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SUMMARY Originally, viruses were defined as miniscule infectious agents that passed
through filters that retain even the smallest cells. Subsequently, viruses were consid-
ered obligate intracellular parasites whose reproduction depends on their cellular hosts
for energy supply and molecular building blocks. However, these features are insuffi-
cient to unambiguously define viruses as they are broadly understood today. We out-
line possible approaches to define viruses and explore the boundaries of the virosphere
within the virtual space of replicators and the relationships between viruses and other
types of replicators. Regardless of how, exactly, viruses are defined, viruses clearly have
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evolved on many occasions from nonviral replicators, such as plasmids, by recruiting
host proteins to become virion components. Conversely, other types of replicators
have repeatedly evolved from viruses. Thus, the virosphere is a dynamic entity with
extensive evolutionary traffic across its boundaries. We argue that the virosphere
proper, here termed orthovirosphere, consists of a distinct variety of replicators that
encode structural proteins encasing the replicators’ genomes, thereby providing protec-
tion and facilitating transmission among hosts. Numerous and diverse replicators, such
as virus-derived but capsidless RNA and DNA elements, or defective viruses occupy the
zone surrounding the orthovirosphere in the virtual replicator space. We define this
zone as the perivirosphere. Although intense debates on the nature of certain replica-
tors that adorn the internal and external boundaries of the virosphere will likely con-
tinue, we present an operational definition of virus that recently has been accepted by
the International Committee on Taxonomy of Viruses.

KEYWORDS MGE, mobile genetic element, orthovirosphere, perivirosphere, replicator,
virosphere, virus, virus classification, virus definition, virus taxonomy

INTRODUCTION

Organisms, which we here equate with cellular life forms, consist of one or numer-
ous cells that reproduce via binary fission. With a few readily explicable excep-

tions, organisms (also known as reproducers) are subject to the incessant onslaught of
diverse symbiotic (commensal, mutualistic, or parasitic) nonorganismal mobile genetic
elements (MGEs), which are semiautonomous replicators (1–6).

The history of life is one of coevolution of organisms and MGEs. Indeed, theoretical
models and computer simulations show that the emergence of parasitic or commensal
MGEs is an intrinsic inalienable part of the evolution of all organisms (7–10). MGEs are
ubiquitous in the biosphere. Packaged MGEs, also known as “virus particles (virions),”
appear to be among the most common biological entities on earth, with many more virus
particles than cells detectable in at least some environments (11–13)—although the distri-
bution of the virus/cell ratios in different habitats varies substantially and remains a matter
of ongoing investigation (14, 15). Along similar lines, typical genes of MGEs, such as those
encoding transposases, are the most abundant genetic moieties in the oceans (16), and
MGEs in different stages of decay account for most of the genetic material in many com-
plex organisms with large genomes, such as animals, plants, and some protists (17, 18).
Furthermore, MGEs are astonishingly diverse genetically and apparently comprise the larg-
est gene pool in the biosphere (13, 19, 20). Some MGEs (e.g., viruses) play major roles in
biogeochemistry by releasing into the environment vast amounts of carbon, nitrogen, and
phosphorus from lysed host cells (13, 21–24). Finally, numerous viruses and even smaller
virus-like agents, such as viroids and virusoids, are pathogens that cause diverse and, in
many cases, devastating diseases in humans, livestock, or plants.

Like organisms, MGEs have their own genomes. However, in sharp contrast to
organismal genomes, which all consist of double-stranded (ds)DNA, MGE genomes are
represented by all known types of nucleic acids: single-stranded (ss)RNA, dsRNA,
ssDNA, dsDNA, and DNA-RNA hybrids (25–27). Accordingly, the routes of MGE genome
replication and expression substantially differ from the uniform DNA-RNA-protein
scheme used by organisms (Fig. 1). This diversity of replication and expression strat-
egies suggests the intriguing possibility that particular MGEs, in at least some aspects
of their biology, recapitulate the primordial RNA world and the transition from that
early stage of life’s evolution to the modern era of DNA-based cellular life. The ubiquity
of MGEs and their major role in the global ecology make it obvious that no adequate
understanding—and no theory—of the functioning and evolution of the biosphere is
possible without including MGEs as an integral key part.

Viruses are widely recognized as a distinct type of MGE, but there is currently no
explicit definition of virus, and the place of viruses in the multidimensional parameter
space of replicators (28, 29) has not been precisely defined. In this article, we explore
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different concepts and approaches to define viruses and differentiate them from other
types of replicators. As we will outline, the issue is complex and multifaceted.
Therefore, we approach it iteratively. First, we summarize the history of the term “virus”
and some of the definitions that have been brought forward. Second, we identify the
limitations of each of these definitions and narrow down the placement of viruses in
the virtual replicator space. Third, we outline possible new definitions and the potential
impact of these definitions on the virosphere composition as currently recognized by
the International Committee on Taxonomy of Viruses (ICTV). In doing so, we explain
which MGEs would have to be regarded viruses and which “viruses” would have to be
reclassified as nonviral MGEs depending on each definition.

Genomes representing entire novel virus clades and large numbers of highly
diverse other MGEs are being discovered at an incessantly accelerating pace, primarily
through the advances of metagenomics (30, 31). Accurate analysis and classification of
this growing volume of newly discovered MGEs urgently require refining our under-
standing of the overall structure of the replicator space.

VIRUS DEFINITIONS
Origins of the Term “Virus” (1398 to 1897 CE)

The word “virus” (from the Latin noun virus, which means “slimy liquid” or “poison”)
has been used since the late 14th century to refer to poisonous substances (32, 33). As
early as 1728, the venereal disease-causing agents (today known as particular bacteria),
and later, any infectious agents, indiscriminately were called “viruses” (32). In 1892,
Ivanovskij demonstrated that the sap of a diseased tobacco plant remained infectious
even after passage through Pasteur-Chamberland filters (pore size typically 0.2mm)
that were used to hold back cellular organisms, such as bacteria (34). Shortly thereafter,
similar observations were made by Beijerinck, who also reported that filtered diluted
tobacco plant sap remained as infectious as undiluted sap (35). Beijerinck referred to
the agent in the filtered sap as a contagium vivum fluidum (a contagious living liquid).
Subsequently, infectious agents that could pass through Pasteur-Chamberland filters
were referred to as “ultra(filterable) viruses,” and the agent causing tobacco mosaic dis-
ease was hence called tobacco mosaic virus (TMV) (36). With the increasing recognition
that some agents specifically infected particular cellular organisms, the term “virus”
was adopted exclusively for nonorganismal/noncellular filterable agents. Thus, “virus”
was largely defined from then on through what it was not, i.e., viruses were considered
noncellular, sub-light-microscopic infectious agents that could be separated from
other infectious agents by filtration.

Early Clarity and Consensus Regarding the Term “Virus” (1898 to 1967 CE)

“TMV-like” entities that infect animals (foot-and-mouth disease virus), including
humans (yellow fever virus), were discovered as early as 1897 to 1900 (37–39). The list

FIG 1 Viruses, their cycles of replication and expression, and the six monophyletic realms. The Baltimore
classes (I to VII) (25) are shown in open boxes along with the major attributes characteristic for each class. Gray
boxes, corresponding to each of the six monophyletic realms, are aligned with the Baltimore classes with
which the member viruses are affiliated based on the type of nucleic acid encapsidated into their virions. The
host range of viruses in each realm is indicated with different shapes: circles for bacteria, triangles for archaea,
and squares for eukaryotes. RdRp, RNA-directed RNA polymerase; RT, reverse transcriptase.
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of viruses grew quickly, and early investigations indicated that all of these viruses
shared certain properties: a particulate nature (40), substantial protein content (41),
and defined morphologies in electron micrographs (42). Thus, by 1939, viruses were
equated with virus particles, and these were conceptualized as infectious noncellular
agents that depend on cells for their multiplication. The chemical, physical, serologic,
and morphologic characterization of virus particles and their host tropism and effects
on the hosts enabled the establishment of first virus classifications schemes (43–55). In
a landmark paper published in 1957, Lwoff distilled the knowledge accumulated
through the first half of the 20th century to formulate a biological definition of
“viruses” as “strictly intracellular and potentially pathogenic entities with an infectious
phase, and (i) possessing only one type of nucleic acid (DNA or RNA), (ii) multiplying in
the form of their genetic material, (iii) unable to grow and to undergo binary fission,
(iv) devoid of a Lipmann system (an active metabolism)” (56).

