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Short-term forecasting of the COVID-19 pandemic is required to facilitate the plan-
ning of COVID-19 health care demand in hospitals. Here, we evaluate the performance
of 12 individual models and 19 predictors to anticipate French COVID-19-related
health care needs from September 7, 2020, to March 6, 2021. We then build an ensem-
ble model by combining the individual forecasts and retrospectively test this model
from March 7, 2021, to July 6, 2021. We find that the inclusion of early predictors
(epidemiological, mobility, and meteorological predictors) can halve the rms error
for 14-d–ahead forecasts, with epidemiological and mobility predictors contributing the
most to the improvement. On average, the ensemble model is the best or second-best
model, depending on the evaluation metric. Our approach facilitates the comparison and
benchmarking of competing models through their integration in a coherent analytical
framework, ensuring that avenues for future improvements can be identified.

COVID-19 j ensemble model j forecasting

Quick increases in hospital and intensive care unit (ICU) admissions have been common
since the start of the COVID-19 pandemic. In many instances, this has put the health
care system at risk for saturation, forced the closure of non-COVID-19 wards, the can-
cellation of nonessential surgeries, and the reallocation of staff to COVID-19 wards with
negative consequences for non-COVID-19 patients. In this context, short-term forecast-
ing of the pandemic and its impact on the health care system is required to facilitate the
planning of COVID-19 health care demand and other activities in hospitals (1).
Hospital admission comes late in the history of infection of a patient, so forecasts

that only rely on hospital data may miss earlier signs of a change in epidemic dynamics.
There have been a lot of discussions about insights we might gain from other types of
predictors (e.g., epidemiological predictors such as the number of cases, mobility pre-
dictors such as Google data, or meteorological predictors), but assessment of the contri-
bution of these predictors has been marred by methodological difficulties. For example,
while variations in case counts may constitute an earlier sign of change in epidemic
dynamics, these data may be affected by varying testing efforts, making interpretation
difficult. Associations between meteorological/mobility variables and SARS-CoV-2
transmission rates have been identified (2–5), but it is yet unknown whether the use of
these data along with epidemiological predictors may improve forecasts.
Here, we develop a systematic approach to address these challenges. We retrospec-

tively evaluate the performance of 12 individual models and 19 predictors to anticipate
French COVID-19-related health care needs, from September 7, 2020, to March 6,
2021. We build an ensemble model by combining the individual forecasts and test this
model from March 7, 2021, to July 6, 2021. Our analysis makes it possible to deter-
mine the most promising approaches and predictors to forecast COVID-19–related
health care demand, indicating for example that the inclusion of early predictors (epi-
demiological, mobility, and meteorological) can halve the rms error (RMSE) for 14-
d–ahead forecasts, with epidemiological and mobility predictors contributing the most
to the improvement. Our approach facilitates the comparison and benchmarking of
competing models through their integration in a coherent analytical framework, ensur-
ing that avenues for future improvements can be identified.

Results

Overview of the Approach. We first develop a set of individual models to forecast the
number of hospital admissions at the national and regional level, up to 14 d ahead.
These individual predictions are then combined into a single ensemble forecast
(1, 6–10). Finally, we derive three other targets (number of ICU admissions, bed occu-
pancy in general wards, and bed occupancy in ICU) from the number of hospital
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admissions predicted by the ensemble model (Materials and
Methods and SI Appendix, Fig. S1).
We use a 2-stage procedure: 1) over the training period

(September 7, 2020, to March 6, 2021), we select the predic-
tors and evaluate the performance of the individual models to
choose the best ones to include in the ensemble model, and 2)
over the test period (March 7, 2021, to July 6, 2021), we assess
the performance of the ensemble model on new observed data
to mimic real-time analysis.
We use a cross-validation approach based on a rolling fore-

casting origin: For each day t, we make forecasts for the period
t�1 up to day t + 14, using only past data up to day t�2, and
computing evaluation metrics against the smoothed observed
data. We start to make forecasts at t�1 because in real time, on
day t, values at t and t�1 are not consolidated yet and the last
reliable data point used for forecasts is the value at t�2.

