear and/or cytoplasmic signal was observed
consistent with Prata et al.35, but we could not detect an
evident nuclear signal (Supplementary Fig. 13), which was
observed recently27,35.

Pharmacokinetic properties. Pharmacokinetic (PK) studies were
performed in order to support a human dose prediction. The
MMV693183 PK profiles in mice, rats, and dogs were examined
using two-compartment models that were fit to plasma
concentration-time data observed after oral and intravenous
dosing (Supplementary Fig. 14, Supplementary Tables 7–9). Even
though a Caco-2-permeability assay suggested moderate absorp-
tion and active efflux in vitro (Supplementary Table 10),
MMV693183 was absorbed rapidly (Tmax of 0.5 h) in vivo and
had an excellent oral bioavailability (64% in dogs to 121% in rats)
(Supplementary Tables 7–9). The total clearance was 13.4, 21.1,
and 11.5 ml/min/kg, and the half-life was 1.2, 3.1, and 4.2 h in
mice, rats and dogs, respectively (Supplementary Tables 7–9). The
plasma protein binding was overall low (ranging from 33% in
mouse to 52% in human plasma) (Supplementary Table 11) and
the blood to plasma ratio ranged from 0.91 to 0.98. The main
route of metabolism in an in vitro human hepatocyte relay
assay was an oxidation, followed by a glucuronide conjugation
and dehydrogenation of the hydroxyl groups (Supplementary
Table 12). An in vitro CYP reaction phenotyping assay using
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Fig. 2 Role of AcAS in the mode of action of MMV693183. a Drug-sensitivity profiles with asexual (upper panel) or sexual (lower panel) blood-stage
parasites without a mutation (NF54-HGL) or with a T648M or T627A mutation in AcAS. An MMV693183-selected resistant parasite line (dT648M) was
tested in one experiment with two technical replicates and the CRISPR-engineered parasites (cT648M and cT627A) were tested in three independent
experiments (two technical replicates per experiment). The average value for mean parasite density relative to controls ± SEM are shown. b Concentration-
dependent changes in levels of endogenous metabolites (upper panel) and pantothenamide antimetabolites (lower panel) upon treating P. falciparum-
infected RBCs with MMV693183 or no drug. 3D7 parasites were synchronized at the trophozoite stage and treated with increasing concentrations of
compound for 2.5 h and (anti)metabolites were quantified in two independent experiments with three technical replicates. Untreated parasites represent
the background levels of MMV693183 metabolites. CoA could not be identified in the second experiment, therefore, only data from the first experiment are
shown for the CoA level. The fold change is determined relative to no drug control (0 nM). Pan: pantothenate; 4’P-Pan: 4’-phosphopantothenate; Ac-CoA:
acetyl-CoA. c Drug-sensitivity assays on conditional knockdown parasites of AcAS (upper panel) or a control target (lower panel) on asexual blood stages
at low or high aTc were tested in three independent experiments (N = 3). The graphs show parasite survival based on a luminescence readout compared to
controls ± SEM. aTc, anhydrotetracycline. Source data are provided as Source Data file.
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human recombinant enzymes showed that CYP3A4, CYP3A5
and, to a lower extent, CYP2C19 were responsible for the oxi-
dative metabolism of MMV693183 (Supplementary Fig. 15). In
plasma and urine collected from dogs, we also detected oxidized,
dehydrogenized and glucuronide-conjugated metabolites (Sup-
plementary Table 13). In rats, 36-40% of the drug was eliminated
in urine, while in dogs this was calculated to be 8.9%, excluding
values from two dogs with only <20 ml urine (Supplementary
Tables 14 and 15). Metabolic stability of MMV693183 was
assessed in primary hepatocytes from mice, rats, and dogs. The
observed values correlated well with the non-renal clearance
observed in vivo, suggesting that the non-renal clearance is
mainly via a hepatic route (Supplementary Table 16). For mice,
no renal clearance data were available, but the total observed
in vivo clearance amounted to 13.4 ml/min/kg whereas the pre-
dicted hepatic clearance was 7 ml/min/kg. This implies that
6.4 ml/min/kg (48%) of total clearance was contributed by the
kidney, in line with the proportion of renal clearance in rats. In an

in vitro CYP induction assay performed in cryopreserved human
hepatocytes from three donors, MMV693183 induced CYP3A4 at
concentrations greater than 150 µM, and did not induce CYP1A2
nor CYP2B6 at concentrations up to 500 µM. A concentration-
dependent increase in CYP3A4 mRNA was observed in 2 out of 3
donors, and the maximum fold induction observed was rather
modest: 3.6-fold at 500 µM (Supplementary Table 17).

Human pharmacokinetic predictions. Two approaches were
considered to predict human clearance. First, simple allometry
predicted a clearance exponent of 0.967 (Supplementary Fig. 16),
which was higher than typical ranges for this parameter
(0.67–0.75)38. Consequently, a maximum life-span potential
(MLP) correction was implemented resulting in an estimated
total clearance of 1.8 ml/min/kg39. Second, human clearance was
estimated from in vitro hepatocyte clearance assays. In a panel of
cells from four different human donors, clearance ranged from
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0.07 to 0.4 µl/min/106 cells (Supplementary Table 18). Using the
highest value (worst-case scenario) human hepatic clearance was
predicted at 0.51 ml/min/kg. Human renal clearance was pre-
dicted at 0.60 ml/min/kg (Supplementary Table 19) based on
renal clearance in dogs corrected for plasma protein binding
(52%; Supplementary Table 11) and kidney blood flow, which was
previously shown to be a good predictor40. Given the excellent
correlation between the in vitro and in vivo data for the animal
studies (Supplementary Table 16), the in vitro hepatocytic
clearance prediction of 0.51 ml/min/kg was preferred over the
allometry-derived value to predict total human clearance. This
yielded a total clearance of 1.11 ml/min/kg, and a predicted
human half-life of 32.4 h. Further human PK parameters were
predicted using allometric scaling (Supplementary Fig. 16). Based
on the Caco-2 permeability and thermodynamic solubility data
(Supplementary Tables 4 and 10), the bioavailability was pre-
dicted to be 96% (GastroPlus) in line with a class I drug according
to the biopharmaceutical classification system of the US Food and
Drug Administration41. The predicted human parameters are
shown in Supplementary Table 19.

Prediction of the human efficacious dose using a PKPD model.
In vivo efficacy data from three female NSG mice studies were
pooled to evaluate the PK-pharmacodynamics (PD) relationship
of MMV693183 and derive key PD parameters such as MIC and
MPC90

42. For all single-dose groups, the concentration of
MMV693183 decreased to near or below the in vitro-determined
IC99 (36.1 nM) corrected for its free fraction (67% in mice) within
24 h (Supplementary Fig. 17), while 3D7 parasites were being
cleared at 4–6 days. At later time points, these parasites recru-
desced in all treatment groups (Supplementary Fig. 18). The PK
profiles were well captured by a three-compartment PK model
with zero-order absorption and a linear elimination (Supple-
mentary Fig. 17 and Supplementary Table 20). PD parameters
were estimated using an in vitro clearance model which is based
on the Emax model where the maximum killing rate was derived
from the in vitro killing rate data while parasite clearance was
estimated from the in vivo observations of parasitemia in time.
The model describes efficacy as function of MMV693183 plasma
concentration and showed an excellent fit to the in vivo data,
including the recrudescence at later timepoints (Supplementary
Fig. 18 and Supplementary Table 21). The combined PKPD

model predicted a MIC and MPC90 of 3.2 and 38.4 ng/ml,
respectively (Supplementary Table 22).

The human doses needed to achieve a 9 log total parasite
reduction were predicted at 10 and 20 mg using the total
clearance values from in vitro and allometric prediction,
respectively (Fig. 4a). To achieve a 12 log total parasite reduction,
the predicted doses were 15 and 30 mg, respectively (Fig. 4a,
Supplementary Table 23). A local sensitivity analysis was
performed on total clearance and EC50 to evaluate the impact
of the variation of both parameters on the human efficacious dose
prediction. The most sensitive parameter for dose prediction was
total clearance (Fig. 4b).

MMV693183 safety. Given that CoA metabolism clearly plays a
central and crucial role in human cells, it was important to
examine whether MMV693183, like MMV68925815, acts selec-
tively and specifically on the parasite without affecting the human
host. Our studies revealed that treatment with MMV693183 was
not cytotoxic to HepG2 cells. Since cell lines may be less meta-
bolically active, we also examined the cytotoxicity in primary
human or rat hepatocytes and did not find any cytotoxic effects
(Supplementary Table 24). Furthermore, MMV693183 treatment
did not affect human cardiac ion channels, including the Kv11.1
(hERG) channel, and MMV693183 was negative in AMES and
micronucleus tests (Supplementary Table 24). In addition,
MMV693183 did not show cross-reactivity to a panel of human
receptors, enzymes, or channels. In this cross-reactivity assay,
inhibition was <50% at a test concentration of 10 µM (Supple-
mentary Table 24). A UV-scan did not reveal a liability for
phototoxicity as there was no detectable absorption above 290 nm
(Supplementary Table 24). Unlike the prophylactic antimalarial
drug primaquine, MMV693183 did not show signs of hemolytic
toxicity in a mouse model of human G6PD deficiency (Supple-
mentary Fig. 19)43.

