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Abstract 

Short-term forecasting of the COVID-19 pandemic is required to facilitate the planning of COVID-

19 healthcare demand in hospitals. Here, we evaluate the performance of 12 individual models 

and 19 predictors to anticipate French COVID-19 related healthcare needs from September 7th 

2020 to March 6th 2021. We then build an ensemble model by combining the individual forecasts 

and test this model from March 7th to July 6th 2021.  We find that inclusion of early predictors 

(epidemiological, mobility and meteorological predictors) can halve the root mean square error 

for 14-day ahead forecasts, with epidemiological and mobility predictors contributing the most to 

the improvement. On average, the ensemble model is the best or second best model, depending 

on the evaluation metric. Our approach facilitates the comparison and benchmarking of competing 

models through their integration in a coherent analytical framework, ensuring avenues for future 

improvements can be identified. 

 

Significance Statement 

The COVID-19 pandemic is inducing important stress on healthcare structures, which can be 

quickly saturated with negative consequences for patients. As hospitalization comes late in the 

infection history of a patient, early predictors – such as the number of cases, mobility, climate, 

and vaccine coverage - could improve forecasts of healthcare demand. Predictive models taken 

individually have their pros and cons, and it is advantageous to combine the predictions in an 

ensemble model. Here, we design an ensemble that combines several models to anticipate 

French COVID-19 healthcare needs up to 14 days ahead. We identify the best early predictors of 

the growth rate of hospital admissions and propose a promising approach to facilitate the planning 

of hospital activity. 
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Main text 

Introduction 

Quick increase in hospital and Intensive Care Unit (ICU) admissions have been common since 

the start of the COVID-19 pandemic. In many instances, this has put the healthcare system at 

risk of saturation, forced the closure of non-covid-19 wards, cancellation of non-essential 

surgeries, reallocation of staff to COVID-19 wards with negative consequences for non COVID-

19 patients. In this context, short-term forecasting of the pandemic and its impact on the 

healthcare system is required to facilitate the planning of COVID-19 and other activities in 

hospitals (1). 

Hospital admission comes late in the history of infection of a patient, so forecasts that only rely 

on hospital data may miss earlier signs of a change in epidemic dynamics. There have been a lot 

of discussions about insights we might gain from other types of predictors (e.g. epidemiological 

predictors such as the number of cases, mobility predictors such as Google data or meteorological 

predictors) but assessment of the contribution of these predictors have been marred by 

methodological difficulties. For example, while variations in case counts may constitute an earlier 

sign of change in epidemic dynamics, these data may be affected by varying testing efforts, 

making interpretation difficult. Associations between meteorological/mobility variables and SARS-

CoV-2 transmission rates have been identified (2–5); but it is yet unknown whether use of these 

data along with epidemiological predictors may improve forecasts.   

Here, we develop a systematic approach to address these challenges. We retrospectively 

evaluate the performance of 12 individual models and 19 predictors to anticipate French COVID-

19 related healthcare needs, from September 7th 2020 to March 6th 2021. We build an ensemble 

model by combining the individual forecasts and test this model from March 7th to July 6th 2021. 

Our analysis makes it possible to determine the most promising approaches and predictors to 

forecast COVID-19 related healthcare demand, indicating for example that inclusion of early 

predictors (epidemiological, mobility and meteorological predictors) can halve the root mean 

square error (RMSE) for 14-day ahead forecasts, with epidemiological and mobility predictors 

contributing the most to the improvement. Our approach facilitates the comparison and 

benchmarking of competing models through their integration in a coherent analytical framework, 

ensuring avenues for future improvements can be identified.    

 

https://paperpile.com/c/boHAXA/PZvq
https://paperpile.com/c/boHAXA/OogL+IBtS+a4fn+upTR
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Results 

Overview of the approach 

We first develop a set of individual models to forecast the number of hospital admissions at the 

national and regional level, up to 14 days ahead. These individual predictions are then combined 

into a single ensemble forecast (1, 6–10). Finally, we derive three other targets (number of ICU 

admissions, bed occupancy in general wards and bed occupancy in ICU) from the number of 

hospital admissions predicted by the ensemble model (see Material and Methods). 

We use a two-stage procedure: (i) over the evaluation period (September 7th 2020 to March 6th 

2021), we select the predictors and evaluate the performance of the individual models to select 

the best ones to include in the ensemble model and (ii) over the test period (March 7th 2021 to 

July 6th 2021), we assess the performance of the ensemble model. 

Performance of individual models to forecast hospital admissions over the evaluation period 

Twelve individual models are considered to forecast the number of hospital admissions by region 

with a time horizon of up to two weeks. They use a variety of methods and can rely on 

epidemiological, mobility and meteorological predictors (see Material and Methods, 

Supplementary text, Fig. S1, Fig. S2 and Fig. S3). Over the evaluation period, most of these 

models are able to broadly capture the dynamics of hospital admissions from September 2020 to 

March 2021 (Fig. S4). They all over-estimate the November peak since they were not designed 

to anticipate the impact of the lockdown before its implementation. 

Models are compared using the root mean square error (RMSE) for point forecast error and the 

weighted interval score (WIS) to assess probabilistic forecast accuracy (see Material and 

Methods). Overall, the performance of the models decreases with the prediction horizon (Figure 

1). Six models outperformed the baseline model (characterized by no change in the number of 

hospital admissions) at all prediction horizons for both the RMSE and the WIS, at the national and 

regional levels: an autoregressive distributed lag model (ARDL), a multiple linear regression 

model (MLR), a generalized additive model (GAM2), an ARIMA model (ARIMA2), a boosted 

regression tree (BRT) model and a random forest (RF) model. All these models describe the 

growth rate of hospital admissions, rather than hospital admissions directly, and include several 

predictors that are described below. 

Predictors 

https://paperpile.com/c/boHAXA/PZvq+d4av+J7h7+mJJy+w4Kz+W0wD
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The six best individual models include between 2 and 4 predictors (Table S1). The best predictors 

are selected by cross-validation using a forward stepwise selection method (see Material and 

Methods and Supplementary text). One model has an autoregressive component, i.e. includes 

lagged values of the growth rate of hospital admissions as covariates. All six models include at 

least one mobility predictor: time spent in residential places is the one that is most often selected, 

followed by the volume of visits to transit stations (in percent change from baseline). Four models 

use at least one predictor on confirmed cases: the growth rate of the proportion of positive tests 

(among all tests or among tests in symptomatic people), and/or the growth rate of the number of 

positive tests. Two models use one meteorological predictor, either absolute humidity or 

temperature.   

In order to determine the importance of the different predictors and explore their effect on the 

growth rate, we retrospectively fit four individual models (BRT, RF, MLR and GAM2) from June 

3rd 2020 to March 6th 2021 (see Material and Methods). Retrospectively, the models are able to 

reproduce reasonably well the dynamics of the growth rate over time and by region (Fig. S5). 

Depending on the model, the most important predictors are mobility or epidemiological predictors 

(Fig. S6). For instance, in the MLR model, the change in time spent in residential places and the 

growth rate of the positive tests both contributes to 47% of the explained variance. In the BRT 

model, the growth rate of the number of positive tests is the most important predictor (relative 

contribution of 89%) followed by the time spent in residential places (6%) and change in the 

volume of visits to transit stations (5%). Meteorological factors contribute to 37% in the GAM2 

model but had no contribution in the three other models. 

We find that an increase in the volume of visits to transit stations, a decrease in the time spent in 

residential places, or a decrease in absolute humidity, is associated with an increase in the growth 

rate of hospital admissions 10-12 days later (Fig. 2). Regarding epidemiological predictors, the 

growth rate of hospital admissions is positively associated with the growth rate of the number of 

positive tests, with a lag of 4 days, and the growth rate of the proportion of positive tests, with a 

lag of 7 days. 