Erosion of the Virus Definition (1967 CE to Present)

In 1967, Diener and Raymer identified the cause of potato spindle tuber disease as
a “virus with properties of a free nucleic acid,” i.e., a nucleic acid not packaged in pro-
tein and not producing virions (57). Further characterization indicated that this free
nucleic acid was too short to encode the proteins required for replication (58) (or, in
fact, any proteins at all). Although this type of pathogen clearly was nonorganismal,
ultrafilterable, and adhered to the Lwoff definition of “virus,” Diener recognized the
agent to be fundamentally different from the other thereto-described “viruses” and
introduced the term “viroid” for distinction. The introduction of the concept of “viroid”
marked the gradual realization of the plethora of MGEs known today, all of which
could be considered “viruses” using the traditional virus definitions but were increas-
ingly considered distinct from (now undefined) bona fide viruses. Such “virus-like”
MGEs include virusoids (i.e., viroids that hijack the capsids of bona fide viruses for hori-
zontal spread between hosts), satellite viruses (i.e., MGEs encoding one or more pro-
teins required for virion formation but dependent on helper viruses for genome repli-
cation), and satellite nucleic acids (i.e., MGEs encoding replication factors but
dependent on viruses for transmission that is achieved through encapsidation of the
satellite nucleic acid into the capsids of coinfecting helper viruses).

Several other realizations and discoveries further eroded previous virus definitions.
One striking case in point is the discovery and characterization of giant viruses, which,
in their genomic complexity and virion sizes that match or surpass the smallest cellular
organisms, encode a variety of typical cellular proteins (e.g., multiple translation sys-
tem components) and are retained by Pasteur-Chamberland filters (59–61). In the wake
of these discoveries, interest was rekindled to define viruses in a more comprehensive
manner, striving to move away from simple but apparently inadequate traits, such as
small size and infectivity. New definitions strived to capture essential features of ge-
nome content and reproduction that differentiate viruses from cellular life forms on
the one hand and nonviral MGEs on the other hand. Thus, Raoult and Forterre defined
viruses as “capsid-encoding organisms,” in contrast to cellular life forms, which they
defined as “ribosome-encoding organisms” (62). Subsequently, Claverie and Abergel
defined a virus as any biological entity with a genome that is “replicated by a system
of macromolecules that it does not entirely encode” and that is “disseminated using a
metabolically inert structure, the maintenance of which does not require energy” (63).
In a more recent elaboration, these authors further argued against the use of any virus
definition based on the presence or absence of any subset of genes or physical fea-
tures and concluded that viruses may be better defined by their generic properties of
genome dissemination and propagation (64).

KEY ATTRIBUTES OF VIRUSES AND THEIR INADEQUACY FOR A VIRUS DEFINITION
Infectivity

Infectivity is, obviously, a hallmark of virus infections and hence was included in
many previous virus definitions. However, counterexamples abound. With only a few
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known exceptions, fungal viruses (generally referred to as “mycoviruses”) are not infec-
tious and instead are transmitted vertically or through hypha fusion during anastomosis
between compatible mating types (65, 66). A similar lifestyle is adopted by numerous
plant viruses (e.g., partitivirids) that cause persistent asymptomatic infections, lack an
extracellular stage, and are only transmitted vertically (67, 68). Numerous “endogenous
viruses,” i.e., sequences derived from viruses and incorporated into organismal genomes
(in particular, genomes of animals, including humans, as well as those of plants) (69, 70),
serve as examples of viruses that are not infectious, as are the MGEs previously known as
“polydnavirids” (71, 72) (in 2021 recognized as “polydnaviriformids” [73]).

Parasitism

Early on, viruses were recognized as obligate intracellular parasites, as in the famous
quip of Peter and Jean Medawar: “A virus is a piece of bad news wrapped in protein”
(74). However, crucial as it is, this intracellular parasitism cannot be the basis of a work-
ing definition of viruses. Although all viruses indeed reproduce solely within host cells,
the reverse is false: numerous obligate intracellular parasites are bacteria or unicellular
eukaryotes rather than viruses. Furthermore, not all (and possibly not even the majority
of) viruses are detrimental to their hosts, and some appear to be outright beneficial,
thus qualifying as commensals or mutualists rather than parasites (75–77), although
the strict dependence on the host cell and intracellular reproduction remain universal
traits of these replicators (78, 79).

Size

The original virus definitions were construed around the idea that viruses have a
particulate nature (viruses = virus particles/virions) with distinct morphologies that can
be visualized only by electron microscopy because of their small sizes. However, virions
are only a part of the virus life cycle (80), conceptually similar to spores of bacteria or
fungi (81). This idea has been further developed by Forterre, who proposed the virocell
concept, according to which the infected cell, the virocell, is the “living form” of the vi-
rus (82–84). Logically, virus and virion therefore cannot and should not be equated
(and, importantly, mature virions are primarily extracellular entities and hence would
further confound the view of viruses being “obligate intracellular parasites” further).
The distinction between “virus” and “virion” has important consequences for virus defi-
nitions: the morphological characterization of virions is not the same as characteriza-
tion of the viruses that produce these virions, and consequently, viruses cannot be
considered “small,” although virions can be small indeed. Moreover, not all virions are
small in the traditional (“ultrafilterable”) sense. The discovery of giant viruses that infect
unicellular eukaryotes shattered the demarcation between organisms and viruses by
size, because the virions of giant viruses are larger than the smallest bacterial, archaeal,
or picoeukaryotic cells. In fact, they are visible by light microscopy and do not pass
Pasteur-Chamberland filters (59–61, 85). For instance, “pandoraviruses” have dsDNA
genomes in excess of 2 Mbp in length and produce particles that are 1mm in length
(86, 87). Thus, for reasons both conceptual and practical, virion size cannot be a defin-
ing criterion for viruses. The alternative—classifying giant viruses as entities distinct
from both viruses and cells (“giruses” [88] or “things resisting uncompleted classifica-
tions [TRUCs]” [89, 90])—appears to be untenable, given the demonstrable origin of
giant viruses from smaller conventional ones (60).

Virions versus Ribosomes and Replication Machinery

The dissemination of replicators between susceptible hosts using protective shells,
virions, is a property that could be exploited to distinguish viruses from other types of
replicators. The simplest virions consist of a nucleic acid surrounded by a protein cap-
sid that can be formed from one or several virus-encoded proteins and typically has
icosahedral or helical symmetry (the terms virion and capsid are attributed to Lwoff et
al. [91, 92]). In more complex virions, the nucleic acid-encompassing capsid can be fur-
ther surrounded by one or more additional proteins and/or a lipid layer. In such cases,
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the innermost layer of the virion surrounding the viral genome is usually referred to as
the nucleocapsid (a term coined by Caspar and Klug [93]). Notably, nucleocapsid pro-
teins of certain viruses that produce enveloped particles are homologous to the capsid
proteins (CPs) of viruses producing nonenveloped particles, indicating that there is no
major functional distinction between the two types of virion proteins (94).

Raoult and Forterre posited that viruses are capsid-encoding (and subsequently
refined to virion-encoding [95]) organisms as opposed to cellular life forms that they
defined as ribosome-encoding organisms (62, 84). This definition would include
numerous MGEs that are currently considered viruses and exclude viroids sensu stricto.
However, agents currently recognized by the ICTV in the established riboviriad families
Endornaviridae, Deltaflexiviridae, Hypoviridae, Mitoviridae, and Narnaviridae and genus
Umbravirus, which are common intracellular parasites of fungi, plants, and some unicel-
lular eukaryotes, would not be viruses according to this definition: the genomes of
most of these agents are never encapsidated, whereas, for instance, umbraviruses
highjack capsids of other viruses for their dissemination. Thus, many MGEs are clearly
evolutionarily related to bona fide viruses and resemble them in biological properties
but do not encode capsids. An adoption of the Raoult-Forterre definition in its current
form would necessitate the expulsion of the capsidless virus-like MGEs from the midst
of viruses.