Preliminary in vivo safety of MMV693183 was tested in rats
with a seven-day repeat maximum tolerated dose study (MTD1)
with 60, 200, and 600 mg/kg/day and a seven-day PK study at 60
and 200 mg/kg/day. In both studies body weight was unchanged,
and no mortality occurred during the observation period, in any
of the dose groups. Hematological and clinical chemistry
parameters monitored in the MTD1 study showed no significant
treatment-related deviations. Importantly, glucose, triglyceride,
or urea concentrations, which were altered upon chemical

a b

Fig. 4 Human efficacious dose prediction. a MMV693183 plasma concentration after the predicted efficacious human doses of 10, 15, 20, and 30mg
according to the efficacy criteria and human clearance prediction method. b Local sensitivity analysis of the impact of total clearance and EC50 variation on
the estimated efficacious dose, defined by a 12 log total parasite reduction efficacy criteria based on the prediction with the in vitro hepatocyte
clearance assay.
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disruption of the CoA pathway by hopantenate in mice in a
previous study44, were not affected by MMV693183 in any of the
dose groups (Fig. 5a–c). Both the MTD1 and PK study identified
the liver as the primary target organ of toxicity. Livers of male
and female rats showed a dose-dependent increase in weight, up
to 71% in males in the 600mg/kg/day dose group in the
MTD1 study (Supplementary Table 25). This observation was
associated with histopathological liver changes consisting of
centrilobular hepatocellular hypertrophy noted in all dosing
groups, with a higher incidence and severity in males (Supple-
mentary Tables 26 and 27). Furthermore, these changes were seen
in conjunction with liver necrosis in 1 male out of 18 at 60 mg/kg/
day and in 1 female out of 18 of each dose group, and with an
increase in the number of hepatocellular mitoses in 1 female out
of 18 of each dose group in the PK study. Minimal extramedullary
hematopoiesis was also noted in most animals in this study
(Supplementary Table 27). MMV693183 administration was
associated with a major decrease (up to 11-fold) of exposure at
later timepoints, starting from day 3 and up to day 7, in males
at both dose levels and in females at the high dose only
(Supplementary Tables 28 and 29). Based on these preliminary
results a 3-day MTD 2 and an 8-day Dose Range Finding (DRF)
study were performed to provide complementary information on
the MMV693183 toxicity vis-à-vis of its exposure. In the MTD2
phase of the study no relevant toxicity was observed after three
consecutive days of dosing at 300, 600, and 1000 mg/kg/day,
respectively. Based on the adverse histological findings noted in
the previous PK rat study, dose levels of 10 and 30 mg/kg/day
were selected for the DRF phase of the study. Liver weight was
unchanged (Supplementary Table 25), and there was an absence
of liver microscopic findings and other test item-related adverse
histological changes in both dosage groups and sexes in the DRF
study. The administration of MMV693183 at 10 and 30 mg/kg/
day was associated with a significant decrease (up to 4-fold)
in systemic exposure on day 7 when compared to day 1,
predominantly in males dosed at 30 mg/kg/day (Supplementary
Tables 28 and 29). The cumulative exposure in the 30 mg/kg/day
group was >30-fold above the most conservative prediction of
human efficacious exposure (Supplementary Fig. 20), indicating a
safety window in support of further (pre)clinical development of
MMV693183.

Discussion
Following an extensive chemical optimization process, we have
identified the novel compound iPanAm MMV693183, which has

low nanomolar potency against asexual blood stages of both
P. falciparum and P. vivax, and against P. falciparum gameto-
cytes. We showed its favorable physicochemical properties with
the potential to be developed into a safe single-dose malaria cure.
Furthermore, we revealed that the antimetabolite, CoA-
MMV693183 inhibits AcAS, thereby targeting an unused path-
way for antimalarial therapy. These promising characteristics of
MMV693183 support the recent selection of this drug for con-
tinued (pre)clinical development4.

While pantothenate analogs have long been explored, stable
and highly potent pantothenamides against P. falciparum have
only been developed in the last decade9,12–14 and MMV693183 is
the first pantothenamide to meet the criteria for further (pre)
clinical development. This compound has improved in vitro
and in vivo potency, metabolic stability, and a prolonged pre-
dicted human half-life compared to previously synthesized
pantothenamides13–15. Its promising potency is reflected in the
predicted human efficacious single dose of ≤ 30 mg for the
treatment of clinical malaria. With this predicted efficacious dose,
MMV693183 fits well within the portfolio of several antimalarials
that all have the potential to act as a single dose cure with a dose
range of 50 to 400 mg and an MPC ranging between 10 and
240 ng/ml45–51. Furthermore, MMV693183 is highly potent
against P. vivax, another major contributor to the malaria
burden1, supporting the activity of PanAms against multiple
species also including P. knowlesi52. The importance of combin-
ing MMV693183 with a partner drug is highlighted by the pos-
sibility of generating in vitro resistance against this compound
that is compatible with transmission via the mosquito vector. The
spread of resistance may also be affected by a possible fitness cost
for resistant parasites, as was observed for the previously gener-
ated PanAm-resistant parasites with a mutation in AcAS and
ACS1115. However, it is still unknown whether MMV693183-
resistant parasites have a fitness defect. Fortunately, the T648M
mutation has not been identified in > 2000 field isolates from 14
countries53, suggesting that there is no pre-existing resistance.
The recrudescence observed in our in vivo efficacy experiments is
in line with the fast clearance of the compound in mice and well
captured by the PKPD model presented. Nevertheless, we cannot
exclude the possibility that T648M or other resistance mutations
are selected in vivo, and this is the subject of our ongoing and
future work, including anticipated human volunteer studies.
Reassuringly, the minimum inoculum for resistance development
against MMV693183 was 109, which is considered to sufficiently
reduce the risk of resistance against new antimalarials54. Further
research to identify the ideal partner drug is needed. However, we
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Fig. 5 In vivo safety of MMV693183. a–c Evidence of in vivo toxicity was examined in male and female Wister Han rats (N = 3 per condition) treated for
seven days with MMV693183. Glucose (a), triglycerides (b) and urea (c) concentrations were measured in rats (male or female) treated with different
doses of MMV693183. Significance was determined using One-Way ANOVAs with the Bonferroni’s Multiple Comparison Test, but none were significant.
Source data are provided as Source Data file.
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could envision a drug combination that is able to target
pantothenamide-resistant gametocytes and prevent transmission
of the resistance mutation.

The identified mutation in AcAS, but not in ACS11, in
MMV693183-resistant parasites, supported our previous
hypothesis that AcAS is the primary target of metabolized
iPanAms15,21,22. Here, we present definitive proof that CoA-
PanAm is the active metabolite that inhibits AcAS, while the
inhibition of mutant AcAS is strongly reduced. This same phe-
notype has also been recently observed after inhibition by che-
mically different AcAS inhibitors27, showing that AcAS is a good
drug target. However, the IC50 of AcAS inhibition in the bio-
chemical assay was above the antiparasitic IC50. This may be
explained by (i) the instability of the CoA-PanAm leading to
reduced concentrations in the enzyme assay; (ii) additional
activity of dP-CoA-PanAm; (iii) accumulation of CoA-PanAm
within the parasite reaching higher concentrations;15 or (iv) a
difference in concentration of CoA and/or acetate in the AcAS
assay compared to physiological levels. With the previously
suggested role of AcAS in regulating the acetylome, transcriptome
and metabolome (including fatty acid elongation), the corre-
sponding cytoplasmic/perinuclear and nuclear localization of
AcAS, and the reduction in histone acetylation upon treatment
with AcAS inhibitors27,32,33,35–37,55, it could be hypothesized that
these pathways are affected by CoA-PanAms. Similar to iPa-
nAms, inhibitors of histone deacetylases or acetylases (HDAC
or HAT), enzymes that regulate histone acetylation, have dual-
stage activity targeting both asexual and sexual blood-stage
parasites56–58. The marked difference between the female and
male sexual-stage activity of MMV693183 could be related to one
of the possible downstream consequences of AcAS inhibition that
may be more important in female than in male gametocytes.
Alternatively, the differential activity against male gametocytes
compared to females may be explained by lower availability of
iPanAm; for example, through reduced uptake, increased export,
reduced subcellular accumulation at the site of activity, or
increased breakdown. While the target of iPanAms has been
identified, the further downstream consequences are not yet
understood.