Performance of the ensemble model over the test period 

To build the ensemble model, we keep the six best performing models and take the unweighted 

mean of the individual forecasts. In addition to the previously selected predictors, we also include 

vaccine coverage and the proportion of variants of concern (VOC) (Supplementary text and Figure 
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S7) as these two predictors might significantly affect the dynamic of hospitalizations after March 

2021. When retrospectively fitting the models from June 3rd 2020 to July 6th 2021, the effects of 

the other predictors remain relatively stable, compared to the previous fit from June 3rd 2020 to 

March 6th 2021 (Figure S8).  

The ensemble model is evaluated over the test period (March 7th 2021 to July 6th 2021). It is 

able to capture the growth of hospital admissions in March and the decline in April-July (Figure 

3A). The ensemble model performs well in all regions (Figure 3B). On average, the ensemble 

model is the best at the national level for both the RMSE and the WIS, and at the regional level 

for the RMSE, and is the second best model at the regional level for the WIS (Fig.S9). For each 

region or week, we rank the individual and ensemble models according to the RMSE over all 

prediction horizons. The best individual model is not the same in all regions (Figure 4A) or in all 

weeks (Figure S10): four models are ranked first in at least one region and eight models are 

ranked first in at least one week; but the ensemble model is ranked first on average across all 

regions/weeks.  

Finally, to assess the ensemble forecasts of hospital admissions, ICU admissions and bed 

occupancy in ICU and general wards, we report the mean absolute percentage error (MAPE, 

mean of the ratio of the absolute error to the observed value) as its interpretation in terms of 

relative error is straightforward, as well as the 95% prediction interval coverage (proportion of 

95% prediction intervals that contain the observed value). For the four targets, the MAPE at 7 

days are 11%, 13%, 6% and 5% at the national level (17%, 23%, 8% and 11% at the regional 

level) for hospital admissions, ICU admissions, ICU beds and general ward beds, respectively 

(Figure 4B). At 14 days, these errors increase to 20%, 23%, 9% and 10% at the national level 

(30%, 35%, 13% and 19% at the regional level), respectively. The calibration is good for most of 

the targets but the 95% prediction interval coverage is lower than 95% for hospital admissions 

and 14-day ahead forecasts (Table S2). 

 

Discussion 

In this study, we evaluated the performance of 19 predictors and 12 models to anticipate French 

COVID-19 healthcare needs, and built an ensemble model to reduce the average forecast error. 

We can draw a number of important conclusions from this systematic evaluation. First, 

mathematical models are often calibrated on hospitalization and death data only, as these signals 
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are expected to be more stable than testing data (1, 11, 12). However, we find that such an 

approach is outperformed by models that also integrate other types of predictors. These include 

predictors that can detect more quickly a change in the epidemic dynamics (e.g. growth rate in 

the proportion of positive tests in symptomatic people) or that may be correlated with the intensity 

of transmission (e.g. mobility data, meteorological data). Inclusion of such predictors can halve 

the RMSE for a time horizon of 14 days.  

Second, of the three types of predictors used over the evaluation period, epidemiological and 

mobility predictors are those that improve forecasts the most. In models where the lags are 

estimated, we find that epidemiological predictors precede the growth rate of hospital admissions 

by 4-7 days, while mobility predictors precede it by 12 days. This is consistent with our 

understanding of the delays from infection to testing and infection to hospitalization (11). 

Meteorological variables also improve forecasts, although the reduction in the relative error is 

more limited. Per se, this result should not be used to draw conclusions on the role of climate on 

SARS-CoV-2 transmission. Indeed, we are only assessing the predictive power of these 

variables, not their causal effect, in a situation where the hospitalization dynamics is already well 

captured by epidemiological predictors. In this context, the additional information brought by 

meteorological variables is limited and might already be accounted for by epidemiological 

predictors. Interestingly, despite the diversity of models and retained predictors, estimates of the 

effect of the different predictors on the growth rate are relatively consistent across models (Fig. 

4). The effects of the predictors remain relatively stable between the two time periods, although 

the reduction of the effects of mobility predictors for the BRT model suggests a lower impact of 

mobility after March 2021 (Figure S8). Other potential predictors could have been considered, 

such as inter-region mobility or spatial correlations. However, given the 10-day delay between 

infection and hospitalization, we expect that most patients that will be hospitalized in a given 

region in the next two weeks will have recently been infected in that region. The benefits of 

accounting for inter-region mobility therefore appear limited for short-term predictions but might 

become more important when longer forecast horizons are being considered. 

Third, rather than using the individual model that performs best, we find that it is better to rely on 

an ensemble model that averages across the best performing models. This is consistent with 

results of a number of recent epidemic forecasting challenges (1, 6, 9, 13, 14). Relying on an 

ensemble model is appealing because it acknowledges that each model has limitations and 

imperfectly captures the complex reality of this pandemic. Although individual models may 

perform better in some situations, forecasts that build on an ensemble of models are less likely to 

https://paperpile.com/c/boHAXA/PBUg+rzWx+PZvq
https://paperpile.com/c/boHAXA/PBUg
https://paperpile.com/c/boHAXA/1RMV+ORjr+PZvq+d4av+w4Kz


 

8 

be overly influenced by assumptions of a specific model (15). The benefits are confirmed in 

practice, with the ensemble model performing best on average.   

Fourth, the systematic evaluation also shed light on important technical lessons for forecasting. 

We find that the best forecasts are obtained when using the exponential growth rate rather than 

the absolute value of epidemiological variables. This is true for the dependent variable we aim to 

forecast (hospital admissions) but also for explanatory variables (e.g. the proportion of positive 

tests). This finding is not surprising since transmission dynamics are characterized by exponential 

growth and decline. Using the growth of epidemiological predictors such as the number of positive 

tests also helps controlling for changes in testing practice that may have occurred over longer 

time periods. We also find that the approach used to smooth the data is decisive to ensure that 

forecast quality is not overly dependent on the day of the week (given the existence of important 

weekend effects); and to find the correct balance between early detection of a change of dynamics 

and the risk of repeated false alarms (Materials and Methods and Fig. S11 and S12). 

The introduction of vaccines and the emergence of variants such as the Alpha variant, that are 

more transmissible than historical SARS-CoV-2 viruses (16), opened up new challenges for the 

forecasting of COVID-19 healthcare demand. Indeed, our models have been calibrated on past 

data to forecast the epidemic growth rate of the historical virus from a number of predictors, when 

vaccines were not widely used. These new factors can modify the association between the 

different predictors and the epidemic growth rate: it may underestimate the growth rate in a 

context where a more transmissible variant is also circulating, or over-estimate the growth in 

vaccinated populations. The flexibility of our approach allows us to adjust the models to this 

changing epidemiological situation: to account for these new factors, we explicitly integrate the 

proportion of variants and the vaccine coverage as new predictors of the models over the test 

period. As expected, we find that vaccine coverage is negatively associated with the growth rate 

of hospital admissions. For the proportion of VOC, we find a positive association in some models 

but no association in others (Figure S8). This might be due to the correlation between the rise in 

vaccine coverage and in the proportion of VOC, and/or to the fact that the effect of VOC is already 

accounted for by epidemiological predictors. In the meantime, since epidemiological predictors 

are intermediate factors between external predictors (mobility, climate, vaccine coverage and 

VOC) and hospital admissions, we also run sensitivity analyses with models that use 

epidemiological predictors only, with no consideration of external predictors. We find that models 

with all types of predictors are more performant than purely epidemiological models (Figure S13).  

