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Introduction

Leptospirosis is a ubiquitous zoonotic infection caused by bacterial spirochetes that are equally

adapted to life in the aqueous environment as they are to infection of their eucaryotic hosts.

Leptospires owe their ubiquity to having evolved from free-living saprophytes to become non-

pathogenic commensals of a wide range of mammals and, although not as well documented,

birds, amphibians, and reptiles [1,2]. They colonize the proximal renal tubules of the host, in

which they proliferate in the nutrient-rich glomerular filtrate, and from which they are shed

into the environment by host urination. Most infections are mild or asymptomatic, but others

result in organ failure and death (Fig 1). Significant impacts on human well-being have been

documented, with an estimated 1 million cases and approximately 59,000 deaths per year,

many of which occur in tropical, medically underserved regions of the world [3]. Leptospirosis

affects not only human health but also livestock farming, causing great economic or subsis-

tence resources losses. Despite the fact that leptospirosis has been much less investigated than

other illnesses with comparable or even lower burden [4], a number of remarkable discoveries

have recently emerged about these organisms and the infections they cause.

Massive species diversity

With the description of many new leptospiral genomes, a striking pattern of massive species

diversity has emerged: Leptospira species belonging to the P1 clade, which includes human

pathogens, have an open pan-genome with a relatively high number of genes found only in a

single species (Fig 2) [5]. The open pan-genome reflects the leptospiral life cycle, which

includes the ability of leptospiral pathogens to form biofilms to withstand environmental stress

and survive for prolonged periods in milieux such as soil and aqueous habitats [6]. Such set-

tings contain complex microbial and chemical compositions, facilitating a high rate of hori-

zontal gene transfer that enables reworking of cellular functions to allow rapid adaptation to

new environmental conditions and hosts. Leptospiral genes and gene fragments are derived

both from unrelated bacteria and other leptospires, resulting in mosaic genes with diverse phy-

logenetic ancestry [7,8]. Clues to which pathogen-specific genes are required for virulence

have been obtained from RNAseq studies examining differential expression during adaptation

to the mammalian host [9]. Determining the impact of specific genes on in vivo fitness has

also been determined by high-throughput sequencing of tissues from animals challenged with

transposon mutant pools [10]. Targeted mutagenesis in leptospiral pathogens has been
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challenging and has only recently become more reliable through the development of the

CRISPR dCas9 and transcription activator-like effectors (TALEs) as gene silencing approaches

[11,12]. These novel tools made it possible to show that the pathogen-specific, multifunctional

leptospiral immunoglobulin-like domain (Lig) proteins were required for virulence [11,12].

Rapid dissemination

Rapid and widespread dissemination to all organs, including the eye and brain, is a hallmark

of leptospirosis. Remarkably, Leptospira interrogans is detectable in all organs of perfused ani-

mals within 1 hour after intraperitoneal inoculation of hamsters [13]. Consistently, flagellar

mutants with decreased motility are attenuated for virulence in animal models [14,15]. Lepto-

spires are uniquely equipped for dissemination through their corkscrew morphology, 200 nM

diameter (in Greek, leptos means “thin”), and powerful propulsion by their endoflagella. As in

other spirochetes, the organs of motility are called “endoflagella” because they are not surface

exposed; instead, they are entirely within the periplasm. Leptospires are unique in that they

have a single supercoiled endoflagellum extending axially toward the middle of the cell from a

flagellar motor embedded in the inner membrane at each pole, without overlap. Endoflagellar

rotation imparts a swimming motility that enables leptospires to be particularly invasive at liq-

uid–gel borders, such as the interface between the vascular lumen and the endothelium, with

30 times the swimming force of Escherichia coli [16]. Recent elegant high-resolution cryo-elec-

tronic tomography studies have shown that the function of leptospiral endoflagellar filaments

relies on an asymmetric sheath that imparts their supercoiled structure [17].

Host tissue barrier invasion

Another key to efficient transmigration across host tissue barriers appears to be targeting of E-

and VE-cadherins, which are integral to the intercellular adherens junctions of epithelium and

Fig 1. Overview of leptospirosis. Potentially human pathogenic leptospires are maintained in zoonotic infection

cycles in wildlife and domestic animals. Leptospires colonize the renal proximal tubule of reservoir hosts and are shed

in the urine. Urine contamination of water and mud are common sources of human exposure. In humans and disease

susceptible animals, leptospires disseminate and cause symptomatic disease ranging from mild to severe and, in some

cases, death.

https://doi.org/10.1371/journal.ppat.1009836.g001
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endothelium, respectively [18,19]. Virulent L. interrogans, but not the saprophytic Leptospira
biflexa, disrupt adherens junctions of endothelial and epithelial cells in vitro, resulting in loss

of VE- and E-cadherins and disruption of the associated catenins, which link cadherins to the

intracellular actin cytoskeleton. A clue to the molecular mechanisms for endothelial barrier

disruption emerged from a study examining the crystal structures of 4 L. interrogans leucine-

rich repeat (LRR) proteins [20]. As has been observed with other LRR proteins, the 23-residue

repeating leucine-rich motifs formed a characteristic curved solenoid structure. One of these

LRR proteins, LIC10831, has a structure and binding pocket similar to that of the Listeria
monocytogenes internalin InlA. InlA mediates the first step of listerial invasion of the intestinal

epithelium by binding to unpaired E-cadherin proteins as they become accessible through the

normal sloughing of intestinal epithelial cells at the tip of the brush border. LIC10831 is

actively secreted by L. interrogans and specifically binds E- and VE-cadherins at a binding

coefficient 10-fold lower than InlA [21]. Importantly, LIC10831, but not an LRR protein

(LIC12234) that bound other host factors, bound specifically to the cell–cell junctions of endo-

thelial cells. Two other VE-cadherin adhesins were identified using phage display [22],

Fig 2. Massive species diversity. (A) Phylogenetic tree showing the relatedness of the 64 Leptospira species. Leptospira species are clustered as non-pathogens, low-

virulent pathogens, and virulent pathogens according to their virulence status in animal models, prevalence in severe infections, and presence of virulence factors. Node 1

indicates the node from which descend pathogenic species are most frequently involved in human disease. (B) Distribution of gene clusters in the P1 clade revealing an

open pan-genome with a relatively high number of gene clusters found only in a single species. Adapted from Vincent and colleagues [5].

https://doi.org/10.1371/journal.ppat.1009836.g002
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suggesting that targeting of endothelial barrier integrity may be a key feature of pathogenic

Leptospira species.