Conversely, bacterial gene transfer agents (GTAs) are virion-like particles that con-
sist of homologs of proteins encoded by MGEs currently considered viruses by the
ICTV (tailed bacteriophages of the duplodnaviriad phylum Uroviricota) but encoded by
genes embedded in bacterial chromosomes, often in several blocks, rather than a sin-
gle genomic segment (96–100). GTAs do not package the genes encoding the struc-
tural proteins of the virion-like particles but rather encapsidate random pieces of the
host bacterial genome. GTAs are produced under stress, lyse the host cell, and “infect”
neighboring cells, thus enhancing horizontal gene transfer. The genes encoding GTA
components do not constitute proviruses: they have been fully domesticated and dis-
persed over the bacterial chromosome, and the genes responsible for the genome rep-
lication of the ancestral virus have been lost. Thus, essentially, the GTAs are virion-like
entities encoded by bacteria and are not distinct replicators. Following Lwoff’s defini-
tion as well as the Raoult-Forterre definition of viruses, GTAs should be considered
viruses despite the absence of “viral” genomes. However, domestication fully trans-
formed GTAs into functional cellular systems, and nobody refers to them as viruses in
the literature, indicating that there is wide consensus that they are not viruses. The
ICTV will likely consider them analogs of “polydnaviriformids,” i.e., viriforms, rather
than viruses if classification is attempted (73).

Finally, it remains to be seen whether ribosomes are hallmark properties of cellular
organisms that are absent from MGEs in general and viruses in particular. At this time,
we are unaware of any MGEs encoding functional ribosomes. However, “tupanviruses”
and some “klosneuviruses” (tentative members or close relatives of the varidnaviriad
family Mimiviridae) encode nearly complete translation systems, with the exception of
the ribosome itself (85, 101, 102), and many prokaryotic viruses encode ribosomal pro-
teins (103). Although no MGEs encoding ribosomal RNAs are currently known, it is diffi-
cult to confidently discard the possibility of discovering some MGEs that encode a
complete ribosome. Thus, the criteria underlying the (seemingly) intuitive and sensible
capsid-based definition of viruses—and their demarcation from ribosome-encoding
cellular organisms—are far from being ironclad.

Claverie and Abergel’s second criterion for their virus definition (“disseminated
using a metabolically inert structure, the maintenance of which does not require
energy” [63]) is also problematic, because many MGEs currently considered viruses by
the ICTV, for example, some of the aforementioned “mycoviruses,” do not produce viri-
ons. Moreover, the replication criterion fails as well, much like the ribosome criterion.
Many large DNA viruses include most if not all of the key replication enzymes (104,
105), and the existence of MGE-encoded autonomous virus DNA replication machinery
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appears quite likely. Even more obvious, the replication of RNA virus genomes is sup-
ported mostly by virus-encoded proteins. Furthermore, various MGEs typically not con-
sidered viruses, such as plasmids and transposons, are transferred between cells of
organisms in all three domains of life within extracellular vesicles (106–111), which fit
the definition of the virus particles proposed by Claverie and Abergel (63).

Thus, although the approaches based on the presence of virions and the absence
of suites of proteins involved in quintessential cellular functions reflect major distinc-
tive features of viruses, they fail to produce an all-encompassing definition of virus.

Absence of Metabolism

The absence of active metabolism has been a crucial feature of virus definitions
since Lwoff first formulated his in 1957 (56). Indeed, most MGEs currently classified as
viruses do not encode any components of ATP-generating metabolic systems.
However, giant viruses, such as the recently described mimivirid Prymnesium kappa vi-
rus RF01, encode enzymes of the tricarboxylic acid (also known as Krebs) cycle and the
b-oxidation pathway (112), whereas “pandoraviruses” (tentative members or close rel-
atives of the varidnaviriad family Phycodnaviridae) not only encode enzymes of the tri-
carboxylic acid cycle but also produce particles capable of maintaining a proton gradi-
ent across the particles’ membranes (113).

Along similar lines, many viruses infecting cyanobacteria (“cyanophages”) encompass
genes for all the components of photosystems that they often transfer between hosts,
enhancing their photosynthetic capabilities (114, 115). Finally, virome analyses suggest
that some viruses encode a set of proteins involved in oxidative phosphorylation, specifi-
cally, components of the prokaryotic electron transport chain complexes I, II, III, and IV,
and even some subunits of the FoF1 ATP synthase, also referred to as complex V (116).
Thus, the absence of metabolism cannot pass as a virus definition criterion, at least,
unless the requirements for virus-encoded metabolic networks are carefully specified.

BOUNDARIES OF THE VIROSPHERE IN THE VIRTUAL SPACE OF REPLICATORS

Self-propagating biological entities are fundamentally split between reproducers
(cells and such eukaryotic organelles as mitochondria and chloroplasts) that reproduce
by various forms of division, retaining the physical continuity of their macromolecular
organization, and replicators (all varieties of MGEs) for which replication of the genome
alone is typically sufficient (5, 7, 117–119). All replicators depend on reproducers (cellu-
lar organisms) for energy and most molecular building blocks, and hence they are ei-
ther parasites (if they decrease the fitness of the hosts), commensals (if host fitness
remains unaffected), or mutualists (if they provide benefits to the hosts). The genomes
of cellular organisms can be considered the ultimate mutualist replicators (29).
Replicators share one universal property: they all possess some genomic elements that
provide a degree of control over their own replication and thus make them distinct
units of evolution. The complexity of such replication-controlling elements varies
greatly from encoding effectively complete replication machineries (as in many large
and giant DNA viruses and nearly all RNA viruses) to having only small structural ele-
ments recognized by host polymerases (e.g., viroids), but each replicator carries at least
a minimal replication signal.

The discussion in the previous section should suffice to demonstrate that simple
definitions of virus do not work, as there are too many exceptions for any obvious de-
marcation criteria. If we are interested in a meaningful answer to the question “what is
a virus,” a different approach is needed, and this is what we attempt here. We examine
a multidimensional conceptual space of replicators. The dimensions of this space
include genome length, genetic complexity, replicative autonomy, “selfishness,” exis-
tence of an inert extracellular phase, and presence or absence of encoded particular
functional systems (28). Using these dimensions, we attempt to delineate the subspace
of the replicator space occupied by viruses: the virosphere. The core of the virosphere,
which we define as the orthovirosphere, fits within virion-based virus definitions, but
the boundaries are intrinsically blurry. We therefore also define a perivirosphere, i.e., a
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subspace of the virosphere surrounding the orthovirosphere, including replicators that
share some but not other characteristic features of “typical” viruses.

The Virosphere

Orthovirosphere and its boundaries. As commonly understood by most virologists
in the absence of in-depth discussion, viruses are replicators but occupy a special place
in the virtual replicator space. To define the boundaries of the virosphere and explore
its blurry borders and passages to other parts of the replicator space, while not upend-
ing the virology community’s overall understanding of virus, for purely historical rea-
sons, we start with TMV, declaring it the “quintessential virus” (36, 120).

TMV has a short (;6 kb) linear positive-sense RNA genome that encodes only four
proteins: a protein containing capping enzyme and RNA helicase domains, an
extended version of this protein that additionally contains an RNA-directed RNA poly-
merase (RdRp) domain, a CP, and a movement protein (MP) that enables virus trans-
mission among plant cells (36). After a TMV particle enters a host cell, the virus hijacks
the host translation and endomembrane systems to produce virus proteins and repli-
cates, resulting in the assembly of rod-like helical particles encapsidating progeny
genomes. Small and simple as it is, TMV encompasses the two functional modules that
characterize most viruses and, as such, can be expected to become an important ingre-
dient of any virus definition: (i) replication and (ii) structure and morphogenesis. In
addition, TMV possesses a third module, in this case, consisting of a single gene that is
dedicated to virus-host interaction. Such an ancillary module is present in many but
not all viruses, and more complex viruses can be considered to encompass multiple
modules consisting of genes involved in interactions with different functional systems
of the host, such as evasion of the host defenses. Apart from this canonical genetic-
functional layout, TMV is endowed with biological capacities that are traditionally asso-
ciated with viruses: TMV is a pathogen that causes acute infection and disease in its
host and is readily transmissible among individual host organisms. Thus, in the virtual
space bounded by various molecular and biological traits of replicators, we place TMV
in the center of the virosphere (Fig. 2).