Finally, as different predictors might be important at different stages of the epidemic, one could 

https://paperpile.com/c/boHAXA/XjuE
https://paperpile.com/c/boHAXA/II5X
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also update the variable selection at different time points, to continuously revise the best 

predictors to include in the models. 

Through a systematic evaluation, we determined the most promising approaches and predictors 

to forecast COVID-19 related healthcare demand. Our framework makes it straightforward to 

compare and benchmark competing models, identify current limitations and avenues for future 

improvements.     

 

Material and Methods 

Hospitalization data  

Hospital data are obtained from the SI-VIC database, the national inpatient surveillance system 

providing real time data on the COVID-19 patients hospitalized in French public and private 

hospitals (Supplementary text).  

Smoothing 

Hospital data follow a weekly pattern, with less admissions during weekends compared to 

weekdays, and can be noisy at the regional level. Therefore, in the absence of smoothing or with 

simple smoothing techniques, forecasts can be biased depending on the day of the week at which 

the analysis is performed. In order to remove this day-to-day variation and obtain a smooth signal 

at each date not depending on future data points, we smooth the data using a 2-step approach  

based on local polynomial regression and the least revision principle (17) (Supplementary text 

and Figures S11 and S12).  

Exponential growth rate 

We compute the exponential growth rate using a 2-day rolling window, and smooth the resulting 

time series using local polynomial regression.  

Overview of the modelling approach 

We build a framework to forecast at the national (metropolitan France) and regional (N=12) levels 

four targets up to 14 days ahead: the daily numbers of hospital and ICU admissions, and the daily 

numbers of beds occupied in general wards and ICU. 

https://paperpile.com/c/boHAXA/77aY
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We first develop a set of individual models to forecast the number of hospital admissions, using 

a variety of methods. These individual predictions are then combined into a single ensemble 

forecast, called an ensemble model (1, 6–10). Finally, we derive the number of ICU admissions, 

and bed occupancy in general wards and ICU from the predicted number of hospital admissions. 

We divide our study period into two periods: (i) over the evaluation period, we select the predictors 

and evaluate the performance of the individual models in order to select the best ones to include 

in the ensemble model and (ii) over the test period, we evaluate the performance of the ensemble 

model on new data. 

Modelling hospital admissions 

In a first step, we evaluate 12 individual models, including exponential growth models with 

constant or linear growth rates, linear regression models, generalized additive models (GAM), 

boosted regression trees (BRT), random forests (RF), and autoregressive integrated moving 

average models (ARIMA) (full description in Supplementary text). Some of the models directly 

predict the number of hospital admissions, while others predict the growth rate, from which 

hospital admissions are then derived using an exponential growth model. We also added a 

baseline model characterized by no change in the number of hospital admissions. 

We evaluate and compare the performance of individual models over a period running from 

September 7th 2020 to March 6th 2021 (“evaluation period”). As the models are not designed to 

anticipate the impact of a lockdown before its implementation, we exclude from the evaluation 

period the forecasts made between October 20th and November 4th (i.e. up to 6 days into the 

lockdown starting on October 30th) for hospitalizations occuring after November 3th. In other 

words, between October 20th and November 4th, we consider that the models could not anticipate 

the impact of the lockdown. 

We use a cross-validation approach based on a rolling forecasting origin: for each day t of the 

evaluation period, we make forecasts for the period t-1 up to day t+14, using only past data up to 

day t-2 as a training set, and computing evaluation metrics using the observed data in t-1 to t+14. 

We start to make forecasts at t-1 because in real-time, on day t, values at t and t-1 are not 

consolidated yet and the last reliable data point used for forecasts is the value at t-2. 

Model performance is evaluated using two main metrics: (i) our primary metric for point forecast 

error, the root mean square error (RMSE), was used to evaluate predictive means (Kolassa 2020), 

https://paperpile.com/c/boHAXA/J7h7+w4Kz+mJJy+PZvq+W0wD+d4av


 

11 

and (ii) our secondary metric, the weighted interval score (WIS), was used to assess probabilistic 

forecast accuracy (1, 6). The WIS is a proper score that combines a set of interval scores for 

probabilistic forecasts that provide quantiles of the predictive forecast distribution. It can be 

interpreted as a measure of how close the entire distribution is to the observation, in units on the 

scale of the observed data (6). 

We include in individual models a set of predictors, chosen for their availability in near real-time 

and their potential to help to anticipate the trajectory of hospital admissions. Over the evaluation 

period, three types of predictors are considered: 9 epidemiological predictors describing the 

dynamics of the epidemics (for example, growth rate of the number of hospital admissions, of the 

number of positive tests, of the proportion of positive tests among symptomatic people,...), 6 

mobility predictors (for example the change in volume of visits to workplaces, transit stations, 

residential places or parks (Google data)) and 4 meteorological predictors (temperature, absolute 

and relative humidity, and IPTCC, an index characterizing climatic conditions favorable for the 

transmission of COVID-19 (18). All predictors and data sources are described in Supplementary 

text and Figures S1, S2 and S3. For each individual model, covariates are selected using a 

forward stepwise selection approach over the evaluation period (not using data from the test 

period) (Supplementary text).  

In order to determine the importance of the different predictors and explore their effect on the 

growth rate, we retrospectively fit the best individual models from June 3rd 2020 to March 6th 

2021, on all regions together, whenever possible. We start the fit on June 3rd 2020, when all the 

predictors are available. The parameters of the ARDL model vary with the prediction horizon and 

those of the ARIMA2 model vary by region. Therefore, only four models (BRT, RF, MLR and 

GAM2) are included in this sub-analysis. 

In a second step, we keep the 6 best individual models to build the ensemble model. Individual 

model forecasts are combined into an ensemble forecast by taking the unweighted mean of the 

point predictions, and the unweighted mean of the 95% confidence intervals. We test the 

performance of the ensemble model on the period running from March 7th 2021 to July 6th 2021 

(“test period”). 

To assess the performance of the ensemble model, in addition to the RMSE and the WIS used to 

compare the models, we also report the mean absolute percentage error (MAPE, mean of the 

ratio of the absolute error to the observed value) as its interpretation in terms of relative error is 

https://paperpile.com/c/boHAXA/PZvq+d4av
https://paperpile.com/c/boHAXA/d4av
https://paperpile.com/c/boHAXA/Mffd
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straightforward, as well as the 95% prediction interval coverage (proportion of 95% prediction 

intervals that contain the observed value).  

Over the test period, we use in individual models the previously selected predictors and, in 

addition, we include the vaccine coverage and the proportion of variants of concern (VOC) 

(Supplementary text and Figure S7). Indeed, these two predictors, which are negligible over the 

evaluation period, can significantly affect the dynamic of hospitalizations observed from March 

2021.   

In order to determine whether the effects of the different predictors might have changed over time, 

we also retrospectively fit four of the individual models from June 3rd 2020 up to July 6th 2021, 

and compare the results with those obtained over the previous time period. 