Evasion of innate immune recognition

Reflecting their ancient history of coevolution with eukaryotes, pathogenic leptospires have

evolved an array of novel strategies to evade and/or alter the innate immune response. These

strategies may well be important in extending the time of persistence in the renal tubules of

reservoir hosts for shedding in the urine. Leptospires are stealth pathogens that evade recogni-

tion with altered microbial-associated molecular patterns (MAMPs) structures [23]. For exam-

ple, Leptospira spp. escape murine TLR5 recognition through the peculiar subsurface

localization and stability of the FlaB flagellar subunits, combined with specific down-regula-

tion of FlaB transcription during mammalian infection [23]. An additional immune evasion

strategy involves leptospiral lipoproteins that bind MAMPs and block their recognition by

host pattern recognition receptors (PRRs) of the Toll- and NOD-like families. In some cases,

these PRR-blocking lipoproteins are some of the most abundant proteins in pathogenic lepto-

spires. This strategy applies to leptospiral lipid A, which is similar to gram-negative endotoxin

but differs structurally in key ways such that, although it is recognized by mouse TLR4, it is

not recognized by human TLR4 [24]. In fact, C3H/HeJ mice lacking TLR4 are more suscepti-

ble to leptospiral infection have a higher leptospiral burden than C3H mice with an intact

TLR4 [25]. However, even in mice with intact TLR4, leptospiral lipopolysaccharide (LPS) O-

antigen and multiple LPS-binding lipoproteins reduce TLR4-mediated uptake by macrophages

and their TRIF-dependent activation [26]. Similarly, LipL21, a major leptospiral lipoprotein

has now been recognized as a peptidoglycan-binding lipoprotein that enables escape from

NOD1 and NOD2 recognition [27].

Evasion of innate killing mechanisms

Leptospires have evolved a variety of strategies for evasion of host innate killing mechanisms.

These include escape from complement by surface presentation of LigA, LigB, and other pro-

teins that bind host complement regulators [28,29]. Pathogenic leptospires also express cata-

lase, encoded by katE, which is required for resistance to reactive oxygen species (ROS) and

for virulence in the hamster model [30]. Expression of katE is transcriptionally controlled by

the peroxide stress regulator PerR, a novel H2O2 sensor [31–33]. Recently, a second potential

PerR was identified, called PerRB, which is present only in pathogenic Leptospira species. Inac-

tivating perRA or perRB led to an increased tolerance to 2 different components of the phago-

cytic oxidative burst, H2O2 and superoxide, respectively, indicating that the 2 regulators do

not have a redundant functions [34]. While single perRA and perRB mutants were virulent for

hamsters, the double mutant was avirulent for hamsters [34]. These results indicate that,

although the double mutant has the metabolic pathways required for infection, it lacks expres-

sion of specific virulence-related gene products. Interestingly, RNAseq and protein expression

studies involving perRA and perRB single and double mutants revealed complex regulons,

including many coding and noncoding RNAs, some of which are likely unrelated to resistance

to oxidative stress [34].

Rapid diagnostics

Leptospirosis is a common cause of acute febrile illness in areas where dengue, malaria, and

rickettsial infections are also common. Though the majority of cases are mild, life-threatening

leptospirosis is common in many tropical countries with a case fatality rate exceeding that of

other common febrile illnesses. Our ability to identify the etiology of febrile illness and provide
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targeted therapy is limited by the nonspecific clinical presentations, low sensitivity of molecu-

lar methods, and low specificity and delayed utility of serological methods. Standard biomark-

ers such as C-reactive protein (CRP) and procalcitonin have relatively low specificity for

leptospirosis [35]. In contrast, the transcriptional response to leptospirosis and scrub typhus is

distinguishable from that of patients with viral etiologies [35]. Likewise, proteomic approaches

utilizing multiple inflammatory biomarkers such as serum amyloid A and leucine-rich alpha-2

glycoprotein provide diagnostic utility greatly superior to CRP or PCT alone and are more

readily translated to rapid diagnostic platforms suitable for use in low resource healthcare set-

tings. Host response signatures and biomarkers such as decreased cathelicidin may also enable

prediction of disease severity among patients with early infection [36] and identify patients

who would benefit from antibiotics and other interventions.

Conclusions

While much more work is needed to validate and expand these discoveries, leptospirosis

research is providing unprecedented insights regarding these ancient pathogens and their host

interactions. Further elucidation of leptospiral genetic diversity and its global health impacts

are needed, both in humans and in both domestic and wild animals using a One Health per-

spective. The coevolution of leptospires with their eukaryotic hosts is reflected in their novel

mechanisms for immune evasion and escape from innate killing strategies. A better under-

standing of the remarkably rapid and efficient dissemination process will provide opportuni-

ties for improved prevention strategies including vaccine development. Finally, host response

and biomarker approaches to diagnosis are needed to rapidly diagnose suspected cases and

expedite their management to improve patient outcomes. A better disease burden estimate of

causes of fever, including leptospirosis, in developing countries would also be most useful for

policy and decision makers.
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