Starting from this “baseline” simple (albeit not the simplest) but functionally
complete virus, we can explore different directions in the virosphere, aiming to
track its boundaries. “Nothing in biology makes sense except in light of evolution”
(121), and the virosphere is no exception. Trying to define the virosphere without
understanding the routes of virus evolution would be futile. In this section, we trace
the trajectories through which replicators enter and leave the virosphere (evolve to
become viruses per our definition or evolve from viruses to other replicators) and,
in many cases, the means by which they are getting stuck near its boundaries. In
this virtual tour of the virosphere and the regions of the replicator space that sur-
round it, we begin with the recently established megataxonomy of viruses, with its
six top-ranked taxa, the realms (27, 122, 123):

1. Riboviria—RNA viruses (kingdom Orthornavirae) and reverse-transcribing
viruses (kingdom Pararnavirae);

2. Monodnaviria—DNA viruses encoding HUH superfamily replication initiation
endonucleases (but also including dsDNA viruses with small genomes,
polyoma- and papillomavirids, in which this endonuclease is inactivated);

3. Varidnaviria—an enormous diversity of dsDNA viruses that produce particles
with icosahedral capsids formed by double jelly roll (DJR) major capsid proteins
(MCPs);

4. Duplodnaviria—the second realm of dsDNA viruses that includes viruses
producing particles with icosahedral capsids built of so called HK97-fold MCPs
(caudoviricetes of prokaryotes and animal-infecting herpesvirals);

5. Adnaviria—a new realm of archaeal viruses with dsDNA genomes and helical
(nucleo)capsids built of unique alpha helical MCPs that dehydrate the viral
genomes and transform them into A-form DNAs;
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6. Ribozyviria—circular, negative-sense RNA viruses related to hepatitis delta virus 1
(HDV-1) and other deltaviruses that share some key features with viroids but encode
a virion protein.

We then briefly visit classified viruses that do not fit into any of the established
realms and finish the discussion with an overview of nonvirus MGEs that are currently

FIG 2 The virosphere—orthovirosphere and perivirosphere—within the replicator space. Tobacco mosaic virus (TMV) was the first replicating
noncellular mobile genetic element (MGE) to be called “virus” and hence occupies the center of the debate of how viruses should be
defined. Shortly after the discovery of TMV, other MGEs, such as enterobacteria phage PRD1, “phage lambda,” and phage UX174, were
discovered that, in some aspects, are fundamentally different from TMV but yet were quickly accepted as “viruses” by the scientific
community. Hence, they are located close to TMV as “quintessential” viruses although they are phylogenetically unrelated. Today, these
viruses are members of distinct, polyphyletic viral realms, with each relative of the quintessential viruses sharing, losing, or gaining certain
properties that shape the debate on what constitutes a “virus.” In the three-dimensional space of the virosphere, i.e., the space that is
occupied by all MGEs, a fuzzy (red dotted) line can be drawn at arbitrary places that separate the orthovirosphere (bona fide viruses as per
any established definition; orange) from the perivirosphere (virus-like MGEs; blue). The placement of the fuzzy line is determined by the
scientific community’s consensus about the nature of a particular MGE. For instance, there is no controversy about herpes simplex virus 1
(HSV-1) being a “virus,” and there is little controversy about viroids and virusoids not being viruses. The line is fuzzy because MGEs exist that
have or lack properties that make their placement challenging. For instance, hepatitis delta virus 1 (HDV-1), accepted as a “virus” by many
(123), shares many properties with viroids and virusoids and hence is considered not to be a “virus” by others. GTA, gene transfer agent;
HIV-1, human immunodeficiency virus 1; HK97, Escherichia coli phage HK97; ICE, integrative and conjugative element; LTR, long-terminal
repeat; MS2, Escherichia coli phage MS2; PCV-2, porcine circovirus 2; PFV2, Pyrobaculum filamentous virus 2; RCR, rolling-circle-replicating;
SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; VARV, variola virus. For simplicity, organismal and organellar genomes have
been omitted from the cubical extravirospherical replicator space.
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classified by the ICTV (satellite DNAs, viroids, and viriforms) and unclassified MGEs
(other satellite nucleic acids, virusoids, various transposons, and plasmids).

(i) Riboviria. (a) Orthornavirae. Numerous and highly diverse RNA viruses in the realm
Riboviria, in principle, resemble TMV in both their genomic layout and biological proper-
ties. They encompass the two typical modules of virus genes, and many also possess a
dedicated host-interaction module. In the now infamous coronavirids (124) and in flavi-
virids (125) and plant closterovirids (126) (the three groups of RNA replicators with the
longest, most complex genomes), this module is notably expanded. On the other
extreme of the RNA domain of the orthovirosphere are several groups of RNA replicators
with extremely short genomes. An example is Totiviridae, a family of widespread dsRNA
viruses with genomes of;4 kb that are found in fungi, diverse protists, and invertebrate
holobionts (65, 127). Totivirids only encode RdRp and CP, that is, minimal versions of the
replication and structural modules, and are not infectious, i.e., they are transmitted only
vertically. These replicators fit the virion-centric definitions of “virus” but, considering
their biological properties, such as the lack of infectivity, would map to the periphery of
the orthovirosphere (Fig. 2). It should be noted, however, that the simplicity of the ge-
nome layout and lack of infectivity are not tightly linked, as members of Nodaviridae that
also have only two genes are typically fully infectious (128). Within our conceptual frame-
work, such viruses belong closer to the center of the orthovirosphere than totivirids.

Consider “satellite viruses” that are associated with many plant RNA viruses.
Satellite tobacco necrosis virus (STNV; unassigned riboviriad genus Albetovirus) can be
seen as the archetype of satellite viruses. STNV has a short (;1.2 kb) RNA genome that
only encodes a CP and hijacks the RdRp of its helper virus, tobacco necrosis virus
(Tombusviridae: Alphanecrovirus), for replication (129, 130). It makes sense to classify
STNV and other similar agents as bona fide viruses because they are distinct CP-encod-
ing replicators (129). However, these viruses lack genes encoding RdRps, the only uni-
versal gene of RNA viruses, and thus the replication module. Consequently, they strictly
depend on their helper viruses for replication and therefore belong at the periphery of
the orthovirosphere.

Whereas satellite RNA viruses, such as STNV, retain the structural but not the repli-
cation module, numerous replicators with RNA genomes that are currently officially
recognized as viruses by the ICTV have lost the structural module, retaining only the
RdRp-encoding gene and, in some cases, genes encoding additional proteins involved
in replication and/or interactions with their hosts. There are at least five distinct inde-
pendently evolved groups of RNA replicators in this category that currently have offi-
cial status as viruses:

i) Deltaflexiviridae: RNA elements that infect fungi and that are apparently derived
from capsid-encoding viruses of the alsuviricete order Tymovirales (131);

ii) Endornaviridae: relatively large, complex RNA elements derived from plant
alsuviricetes that encode a variety of proteins involved in replication and MGE-
host interaction, but not CPs, and are widespread in plants, fungi, and
oomycetes (132, 133);

iii) Hypoviridae: RNA elements that propagate in fungi and are likely derivatives of
plant viruses assigned to stelpaviricete Potyviridae (134, 135);

iv) Mitoviridae and Narnaviridae: groups of minimal RNA elements that encode only
RdRps, are derived from prokaryotic RNA viruses (Leviviricetes [136]) and
replicate in mitochondria or the cytoplasms of plant, fungal, or unicellular
eukaryotic cells (137);

v) Umbravirus: RNA MGEs that infect plants and that are evolutionary derivatives of
tombusvirids. These MGEs encode an RdRp and two MPs, but they hijack CPs
from helper viruses at some stages of their reproduction cycles (138).

Most of these naked RNA MGEs are harmless to their hosts and are transmitted only
vertically, although some umbraviruses and hypovirids are pathogens.

There is little doubt that more capsidless RNA replicators will be discovered as the
known diversity of RNA replicators expands, especially as these elements often lack
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obvious biological manifestations and are only discovered by metatranscriptome anal-
ysis. All of these replicators are traditionally denoted viruses although they fail the vi-
rion-centered definitions. The strong justification for considering them in the same
plane with bona fide viruses is the RdRp phylogeny, which shows beyond reasonable
doubt that all of these elements evolved from viruses on multiple independent occa-
sions via parallel routes, i.e., by losing the CP gene (139, 140). However, at least in cases
in which these agents are not pathogenic, one could argue that they have morphed
into a different kind of replicator that might be best defined as an RNA plasmid. There
is no way of making an “objective” call on whether these MGEs are viruses. Rather,
these elements formally belong in the perivirosphere by virtue of not encoding a CP,
but being derivatives of bona fide viruses, they reside at the very boundary of the
orthovirosphere.