Performance of Individual Models to Forecast Hospital Admissions
over the Training Period. Twelve individual models are consid-
ered to forecast the number of hospital admissions by region
with a time horizon of up to 2 weeks. They use a variety of
methods and rely on epidemiological, mobility, and meteoro-
logical predictors (Materials and Methods and SI Appendix,
Supplementary Text and Figs. S2–S4). Over the training period,
most of these models are able to broadly capture the dynamics
of hospital admissions from September 2020 to March 2021
(SI Appendix, Fig. S5). They all overestimate the November
peak since they were not designed to anticipate the impact of
the lockdown before its implementation.

Models are compared using the RMSE for point forecast
error and the weighted interval score (WIS) to assess probabilis-
tic forecast accuracy (Materials and Methods). Overall, the per-
formance of the models decreases with the prediction horizon
(Fig. 1). Six models outperform the baseline model (character-
ized by no change in the number of hospital admissions) at all
prediction horizons for both the RMSE and the WIS, at the
national and regional levels: an autoregressive distributed lag
model (ARDL), a multiple linear regression model (MLR),
a generalized additive model (GAM2), an ARIMA model
(ARIMA2), a boosted regression tree (BRT) model, and a ran-
dom forest (RF) model. All these models describe the growth
rate of hospital admissions rather than hospital admissions
directly, and they include several predictors that are described
in the section below. For each region, we rank the models
according to the RMSE over all prediction horizons: Model
ranking varies by region, but on average the BRT and the
MLR models perform better (SI Appendix, Fig. S6).

Predictors. The six best individual models include between 2
and 4 predictors (SI Appendix, Table S1). The best predictors are
selected by cross-validation using a forward stepwise selection
method (Materials and Methods and SI Appendix, Supplementary
Text). One model has an autoregressive component—i.e., it
includes lagged values of the growth rate of hospital admissions
as covariates. All six models include at least one mobility predic-
tor: Time spent in residential places is the one that is most often
selected, followed by the volume of visits to transit stations (in
percentage change from baseline). Four models use at least one
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Fig. 1. Comparison of the performance of individual models over the training period at the national and regional levels, by prediction horizon, for hospital
admissions. (A) RMSE in metropolitan France. (B) RMSE by region. (C) Mean WIS in metropolitan France. (D) WIS by region. Models: Const2, exponential
growth model with constant growth rate (2 d window); Const7, exponential growth model with constant growth rate (7 d window); ARIMA1, autoregressive
integrated moving average model; PL, exponential growth model with piecewise linear growth rate; GAM1, generalized additive model of hospital admis-
sions; ARDL, autoregressive distributed lag model; MLR, multiple linear regression model; ARIMA2, multiple linear regression model with ARIMA error;
GAM2, generalized additive model of the growth rate; RF, random forest model; BRT, boosted regression tree model.
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predictor on confirmed cases: the growth rate of the proportion
of positive tests (among all tests or among tests in symptomatic
people) and/or the growth rate of the number of positive tests.
Two models use one meteorological predictor: either absolute
humidity or temperature.
In order to determine the importance of the different predic-

tors and explore their effect on the growth rate, we retrospectively
fit four individual models (BRT, RF, MLR, and GAM2) from
June 3, 2020 (once all predictors become available) to March 6,
2021, on all regions together, whenever possible. The parameters
of the ARDL model vary with the prediction horizon, and those
of the ARIMA2 model vary by region. Therefore, only four mod-
els (BRT, RF, MLR, and GAM2) are included in this subanaly-
sis. Retrospectively, the models can reproduce the dynamics of
the growth rate over time and by region reasonably well (SI
Appendix, Fig. S7). Depending on the model, the most important
predictors are mobility or epidemiological predictors (SI
Appendix, Fig. S8). For instance, in the MLR model, the change
in time spent in residential places and the growth rate of the

positive tests both contribute to 47% of the explained variance.
In the BRT model, the growth rate of the number of positive
tests is the most important predictor (relative contribution of
89%) followed by the time spent in residential places (6%) and
change in the volume of visits to transit stations (5%). Meteoro-
logical factors contribute to 37% in the GAM2 model but have
no contribution in the three other models.