It is clear that PanAms target a central pathway of Plasmodium
parasites, which is conserved among many eukaryotes and pro-
karyotes. Previous studies on hopantenate, a compound that
affects CoA metabolism, showed lethal toxicity within 15 days, a
significant reduction in glucose and altered liver metabolism in
mice on a pantothenate-free diet44. It is therefore of utmost
importance to test the safety of PanAms. MMV693183 did not
show relevant activity against a large panel of human enzymes,
receptors and channels. Even though no off-target activity was
identified in our study, a cautionary note could be the weak effect
on HDAC11. In a preliminary safety study, MMV693183 did not
reduce glucose, and was not lethal to rats within the 7 day period.
This was in contrast with hopantenate treatment, although these
mice were on a pantothenate-free diet44.The liver was identified
as the primary target of toxicity upon MMV693183 treatment. At
doses of 60 and 200 mg/kg/day for 7 days, liver hypertrophy was
associated with reduced exposure at day 7 compared to day 1.
This signature is commonly found with compounds that induce
CYP expression in rats59. For MMV693183, such auto-induction
is unlikely to happen in humans as our data indicated an absence
of CYP induction at concentrations up to 150 µM whereas the
Cmax at the predicted human efficacious dose was estimated at
~1 µM. At dose levels of 30 mg/kg/day for 7 days MMV693183
was well tolerated in rats providing a provisional exposure safety
margin of >30-fold in comparison to the predicted human effi-
cacious exposure (Supplementary Fig. 20). This provides a solid
foundation for further assessment of safety during the preclinical

development of MMV693183, which will include studies in other
rodents and dogs.

A few limitations of our PKPD model need to be considered,
which could affect the final dose predictions. The PK model based
on humanized mouse data showed a high relative standard error
for a few of the estimated parameters, which may lead to
uncertainties in the PD parameters used for the final dose pre-
dictions, such as the EC50. However, a sensitivity analysis showed
a limited impact of the variation of EC50 on the dose predictions,
identifying MMV693183 clearance in humans as the most sen-
sitive parameter. Our prediction of human hepatic clearance
values on basis of allometry gave a value that was ~3.5-fold higher
than the value predicted from in vitro metabolism studies.
Nevertheless, this worst-case scenario predicted a total human
dose of 30 mg to achieve a 12-log reduction in parasitemia. This is
encouraging but should be verified in future studies addressing
human PK and efficacy.

In conclusion, we provide a new preclinical candidate
MMV693183 that is a promising multi-stage active compound
and that acts on a pathway that is not currently targeted by
clinical antimalarials. This agent has the potential to be developed
into a safe single-dose cure, and upon successful development
may therefore aid in ongoing efforts to achieve malaria
elimination.

Methods
Ethics statement. Animal experiments performed at The Art of Discovery (TAD)
were approved by The Art of Discovery Institutional Animal Care and Use
Committee (TAD-IACUC). This committee is certified by the Biscay County
Government (Bizkaiko Foru Aldundia, Basque Country, Spain) to evaluate animal
research projects from Spanish institutions according to point 43.3 from Royal
Decree 53/2013, from the 1st of February (BOE-A-2013-1337). All experiments
were carried out in accordance with European Directive 2010/63/E. Mice were
housed under 12/12 h light-dark cycle, 22 ± 2 °C, and 40–70% humidity.

The animal experiments carried out at the Swiss Tropical and Public Health
Institute (Basel, Switzerland) were adhering to local and national regulations of
laboratory animal welfare in Switzerland (awarded permission no. 2303). Protocols
are regularly reviewed and revised following approval by the local authority
(Veterinäramt Basel Stadt). Mice were housed under 12/12 h light-dark cycle,
21 ± 2 °C, and 40-70% humidity.

Aptuit is committed to the highest standards of animal welfare and is subject to
legislation under the Italian Legislative Decree No. 26/2014 and European Directive
No. 2010/63/UE. Animal facilities are authorized by the Italian Ministry of Health
with authorization n. 23/2017-UT issued on 29th November 2017 according to art.
20 of Legislative Decree No. 26/2014. Furthermore, general procedures for animal
care and housing are in accordance with the Association for Assessment and
Accreditation of Laboratory Animal Care (AAALAC) recommendations. Dogs
were housed under 12/12 h light-dark cycle, 19-21 °C, and 45–65% humidity.

Animal procedures to determine the hemolytic toxicity were approved by the
University of Colorado Anschutz Medical Campus Institutional Animal Care and
Use Committee. Mice were housed under 14/10 light-dark cycle, 72 ± 2 °F, and 40%
± 10% humidity.

All animal studies had the approval of the Institutional Animal Ethics
Committee (IAEC) of TCG Lifesciences Pvt. Ltd and were conducted in accordance
with the guidelines of the Committee for the Purpose of Control and Supervision of
Experiments on Animals (CPCSEA), Government of India. Rats and mice were
housed in groups under 12/12 h light-dark cycle, 22 ± 2 °C, 50 ± 20% humidity.

Rat toxicity studies were performed at Charles River Laboratories (France) in
accordance with the ICH S5(R2) guideline requirements and the respective
Institutional Animal Care and Use Committees for care and treatment of
laboratory animals. All animals were housed under standard laboratory conditions
that have been approved by the respective Institutional Animal Care and Use
Committees for care and treatment of laboratory animals. The seven-day repeat
(MTD1) dose study in the Netherlands was done was reviewed and agreed by the
Animal Welfare Body of Charles River Laboratories Den Bosch B.V. within the
project license AVD2360020172866 approved by the Central Authority for
Scientific Procedures on Animals (CCD) as required by the Dutch Act on Animal
Experimentation (December 2014). Rats were housed up to 5 animals of the same
sex and treatment per cage at temperatures between 18 °C-25 °C, humidity ≥ 35%
or at 40–70%, 12 h light and 12 h dark (except during designated procedures).

More information on animal experiments can be found in Supplementary
Table 30.

For collection of blood for ex vivo activity studies in Brazil, Uganda, and
Cambodia, all participants or their parents/guardians signed a written informed
consent before blood collection. Patients were promptly treated for malaria after
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blood collection, following national guidelines. The ex vivo activity study in Brazil
was approved by the Ethics Committee from the Centro de Pesquisa em Medicina
Tropical - CEPEM-Rondônia (CAAE 61442416.7.0000.0011). The ex vivo activity
study in Tororo, Uganda was approved by the Makerere University Research and
Ethics Committee, the Uganda National Council for Science and Technology, and
the University of California, San Francisco Committee on Human Research. All
isolates in the Cambodia study were collected during therapeutic efficacy studies
(TES) upon protocol acceptance from Cambodian National Ethical Committees
(NECHR-077, NECHR-087, NECHR-092 & NECHR-099).

The human biological samples were sourced ethically and their research use was
in accord with the terms of the informed consents under an IRB/EC approved
protocol.

Chemistry. The synthesis of the iPanAms is included in patent application
EP3674288A124, which states: “Characteristic features of the analogs concern the
moieties flanking the inverted amide; the carbon atom flanking the inverted amide
in the center portion of the molecule could comprise a methyl substituent, the two
nitrogen atoms are separated by a linker of two carbon atoms, and the moiety
flanking the inverted amide at the distal portion of the molecule is a (hetero)
aromatic, optionally substituted, ring or ring system, bonded directly to the car-
bonyl group of the inverted amide.” Synthesis of the five new iPanAms are
described in the Supplementary Methods.

Crystal screening for each further characterized pantothenamide was performed by
a commercial service (Crystal Pharmatech Co., Ltd.) under 36 conditions using a
variety of crystallization methods, including liquid vapor diffusion, slow evaporation,
slurry conversion and salt/co-crystal formation and solvents. X-ray power diffraction
(XRPD) patterns were collected by Bruker X-ray powder diffractometers.

Parasite culture and in vitro efficacy of pantothenamides. The P. falciparum
strains Dd2-B2 (a clone of Dd2), 3D7, NF54 and the luminescent-reporter strain
NF54-HGL60 were cultured in RPMI 1640 medium supplemented with 25 mM
HEPES, 382 µM hypoxanthine, 26 mM NaHC03, 10% human blood type A serum
or 0.5% AlbuMAX II, and 3-7.5% human blood type O red blood cells (RBCs)
(Sanquin, the Netherlands) at 37 °C in 3% O2, 4% CO2.