Modelling ICU admissions, bed occupancy in ICU and general wards 

Predictions for the number of ICU admissions, and bed occupancy in ICU and general wards are 

derived from predicted numbers of hospital admissions. The expected number 𝐻𝐼𝐶𝑈(𝑡) of ICU 

admissions at time t is given by the formula: 

 

where 𝐻(𝑢) is the number of hospital admissions at time u, 𝑝𝐼𝐶𝑈(𝑡) is the probability of being 

admitted to ICU once in hospital, and 𝑔𝐻(𝑡 −  𝑢) is the delay distribution from hospital to ICU 

admission, i.e. the probability for an individual who entered the hospital on day 𝑢 to have a delay 

of 𝑑 =  𝑡 − 𝑢 days before ICU admission. We compute 𝑔𝐻(𝑡 − 𝑢) assuming that the delay from 

hospital to ICU admission is exponentially distributed with mean = 1.5 days (11). The probability 

of ICU admission in time interval 𝑇 =  [𝑡1, 𝑡2] can be estimated as follows: 

 

In practice, we estimate 𝑝𝐼𝐶𝑈on a 10-day rolling window, which makes the estimates relatively 

stable. 

https://paperpile.com/c/boHAXA/PBUg
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The number of general ward (𝐵𝐻(𝑡)) and ICU (𝐵𝐼𝐶𝑈(𝑡)) beds occupied by COVID-19 patients at 

time t can be expressed as: 

 

where 𝑠𝐻(𝑢) is the probability to stay in hospital for u days before discharge, 𝑠𝐻−𝐼𝐶𝑈(𝑢) is the 

probability to spend u days in the hospital general ward and then move to the ICU, and 𝑠𝐼𝐶𝑈(𝑢) is 

the probability to spend u days in ICU. For 𝑠𝐻 and 𝑠𝐼𝐶𝑈 we use gamma survival functions with  

mean to be estimated and coefficient of variation (i.e. standard deviation over mean) fixed at 0.9 

for 𝑠𝐻and 0.8 for  𝑠𝐼𝐶𝑈, while, analogously to 𝑔𝐻, we take 𝑠𝐻−𝐼𝐶𝑈(𝑢) to be an exponential survival 

function with a mean of 1.5 days. We minimize the sum of squared errors over the last 5 data 

points to estimate the free parameters of 𝑠𝐻 and 𝑠𝐼𝐶𝑈. Once all the parameters are estimated and 

the forecast of 𝐻 are available, we use the equations above to forecast 𝐻𝐼𝐶𝑈, 𝐵𝐻, and 𝐵𝐼𝐶𝑈, 

assuming that all parameters’ estimates remain constant. 

To account for uncertainty in parameter estimates, we use the bootstrapped smoothed trajectories 

of hospital admissions, to generate 95% prediction intervals for the three other targets.  

To assess the forecasts of ICU admissions and bed occupancy in ICU and general wards, we 

report the MAPE and the 95% prediction interval coverage. 

Acknowledgments 

We are grateful to the hospital staff and all the partners involved in the collection and management 

of SIVIC data. We thank Raphaël Bertrand and Eurico de Carvalho Filho (PREDICT Services) for 

providing meteorological data. We thank Google for making their mobility data available online. 

Funding sources 

We acknowledge financial support from the Investissement d’Avenir program, the Laboratoire 

d’Excellence Integrative Biology of Emerging Infectious Diseases program (grant ANR-10-LABX-

62- IBEID), Santé Publique France, the INCEPTION project (PIA/ANR16-CONV-0005), the 

European Union’s Horizon 2020 research and innovation program under grants 101003589 

(RECOVER) and 874735 (VEO), AXA, Groupama and EMERGEN.  



 

14 

 

References 

1.  S. Funk, et al., Short-term forecasts to inform the response to the Covid-19 epidemic in the 
UK. medRxiv, 2020.11.11.20220962 (2020). 

2.  P. Mecenas, R. T. da Rosa Moreira Bastos, A. C. R. Vallinoto, D. Normando, Effects of 
temperature and humidity on the spread of COVID-19: A systematic review. PLoS One 15, 
e0238339 (2020). 

3.  Á. Briz-Redón, Á. Serrano-Aroca, The effect of climate on the spread of the COVID-19 
pandemic: A review of findings, and statistical and modelling techniques. Progress in 
Physical Geography: Earth and Environment 44, 591–604 (2020). 

4.  M. U. G. Kraemer, et al., The effect of human mobility and control measures on the COVID-
19 epidemic in China. Science 368, 493–497 (2020). 

5.  J. Landier, et al., Colder and drier winter conditions are associated with greater SARS-CoV-
2 transmission: a regional study of the first epidemic wave in north-west hemisphere 
countries. medRxiv, 2021.01.26.21250475 (2021). 

6.  E. Y. Cramer, et al., Evaluation of individual and ensemble probabilistic forecasts of 
COVID-19 mortality in the US. medRxiv, 2021.02.03.21250974 (2021). 

7.  R. Polikar, Ensemble based systems in decision making. IEEE Circuits and Systems 
Magazine 6, 21–45 (2006). 

8.  E. L. Ray, et al., Ensemble Forecasts of Coronavirus Disease 2019 (COVID-19) in the U.S. 
medRxiv, 2020.08.19.20177493 (2020). 

9.  N. G. Reich, et al., Accuracy of real-time multi-model ensemble forecasts for seasonal 
influenza in the U.S. PLoS Comput. Biol. 15, e1007486 (2019). 

10.  T. K. Yamana, S. Kandula, J. Shaman, Individual versus superensemble forecasts of 
seasonal influenza outbreaks in the United States. PLoS Comput. Biol. 13, e1005801 
(2017). 

11.  H. Salje, et al., Estimating the burden of SARS-CoV-2 in France. Science 369, 208–211 
(2020). 

12.  Ferguson NM, Laydon D, Nedjati-Gilani G, Imai N, Ainslie K, Baguelin M, Bhatia S, 
Boonyasiri A, Cucunubá Z, Cuomo-Dannenburg G, Dighe A, Impact of non-pharmaceutical 
interventions (NPIs) to reduce COVID-19 mortality and healthcare demand. Imperial 
College COVID-19 Response Team (March, 16 2020) https:/doi.org/10.25561/77482. 

13.  M. A. Johansson, et al., An open challenge to advance probabilistic forecasting for dengue 
epidemics. Proc. Natl. Acad. Sci. U. S. A. 116, 24268–24274 (2019). 

14.  C. Viboud, et al., The RAPIDD ebola forecasting challenge: Synthesis and lessons learnt. 
Epidemics 22, 13–21 (2018). 