We find that an increase in the volume of visits to transit sta-
tions, a decrease in the time spent in residential places, or a
decrease in absolute humidity is associated with an increase in
the growth rate of hospital admissions 10 to 12 d later (Fig. 2).
Regarding epidemiological predictors, the growth rate of hospi-
tal admissions is positively associated with the growth rate of
the number of positive tests, with a lag of 4 d, and the growth
rate of the proportion of positive tests, with a lag of 7 d.

Performance of the Ensemble Model over the Test Period. To
build the ensemble model, we keep the six models that outper-
form the baseline model and take the unweighted mean of the

−0.050

−0.025

0.000

0.025

0.050

0.075

0 5 10 15
Residential (lag=12)

G
ro

w
th

 ra
te

−0.050

−0.025

0.000

0.025

0.050

0.075

−40 −20 0 20
Transit stations (lag=12)

G
ro

w
th

 ra
te

−0.050

−0.025

0.000

0.025

0.050

0.075

6 8 10 12 14
Absolute humidity (lag=12)

G
ro

w
th

 ra
te

−0.02

0.00

0.02

0 5 10 15
Residential (lag=10)

G
ro

w
th

 ra
te

−0.02

0.00

0.02

−40 −20 0 20
Transit stations (lag=10)

G
ro

w
th

 ra
te

−0.02

0.00

0.02

−0.05 0.00 0.05
GR nb. positive tests (lag=4)

G
ro

w
th

 ra
te

−0.025

0.000

0.025

0.050

0 5 10 15
Residential (lag=10)

G
ro

w
th

 ra
te

−0.025

0.000

0.025

0.050

−40 −20 0 20
Transit stations (lag=10)

G
ro

w
th

 ra
te

−0.025

0.000

0.025

0.050

−0.05 0.00 0.05
GR nb. positive tests (lag=4)

G
ro

w
th

 ra
te

−0.02

0.00

0.02

0.04

0 5 10 15
Residential (lag=12)

G
ro

w
th

 ra
te

−0.02

0.00

0.02

0.04

−0.05 0.00 0.05
GR nb. positive tests (lag=4)

G
ro

w
th

 ra
te

−0.02

0.00

0.02

0.04

−0.03 0.00 0.03 0.06
GR prop.positive (lag=4)

G
ro

w
th

 ra
te

GAM2

RF

BRT

MLR

Fig. 2. Effects of mobility (blue), epidemiological (green), and meteorological (red) predictors on the growth rate of hospital admissions for the GAM2, RF,
BRT, and MLR models. Abbreviation: GR, growth rate. Predictors are described in SI Appendix, Supplementary Text.
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individual forecasts. In addition to the previously selected pre-
dictors, we also include vaccine coverage and the proportion
of variants of concern (VOC) (SI Appendix, Supplementary
Text and Fig. S9) as these two predictors may significantly
affect the dynamic of hospitalizations after March 2021.
When retrospectively fitting the models from June 3, 2020, to
July 6, 2021, the effects of the other predictors remain

relatively stable, compared to the previous fit from June 3,
2020, to March 6, 2021 (SI Appendix, Fig. S10).

The ensemble model is evaluated over the test period (March
7, 2021, to July 6, 2021). It is able to capture the growth
of hospital admissions in March and the decline in April
to July, although it shows some delays in adjusting to the
upward/downward trends (Fig. 3A). The ensemble model
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performs well in all regions (Fig. 3B). On average, the ensemble
model is the best at the national level for both the RMSE and
the WIS and at the regional level for the RMSE, and it is the
second-best model at the regional level for the WIS (SI
Appendix, Fig. S11). For each region or week, we rank the indi-
vidual and ensemble models according to the RMSE over all
prediction horizons. The best individual model is not the same
in all regions (Fig. 4A) or in all weeks (SI Appendix, Fig. S12):
Four models are ranked first in at least one region and eight
models are ranked first in at least one week, but the ensemble
model is ranked first on average across all regions/weeks.
Finally, to assess the ensemble forecasts of hospital admis-