(b) Pararnavirae. From RNA viruses that replicate without a DNA stage, we move to
reverse-transcribing viruses that are related to orthornavirans by virtue of the homol-
ogy of their replicative enzymes, the reverse transcriptase (RT) and RdRp, respectively.
Evolutionary reconstructions clearly show that pararnavirans evolved from capsidless
and thus, arguably, nonviral retroelements (141, 142). Such retroelements are common
(even if dramatically different in abundance) in organisms of all major taxa. Reverse-
transcribing viruses, on the other hand, are a eukaryotic innovation that was brought
about by the capture of the CPs from unknown sources, apparently on two independ-
ent occasions, in the orders Ortervirales and Blubervirales (Hepadnaviridae) (142, 143).

In addition to the well-known retrovirids with RNA genomes and caulimovirids and
hepadnavirids with DNA genomes, distinct reverse-transcribing viruses have been clas-
sified in families Belpaoviridae, Metaviridae, and Pseudoviridae. However, these three
groups of viruses are more frequently referred to as Bel/Pao-like, Ty3/Gypsy-like, and
Ty1/Copia-like long-terminal repeat (LTR) retrotransposons, respectively (144). Indeed,
these elements spend most of their reproduction cycles as transposons integrated in
the genomes of their hosts (diverse unicellular eukaryotes, fungi, plants, and animals).
Nevertheless, they retain the genes for structural proteins and form intracellular virion-
like particles, the role of which is not fully understood (145, 146). Notably, virions pro-
duced by metavirid Gypsy are infectious in the classical sense, i.e., extracellularly (147),
indicating that at least some of these retroelements are bona fide viruses. However,
most belpaovirids, metavirids, and pseudovirids appear to represent a departure from
the core of the orthovirosphere toward the perivirosphere. It would be legitimate to
denote these MGEs as “virus-like transposons,” but “transposon-like viruses” seems
equally fitting if not more accurate. By virtue of carrying genes for structural proteins
and forming virions, these MGEs belong in the orthovirosphere but, clearly, on its pe-
riphery, given their transposon-like lifestyle. It should be noted, however, that the
transmissible retrovirids, such as human immunodeficiency virus 1 (HIV-1), also encode
integrases. In their life cycles, these viruses go through an obligatory stage of integra-
tion within their host genomes, where many remain dormant for extended periods of
time (148) and can be domesticated and/or deteriorate eventually. Thus, many if not
most reverse-transcribing viruses display a continuum of propagation modes, from vi-
rus to transposon.

(ii) Monodnaviria. The ssDNA MGEs classified in realm Monodnaviria are small typi-
cally circular replicators with a peculiar evolutionary history. These ssDNA viruses
evolved from small bacterial or archaeal plasmids on multiple independent occasions
via parallel routes. In both cases, viruses evolved via the capture of genes encoding
CPs, from preexisting RNA viruses, or from yet unknown sources (149). The plasmids
contributed the replication module, in this case, the HUH superfamily endonuclease
involved in the initiation of rolling-circle replication (150). Thus, this is a clear-cut case
of the origin of viruses from nonviral MGEs. Notably, on at least one occasion, the
reverse course of evolution, i.e., emergence of a group of plasmids in Phytoplasma
(plant-pathogenic) bacteria from ssDNA viruses of plants, occurred as well (150). Thus,
these replicators that, in their current state, can be considered typical viruses have
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entered (or left) the virosphere on multiple occasions. In addition to ssDNA viruses, the
realm Monodnaviria includes two groups of dsDNA viruses (Papillomaviridae and
Polyomaviridae) with short circular genomes, which encode an inactivated HUH endo-
nuclease in accordance with their changed mode of replication (i.e., a switch from roll-
ing-circle replication to the standard mechanism of dsDNA replication). These viruses
are even further removed from the plasmid origins than their ssDNA virus ancestors.

Satellite nucleic acids of the family Alphasatellitidae represent another interesting
assemblage of MGEs that are functionally and evolutionarily linked to eukaryotic ssDNA
viruses, in this case, phylum Cressdnaviricota (151, 152). Alphasatellitids are short (;1 to
1.4 kb) circular ssDNA molecules transmitted within the capsids of plant viruses of the
monodnaviriad families Geminiviridae and Nanoviridae (152, 153). They encode a single
protein, the replication initiation endonuclease, which is phylogenetically closely related to
that of nanovirids, and resemble the R-component of the multipartite nanovirid genome.
Whereas the Rep protein encoded by the R-component of nanovirids is responsible for the
replication of all genome components, the Rep protein of alphasatellitids exclusively repli-
cates the cognate DNA molecule. By virtue of not encoding their own CPs, alphasatellitids
clearly do not belong in the orthovirosphere but rather in the perivirosphere. However,
alphasatellitids encode the hallmark Rep protein, which holds together the realm
Monodnaviria and, more specifically, can be placed deeply within phylum Cressdnaviricota
by phylogenetic analysis (151). Thus, there is no fundamental functional difference
between alphasatellitids and capsidless RNA viruses, especially umbraviruses, which are
also encapsidated into the capsids of other viruses. Furthermore, certain alphasatellitids
have apparently forged symbiotic alliances with viruses, which arguably draws alphasatelli-
tids away from the perivirosphere and back into the orthovirosphere. In particular, the
genomic components encoding the CPs and the putative MP of coconut foliar decay virus
(CFDV), the sole member of the newly established virus family Metaxyviridae (154), are
replicated by the Rep encoded by one of the nine alphasatellitids associated with CFDV,
rendering it an indispensable component of the CFDV genome (155).

(iii) Varidnaviria. In addition to legitimate dwellers of the orthovirosphere, such as
tectivirid bacteriophages or vertebrate adenovirids, the replicators classified in realm
Varidnaviria include the giant viruses mentioned in the beginning of this article, many
of which are typical, albeit complex, viruses. However, some MGEs currently considered
giant viruses, such as “pandoraviruses” and “pithoviruses” (tentative members of mega-
viricete order Pimascovirales), challenge historic virus definitions (61, 63, 156). Even to a
greater extent than for the MGEs officially classified in Mimiviridae (“microbe-mimicking
viruses”), the particles of “pandoraviruses,” “pithoviruses,” and “pithovirus”-related
“cedratviruses” and “orpheoviruses” superficially resemble cells, in both size and shape
(86, 87, 157–160). These viruses lack typical capsids and CP but do encode the struc-
tural components of their virions (86, 87). In the case of “pandoraviruses,” one of the
two major virion proteins evolved from a minor structural protein found in other giant
viruses (161). Thus, these are bona fide viruses that remain within the orthovirosphere
even if, along the size and complexity axes, they deviate far from the orthovirosphere
core.

Similar to the reverse-transcribing pararnavirans that include numerous replicators
that are traditionally considered transposons rather than viruses, dsDNA Varidnaviria
includes a large assemblage of MGEs, known as polintons or mavericks, which encode
retroviral-like integrases and are integrated within the genomes of diverse eukaryotes
(162–164). Although originally described as a class of large DNA transposons, these ele-
ments were subsequently found to also encode a conserved morphogenetic module
typical of varidnaviriads, including the DJR MCP, a single jelly roll (SJR) minor CP (mCP),
an A32-family genome packaging ATPase, and a capsid maturation protease (165).
Hence, it has been suggested that polintons are bona fide viruses, dubbed “polintovi-
ruses.” Although reactivation and formation of virions remains to be demonstrated for
any “polintovirus,” they have been hypothetically placed at the center of evolutionary
events leading to the emergence of all eukaryotic members of Varidnaviria (166–168).
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Furthermore, an expansive group of polinton-like viruses (“PLVs”) has been identified
by analysis of metagenomes from diverse environments (169, 170), and for at least one
of the “PLVs,” virions have been observed (171).

Given their predominantly transposon lifestyle (and until virions are characterized),
“polintoviruses,” despite their apparent key role in the evolution of Varidnaviria, may be
perceived as peripheral members of the orthovirosphere. Moreover, some polinton-like
transposons have lost the capsid protein genes, which pushes them into the periviro-
sphere. In contrast, the “PLVs” are closer to the center of the orthovirosphere.
Transpovirons, a group of plasmid-like linear dsDNA MGEs that depend on giant viruses
for replication (172, 173), also appear to derive from polintons, via a deeper degradation
that involved not only the loss of the morphogenetic genes but also inactivation of the
DNA polymerase (174). Thus, transpovirons are typical members of the perivirosphere.