http://paperpile.com/b/boHAXA/PZvq
http://paperpile.com/b/boHAXA/PZvq
http://paperpile.com/b/boHAXA/PZvq
http://paperpile.com/b/boHAXA/PZvq
http://paperpile.com/b/boHAXA/PZvq
http://paperpile.com/b/boHAXA/PZvq
http://paperpile.com/b/boHAXA/OogL
http://paperpile.com/b/boHAXA/OogL
http://paperpile.com/b/boHAXA/OogL
http://paperpile.com/b/boHAXA/OogL
http://paperpile.com/b/boHAXA/OogL
http://paperpile.com/b/boHAXA/OogL
http://paperpile.com/b/boHAXA/OogL
http://paperpile.com/b/boHAXA/IBtS
http://paperpile.com/b/boHAXA/IBtS
http://paperpile.com/b/boHAXA/IBtS
http://paperpile.com/b/boHAXA/IBtS
http://paperpile.com/b/boHAXA/IBtS
http://paperpile.com/b/boHAXA/IBtS
http://paperpile.com/b/boHAXA/IBtS
http://paperpile.com/b/boHAXA/a4fn
http://paperpile.com/b/boHAXA/a4fn
http://paperpile.com/b/boHAXA/a4fn
http://paperpile.com/b/boHAXA/a4fn
http://paperpile.com/b/boHAXA/a4fn
http://paperpile.com/b/boHAXA/a4fn
http://paperpile.com/b/boHAXA/a4fn
http://paperpile.com/b/boHAXA/a4fn
http://paperpile.com/b/boHAXA/upTR
http://paperpile.com/b/boHAXA/upTR
http://paperpile.com/b/boHAXA/upTR
http://paperpile.com/b/boHAXA/upTR
http://paperpile.com/b/boHAXA/upTR
http://paperpile.com/b/boHAXA/upTR
http://paperpile.com/b/boHAXA/upTR
http://paperpile.com/b/boHAXA/d4av
http://paperpile.com/b/boHAXA/d4av
http://paperpile.com/b/boHAXA/d4av
http://paperpile.com/b/boHAXA/d4av
http://paperpile.com/b/boHAXA/d4av
http://paperpile.com/b/boHAXA/d4av
http://paperpile.com/b/boHAXA/J7h7
http://paperpile.com/b/boHAXA/J7h7
http://paperpile.com/b/boHAXA/J7h7
http://paperpile.com/b/boHAXA/J7h7
http://paperpile.com/b/boHAXA/J7h7
http://paperpile.com/b/boHAXA/J7h7
http://paperpile.com/b/boHAXA/mJJy
http://paperpile.com/b/boHAXA/mJJy
http://paperpile.com/b/boHAXA/mJJy
http://paperpile.com/b/boHAXA/mJJy
http://paperpile.com/b/boHAXA/mJJy
http://paperpile.com/b/boHAXA/mJJy
http://paperpile.com/b/boHAXA/w4Kz
http://paperpile.com/b/boHAXA/w4Kz
http://paperpile.com/b/boHAXA/w4Kz
http://paperpile.com/b/boHAXA/w4Kz
http://paperpile.com/b/boHAXA/w4Kz
http://paperpile.com/b/boHAXA/w4Kz
http://paperpile.com/b/boHAXA/w4Kz
http://paperpile.com/b/boHAXA/w4Kz
http://paperpile.com/b/boHAXA/W0wD
http://paperpile.com/b/boHAXA/W0wD
http://paperpile.com/b/boHAXA/W0wD
http://paperpile.com/b/boHAXA/W0wD
http://paperpile.com/b/boHAXA/W0wD
http://paperpile.com/b/boHAXA/W0wD
http://paperpile.com/b/boHAXA/W0wD
http://paperpile.com/b/boHAXA/PBUg
http://paperpile.com/b/boHAXA/PBUg
http://paperpile.com/b/boHAXA/PBUg
http://paperpile.com/b/boHAXA/PBUg
http://paperpile.com/b/boHAXA/PBUg
http://paperpile.com/b/boHAXA/PBUg
http://paperpile.com/b/boHAXA/PBUg
http://paperpile.com/b/boHAXA/PBUg
http://paperpile.com/b/boHAXA/rzWx
http://paperpile.com/b/boHAXA/rzWx
http://paperpile.com/b/boHAXA/rzWx
http://paperpile.com/b/boHAXA/rzWx
http://paperpile.com/b/boHAXA/rzWx
http://paperpile.com/b/boHAXA/rzWx
http://dx.doi.org/10.25561/77482
http://paperpile.com/b/boHAXA/rzWx
http://paperpile.com/b/boHAXA/1RMV
http://paperpile.com/b/boHAXA/1RMV
http://paperpile.com/b/boHAXA/1RMV
http://paperpile.com/b/boHAXA/1RMV
http://paperpile.com/b/boHAXA/1RMV
http://paperpile.com/b/boHAXA/1RMV
http://paperpile.com/b/boHAXA/1RMV
http://paperpile.com/b/boHAXA/1RMV
http://paperpile.com/b/boHAXA/ORjr
http://paperpile.com/b/boHAXA/ORjr
http://paperpile.com/b/boHAXA/ORjr
http://paperpile.com/b/boHAXA/ORjr
http://paperpile.com/b/boHAXA/ORjr
http://paperpile.com/b/boHAXA/ORjr
http://paperpile.com/b/boHAXA/ORjr
http://paperpile.com/b/boHAXA/ORjr


 

15 

15.  R. J. Oidtman, et al., Trade-offs between individual and ensemble forecasts of an emerging 
infectious disease. Nat. Commun. 12, 5379 (2021). 

16.  E. Volz, et al., Transmission of SARS-CoV-2 Lineage B.1.1.7 in England: Insights from 
linking epidemiological and genetic data. medRxiv, 2020.12.30.20249034 (2021). 

17.  T. Proietti, A. Luati, Real time estimation in local polynomial regression, with application to 
trend-cycle analysis. aoas 2, 1523–1553 (2008). 

18.  A. Roumagnac, E. De Carvalho, R. Bertrand, A.-K. Banchereau, G. Lahache, Étude de 
l’influence potentielle de l’humidité et de la température dans la propagation de la 
pandémie COVID-19. Medecine De Catastrophe, Urgences Collectives (2021) 
https:/doi.org/10.1016/j.pxur.2021.01.002 (February 3, 2021). 

 

  

http://paperpile.com/b/boHAXA/XjuE
http://paperpile.com/b/boHAXA/XjuE
http://paperpile.com/b/boHAXA/XjuE
http://paperpile.com/b/boHAXA/XjuE
http://paperpile.com/b/boHAXA/XjuE
http://paperpile.com/b/boHAXA/XjuE
http://paperpile.com/b/boHAXA/XjuE
http://paperpile.com/b/boHAXA/XjuE
http://paperpile.com/b/boHAXA/II5X
http://paperpile.com/b/boHAXA/II5X
http://paperpile.com/b/boHAXA/II5X
http://paperpile.com/b/boHAXA/II5X
http://paperpile.com/b/boHAXA/II5X
http://paperpile.com/b/boHAXA/II5X
http://paperpile.com/b/boHAXA/77aY
http://paperpile.com/b/boHAXA/77aY
http://paperpile.com/b/boHAXA/77aY
http://paperpile.com/b/boHAXA/77aY
http://paperpile.com/b/boHAXA/77aY
http://paperpile.com/b/boHAXA/77aY
http://paperpile.com/b/boHAXA/Mffd
http://paperpile.com/b/boHAXA/Mffd
http://paperpile.com/b/boHAXA/Mffd
http://paperpile.com/b/boHAXA/Mffd
http://paperpile.com/b/boHAXA/Mffd
http://paperpile.com/b/boHAXA/Mffd
http://dx.doi.org/10.1016/j.pxur.2021.01.002
http://paperpile.com/b/boHAXA/Mffd


 

16 

Figure legends 

Figure 1: Comparison of the performance of individual models over the evaluation period 

at the national and regional levels, by prediction horizon, for hospital admissions. A. Root 

mean squared error (RMSE) in metropolitan France. B. RMSE by region. C. Mean weighted 

interval score (WIS) in metropolitan France. D. WIS by region.  

Figure 2: Effects of mobility (blue), epidemiological (green) and meteorological (red) 

predictors on the growth rate of hospital admissions, for the GAM2, the RF, the BRT and 

the MLR models. Abbreviations: GR = growth rate. Predictors are described in Supplementary 

text. 

Figure 3: Forecasts of hospital admissions over the test period (March 7th 2021 to July 6th 

2021). A. Trajectories predicted by the individual and ensemble models for all prediction horizons 

in metropolitan France. The black line is the eventually observed data (smoothed), and the 

colored lines are trajectories predicted on day t, for prediction horizons t-1 up to t+14. B. Forecasts 

of the ensemble model by region at 3, 7 and 14 days. The black line is the eventually observed 

data (smoothed). Shaded areas represent 95% prediction intervals. Regions: Auvergne-Rhône-

Alpes (ARA), Bourgogne-Franche-Comté (BFC), Bretagne (BRE), Centre-Val de Loire (CVL), 

Grand Est (GES), Hauts-de-France (HDF), Île-de-France (IDF), Normandie (NOR), Nouvelle-

Aquitaine (NAQ), Occitanie (OCC), Pays de la Loire (PDL), Provence-Alpes-Côte d’Azur (PAC). 