sions, ICU admissions, and bed occupancy in the ICU and the
general wards, we report the mean absolute percentage error
(MAPE, mean of the ratio of the absolute error to the observed
value) because its interpretation in terms of relative error is
straightforward, as well as the 95% prediction interval coverage
(proportion of 95% prediction intervals that contain the
observed value) and the RMSE (SI Appendix, Fig. S13). For the
four targets, the MAPEs at 7 d are 11%, 13%, 6%, and 5% at
the national level (17%, 23%, 8%, and 11% at the regional
level) for hospital admissions, ICU admissions, ICU beds, and
general ward beds, respectively (Fig. 4B). At 14 d, these errors
increase to 20%, 23%, 9%, and 10% at the national level
(30%, 35%, 13%, and 19% at the regional level), respectively.
The calibration is good for most of the targets, but the 95% pre-
diction interval coverage is lower than 95% for hospital admissions
and 14-d–ahead forecasts (SI Appendix, Table S2).

Discussion

In this study, we evaluated the performance of 19 predictors and
12 models to anticipate French COVID-19 health care needs
and built an ensemble model to reduce the average forecast error.
We can draw a number of important conclusions from this
systematic evaluation. First, mathematical models are often cali-
brated on hospitalization and death data only, as these signals
are expected to be more stable than testing data (1, 11, 12).
However, we find that such an approach is outperformed by
models that also integrate other types of predictors. These
include predictors that can more quickly detect a change in the
epidemic dynamics (e.g., growth rate in the proportion of posi-
tive tests in symptomatic people) or that may be correlated with
the intensity of transmission (e.g., mobility data, meteorological
data). The inclusion of such predictors can halve the RMSE for
a time horizon of 14 d.

Second, of the three types of predictors used over the training
period, epidemiological and mobility predictors are those that
improve forecasts the most. In models where the lags are esti-
mated, we find that epidemiological predictors precede the
growth rate of hospital admissions by 4 to 7 d, while mobility
predictors precede it by 12 d. This is consistent with our under-
standing of the delays from infection to testing and infection to
hospitalization (11). Meteorological variables also improve fore-
casts, although the reduction in the relative error is more limited.
Per se, this result should not be used to draw conclusions on the
role of climate in SARS-CoV-2 transmission. Indeed, we are
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Fig. 4. Model ranking by region and performance of the ensemble model for the four targets (hospital admissions, ICU admissions, general ward [GW]
bed occupancy, and ICU bed occupancy) over the test period. (A) Ranks of the models. Models are ranked according to the RMSE over all prediction
horizons. Reg. Ave. = regional average (RMSE computed over all regions except metropolitan France). (B) MAPE of the ensemble model by prediction horizon
in metropolitan France. (C) MAPE of the ensemble model by prediction horizon at the regional level.
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only assessing the predictive power of these variables, not their
causal effect, in a situation where the hospitalization dynamics
are already well captured by epidemiological predictors. In this
context, the additional information brought by meteorological
variables is limited and may already be accounted for by epide-
miological predictors. Interestingly, despite the diversity of mod-
els and retained predictors, estimates of the effect of the different
predictors on the growth rate are relatively consistent across
models (Fig. 4). The effects of the predictors remain relatively
stable between the two time periods, although the reduction of
the effects of mobility predictors for the BRT model suggests a
lower impact of mobility after March 2021 (SI Appendix, Fig.
S10). Other potential predictors could have been considered,
such as interregion mobility or spatial correlations. However,
given the 10 d delay between infection and hospitalization, we
expect that most patients who will be hospitalized in a given
region in the next 2 weeks will have recently been infected in
that region. The benefits of accounting for interregion mobility
therefore appear limited for short-term predictions but may
become more important when longer forecast horizons are being
considered.
Third, rather than using the individual model that performs

best, we find that it is better to rely on an ensemble model that
averages across the best-performing models. This is consistent
with the results of recent epidemic forecasting challenges (1, 6,
9, 13, 14). Relying on an ensemble model is appealing because
it acknowledges that each model has limitations and imper-
fectly captures the complex reality of this pandemic. Although
individual models may perform better in some situations, fore-
casts that build on an ensemble of models are less likely to be
overly influenced by the assumptions of a specific model (15).
The benefits are confirmed in practice, with the ensemble
model performing best on average.
Fourth, the systematic evaluation also sheds light on important