Replication assays were performed using a SYBR Green method as described
previously61. Briefly, asynchronous parasites were diluted to 0.83% parasitemia, 3%
hematocrit in 30 µl medium, and added to 30 µl of diluted compounds in medium
(0.1% DMSO final concentration) in black 384-wells plates. After a 72-h
incubation, 30 µl of SYBR Green diluted in lysis buffer was added according to the
manufacturer’s protocol (Life Technologies). Fluorescence intensity was measured
on a BioTek Synergy 2 Plate Reader after 1-h incubation and was normalized to a
DMSO control (100% growth) and DHA- or epoxomicin-treatment (no growth).
To define the IC50 of MMV693183-resistant Dd2-B2 parasites, ring-stage cultures
at 0.3% parasitemia and 1% hematocrit were exposed for 72 h to a range of
concentrations of MMV693183 along with drug-free controls. Parasite survival was
assessed by flow cytometry on an Accuri C6 (BD Biosciences) with BD C6 Plus
software using SYBR Green and MitoTracker Deep Red FM (Life Technologies) as
nuclear stain and vital dye, respectively, and data were analyzed using FlowJo
(10.5.0). To assess the effect of conditionally perturbing AcAS expression and
treatment with MMV693183 on parasite growth, synchronous ring-stage AcAS
conditional knockdown parasites (AcAS-cKD) or a control conditional knockdown
line (control-cKD; previously generated parasites with a yellow fluorescent protein
with regulatory TetR aptamers in the 3’untranslated region (UTR) integrated in the
cg6 chromosomal locus28) were cultured in high (500 nM) and low (1.5 or 0 nM,
respectively) concentrations of anhydrotetracycline (aTc) and incubated with
serially diluted MMV693183. Luminescence was measured after 72 h using the
Renilla-Glo(R) Luciferase Assay System (Promega E2750) and the GlomAX®
Discover Multimode Microplate Reader (Promega). The luminescence values were
normalized to DMSO vehicle (100% growth) and 200 nM chloroquine-treated (no
growth) samples as controls.

The stage-specific effect of MMV693183 against asexual blood stages was
measured using a modification of a previously described method62. Asynchronous
NF54 parasites were cultured in a semi-automated shaker system63 and synchronized
once with 5% D-sorbitol. To assess the ring-stage activity of MMV693183, this
synchronized culture was treated again with sorbitol 31 h after the initial treatment.
This yielded a parasite culture with ≥ 90% rings. To assess the schizont-stage activity
of MMV693186, the initial synchronized culture was treated again with sorbitol 7 h
later. Subsequently, parasites were cultured for another 17 h to yield a parasite culture
of ≥ 90% early schizont stages. The ring and schizont synchronized cultures were
diluted to 0.5% and then incubated with either 50 nM DHA or 50 nM MM693183 for
24 h in duplicate. Subsequently, the drug was washed out and parasites were cultured
for another 24 h. Parasitemia was determined using Giemsa-stained thin smears at
0 h, 24 h, and 48 h after drug exposure.

The antimalarial killing rate was determined by GlaxoSmithKline (GSK, Tres
Cantos, Madrid, Spain) as described previously26. Briefly, 0.5% 3D7 (BEI
Resources) P. falciparum parasites (≥80% ring-stage population) at 2% hematocrit
were treated with 10x IC50 of MMV693183 (40 nM in 3D7 parasites) or
pyrimethamine (0.94 µM) for 120 h and the drug was renewed daily. Parasite
samples were taken every 24 h and drug was washed out, followed by four
independent, 3-fold serial dilutions in 96-wells plates. The number of viable

parasites was determined on day 21 and 28 by counting the wells with parasite
growth. Parasite growth was measured by uptake of 3H-hypoxanthine in a 72-h
assay and was back-calculated to viable parasites using the following equation Xn-1

where n is the number of parasite-positive wells and X the dilution factor.
Gametocyte viability assays on NF54-HGL parasites were performed using an

adapted high-throughput protocol as previously described15,64. In short, asexual
blood-stage parasite cultures were set up at 1% parasitemia in a semi-automated
shaker system at 5% hematocrit63. From day four until day eight or nine, parasites
were treated with 50 mM N-acetyl glucosamine to eliminate all asexual blood-stage
parasites. Subsequently, gametocytes were isolated by a Percoll density gradient
centrifugation64. At day 11, gametocytes were seeded (5,000 per well) in 30 µl in
white 384-well plates containing 30 µl of compounds diluted in medium (0.1%
DMSO). After a 72-h incubation, 30 µl of ONE-Glo reagent (Promega) was added
according to manufacturer’s protocol and luminescence was quantified using the
BioTek Synergy 2 Plate reader. Values were normalized to DMSO- and epoxomicin
or dihydroartemisinin-treated controls.

The activity of MMV693183 against female and male gametocytes was assessed
in a dual gamete formation assay (DGFA) as described previously65. Briefly, mature
P. falciparum NF54 gametocyte cultures were added to 384-well plates containing
DMSO or different concentrations of MMV693183 (in < 0.25% DMSO) or Gentian
Violet (12.5 µM). After a 48-h incubation, gamete formation was stimulated by a
drop in temperature (from 37 °C to 26 °C), and the addition of xanthurenic acid
(2.5 µM). At 20 min after induction, exflagellation was recorded by automated
time-lapse microscopy. After data collection, the plate was returned to a 26 °C
incubator and incubated for 24 h. Female gamete formation was assessed by live
staining with a Cy3-labelled anti-Pfs25 monoclonal antibody (1:2222) and recorded
by automated microscopy.

To assess parasite development in hepatocytes, cryopreserved human primary
hepatocytes (Tebu-Bio lot: HC10-10) were thawed according to the manufacturer’s
protocol and seeded (50,000 cells per well) in collagen-coated 96-well plates
(Greiner). Cells were cultured at 37 °C in 5% CO2 and the medium was refreshed
after 3 h and 24 h. Salivary glands from Anopheles stephensi mosquitoes were
dissected to obtain NF54 sporozoites that were added (60,000 per well) to
hepatocytes 48 h post-thawing. Plates were spun down and sporozoites were
incubated with hepatocytes for 3 h. Subsequently, sporozoites were aspirated and
compounds diluted in hepatocyte medium, were added to the hepatocytes (0.1%
DMSO final concentration). Medium-containing compounds was refreshed daily
for four days. Hepatocytes were fixed with ice-cold methanol and samples were
blocked with 10% fetal bovine serum (FBS) in PBS. Samples were incubated with
rabbit anti-HSP70 (1:75, StressMarq) in 10% FBS for 1-2 h followed by incubation
with secondary goat anti-rabbit AlexaFluor 594 antibody (1:1000, Invitrogen) in
10% FBS for 30 min. Samples were washed with PBS containing 0.05% Tween 20
between different steps. Cells were imaged on the Biotek Cytation and images were
analyzed automatically using FIJI software.

In vivo efficacy of pantothenamides. The effect of pantothenamides on P. fal-
ciparum Pf3D70087/N9 66 in vivo was assessed in female NSG mice (NODsci-
dIL2Rγnull) at the Swiss Tropical and Public Health Institute (Basel, Switzerland) as
described previously (Supplementary Table 30)15,67. Briefly, humanized mice were
engrafted daily with human erythrocyte suspensions from days -11 to day 6. After
11 days (day 0), mice were injected intravenously with 3×107 infected RBCs in a
volume of 0.1 ml. On day 4, groups of n= 2 mice were treated with a single dose
pantothenamides or chloroquine (50 mg/kg) by oral gavage. The hematocrit of all
dosed mice and an untreated control group (n= 4 mice) was determined by
fluorescence-activated cell sorting and parasitemia was analyzed by microscopy on
>10,000 RBCs as described before68. Samples to quantify compound metabolites
were collected and prepared at different time points (1, 2, 4, 6, and 24 h after
treatment) for each mouse by mixing 20 µl of whole blood with 20 µl of Milli-Q,
followed by immediate freezing of samples on dry ice. For the preparation of CAL
and QC samples, MMV693183 was dissolved in acetonitrile/dimethylsulfoxide (1/
1, v/v) to a concentration of 1.00 mg/mL. Serial dilutions were prepared in the same
solvent to concentrations 50 times higher than the corresponding CAL and QC
concentrations. The concentrations were calculated under consideration of purity
and salt factor. The spiking of the CAL and QC sample were performed at room
temperature. The eight calibration levels were 5.00, 10.0, 50.0, 100, 500, 1000, 3750,
and 5000 ng/mL and three QC levels 15.0, 100, and 3750 ng/mL were analyzed in
duplicate, together with the study samples.

For the sample precipitation, to an aliquot of 10 µL mouse blood/water (1/1)
study sample, 20 µL of acetonitrile containing the internal standard MMV1542001
at a concentration of 100 ng/mL was added. After vortex mixing, the samples were
centrifuged for 10 min at 50,000 g at 8 °C. Subsequently, an aliquot of 20 µL of the
supernatant was transferred to an autosampler vial and an aliquot of 5 µL was
injected onto the LC-MS/MS system.