Figure 4: Model ranking by region and performance of the ensemble model for the four 

targets (hospital admissions, ICU admissions and bed occupancy in general ward and ICU) 

over the test period. A. Ranks of the models. Models are ranked according to the RMSE over 

all prediction horizons. Reg. Ave. = regional average (RMSE computed over all regions except 

metropolitan France). B. Mean absolute percentage error (MAPE) by prediction horizon in 

metropolitan France. C. MAPE by prediction horizon at the regional level. 
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Supplementary information 

 

Supplementary text 

Hospitalization data  

Hospital data are obtained from the SI-VIC database, the national inpatient surveillance system 

used during the pandemic. The database was implemented in March 2020 and is maintained by 

the ANS (Agence du Numérique en Santé). It provides real time data on the COVID-19 patients 

hospitalized in French public and private hospitals. Data are sent daily to Santé Publique France, 

the French national public health agency. All cases are either biologically confirmed or present 

with a computed tomographic image highly suggestive of SARS-CoV-2 infection. We restrict our 

analyses to patients newly hospitalized in ICU (“Hospitalisation réanimatoire: réanimation, soins 

intensifs et unité de surveillance continue”) and general ward beds (“Hospitalisation 

conventionnelle”). We exclude patients hospitalized in psychiatric care (“Hospitalisation 

psychiatrique”), long-term care and rehabilitation care (“Soins de suite et réadaptation”) and 

emergency care patients (“Soins aux urgences”). We consider events (hospitalizations, transfers 

or discharges) by date of occurrence and correct observed data for reporting delays (1). 

 

Smoothing 

Hospital data follow a weekly pattern, with less admissions during weekends compared to 

weekdays, and can be noisy at the regional level. Therefore, in the absence of smoothing or with 

simple smoothing techniques, forecasts can be biased depending on the day of the week at which 

the analysis is performed. In order to remove day-to-day variation and obtain a smooth signal at 

each date T not depending on future data points (mimicking the real-time case), we adopt a 2-

step approach using state-of-the-art statistical methods and using data only up to date T:  

1 – Removal of the day-of-the-week pattern of the data up to current time T. We assume 

that the logged incidence 𝑦(𝑡) can be written as 𝑦(𝑡) = 𝑚(𝑡) + 𝑤(𝑑(𝑡)) + 𝜖(𝑡), where m(t) is a 

smooth temporal trend, d(t) is the day of the week at date t and w(d) is the day of the week effect 

and 𝜖(𝑡) is noise. We estimate 𝑤̂(𝑑) by fitting a local polynomial regression using the standard 

biweight kernel with bandwidth h=8 days (corresponding to the number of time points below and 

https://paperpile.com/c/0jffZV/kCui
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above used in the smoothing) over the previous 8 weeks of data before date T - not using future 

data. Local polynomial regression is a state-of-the-art kernel smoother, less biased than simple 

rolling average because it uses an (optimal) biweight kernel rather than the rectangle kernel and 

less biased than the classical Nadaraya-Watson estimator even close to the boundaries of the 

interval of estimation. This regression leads to a trend estimate 𝑚𝑟(𝑡) from the raw data that we 

compute over an interval in the past [T - 8 weeks +h, T - h], excluding the last h days. We then 

compute the day-of-the-week effect 𝑤̂(𝑑) by averaging 𝑦𝑑(𝑡) = 𝑦(𝑡)  − 𝑚𝑟(𝑡) for each day 𝑑 of 

the week. Finally, we output a new series where the day-of-the-week effect has been removed up 

to time T as 𝑦̂𝑤(𝑡)  =  𝑦(𝑡) − 𝑤̂𝑑(𝑡).   

2 – Smoothing incidence up to time T accounting for real time. The second step allows 

obtaining a signal that is fit for real time analysis. Indeed, even if local polynomial smoothing is 

nearly unbiased close to the boundaries of estimation, this comes with increased variance: this 

means that the estimated trend in the last few days of observation can be misleading. Several 

approaches are possible to overcome this limitation: automatic kernel curtailing or selecting 

smoothing according to the least revision principle. Proietti et al. described a framework for 

implementing the least revision principle using low-order reproducing kernels (2). In this approach, 

the smoothing kernels are tailored to minimize the error between the smooth value predicted in 

real-time, when data is available only up to time T,  and the value that will be obtained as a final 

estimate once data is present up to time T+h. The method introduces a little bias to reduce the 

variance of the estimate. As described in Proietti and al, we assume that 𝑦̂𝑤(𝑡)  =  𝑚𝑤(𝑡) + 𝜖𝑤(𝑡) 

where 𝑚𝑤(𝑡) is a smooth trend estimate and 𝜖𝑤(𝑡) is noise. The smooth trend is estimated using 

the linear/quadratic approach of Proietti, whereby a local polynomial of degree 2 is fit on the whole 

range of the data and is approximated by a local polynomial of degree 1 on the interval [T-h, T] 

for computation of the real-time smooth estimate of the trend. This last approximation introduces 

bias and reduces variance, leading to a “least revision” estimate. Confidence intervals are 

computed by bootstrap. 

We compare this two-step algorithm with a simple smoothing spline (Fig. S11). The time-series 

smoothed by a smoothing spline (panel A) is very sensitive to the weekly pattern: the values are 

systematically under-estimated when the last data point is a Sunday, and over-estimated when 

the last data point is a Friday. The advantage of our approach (panel B) is that it is insensitive to 

the day of the week, and more generally, less sensitive to noise. This comes with one drawback: 

in the case of a sudden change of trajectory, as it occurred at the beginning of November, it can 

take a few days before the smoothed time-series catches the right trajectory. This loss in reactivity 

https://paperpile.com/c/0jffZV/hWSK
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(detecting changes as early as possible) is balanced by the gain in stability (avoiding false 

alarms). 

We also compare the predictions of the MLR model (taken as an example) using our smoothing 

algorithm to the predictions made on data smoothed by a centered 7-day moving average (MA). 

The MA method leads to the loss of the last three data points but is often used to remove weekly 

patterns in a time-series, due to its simplicity. We show that the RMSE of the predictions over the 

evaluation period is lower with the smoothing algorithm compared to the moving average (Figure 

S12).We also show that, with our smoothing algorithm, the RMSE is stable throughout the week, 

while it varies with the day of the week when using a moving average (Figure S12). 

 

Description of individual models 

We evaluate 12 individual models to forecast hospital admissions. The first three models directly 

predict the number of hospital admissions, while the others predict the growth rate, from which 

hospital admissions are then derived using an exponential growth model. 

Baseline 

The baseline model assumes that the number of hospital admissions stays at its current value 

indefinitely into the future, with uncertainty levels given by a discretised truncated normal 

distribution with lower bound 0 and a standard deviation given by past one-day ahead deviations 

from the value of the metric (3). 

ARIMA1: Autoregressive integrated moving average model  

We fit a simple ARIMA model of hospital admissions, where the parameters are estimated at each 

time step using the auto.arima function of the R package forecast, independently for each region. 

GAM1: Generalized additive model 

We fit a GAM model of hospital admissions, with a single smooth term for time, using the R 

package mgcv. The model is calibrated independently for each region.  

Const: Exponential growth models with constant growth rate 

https://paperpile.com/c/0jffZV/quQ0
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We estimate the exponential growth rate r by fitting a Poisson regression model of the smoothed 

hospital admissions over a fixed time window. We test windows of 2 (“Const2”) and 7 (“Const7”) 

days. We project hospital admissions by assuming the growth rate will stay constant in the 

future: 

 

 

PL: Exponential growth model with piecewise linear growth rate 

We consider an extension of the previous model for which the growth rate varies over time:  

 

and where  is a continuous piecewise linear function: 

 

Here, the  are the instants when the slope changes and K is the number of segments. 

MLR: Multiple linear regression model 

We fit a multiple linear regression model of the growth rate r, with covariates selected by forward 

stepwise selection (see below). The model is fitted on all regions together. The covariates are 

introduced in the model as lagged variables with lag : 

  

The best lag  for each covariate is estimated at each time step using Pearson correlation 

coefficient between the growth rate and the covariate.  