technical lessons for forecasting. We find that the best forecasts
are obtained when using the exponential growth rate rather than
the absolute value of epidemiological variables. This is true for
the dependent variable we aim to forecast (hospital admissions)
but also for predictor variables (e.g., the proportion of positive
tests). This finding is not surprising since transmission dynamics
are characterized by exponential growth and decline. Using the
growth of epidemiological predictors such as the number of posi-
tive tests also helps controlling for changes in testing practice
that may have occurred over longer time periods. We also find
that the approach used to smooth the data is decisive in ensuring
that forecast quality is not overly dependent on the day of the
week (given the existence of important weekend effects) and to
find the correct balance between early detection of a change of
dynamics and the risk of repeated false alarms (Materials and
Methods and SI Appendix, Figs. S14–S16).
The introduction of vaccines and the emergence of variants

that are more transmissible than historical SARS-CoV-2 viruses
(16) opened up new challenges for the forecasting of COVID-
19 health care demand. Indeed, our models have been cali-
brated on past data to forecast the epidemic growth rate of the
historical virus from a number of predictors, when vaccines
were not widely used. These new factors (vaccination and
variants) can modify the association between the different pre-
dictors and the epidemic growth rate: They may lead to an
underestimation of the growth rate in a context where a more
transmissible variant is also circulating or an overestimation of
the growth in vaccinated populations. The flexibility of our
approach allows us to adjust the models to this changing epide-
miological situation: To account for these new factors, one can

explicitly integrate the proportion of variants and the vaccine
coverage as new predictors of the models over the test period.
As expected, we find that vaccine coverage is negatively associ-
ated with the growth rate of hospital admissions. For the pro-
portion of VOC, we find a positive association in some models
but no association in others (SI Appendix, Fig. S10). This find-
ing may be due to the correlation between the rise in vaccine
coverage and in the proportion of VOC and/or to the fact that
the effect of VOC is already accounted for by epidemiological
predictors. In the meantime, since epidemiological predictors
are intermediate factors between external predictors (mobility,
climate, vaccine coverage, and VOC) and hospital admissions,
we also run sensitivity analyses with models that use epidemio-
logical predictors only, with no consideration of external
predictors. We find that models with all types of predictors per-
form better than purely epidemiological models over the test
period (SI Appendix, Fig. S17). Finally, as different predictors
may be important at different stages of the epidemic, one could
also update the variable selection at different time points to
continuously revise the best predictors to include in the models.

The forecasts presented in this study were made retrospec-
tively, not in real time. Such a retrospective approach makes it
easier to perform a systematic evaluation of models and predictors
and determine the key ingredients for a successful forecast within
a single coherent analytical framework, but it may tend to overes-
timate the performance of the forecasting models, compared to
what would be observed in real time. Indeed, we used consoli-
dated data to conduct this retrospective study while in real time,
delays in data availability or data revisions after their publication
can increase the forecast error. We tried to overcome this limita-
tion and to closely mimic real-time analysis by removing the last
two data points that in real time are not yet consolidated, starting
to make forecasts at t�1. In addition, the benefits of hindsight
necessarily remain when working retrospectively. From early
2021, we produced real-time forecasts to support public health
decision-making using an ensemble approach similar to the one
presented here, although the models differed slightly (e.g., a dif-
ferent set of predictors). To illustrate the difference between pro-
spective and retrospective evaluation of such models, we describe
the performance of our real-time forecasts compared to the retro-
spective forecasts over the test period in the SI Appendix, Fig.
S18. Real-time forecasts generally present higher errors than ret-
rospective forecasts. For instance, the RMSE for hospital admis-
sions is higher for the real-time forecasts than for the retrospective
forecasts. For the three other targets, based on MAPE at the
national level, the real-time forecasts are as good as, or even better
than, the retrospective forecasts for ICU admissions and ICU
beds, but the MAPE is 4% higher for hospital beds at 14 d.