The quantification of MMV693183 was performed by column separation with
reverse phase chromatography followed by detection with triple stage quadrupole
MS/MS in the selected reaction monitoring mode. The samples were handled by an
autosampler CTC PAL (CTC Analytics AG, Zwingen, Switzerland) set at 8 °C. The
chromatography column used was a YMC Hydrosphere C18, 2.1 × 33 mm, 3 µm
(YMC Co. Ltd., Kyoto, Japan), kept at room temperature. The aqueous mobile
phase consisted of water containing 0.1 % formic acid, whereas the organic mobile
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phase consisted of acetonitrile containing 0.1 % formic acid, pumped by HPLC
pump from Agilent 1200 series (Agilent Technologies Inc, Santa Clara, CA, USA).
The HPLC gradient was as follows: 95% phase A, 5% phase B for 0.20 min,
followed by transition to 5% phase A, 95% phase B in 1 min, 2 min at these
concentrations, and a subsequent increase to 95% phase A, 5% phase B in 0.05 min
which is kept for the remaining 0.75 min.

The detection of MMV693183 was performed using a TSQ Access mass
spectrometer (Thermo Fisher Scientific, San Jose, CA, USA) by selected reaction
monitoring. The ion source was heated electrospray ionization, using a negative
polarity. Following parameters were used: Voltage 2500 [V], Vaporizer temperature
350 [°C], Sheath gas 60 [au], Auxiliary gas 5 [au], Capillary temperature 350 [°C]
and Collision gas pressure 1.0 [mTorr]. The transition used for the detection of
MMV693183 was: parent ion 361.080 m/z—daughter ion 285.000 m/z. The
transition used for the internal standard was: parent ion 325.030 m/z—daughter
ion 195.000 m/z.

The concentration of the analyte was calculated using the internal
standardization method. The area ratio of analyte to internal standard against the
concentration of calibration samples was used for quantification. The acquisition
and processing of data were performed using LCquan 2.5.6 and Xcalibur 2.0.7.
Microsoft Office Excel 2007 Prof was used for calculations and statistical evaluation
of data. For MMV693183 the fitting of data was done with a weighting factor of 1/
X using a quadratic regression with the method of least squares. The Lower Limit
of Quantification was 5.00 ng/mL in mouse plasma, whereas The Upper Limit of
Quantification was 5000 ng/mL in mouse blood/water (1/1).

Transmission-blocking activity. The transmission-blocking activity of com-
pounds was determined as described previously69. Briefly, NF54-HGL parasites
were set up at 1% parasitemia in a semi-automated shaker system at 5% hematocrit.
After 14 days of culturing, stage V gametocytes were treated with a range of
concentrations of the compound for 24 h before feeding, or with 1 µM
MMV693183 or 100 nM atovaquone directly upon feeding to A. stephensi. Eight
days after the feed, luminescence was quantified to determine oocyst intensity.

Ex vivo efficacy of pantothenamides. For ex vivo pantothenamide activity stu-
dies, patients with P. falciparum or P. vivax were recruited at the Research Center
for Tropical Medicine of Rondonia (CEPEM) in Porto Velho (Brazilian Western
Amazon). A schizont maturation assay was performed using parasites obtained
from mono-infected patients. A total of 44 patients were recruited who did not use
any antimalarial in the previous months and/or present with symptoms of malaria,
but had a parasitemia between 2,000 and 80,000 parasites/µl. Isolates from patients
were excluded if (i) <70% of parasites were rings at the time of sample collection
(n= 11), (ii) no schizont maturation was observed (n= 9), or if (iii) the number of
inviable parasites in untreated control was higher than the number of maturated
schizonts in the treated condition (n= 4), leaving 20 patients to be included.
Peripheral venous blood (5 ml) was collected by venipuncture in heparin-
containing tubes, plasma and the buffy coat were removed, RBCs were washed and
subsequently filtered in a CF11 cellulose column. Blood was diluted to 2%
hematocrit in either RPMI 1640 medium (P. falciparum) or McCoy’s 5 A medium
(P. vivax) supplemented with 20% compatible human serum. Parasites were
incubated with MMV693183 at final concentrations ranging between 0.25 and
500 nM in a hypoxia incubator chamber (5% O2, 5% CO2, 90% N2). The incubation
of parasites with the compound was stopped when 40% of the ring-stage parasites
reached the schizont stage (at least three distinct nuclei per parasite) in the
untreated control wells. The number of schizonts per 200 asexual blood-stage
parasites was determined and normalized to control. An assay was considered valid
when the compound was incubated with parasites for at least 40 h.

An ex vivo growth inhibition assay was performed on fresh clinical P. falciparum
isolates in Uganda. Blood was collected from patients aged ≥6 months presenting to
the Tororo District Hospital, Tororo District, or Masafu General Hospital, Busia
District with clinical symptoms suggestive of malaria, Giemsa-stained thick smears
positive for P. falciparum infection, and ≥0.3% parasitemia determined by Giemsa-
stained thin smears. Up to 5ml of blood was drawn by venipuncture from 109
participants at Tororo District Hospital and 121 at Masafu General Hospital. Parasites
were diluted to 0.2% parasitemia in 2% hematocrit and incubated for 72 h with serial
dilutions of MMV693183 (0.1% DMSO) in a 96-well microplate and stored in a
humidified modular incubator (2% O2, 3% CO2, 95% N2). Parasite density was
quantified by fluorescence after incubation with SYBR Green lysis buffer measured on
a BMG Fluostar Optima plate reader, as previously described70.

Field isolates were collected from patients infected with P. falciparum between
2017 and 2019 in western Cambodia (Kampong Speu) and eastern Cambodia
(Kratie, Mondulkiri, Rattanakiri, and Pursat). Venous blood (5 ml) was collected by
venipuncture, white blood cells were removed, and parasites were adapted to
in vitro culture under 5% O2 and 5% CO2 in 2% O+ human red blood cells
(NBTCC, Phnom Penh) with RPMI1640, 0.2 mM hypoxanthine, 0.5% Albumax II
and 2.5% human serum (NBTCC, Phnom Penh). In vitro drug susceptibility was
measured on early ring stages (0–3 h postinvasion) diluted to 3% parasitemia and
incubated for 72 h with serial dilutions of MMV693183 (0.05% DMSO) in a 384-
wells plate at 0.01% hematocrit. Parasites were then fixed with 0.44%
glutaraldehyde (#G5882, Sigma-Aldrich) for 15 min, permeabilized with 3% Triton
(Sigma-Aldrich) for 10 min, and stained with 80 nM YOYO™-1 Iodide (#Y3601,

Invitrogen) for 45 min at room temperature in the dark. Endpoint readout to
determine parasites density was performed with a High-Content Confocal Imaging
microscope (Lionheart™ FX Automated Microscope, Biotek), IC50 values were
obtained using ICestimator software (http://www.antimalarial-icestimator.net/
runregression1.2.htm).

In vitro safety and toxicity assays. Safety studies were performed by commercial
services using their standard protocols. Off-target activities of 10 µM MMV693183
were investigated using binding, enzyme, and uptake assays (Eurofins CEREP,
Celle-Lévescault, France). Phototoxicity of MMV693183 was assessed by exposing
the compound to different wavelengths. Genotoxicity was investigated using the
Ames test (Bacterial Reverse Mutation Assay) (Covance Laboratories Ltd, North
Yorkshire, England). In vitro mammalian cell micronucleus screening assay was
studied in human peripheral blood lymphocytes (BioReliance Corporation,
Rockville, USA). Cardiotoxicity was determined against the hERG channel in an
automated patch clamp assay using the Qpatch or against the hNaV 1.5, hKV 1.5
and hCaV 1.2 using a manual patch-clamp technique (Metrion Biosciences,
Cambridge, UK). Cytotoxicity in human and rat primary hepatocytes was assessed
using the CellTiter-Blue assay performed by commercial services (KaLy-Cell). The
viability of HepG2 cells was monitored through the addition of 1 mM resazurin.
Following 6 h incubation, the relative amount of reduced resazurin was detected in
a fluorimeter and compared to the assay controls (vehicle: 0.1% DMSO and
positive control: 10 µM puromycin).

Exploratory in vivo safety and toxicology studies. Hemolytic toxicity was
determined in female NSG mice (Jackson Laboratories) using erythrocytes from a
G6PD-A-deficient blood donor (0.4 u/g hemoglobin). Mice were engrafted with
3.5×109 human RBCs intraperitoneally for fourteen days to obtain >60% human
RBCs. Mice were treated for four days with vehicle control (PBS) or MMV693183
(10, 25, 50 mg/kg), or primaquine (12.5 mg/kg) for three days. Spleen weight was
quantified on day seven and hemolysis was assessed on day zero, four, and seven,
by quantifying human RBCs and murine reticulocytes on a CytoFlex S Flow
Cytometer (Beckman Coulter, CytExpert 2.3 software) using anti-glycophorin A-
FITC (1:100) and anti-CD71-FITC (1:200) and anti-TER119-PE (1:400), respec-
tively, and data were analyzed using FlowJo (version 10.7.1) (Supplementary
Fig. 21).