The growth rate is then predicted for all prediction horizons by assuming that all covariates will 

stay constant in the future (equal to their last observed values). We then derive forecasts of  

hospital admissions recursively: 
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GAM2: Generalized additive model 

We fit a GAM model of the growth rate r, using the same approach as multiple linear regression, 

except that the lagged covariates are introduced in the model as smoothed functions  (to relax 

the linearity assumption): 

 

We use the R package mgcv. 

ARIMA2: Multiple linear regression model with ARIMA error 

We  fit a multiple linear regression model of the growth rate with k lagged covariates and an 

ARIMA error, to account for autocorrelation in the data: 

 

where  is an ARIMA process. The model is fitted on each region separately due to the ARIMA 

structure. We use the R package forecast. We select covariates and derive forecasts of hospital 

admissions using the same approach as for linear regression.  

ARDL: Autoregressive distributed lag model 

In a distributed lag model, the effect of a covariate on the dependent variable can be distributed 

over time rather than occur all at once. We use three lags for each covariate. These lags are 

defined for each prediction horizon, so that we only use the observed values of the covariates, 

without making any assumption about their future values. For instance, to predict the growth rate 

five days ahead, we use lags 5, 6 and 7, which correspond to the last three observed values of 

the covariates. We estimate the lag weights (coefficients of the regression) for each prediction 

horizon. Therefore, the weights associated to a covariate can be large at short horizons and small 

at long horizons, or vice versa. We also include lagged values of the growth rate of hospital 

admissions (autoregressive model). For any prediction horizon h, the growth rate at t+h is: 
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We fit all the regions together, and use the same covariate selection procedure as for other 

models. 

RF: Random forests  

Regression trees approaches consist in recursively partitioning the data using binary splits and to 

build a set of decision rules on the predictors. RF combine decision trees with bagging - bootstrap 

aggregation of multiple trees run in parallel. We use RF for regression of the growth rate of 

hospital admissions at time t+h using the covariates at time t. The R package randomForest is 

used. In practice we use h =10 days for mobility and climate predictors, and h = 4 or h = 7 days 

for epidemiological predictors, and the minimum size of the nodes is set to 1,000 to reduce 

overfitting. Importance of variables is assessed with the increase in node impurity, computed as 

the total decrease in residual sum of squares obtained after each splitting on the variable and 

averaged over all trees. The dependency between the growth rate and a covariate is visualized 

using partial dependence plots, where we determine the marginal effect of the covariate while 

setting the other covariates to their median value.  

BRT: Boosted regression trees 

BRT combine decision trees with boosting. Unlike RF, trees are added sequentially and not in 

parallel. At each step, the tree that best reduces a loss function is added. We use the R package 

gbm and choose the default parameters offered by the package: fits are made on 100 trees; a 

Gaussian loss function is used; interaction depth =1; the shrinkage (learning rate) is set to 0.1. 

We use the same lags as in the RF model. Relative importance of the covariates is a measure of 

how each variable contributes to reducing the loss function. Similarly to the RF, we visualize the 

dependency between the growth rate and the covariates using partial dependence plots. 

 

Description of predictors 

We include in individual models a set of predictors, chosen for their availability in near real-time 

and their potential to help to anticipate the trajectory of hospital admissions. Three types of 

predictors are considered over the evaluation period: 9 epidemiological predictors describing the 

dynamics of the epidemics, 6 mobility predictors and 4 meteorological predictors. All predictors 

are available at the region and day levels. Most of them follow a strong weekly pattern. Data are 

smoothed using the methodology used for hospitalization data, in order to remove the weekly 
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pattern and reduce edge effects (see “Smoothing” above). In addition, over the test period, we 

also include vaccine coverage and the proportion of variants of concern (VOC) (Figure S7) as 

these two covariates can significantly affect the dynamic of hospitalizations from March 2021. 

Epidemiological predictors 

In addition to the growth rate of hospitalizations, we include predictors on confirmed cases, given 

that cases are expected to be reported a few days before hospitalizations. Case data are obtained 

from the SIDEP database (Système d’Information de Dépistage Populationnel - Information 

system for population-based testing), the national surveillance system describing RT-PCR and 

antigenic tests results for SARS-CoV-2 arising from private and public French laboratories. 

Anonymized data are transmitted daily to Santé publique France through a secured platform. Test 

results are reported by date of nasopharyngeal swab and include patient information such as age, 

delay since symptoms onset and postal code of the home address. This surveillance system was 

implemented from May 13th 2020 and became stable in June 2020. 

We explore 8 potential predictors (Fig. S1): 

- the number of positive tests, and their growth rate 

- the number of positive tests, in people aged >70 years, and their growth rate 

- the proportion of positive tests among all tests, and their growth rate 

- the proportion of positive tests among tests in symptomatic people, and their growth rate. 

The exponential growth rate is computed using a 2-day rolling window, and the resulting time 

series is smoothed using local polynomial regression. Due to reporting delays, case data can be 

used up to 2 days before the date of analysis. 

Mobility predictors 

Mobility data are obtained from Google (https://www.google.com/covid19/mobility/). Google 

mobility data describe how visitors to (or time spent in) categorized places change compared to 

a baseline (the 5‑week period Jan 3 – Feb 6, 2020). The 6 categorized places are: residential 

(time spent at home), workplaces, grocery and pharmacy, retail and recreation, parks, and transit 

stations (Fig. S2). Reports are updated every other day and contain data up to 2 days prior to the 

day the dataset is generated. They are uploaded 2 days after the day the dataset is generated. 

Therefore, the maximum delay for data availability is 5 days.  

 

https://www.google.com/covid19/mobility/
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Meteorological predictors 

Climate data are obtained from Météo France/PREDICT Services, and include temperature, 

absolute humidity and relative humidity, for each weather station in France (N=63) (Fig. S3). We 

also include the IPTCC index (Index PREDICT de transmissivité climatique de la COVID-19), an 

index characterizing favorable climatic conditions for the transmission of COVID-19 (4). We take 

the median of the four variables in each region. In linear models, IPTCC is also tested in its 

logarithmic form. 

Vaccine coverage 

Vaccine coverage data are obtained from the VAC-SI database, the national information system 

developed by the French Health Insurance to monitor the deployment of the vaccine campaign.  

Daily data are made publicly available by Santé publique France 

(https://www.data.gouv.fr/fr/datasets/donnees-relatives-aux-personnes-vaccinees-contre-la-

covid-19-1/). We use the proportion of the population completely vaccinated (i.e. people who 

received 2 doses in a 2-dose vaccination scheme or 1 dose in a 1-dose scheme) (Fig. S7). 