In the course of varidnaviriad evolution, even more dramatic departures from the
core of the virosphere have occurred. In particular, linear cytoplasmic plasmids found
in fungi encode DNA polymerases that are closely related to those of “polintoviruses”
as well as capping machineries and RNA polymerases shared with giant viruses, but
they lack the morphogenetic module (166–168). These plasmids cannot be considered
part of the orthovirosphere, being conceptually similar to the capsidless RNA viruses
discussed above. Another group of linear plasmids, which has ventured even further
away from the orthovirosphere, replicate in plant and fungal mitochondria and appa-
rently evolved from bacterial tectivirids following the same evolutionary trajectory as
narnavirids and mitovirids (168). All of these elements belong in the perivirosphere.

(iv) Duplodnaviria. Realm Duplodnaviria includes the enormously abundant and
diverse tailed bacteriophages of class Caudoviricetes and related archaeal viruses, along
with their eukaryotic relatives, the herpesvirals, which infect animals; all of these
viruses are united by a highly conserved morphogenetic module. Numerous prokary-
otic duplodnaviriads alternate between lytic and lysogenic cycles, with integrated pro-
viruses vertically inherited across many host generations (175, 176). Some of these
viruses, such as bacteriophage Mu and its close relatives, are also endowed with a
transposition capacity (177, 178). Similarly, many herpesvirals persist in the host cells
as episomes or as proviruses integrated in the host chromosome (79, 179, 180).

All of these replicators remain within the orthovirosphere but, from a functional
standpoint, approach other domains of the replicator space. Remarkably, genomes of
fish of several species contain giant (;180 kb) transposable MGEs called teratorns,
which are hybrids of alloherpesvirids and piggyBac transposons (181). Teratorns prolif-
erate within the host genomes as transposons, but the alloherpesvirid genome replica-
tion and morphogenesis modules also appear to be intact, suggesting that teratorns
can lead dual life cycles akin to retroviruses and polintoviruses. GTAs, discussed in
“Virions Versus Ribosomes and Replication Machinery,” represent a case of an even
more drastic derivational evolution of viruses whereby they are exapted for a cellular
function (182). However, GTAs only propagate vertically within bacterial chromosomes.
Thus, they are not replicators but, instead, are parts of the mutualist replicator, the pro-
karyote chromosome. Accordingly, notwithstanding their obvious virus ancestry and
virus-like properties, GTAs are excluded from the replicator space altogether.

An even further departure from the virus state is represented by the tailocins (also
known as type IX secretion systems), which are prokaryotic virion tails that were
domesticated by bacteria and archaea on several independent occasions and function
as secretion and delivery devices primarily for toxins (183–185). Tailocins are secreted
with their cargo, adhere to target cells, and inject toxins in a manner that viruses would
inject virus DNA in a standard infection. Tailocins are obviously virus-derived entities
but, again, are not bona fide replicators and thus reside outside the replicator space.

(v) Adnaviria. Adnaviriads form filamentous helical virions which can be either
enveloped or nonenveloped. All known members of this narrow realm, established in
2021 (122), are viruses that infect hyperthermophilic archaea (186). As in the case of
varidnaviriads and duplodnaviriads, adnaviriads are held together by the shared

Operational Definition of Viruses Microbiology and Molecular Biology Reviews

December 2021 Volume 85 Issue 4 e00193-20 mmbr.asm.org 13

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

m
br

 o
n 

01
 S

ep
te

m
be

r 
20

21
 b

y 
15

7.
99

.6
4.

25
4.

https://mmbr.asm.org


morphogenetic module. The virions are built from one or two paralogous a-helical
MCPs, which have a unique fold (186–190). As a result of extensive interaction with the
MCPs, the linear dsDNA genomes of adnaviriads change the conformation from the
physiologically more common B form to the A form (hence the name of the realm)
(191). Adnaviriads are bona fide viruses with lytic life cycles, but the replication mod-
ules are not identifiable from the genome sequences, suggesting that they rely primar-
ily on the cellular replication machinery (192). No capsidless derivatives (or ancestors)
of adnaviriads have been identified so far; thus, this realm does not appear to extend
beyond the orthovirosphere.

(vi) Ribozyviria. This new realm of viruses, established in 2021 (123), currently
includes a single family (Kolmioviridae) for HDV-1 and its close and more distant rela-
tives (deltaviruses, “epsilonviruses,” and “zetaviruses”) recently identified in various ver-
tebrates (193–199). HDV-1, which is highly virulent for humans, has a short (;1.7 kb)
covalently closed circular (CCC) RNA genome that encodes a protein, delta antigen,
which binds the HDV-1 genome, forming a nucleoprotein complex (200, 201). To attain
infectivity, the nucleoprotein further hijacks the hepatitis B virus (HBV; Hepadnaviridae)
envelope protein that determines HDV-1 tropism, but can also use envelope proteins
of other helper viruses (202, 203). The HDV-1 RNA shares structural features with
viroids (198, 204) and, like the latter, is replicated by host DNA-directed RNA polymer-
ases via a rolling-circle mechanism (205, 206). Conceivably, HDV-1 and related ribozy-
viriads are evolutionary derivatives of viroid-like MGEs, although no homology with
currently known viroids has been detected. The provenance of the nucleocapsid pro-
tein remains obscure. By virtue of encoding the nucleocapsid protein, forming virions,
depending on bona fide viruses for their reproduction and causing disease, ribozy-
viriads are formally recognized as viruses (123). These viruses appear to represent a
group of MGEs that have evolved to become viruses, thus mapping to the boundary
between the orthovirosphere and perivirosphere.

Beyond the Blurry Boundaries of the Orthovirosphere: Highly Derived Denizens of
the Perivirosphere

In the discussion of the established virus realms above, we have pointed out many
groups of MGEs that are clearly derived from viruses proper but have lost the principal
features of the virus state, in particular, genes for virion proteins, and thus should be
relegated to the perivirosphere. Here, we discuss MGEs that differ from viruses even
more dramatically yet possess some key virus-like features.

Viroids. Continuing down the scale of the complexity of ICTV-classified MGEs, there
are viroids and satellite RNAs and DNAs, which the ICTV currently recognizes as nonvi-
ral or subviral MGEs (currently classified in families named with the suffixes -viroidae
and -satellitidae, respectively).

Viroids are 220- to 450-nucleotide (nt)-long CCC RNAs that do not encode any pro-
teins, are not encapsidated, and are replicated by host DNA-directed RNA polymerases
or by RdRp of helper viruses through a rolling-circle mechanism (207, 208). The result-
ing genome concatemers are cleaved into monomers via self-splicing hammerhead
ribozymes (Avsunviroidae) or by cellular enzymes (Pospiviroidae) (209, 210). These re-
markable elements are minimal replicators and minimal infectious agents. Normally,
viroids are not viewed as viruses, though they clearly possess virus-like properties,
such as partial replication autonomy, filterability, infectivity, and, in some cases, patho-
genicity. However, there is no evidence of a viral origin for viroids. We are left with the
conclusion that viroids belong in the perivirosphere but, in several dimensions, map
close to the boundaries of the orthovirosphere.

Satellite RNAs. Satellite RNAs, short (;400 nt) infectious RNA molecules that do not
encode any proteins, are replicated by host DNA-directed RNA polymerases or by
RdRps of helper viruses (211, 212). Like viroids, satellite RNAs are not viewed as viruses
despite possessing virus-like properties, such as filterability, infectivity, and, in some
cases, pathogenicity. Some satellite RNAs resemble viroids by being CCC RNAs, but
they are encapsidated and transmitted within capsids of bona fide viruses. These are
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sometimes referred to as “virusoids” and conceptually resemble ribozyviriads, with the
major difference that virusoids do not encode any proteins, and in that respect, are
analogous to viroids (213, 214). However, the short (220 nt) circular satellite of rice yel-
low mottle virus (scRYMV) is a typical virusoid in genomic structure (CCC RNA) in that it
requires a helper virus (RYMV; Solemoviridae: Sobemovirus) for packaging, but its entire
genome codes for a protein that is, however, not a CP (215). Conceptually, as long as
encapsidation into a replicator-encoded capsid is considered a key component of a vi-
rus definition, virusoids, scRYMV, and other satellite RNAs are akin to viroids and also
belong to the perivirosphere.