Four non-GLP rat toxicity studies were performed for MMV693183: (1) a 7-day
Maximum Tolerated Dose 1 (MTD1) study (study ref 20154166); (2) a 7-day
Pharmacokinetic (PK) study (study ref 20223355); (3) a 3-day MTD2 study (study ref
20223357); and (4) an 8-day Dose Range Finding (DRF) study (study ref 20223357).
See the summary of the study design in Supplementary Table 31. Nine-week-old
Wistar (Crl:WI (Han)) rats were obtained from Charles River Laboratories (Domaine
des Oncins, Saint-Germain-Nuelles, France). The Test Item (MMV693183) was
administered by oral gavage at different doses and dosing regiments (Supplementary
Table 30). Animals were examined daily for any altered clinical signs, body weights,
and food consumption. Blood samples were taken at different timepoints after the test
item administration, and toxicokinetic exposure assessed under the defined
experimental conditions and analyzed using Phoenix (version 6.4 and 1.4)
(Supplementary Table 32). Measurements included hematology and clinical chemistry
measurements. Animals were euthanized and necropsied at the end of the dosing
period. At necropsy, major organ systems and tissues were collected and weighed and
then examined for gross lesions as well as for microscopic changes.

In vitro metabolism, permeability, and protein binding. Stability of MMV693183
in dog, rat, and hepatocytes, Caco-2 permeability, plasma protein binding, and blood
to plasma ratio were analyzed through a commercial service (TCG Lifesciences). The
stability of MMV693183 in human hepatocytes was quantified in a relay assay25.
Briefly, cryopreserved human primary hepatocytes were thawed and cultured as
described above. Hepatocytes were incubated with compounds in hepatocyte medium
(0.1% DMSO) 24 h post-seeding. The supernatant was collected 1, 6, or 24 h after the
addition of compound, spun down and the supernatant was stored at -80 °C.
Supernatant from the 24 h treatment was pooled and transferred to a new hepatocyte
plate seeded 24 h earlier. This process was continued until the 72-h incubation time
was reached. Samples were analyzed on the LC-MS/MS system Thermo ScientificTM

VanquishTM UHPLC system or Thermo ScientificTM Q ExactiveTM Focus Orbitrap
with a HESI-II electrospray source in positive mode using a Luna Omega Polar C18,
50 ×2.1mm, 1.6 µm column. The chromatography was performed at a flow rate of
0.8 ml/min using an 8.70-minute gradient to 70% Mobile Phase B (0.1% formic acid
in methanol) and 30% Mobile Phase A (0.1% formic acid in MilliQ water), followed
by 0.40-min gradient to 99% Mobile Phase B, and back to 1% Mobile Phase B Mobile
in 0.30min.

In vitro CYP reaction phenotyping was performed at Cyprotex (Alderly Park,
United Kingdom). Briefly, MMV693183 (1 µM) was incubated with human
CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP3A4, and CYP3A5
recombinant isoforms (BactosomesTM), at 5-time points over the course of a
45 min experiment. The remaining test compound at each time point was analyzed
by LC-MS/MS.

The potential of MMV693183 to be an inducer of CYP1A2, CYP2B6 and
CYP3A4 were investigated in vitro at Cyprotex (Alderly Park, United Kingdom),
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using an mRNA endpoint across three donors in cryopreserved human hepatocytes
(obtained from Lonza, Walkersville, USA). Cells were dosed with MMV693183
(1.5, 5, 15, 50, 150 and 500 µM for donor 1 and 5, 15, 50, 150, 250, and 500 µM for
donor 2 and donor 3) for 72 h. Positive control inducers (omeprazole for CYP1A2,
phenobarbital for CYP2B6, and rifampicin for CYP3A4), were incubated alongside
the test compound. For mRNA assessment, cells were lysed and resultant samples
analyzed using an ABI 7900 HT real-time PCR system. A cytotoxicity assessment
using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT)
was performed in one of the three donors used for the induction studies prior to
dosing and demonstrated no change in cell viability or cell morphology changes
over the concentration range tested.

Pharmacokinetic properties. The in vivo pharmacokinetic (PK) profiles of
MMV693183 in blood and urine were determined in male CD1 mice, Sprague
Dawley rats (both TCG Lifesciences), and Beagle dogs (Aptuit, Verona, Italy)
(Supplementary Table 30). Briefly, mice and rats were dosed intravenously or by
oral gavage with MMV693183 at 3 mg/kg or 30 mg/kg, respectively. A blood
sample from the saphenous vein was collected into heparinized capillary tubes at
multiple intervals between 0.25 and 24 h after dosing. Subsequently, samples were
spun down at 1640 g for 5-10 min at 4 °C within 30 min after collection and plasma
was collected. The PK study in dogs followed a cassette dosing of MMV693183,
MMV693182 and MMV689258 with intravenous dosing of 1 mg/kg per compound
and oral dosing of 2 mg/kg per compound. Urine was collected following an
intravenous dose in both rat and dog, allowing renal clearance to be estimated.
Human renal clearance was estimated from dog renal clearance as previously
described40 and other human PK parameters were predicted using allometric
scaling and/or in vitro clearance data. PK parameters were calculated by naïve
pooled approach using WinNonLin software (Phoenix, version 6.3).

In vivo Pharmacokinetic-Pharmacodynamic (PKPD) relationship. The effect of
MMV693183 on P. falciparum Pf3D70087/N9 and Pf3D720161128TAD17N214 66 was
investigated in vivo using female NSG mice (Charles River) and was assessed in
three different studies at TAD (The Art of Discovery, Spain) using their standard
protocol (Supplementary Table 30)67. Briefly, humanized mice were engrafted daily
with 0.7 ml of 50%-75% hematocrit human erythrocyte suspension until the end of
the drug administration period to obtain a minimum of 40% human erythrocytes
in peripheral blood during the entire experiment. Subsequently, mice were injected
intravenously with 35.1×106 infected RBCs in a volume of 0.3 ml. When para-
sitemia reached 1% (three days after infection), mice were left untreated or were
treated with DHA for four days (8 mg/kg) or with MMV693183 in different dose
groups described in Supplementary Table 30. When parasitemia reached the lower
limit of quantitation (<0.01%) after treatment, the total circulating human RBCs
were maintained by injection of human RBCs every three to four days. Parasitemia
was regularly quantified (every 24 to 72 h) in each mouse by staining 2 µl of tail
blood and measured on the Attune NxT Acoustic Focusing Flow Cytometer
(InvitroGen) as previously described67. The experimental designs are summarized
in Supplementary Table 30. Samples to quantify MMV693183 were collected and
prepared at different time points depending on the study (range 0.5 to 103 h after
treatment) for each mouse by mixing 25 µl of whole blood with 25 µl of Milli-Q,
followed by immediate freezing of samples on dry ice. Samples were processed
under liquid-liquid extraction methods and analyzed by LC-MS/MS for quantita-
tion in a Waters UPLC-TQD (Micromass, Manchester, UK). The lower limit of
quantification for MMV693183 ranged from 1 to 5 ng/ml, depending on the study.

Data preparation, exploration and model pre- and postprocessing were
performed using R (version 3.6.3) and R package IQRtools (version 1.2.1 IntiQuan
GmbH). Non-linear mixed-effects (NLME) modeling was used to estimate the PK
and PD parameters using Monolix (Lixoft version MLX2018R2). The population
PKPD model was developed with a two-stage approach: first, a population PK
model was determined; then, the individual PK parameters were used as regression
parameters and the PD parameters were estimated. The PD model consists of the
balance between a parasite net growth rate and a drug killing rate. The effect of
MMV693183 concentration on the killing rate was estimated using an in vitro
clearance model which is based on an Emax model71 with an additional clearance
term to account for the removal of dead parasites from the body and where Emax is
fixed to the value derived from the in vitro parasite reduction rate (PRR) assay
(Supplementary Fig. 22). The growth rate of log-transformed parasite
concentration was fixed at 0.03 /h based on prior experiments but estimating
growth rate interindividual variability. Different Hill coefficients were tested. The
final model was selected based on model convergence, the plausibility of parameter
estimates, visual inspection of observed and model-predicted time courses,
standard goodness-of-fit plots and fit statistics such as Bayesian Information
Criterion (BIC). The MIC and MPC90 were calculated with the following formulas:

MIC ¼ EC50 �
GR

Emax þ GR

� �1=Hill

ð1Þ

MPC90 ¼ EC50 � 9 � CLpara
CLpara þ Emax

 !1=Hill

ð2Þ

GR, parasite growth rate (1/h); MIC, minimum inhibitory concentration (ng/ml);

MPC90, minimum parasiticidal concentration when killing/clearance rate reaches
90% of its maximum (ng/ml); EC50, effective concentration required to obtain 50%
of maximum effect (ng/ml); Hill, Hill factor determining the steepness of the
exposure-response curve; CLpara, parasitemia clearance rate (hour−1).