Proportion of variants of concern (VOC) 

We obtain data on the proportion of variants of concern (VOC) detected in nasopharyngeal 

samples, to capture the progressive replacement of the historical strain by more transmissible 

variants. We use the SIDEP (Système d’Information de Dépistage Populationnel - Information 

system for population-based testing) database, the national surveillance system describing RT-

PCR and antigen tests results for SARS-CoV-2 arising from all private and public French 

laboratories. Anonymized data are transmitted daily to Santé Publique France through a secured 

platform. Test results are reported by date of nasopharyngeal swab and include patient 

information such as postal code of the home address. Aggregated data are made publicly 

available by Santé publique France (https://www.data.gouv.fr/fr/datasets /donnees-de-

laboratoires-pour-le-depistage-indicateurs-sur-les-variants/). VOC were identified among positive 

PCR or antigen test results, using RT-PCR screening kits. The main VOC circulating during the 

study period was Alpha variant, followed by Beta and Gamma variants. Data are available from 

February 15, 2021 to June 9, 2021. In order to impute the proportion of VOC before and after 

these dates, we fit a logistic regression model, assuming that the proportion of VOC was zero 

before December 15, 2020 (Fig. S7).  

https://paperpile.com/c/0jffZV/Sm1W
https://www.data.gouv.fr/fr/datasets/donnees-relatives-aux-personnes-vaccinees-contre-la-covid-19-1/
https://www.data.gouv.fr/fr/datasets/donnees-relatives-aux-personnes-vaccinees-contre-la-covid-19-1/
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Forward selection of predictors 

In order to select the best predictors to include in individual models, we use a forward stepwise 

selection method (5), using data from the evaluation period only. We first include all covariates 

(N=19) in univariate models and run each univariate model over the evaluation period, using a 

rolling forecasting origin approach (cross-validation): for each day t of the evaluation period, we 

make forecasts for the period t-1 up to day t+14, using only past data up to day t-2 as a training 

set, and computing evaluation metrics using the observed data in t-1 to t+14. For each univariate 

model, we compute the RMSE of predictions at t+7 and t+14 and we retain the covariate that 

minimizes the RMSE. We then include the remaining covariates one by one, until no additional 

covariate can decrease the cross-validated RMSE by more than 1. We also consider two 

alternative models starting from the second or the third best covariate in univariate analysis. In 

the end, we retain the model with the lowest RMSE among the three multivariate models. 

 

  

https://paperpile.com/c/0jffZV/DCR1
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Supplementary figures  

 

 

Fig. S1: Epidemiological predictors (see also Supplementary text). 
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Fig. S2: Mobility predictors (see also Supplementary text). 
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Fig. S3: Meteorological predictors (see also Supplementary text). 
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Fig. S4: Trajectories of hospital admissions predicted by the 12 individual models in 

metropolitan France over the evaluation period. The black line is the eventually observed data 

(smoothed), and the colored lines are trajectories predicted on day t, for prediction horizons t-1 

up to t+14. The evaluation period runs from September 7th 2020 to March 6th 2021. We exclude 

the forecasts made between October 20th and November 4th (i.e. up to 6 days into the lockdown 

starting on October 30th) for hospitalizations occuring after November 3rd, as the models were 

not designed to anticipate the impact of a lockdown before its implementation. The excluded 

forecasts are shown with transparent lines and a grey shaded area. 
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Fig. S5: Model fits for the growth rate of hospital admissions, at the national (metropolitan 

France) and regional levels, for the GAM2, the MLR, the BRT and the RF models. Each panel 

shows the observed growth rate (black line) and the predicted growth rates (colored lines) when 

retrospectively fitting each model from June 3rd 2020 to March 6th 2021, on all regions together. 

Abbreviations for regions: Auvergne-Rhône-Alpes (ARA), Bourgogne-Franche-Comté (BFC), Bretagne 

(BRE), Centre-Val de Loire (CVL), Grand Est (GES), Hauts-de-France (HDF), Île-de-France (IDF), 

Normandie (NOR), Nouvelle-Aquitaine (NAQ), Occitanie (OCC), Pays de la Loire (PDL), Provence-Alpes-

Côte d’Azur (PAC). 
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Fig. S6: Importance of predictors, estimated by retrospectively fitting the models from June 

3rd 2020 to March 6th 2021. For the BRT model, relative importance is a measure of how each 

predictor contributes to reducing the loss function (all contributions sum to 100%). For the MLR 

and the GAM2 models, relative importance is a measure of how each predictor contributes to the 

total explained variance (all contributions sum to 100%). For the RF model, predictor importance 

is assessed with the increase in node impurity, computed as the total decrease in residual sum 

of squares obtained after each splitting on the variable and averaged over all trees (importance 

measures do not sum to 100%). 
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Fig. S7: Additional predictors used for the test period. (A) Vaccine coverage (complete 

vaccination scheme). (B) Proportion of variants of concern (VOC). The points represent the 

available data and the line represents the fit of the logistic model (see Supplementary text). 
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Figure S8: Effects of mobility (blue), epidemiological (green), meteorological (red), 

proportion of VOC (orange) and vaccine coverage (purple) predictors on the growth rate 

of hospital admissions, for the GAM2, the RF, the BRT and the MLR models, by 

retrospectively fitting the models over two time periods: from June 3rd 2020 to March 6th 

2021 (solid lines) or from June 3rd 2020 to July 7th 2021 (dashed lines). Abbreviations: GR 

= growth rate. Predictors are described in Supplementary text. 
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Figure S9: Comparison of the performance of the individual and ensemble models over 

the test period at the national and regional levels, by prediction horizon, for hospital 

admissions. A. Root mean squared error (RMSE) in metropolitan France. B. RMSE by region. 

C. Mean weighted interval score (WIS) in metropolitan France. D. WIS by region.  
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Figure S10: Model ranking by week. Models are ranked according to the RMSE over all 

prediction horizons and all regions.  
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Fig. S11: Comparison of smoothing methods. (A) Smoothing spline. (B) Our two-step 

algorithm. The grey line shows the raw data of hospital admissions in metropolitan France from 

September 2020 to January 2021.The colored lines are time-series smoothed in real time (i.e. 

knowing only the past values), with different colors indicating the day of the last data point. 
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Fig. S12: Comparison of RMSE for hospital admissions over the evaluation period, at the 

national and regional level, for the multiple linear regression (MLR) model, according to 

the smoothing method (LPR = local polynomial regression, MA = 7-day moving average). 

A. RMSE by prediction horizon in metropolitan France. B. RMSE by prediction horizon at the 

regional level. C. RMSE according to the day of the week at which the predictions were made, in 

metropolitan France. D. RMSE according to the day of the week at which the predictions were 

made, at the regional level. 
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Figure S13: Comparison of models with all types of predictors (solid lines) vs models with 

epidemiological predictors only (denoted “_epi”, dashed lines), over the test period. In general, 

the models with all types of predictors perform better than the models with epidemiological 

predictors only.  
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Supplementary tables  

Table S1: Best predictors selected for each individual model using the forward stepwise 

selection procedure over the evaluation period. The six models were included in the ensemble 

model. 

Model Dependent 

variable 

Are lagged 

values of the 

dependent 

variable 

used as 

covariate? 

Epidemiological 

predictors 

Mobility 

predictors 

Meteoro- 

logical 

predictors 

ARDL Growth rate 

of hospital 

admissions 

Yes Growth rate of the 

number of positive 

tests 

Growth rate of the 

proportion of positive 

tests among tests in 

symptomatic people 

Residential  Temperature 

MLR Growth rate 

of hospital 

admissions 

No Growth rate of the 

number of positive 

tests 

Growth rate of the 

proportion of positive 

tests  

Residential   

GAM Growth rate 

of hospital 

admissions 

No  Residential and 

transit stations  

Absolute 

humidity 

ARIMA2 Growth rate 

of hospital 

admissions 

No   Transit stations 

and residential  

  

BRT Growth rate 

of hospital 

admissions 

No Growth rate of the 

number of positive 

tests 

Transit stations  

and residential 

 

RF Growth rate 

of hospital 

admissions 

No Growth rate of the 

number of positive 

tests  

 

Transit stations  

and residential 
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Table S2: 95% prediction interval coverage of the ensemble model, at the national and 

regional level, for 7- and 14-day ahead forecasts, over the test period.  

Level Target 7-day ahead 14-day ahead 

National Hospital admissions 0.76 0.69 

  ICU admissions 0.96 0.81 

  General wards beds 0.90 0.84 

  ICU beds 0.79 0.83 

Regional Hospital admissions 0.89 0.80 

  ICU admissions 0.95 0.91 

  General wards beds 0.90 0.90 

  ICU beds 0.93 0.96 
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