Satellite DNAs. Betasatellites and deltasatellites are two groups of satellite ssDNA
molecules (in addition to alphasatellitids discussed above) associated with geminivirids
and classified into two separate genera within the family Tolecusatellitidae. Unlike
alphasatellitids, betasatellites and deltasatellites encode neither capsid (by definition)
nor replication proteins, with deltasatellites being noncoding altogether (216–219).

Tolecusatellitids contain a hairpin loop that serves as the origin of the rolling-circle
replication mediated by the Rep protein of the helper virus. No other similarity has been
recognized between tolecusatellitids and viruses (220). Thus, although tolecusatellitids
are bona fide replicators that exploit virus replication machinery and are encapsidated
and transmitted by viruses, they are typical denizens of the perivirosphere.

From the Perivirosphere into the Open Replicator Space

The outer boundary of the perivirosphere, which is arguably even more blurry than
the orthovirosphere boundary, faces the open replicator space (Fig. 2). Apart from the
organismal genomes that, all together, represent a single type of mutualist replicator,
the replicator space is occupied by a broad variety of MGEs, including diverse transpo-
sons, plasmids, and conjugative elements.

Non-LTR retrotransposons. In the phylogenetic tree of the RTs, Pararnavirae com-
prise a single strongly supported clade, whereas several other clades consist of various
non-LTR retrotransposons (that is, those that lack long-terminal repeats characteristic
of integrating reverse-transcribing viruses) and various domesticated RTs comprise sev-
eral other clades (141, 221). Furthermore, non-LTR retrotransposons are ubiquitous in
nature, whereas pararnavirans are strictly limited to eukaryotes. Therefore, there is no
reasonable doubt that reverse-transcribing viruses evolved from non-LTR retroele-
ments. However, the specific ancestors of pararnavirans are hard to identify. The top
candidates seem to be group II self-splicing introns, which are highly conserved, wide-
spread prokaryotic retrotransposons that are also integrated in organelle genomes and
are thought to have played a key role in the evolution of eukaryotes, giving rise to spli-
ceosome components and spliceosomal introns (222–224). Non-LTR retrotransposons
are linked to riboviriads through the homologous RTs and, in terms of lifestyle, are sim-
ilar to metavirids and pseudovirids, with the difference that the retrotransposons lack
the genes for virion components and hence do not form virions. Although retrotrans-
posons are neither infectious nor pathogenic, these virus-like features place them at
the boundary of the perivirosphere.

DNA transposons. Most of the hugely diverse DNA transposons are not virus-like, ei-
ther in evolutionary or in functional terms. However, several groups of transposons are
connected to the virosphere. Polintons and Mu-like bacteriophages were already dis-
cussed above. Casposons—a group of prokaryotic transposons encoding an integrase
homologous to Cas1, the adaptation integrase of CRISPR-Cas systems, and a DNA poly-
merase—resemble polintons by being self-synthesizing transposons (167, 225, 226).
Notably, a small group of casposons integrated in the genomes of Streptomyces bacteria
encode DJR-MCP and thus appear to represent integrated virus genomes (227). Thus,
casposons are connected not only to the perivirosphere but also to the orthovirosphere.

Plasmids and Integrating Conjugative Elements

As is the case with transposons, most of the remarkable variety of known plasmids
are not virus-like. However, there are multiple exceptions whereby not only the
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evolutionary histories of viruses but also their infection cycles are intertwined with
those of diverse plasmids. The origin of monodnaviriad replication modules from roll-
ing-circle replicating plasmids is discussed above. In bacteria and archaea, many
groups of plasmids act as satellite nucleic acids and hijack the virions of coinfecting
viruses. Such hyperparasitism typically decreases the fitness of helper viruses. The clas-
sical P2-P4 system, in which P2 is the helper phage and P4 is the satellite plasmid that
encodes one of the virion components, is the best-studied example (228–230). This sys-
tem combines a typical virus with the P4 element that belongs in the perivirosphere.

Another well-studied case of satellite plasmids is presented by phage-inducible chro-
mosomal islands (PICIs), first discovered and most extensively studied in Staphylococcus
aureus bacteria (231, 232). PICIs are integrated in host chromosomes but are reactivated
and excised during phage infection. They do not encode major virion components but
hijack the virions of coinfecting viruses, often by modulating the specificity of the pack-
aging machinery and inducing the formation of small capsids that can accommodate
the PICI DNA but not the phage genome. PICI particles are released by phage-induced
cell lysis and infect susceptible hosts, thus ensuring horizontal spread.

Along similar lines, some archaeal plasmids also hijack the virions of lemon-shaped
viruses (233, 234). These satellite plasmids encode functional replication modules, typi-
cally unrelated to those of the helper viruses, and thus are distinct replicators and, by
virtue of their functional link with viruses, belong on the boundary of, if not within, the
perivirosphere. Furthermore, bacterial viruses often recombine with plasmids forming
hybrid entities, sometimes denoted as phage-plasmids, which encompass genes of
both plasmids and viruses (235), highlighting an extensive gene flow between these
the two types of replicators. Extensive gene sharing between viruses and plasmids has
also been observed in archaea (192, 236). These hybrid entities are notable manifesta-
tions of junctions between the outer replicator space and the virosphere.

Beyond the replicator spaces: nonreplicator virus derivatives.We have focused on
the place of the virosphere in the replicator space. However, the virosphere protrudes
out of the replicator space too, through derivatives of viruses that have lost their iden-
tity as replicators while retaining other virus-like features. We have already discussed
GTAs and tailocins, remarkable virus-like entities that are not distinct replicators but
rather domesticated parts of the organismal replicators (prokaryotic chromosomes).
Here, we briefly touch upon several other cases of such exaptation of virus gene mod-
ules and individual genes that retain various degrees of the virus-like character.

“Polydnaviriformids.” “Polydnaviriformids” are remarkable MGEs with a unique life-
style. “Polydnaviriformidae” are a polyphyletic assemblage of MGEs derived from sev-
eral different groups of large DNA viruses of insects (72, 237–239). The origin of the
members of “Bracoviriform,” one of the genera included in “Polydnaviriformidae,” has
been confidently traced to viruses classified in Nudiviridae (240), a group related to baculo-
virids, putative peripheral members of the realm Varidnaviria. “Polydnaviriformids” are
mutualist symbionts of diverse parasitoid wasps whose genes are integrated in the wasp
genomes but also form circular host-derived DNA segments packaged into virions. These
virion-like particles, which do not encase “polydnaviriformid” genomes, are coinjected
with wasp eggs into the insect prey and produce proteins that inhibit the prey’s immune
response and thus enable wasp development. Due to the lack of viral nucleic acids in the
particles, entry of the particles into host cells does not establish infections. Examination of
“polydnaviriformid” genomes reveals a mosaic of virus-derived and host-derived genes,
with many of the former showing clear signs of deterioration. Thus, these elements are ev-
olutionary derivatives of viruses that have departed the virosphere and the replicator
space itself because they are technically not replicators. The close analogy between “poly-
dnaviriformids” and GTAs is obvious (182, 241).

Encapuslins. Encapsulins are homologs of the CPs of ICTV-recognized Caudoviricetes.
Encapsulins form capsid-like nanocompartments used for storage of various compounds
by diverse bacteria and archaea (242, 243). Even if encapsulins evolved from virus genes
(the direction of evolution, in this case, remains unclear), they are cellular proteins encoded
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by vertically transmitted genes. In a close analogy, animals encode multiple domesticated
homologs of retrovirus capsid (Gag) proteins, some of which form particles that apparently
are involved in intercellular RNA transport (244–246). Thus, many cellular organisms
encode capsids, although, to our current knowledge, these do not encapsidate the genes
encoding the respective CPs. Therefore, although not being replicators, these entities have
a link to the virosphere.

CONCLUDING REMARKS: VIROSPHERE AND REPLICATOR SPACE

Definitions are generally tricky outside mathematics and especially iffy in biology.
Nevertheless, detailed examination of potential definitions of major categories of bio-
logical entities can be constructive, allowing one to get a grasp of the organization of
the respective virtual biological spaces. There might not be much in a name as such,
but understanding not only evolutionary but also structural and functional relation-
ships between different types of biological entities is important.