The human efficacious dose estimation. The human efficacious dose estimation,
defined as the dose able to achieve at least 9 to 12 log total parasite reduction, was
predicted performing simulations using the predicted human PK parameters and
the PD parameters estimated from the female NSG mice studies. Two sets of
predicted human PK parameters were considered. The first set included human
hepatic clearance estimated from in vitro hepatocyte clearance and human renal
clearance estimated from dog pharmacokinetic data using allometry. The second
set included the total human clearance estimated using allometry and was con-
sidered as the worst-case scenario due to the higher total clearance estimated using
this approach.

Induction of drug-resistant parasites. Dd2-B2 and NF54-HGL parasites were
exposed to suboptimal concentrations of MMV693183 to induce and select for
drug-resistant parasites. Dd2-B2 parasites were set up at different parasite densities
ranging from 107–109 and exposed to 3.5-9 × IC50 (Dd2-B2 mean IC50 = 3.0 nM)
in at least three independent experiments. Drug media was changed daily until
cultures were cleared and every other day subsequently. If cultures did not clear
(<0.09% parasitemia), then the concentration of the drug was ramped up. Recru-
descence was monitored by flow cytometry on an Accuri C6 (BD Biosciences)
using BD C6 Plus for 60 days using SYBR Green and MitoTracker Deep Red FM
(Life Technologies) as nuclear stain and vital dye, respectively, and data were
analyzed using FlowJo (Supplementary Fig. 23). Selections of Dd2 parasites at
1 × 105 cleared within the first five days. The first selection of Dd2 parasites at
1 × 107 survived the first week and began to expand after treatment with 15 nM,
after which the selection pressure was increased to 22 nM. Parasites were cleared
within three days. Selections at 1 × 107 and 1 × 108 Dd2 parasites with 10.5 nM
experienced normal growth after one full cycle and drug concentration was ramped
up to 14 nM. Cultures cleared over a period of 6 days. Selections at 1 × 109 were set
up at 12 nM and concentration was ramped up until reaching 27 nM over a period
of 30 days. Cultures were never fully cleared as a few healthy rings were regularly
visible. NF54-HGL parasites were treated with 3 × IC50 for two weeks in two
independent experiments and cultures were monitored by luminescence readout
on the BioTek Synergy 2 Plate reader using ONE-Glo reagent (Promega). Whole-
genome sequencing was performed to test for single nucleotide polymorphisms
(SNPs) or copy number variations.

Generation of transfection plasmids. The mutation found in selected drug-
resistant parasites was verified by introducing the point mutations in AcAS
(T648M and T627A) in NF54-HGL parasites using a CRISPR-Cas9 system as
described previously15. The oligonucleotides for the guide RNA and the donor
template were cloned into a pDC2-based plasmid containing a Cas9 and guide
cassette, using the BbsI and EcoRI/AatII restriction sites, respectively. Donor DNA
was amplified by (overlap-extension) PCR amplification from genomic P. falci-
parum DNA and oligonucleotides for the guide RNAs were ordered (Sigma-
Aldrich). The correct sequence and integration of both inserts were confirmed by
Sanger Sequencing.

AcAS and ACS11 were C-terminally tagged with GFP using the Selection-
Linked Integration (SLI) system72. The C-terminal homology region was cloned
into the plasmid using NotI/MluI restriction sites. The resulting vector was
digested using EcoRV/BstZ17I restriction sites to insert the 3’ UTR. The final
resulting vector contained an apicoplast-mCherry cassette that was not used in this
study. Donor DNA was amplified by PCR amplification from genomic P.
falciparum DNA. Primers are defined in Supplementary Table 33.

Plasmodium falciparum transfections. A DNA-loaded RBC protocol was used
for transfection73. Briefly, 100 µg of plasmid was loaded into RBCs by electro-
poration (310 V, 950 µF), and a trophozoite culture was added to these transfected
RBCs. One day after transfection, parasites were treated with 2.5 nM WR99210
(Jacobus Pharmaceutical) for five days and cultured until they recovered. For the
generation of the mutation in AcAS, parasites were cloned by limiting dilution, and
integration of the mutation was confirmed by Sanger sequencing (Supplementary
Fig. 24). For the generation of AcAS- and ACS11-tagged mutants, parasites were
treated with 400 µg/ml G418 (Sigma) until parasites recovered (about 15 days).
Subsequently, parasites were sorted on a customized FACSAriaII (BD Biosciences)
based on a previously published protocol74 and data was collected using BD
FACSDiva software (8.0.1). In brief, a diluted sample was passed through a 70 µm
nozzle. Single cells were isolated by removing doublets or cell aggregates based on
FSC-H/FSC-W and SSC-H/SSC-W dot plots and selecting GFP-positive events
measured using a 515 nm long-pass filter. Next, 30 (AcAS-tagged) or 100 (ACS11-
tagged) parasites were placed back into culture. The gating strategy, processed in
FlowJo (10.8.1), is presented in Supplementary Fig. 25. Successful integration of the
transfection plasmids and the absence of wild-type parasites were verified by PCR
(Supplementary Fig. 12).
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Metabolomics assays. P. falciparummetabolomics analysis was performed by LC/
MS as previously described75. Briefly, parasite cultures were tightly synchronized at
the ring stage one cycle prior to extraction. Trophozoite cultures at 5-10% para-
sitemia were purified to >90% parasitemia by magnetic purification. Parasites were
counted using a hemocytometer, aliquoted to 1 × 108 cells per condition in 5 ml
medium and then placed into an incubator for 1 h to allow them to reach a
metabolically stable state. Following the recovery period, MMV693183 was added
at 1×, 10× or 100× IC50 value and compared to a no-drug control in triplicate.
After the incubation period, media was aspirated and the remaining culture was
washed with PBS, and quenched using 90% methanol containing 0.25 µM
[13C4

15N]-aspartate. Blank processing samples were also quenched in the same
manner to assess background metabolite levels. The samples were centrifuged, the
supernatant was collected in a new tube, dried using a nitrogen gas drying rack and
stored at -80 °C until they were run on the LC/MS platform.

Samples were resuspended in 1 µM chlorpropamide in 3% HPLC-grade
methanol diluted in HPLC-grade water and run on a Thermo Exactive Plus
Orbitrap HPLC/MS in negative mode with a scan range of 75-1000 m/z using a
C18 Water Xselect HSS T3 column with 2.5 µm particle diameter. Chromatography
was performed using a 25-min gradient of 3% methanol with 10 mM tributylamine
and 15 mM acetic acid (solvent A) and 100% methanol (solvent B). For each
analytical run, a pooled sample was generated by combining equivalent volumes of
each parasite sample to assess metabolite detection and run at the beginning,
middle, and end of each analytical batch to detect any possible time-dependent
sensitivity changes. The full metabolomics datasets are publicly available on the
Metabolomics Workbench database under ST00198576.

Whole genome sequencing. The Dd2-B2 parent and resistant clones were sub-
jected to whole-genome sequencing at the Columbia University Irving Medical
Center using the Illumina Nextera DNA Flex library preparation protocol and
NextSeq 550 sequencing platform. Briefly, 150 ng of genomic DNA was fragmented
and tagmented using bead-linked transposomes and subsequently amplified by 5
cycles of PCR to add dual index adapter sequences to the DNA fragments. The
libraries were quantified, pooled and sequenced on the Illumina NextSeq high
output flow cell to obtain 150 bp paired-end reads.

The sequence data generated were aligned to the P. falciparum 3D7 genome
(PlasmoDB version 36.0) using BWA (Burrow-Wheeler Alignment). PCR
duplicates and reads that did not map to the reference genome were removed using
Samtools and Picard. The reads were realigned around indels using Genome
Analyses Tool Kit (GATK) RealignerTargetCreator and base quality scores were
recalibrated using GATK Table-Recalibration. GATK HaplotypeCaller (Min Base
quality score ≥ 20) was used to identify all possible variants in clones. Variants were
filtered based on quality scores (variant quality as a function of depth QD > 1.5,
mapping quality > 30) and read depth (≥ 5) to obtain high-quality SNPs that were
annotated using snpEFF. The list of variants from the resistant clones were
compared against the Dd2-B2 parent to obtain homozygous SNPs present
exclusively in the resistant clones. Copy number variations were detected using the
BicSeq package by comparing the read counts of the resistant clones against the
Dd2-B2 parent. Integrative Genomics Viewer was used to verify the SNPs and copy
number segments in the resistant clones.

Genomic DNA from the parental NF54 line and MMV693183-induced
resistant lines were sequenced at the Pennsylvania State University according the
Illumina® Truseq Sequencing protocol. Following sequencing, the data were
processed using the Tadpole Galaxy scientific data analysis platform77. Briefly, the
Trimmomatic tool was used to trim adapter sequences and genomes were mapped
using the Map with BWA-MEM tool against a P. falciparum 3D7 reference
genome. The Filter Sam or Bam, output Sam or Bam tool was used to consolidate
the reads and generate the BAM file for the remaining analyses. The Depth of
Coverage on Bam File tool was used to assess the depth of coverage of the dataset.
Finally, the Freebayes – Bayesian genetic variant detector tool was used to assess
the data for SNPs, inserts, and deletions.