The emergence of the virosphere was a very early event in the history of life, but
one that occurred after the origin of diverse reproducers and replicators. The structural
components of viruses are not monophyletic but, rather, were apparently acquired
from cells on multiple independent occasions (247). Some of these acquisitions of vi-
rion components, in particular, exaptation of a carbohydrate-binding protein as the
jelly roll CP, appear to have occurred very early in the evolution of life, long antedating
the last universal cellular ancestor (LUCA) (248). Other groups of viruses probably
emerged and acquired their virion proteins later in the course of life’s evolution. Hence
the key feature of the orthovirosphere and perivirosphere is that they are actively
evolving regions of the replicator space that is highly dynamic as a whole, with the
boundaries between and around them being inherently blurry zones rather than sharp
lines. As demonstrated here by numerous examples, the evolutionary traffic into and
out of the virosphere is an incessant process accompanying all evolution of life, in
sharp contrast to the replicator-reproducer boundary that, to our current knowledge,
has never been crossed during the evolution of life (Fig. 3).

The question “what is a virus” can be approached from two fundamentally different
angles. One option is to develop a definition ab initio based on what would be found
reasonable to consider a virus, see which known replicators fit this definition, name
those replicators viruses, and exclude all others. We do not see this as a viable approach,
because taking this road would likely upend the entire framework of virology, even if a
consensus on such an ab initio definition could be achieved within the community.

The other option is the approach we take here: accept the long-held consensus that
typical members of each of the virus realms (for example, TMV in the case of Riboviria)
are indeed viruses. Accordingly, viruses can be defined starting from these indisputably
viral replicators and then, moving gradually across the replicator space, examining at
which point certain replicators should not qualify as viruses (Fig. 2). This approach led us
to define the orthovirosphere and perivirosphere with blurry boundaries, which make a
fully consistent and universal virus definition impossible. Nevertheless, an operational
definition of viruses should be useful, even if only for pragmatic purposes, i.e., to delin-
eate the set of replicators that should be classified by the virology community and sepa-
rate them from those that should fall under the purview of other scientific communities.
A virion-based definition captures a crucial feature of most MGEs currently considered
viruses and can be adopted to define the orthovirosphere.

Defining viruses as “replicators that encode structural proteins encasing their own
genomes” might be the closest one can get to a single-sentence definition.

All MGEs that are believed to have evolved from viruses but do not meet this defini-
tion, such as the numerous capsidless RNA “viruses” as well as virus-derived plasmids,
belong to the perivirosphere. Minimal replicators, such as satellite nucleic acids and
viroids, the propagation of which often depends on viruses and which can be encapsi-
dated into the capsids of bona fide viruses, belong to the perivirosphere as well. In
contrast, diverse virus derivatives that do not encapsidate their own genomes and
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have lost the basic properties of semiautonomous replicators through domestication,
such as members of “Polydnaviriformidae,” GTAs, and tailocins, cannot be included in
the perivirosphere or the replicator space itself, even though they clearly have retained
ancestral virus features. Crucially, both the orthovirosphere and the perivirosphere are
obligately host associated, and members of both adorn all the major branches of the
tree of life (Fig. 3).

Having defined the orthovirosphere and perivirosphere, we are still left with the
question of which replicators should be considered viruses, that is, only those within the
orthovirosphere or all denizens of the orthovirosphere and perivirosphere. The simplest
and fully consistent approach is to posit that all members of the orthovirosphere are
viruses whereas those in the perivirosphere are “virus-like replicators.” Alternatively, a
conceptual definition of “virus” would admit most of such virus-like replicators. From this
standpoint, an amended version of the Raoult-Forterre virus definition seems to make
the most sense. Consequently, we formally proposed the following operational defini-
tion of virus to the ICTV.

FIG 3 Evolutionary relationships among mobile genetic elements (MGEs) and between MGEs and their
organismal hosts. Shown is a simplified depiction of the organismal evolutionary tree of life (inspired by
references 249 and 250) outlining the two major supergroups of cellular life, Bacteria and Archaea, with
eukaryotes evolving from (heimdallarchaeote) archaea. All organismal life relates to a last universal common
ancestor (LUCA) located at the bottom of the trunk of the tree. In contrast, MGEs, the occupants of the
virosphere, are polyphyletic and hence do not have a single LUCA. Hence, several individual evolutionary trees
of MGEs need to be superimposed onto the cellular tree of life through the relationships of individual MGEs
and their cellular hosts (here illustrated through the six currently establishes realms of viruses within the
orthovirosphere and the less-defined space of the perivirosphere). Tobacco mosaic virus (TMV), enterobacteria
phage PRD1, “phage lambda,” Pyrobaculum filamentous virus 2 (PFV2), and phage UX174—among the first
representatives of viral realms Riboviria, Varidnaviria, Duplodnaviria, Adnaviria, and Monodnaviria, respectively,
and hence at the center of Fig. 1 as a starting point to operationally define “viruses”—occupy the periphery of
the actual evolutionary cellular and MGE trees. For instance, phages PRD1, lambda, and UX174 as well as HK97
and MS2 all infect gammaproteobacterial Enterobacteria such as Escherichia coli and hence are located at the
same location on the cellular tree of life albeit being completely unrelated to each other. On the other hand,
TMV infects solanacean plants and hence is placed on the archaeplastid subbranch of Eukaryota, whereas
human viruses (e.g., hepatitis delta virus 1 [HDV-1], herpes simplex virus [HSV-1], human immunodeficiency
virus 1 [HIV-1], severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2], and variola virus [VARV]) are
located at the same location on the ophistokont subbranch of Eukaryota. Porcine circovirus 2 (PCV-2) infects
mammals different from humans (suids) and hence is located closely to the human viruses. Virus realms are
depicted as branching lines with fading termini, as it is currently unclear when in evolutionary history each
lineage began and which cellular tree branches they actually penetrate. For instance, duplodnaviriads infect
bacteria, archaea, and mammalian eukaryotes, and hence it is likely that they occupy most of the cellular tree
of life. On the other hand, adnaviriads have thus far only been found in a small number of crenarcheotes and,
hence, here only occupy part of the cellular tree of life.
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Viruses sensu stricto are defined operationally by the ICTV as a type of MGE that
encodes at least one protein that is a major component of the virion encasing the
nucleic acid of the respective MGE and therefore the gene encoding the major
virion protein itself or MGEs that are clearly demonstrable to be members of a
line of evolutionary descent of such major virion protein-encoding entities. Any
monophyletic group of MGEs that originates from a virion protein-encoding
ancestor should be classified as a group of viruses (73).

In November 2020, this definition was accepted by the ICTV Executive Committee
and in March 2021, it was ratified, thereby becoming official. Most likely, this definition
will have to be refined in the future, but it will serve as a starting point to further delin-
eate the various boundaries in the replicator space.

APPENDIX
GLOSSARY

megataxonomy Classification of viruses into taxa at or above the order rank
to reflect the known macroevolutionary relationships of large virus groups
plus nomenclature for these megataxa (27).

mobile genetic element (MGE) A replicating genome with an autonomous
evolutionary trajectory; used here interchangeably with replicator.

orthovirosphere (introduced here) The core of the virosphere, including
typical viruses.

perivirosphere (introduced here) The periphery of the virosphere, includ-
ing virus-like replicators that fit some but not all aspects of the definition of
a virus.

polyphyletic Not being connected to a common ancestor.
replicator A replicating genome with an autonomous evolutionary trajec-

tory; used here interchangeably with mobile genetic element (MGE).
reproducer A biological entity that reproduces its physical structure across

generations (includes cellular organisms, mitochondria, chloroplasts, and
some other types of plastids).

satellitid(s) Member(s) of a satellite nucleic acid family, -satellitidae.
-viran(s) Member(s) of a viral kingdom, -virae.
-viral(s) Member(s) of a viral order, -virales.
-viriad(s) Member(s) of a viral realm, -viria.
-viricete(s) Member(s) of a viral phylum, -viricetes.
-virid(s) Member(s) of a viral family, -viridae (251).
virosphere The entirety of viruses (orthovirosphere plus perivirosphere), the

subset of replicators that fit the definition of a virus.
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