Generation of antigen for AcAS antibody production. Recombinant protein
fragment used for immunization was obtained by cloning the first 414 nucleotides
of a codon-optimized coding sequence of AcAS in frame with an N-terminal
Glutathione S-transferase (GST)tag, into the expression vector pGex-4T. The
vector was transformed into competent Escherichia coli BL21 (DE3) expression
cells to express a recombinant protein fragment. Protein production was induced in
250 ml log-phase growing cells with 500 µM IPTG for 3 h at 30 °C. After incu-
bation, the cells were collected, resuspended in 10 ml 20 mM Tris-HCl (pH 7.5)
and disrupted by sonicating 3 times for 45 s on ice. The protein was released from
the cell debris using 8 M urea and dialyzed in 10 mM Tris-HCl (pH8.1) with 0.1%
Triton X-100. The samples were stored at -20 °C prior to immunization.

Generation of polyclonal antiserum and immunoprecipitation assays. Rabbits
were immunized with recombinant AcAS according to the manufacturer’s standard
procedures (Eurogentec, Seraing, Belgium). Reactivity of serum was compared to
pre-immune serum using an enzyme-linked immunosorbent assay. Briefly, plates
were coated with 100 ng antigen per well and a dilution range of serum (pre-
immune versus serum from final bleed) was added. Antibody binding was

measured with a biotinylated goat anti-rabbit secondary antibody using the Vec-
tastain ABC kit (Vector Labs). Immunoglobulins were absorbed on protein A/G
sepharose (Pierce) and used to isolate AcAS from P. falciparum parasite lysates.

Parasite lysates for AcAS assay. Asynchronous blood-stage P. falciparum strain
NF54, NF54-HGL or the T648M mutant line generated using CRISPR-Cas9 were
released from RBCs by incubation with 0.06% saponin in PBS for 5 min on ice.
Parasites were pelleted by centrifugation (10 min at 4,000xg), washed with PBS and
lysed in 50 mM NaF, 20 mM Tris-HCl (pH 7.5), 0.1% Triton X-100, 2 mM
dithiothreitol, 2 mM EDTA and 1% (v/v) Halt Protease Inhibitor Cocktail
(Thermo-Fischer Scientific, Waltham, MA, USA). Suspensions were then sonicated
6 times for 3 s at an amplitude of 16 microns peak-to-peak. Sonicated samples were
centrifuged at 24,000 g for 5 min at 4 °C and supernatants were used in immu-
noprecipitation and enzyme activity assays.

AcAS assay. Acetyl-CoA synthetase activity was measured using a radioactively
labeled AcAS assay. The reaction mixtures contained 8 mM MgCl2, 2 mM ATP,
30 µM Coenzyme A, 200 µM 14C-labeled sodium acetate (PerkinElmer), 50 mM
Hepes-KOH, pH 8.5 and immunoprecipitated AcAS in a total volume of 35 µl.
Reactions were incubated at 37 °C for 30 min. The reaction was terminated with
3.5 µl of a 10% acetic acid solution in 90% ethanol. Samples were loaded on DEAE
filter paper (GE Healthcare) and washed thoroughly in 2% acetic acid solution in
95% ethanol to wash away unreacted acetate. After the discs were dried, they were
transferred into scintillation vials containing 3 ml ScintiSafe 30% Cocktail (Fischer
Scientific, Hampton, NH, USA). Radioactivity in each vial was counted using a Tri-
Carb 2900TR Liquid Scintillation Analyzer (Packard Bioscience, Boston, MA). To
test the inhibitory properties of MMV693183, 4’P-MMV693183, and CoA-
MMV693183 on AcAS, a dilution range of the compound was pre-incubated for
30 min with the immunoprecipitated AcAS before initiation the AcAS reaction by
adding the reaction mixture. The 4’P-MMV693183 and CoA-MMV693183 meta-
bolites were obtained from Syncom, Groningen, the Netherlands.

Cellular Thermal Shift Assay. A cellular thermal shift assay (CETSA) was per-
formed on infected RBCs or parasite lysates as described previously31.

For CETSA on infected RBCs, synchronized trophozoite cultures (NF54-HGL
parasites) were purified using magnetic-activated cell sorting (MACS). Parasites
were resuspended in 1× PBS, aliquoted in PCR tubes (1.8×107 cells/tube) and
subjected to 37 °C or 51 °C for 3 min on a pre-heated PCR machine, followed by
4 °C for 3 min. Parasites were mixed with 2× lysis buffer (100 mM HEPES, 10 mM
β-glycerophosphate, 0.2 mM activated Na3VO4, 20 mM MgCl2, with EDTA-free
protease inhibitor cocktail (Merck)), and subjected to three freeze-thaw cycles
using liquid nitrogen, followed by mechanical shearing using a syringe with a 25 G
needle. Samples were spun down at 18,000 g for 20 min at 4 °C and the soluble
fraction was flash-frozen in liquid nitrogen and stored at -80 °C.

For a CETSA on parasite lysates, synchronized trophozoite cultures (ACS11-
tagged parasites) were treated with 0.1% saponin to lyse the RBCs, and washed
three times in PBS. Subsequently, parasite pellets were resuspended in 1× lysis
buffer and subjected to three flash-freeze-thaw cycles using liquid nitrogen,
followed by mechanical shearing using a syringe with a 25 G and a 30 G needle.
Samples were spun down at 18,000 g for 20 min at 4 °C. The supernatant was
diluted to 2.1 mg/ml protein concentration, and 100 µl was added to each PCR tube
containing 1 µl of the compound at a 100× concentration (final concentration of
1 µM). Samples were incubated for 30 min at room temperature, subjected to a
thermal gradient for 3 min on a pre-heated PCR machine, followed by 4 °C for
3 min. Samples were spun down at 18,000 g for 20 min at 4 °C and the soluble
fraction was flash-frozen in liquid nitrogen and stored at −80 °C.

Western blot. Samples were loaded on an 8% SDS-Page gel (Genscript) with
4×106 infected RBCs or 50 µg protein for the parasite lysate approach. Proteins
were transferred to a nitrocellulose membrane that was blocked with 5% skim milk
(Sigma) in PBS overnight and incubated with rabbit antiserum against AcAS
(1:1000) for 1 h. Subsequently, membranes were washed three times with PBS-
Tween for 5 min, followed by incubation with secondary horseradish peroxide
(HRP)-conjugated goat anti-rabbit antibodies (Dako P0448, 1:1000) for 1 h. Blots
were then washed three times with PBS-Tween for 5 min and twice with PBS.
Following a 5-min incubation with Clarity Max Western ECL Substrate (BioRad),
protein blots were imaged using the ImageQuant LAS4000 (GE Healthcare). The
band intensity was quantified using Fiji software.

Immunofluorescence microscopy. Asynchronous asexual blood-stage AcAS-GFP
or wild-type NF54 parasites were allowed to settle on poly-L-lysine coated cover-
slips for 20 min at room temperature. Parasites were fixed with 4% EM-grade
paraformaldehyde and 0.0075% EM-grade glutaraldehyde in PBS for 20 min and
permeabilized with 0.1% Triton X-100 for 10 min78. Samples were blocked with 3%
bovine serum albumin (BSA) (Sigma-Aldrich) in PBS for 1 h. Samples of AcAS-
GFP and NF54 parasites were incubated with primary chicken anti-GFP antibody
(1:100, Invitrogen), or AcAS pre-immune and immune serum (1:500), respectively,
in 3% BSA/PBS for 1 h, followed by incubation with secondary goat anti-chicken
AlexaFluor 488 antibody (1:200, Invitrogen) in 3% BSA/PBS for 1 h. Nuclei were
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visualized with 1 μM DAPI in PBS for 1 h. PBS washes were performed between
different steps. Coverslips were mounted with Vectashield (Vector Laboratories).
Images were taken with a Zeiss LSM880 Airyscan microscope with 63x oil objective
with 405 and 488 nm excitations. Images were Airyscan processed before analysis
with Fiji software. Since no quantitative comparisons were performed, brightness
and contrast were slightly altered in Fiji to improve visualization of AlexaFluor488
and DAPI signals.

Statistics and Reproducibility. Dose-response assays were analyzed by a non-
linear regression using a four-parameter model and the least squares method to
find the best fit. One-way Analysis of variance (ANOVA) was performed using the
Bonferroni’s Multiple Comparison Test. For the majority of experiments, 2-4
biological replicates were performed. Typically, 2 replicates were performed for
screening activities, and a minimum of 3 replicates are performed for other
experiments unless stated otherwise.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The full metabolomics datasets are publicly available on the Metabolomics Workbench
database under ST001985. The data associated with this study are presented in the paper,
supplementary information and Source Data file. Genetically engineered parasite lines
that were generated for this study are available upon request under a material of transfer
agreement. Source data are provided with this paper.
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