Through a systematic evaluation, we determined the most prom-
ising approaches and predictors to forecast COVID-19–related
health care demand. Our framework makes it straightforward to
compare and benchmark competing models and identify current
limitations and avenues for future improvements.

Materials and Methods

Hospitalization Data. Hospital data are obtained from the SI-VIC database,
the national inpatient surveillance system providing real-time data on COVID-19
patients hospitalized in French public and private hospitals (SI Appendix,
Supplementary Text).

Smoothing. Hospital data follow a weekly pattern, with fewer admissions during
weekends compared to weekdays, and they can be noisy at the regional level.
Therefore, in the absence of smoothing or with simple smoothing techniques,
forecasts can be biased depending on the day of the week on which the analysis
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is performed. In order to remove this day-to-day variation and obtain a smooth
signal at each date not depending on future data points, we smooth the data
using a 2-step approach based on local polynomial regression and the least-
revision principle (17) (SI Appendix, Supplementary Text and Figs. S14–S16).

Exponential Growth Rate. We compute the exponential growth rate using
a 2 d rolling window and smooth the resulting time series using local poly-
nomial regression.

Overview of the Modeling Approach. We build a framework to forecast four
targets at the national (metropolitan France) and regional (n = 12) levels up to
14 d ahead: the daily numbers of hospital and ICU admissions, and the daily
numbers of beds occupied in general wards and the ICU (SI Appendix, Fig. S1).

We first develop a set of individual models to forecast the number of hospital
admissions, using a variety of methods. These individual predictions are then
combined into a single ensemble forecast, called an ensemble model (1, 6–10).
Finally, we derive the number of ICU admissions and bed occupancy in general
wards and the ICU from the predicted number of hospital admissions.

We divide our study period into two periods (SI Appendix, Fig. S1): 1) over
the training period, we select the predictors and evaluate the performance of the
individual models in order to select the best ones to include in the ensemble
model, and 2) over the test period, we evaluate the performance of the ensem-
ble model on the new observed data.

Modeling Hospital Admissions. In a first step, we evaluate 12 individual mod-
els, including exponential growth models with constant or linear growth rates, lin-
ear regression models, generalized additive models, a BRT model, a RF model, and
autoregressive integrated moving average models (full description in SI Appendix,
Supplementary Text). Some of the models directly predict the number of hospital
admissions, while others predict the growth rate, from which hospital admissions
are then derived using an exponential growth model. We also added a baseline
model characterized by no change in the number of hospital admissions.

We evaluate and compare the performance of individual models over a
period running from September 7, 2020, to March 6, 2021 (the training period).
As the models are not designed to anticipate the impact of a lockdown before its
implementation, we exclude from the training period the forecasts made
between October 20, 2020, and November 4, 2020 (i.e., up to 6 d into the lock-
down starting on October 30) for hospitalizations occurring after November 3. In
other words, between October 20 and November 4, we consider that the models
could not anticipate the impact of the lockdown.

We use a cross-validation approach based on a rolling forecasting origin: For
each day t of the training period, we make forecasts for the period t�1 up to
day t + 14, using only past data up to day t�2 as a training set and computing
evaluation metrics against the smoothed observed data in t�1 to t + 14
(smoothed using the full data). We begin to make forecasts at t�1 because in
real time, on day t, values at t and t�1 are not consolidated yet and the last reli-
able data point used for forecasts is the value at t�2.

Model performance is evaluated using two main metrics. Our primary metric
for point forecast error, the RMSE, is used to evaluate predictive means (18), and
our secondary metric, the WIS, is used to assess probabilistic forecast accuracy
(1, 6, 19). The WIS is a proper score that combines a set of interval scores for
probabilistic forecasts that provide quantiles of the predictive forecast distribu-
tion. It can be interpreted as a measure of how close the entire distribution is to
the observation, in units on the scale of the observed data (6). The WIS is
defined as a weighted average of the interval scores over K central 1-α predic-
tions intervals bounded by quantile levels ðαk2 , 1� αk

2 Þ:

WISαO:K ðF, yÞ =
1

K + 12
1
2
j y�m j

�

+ ∑
K

k=1

αk
2

uk � lkð Þ + ðlk � yÞ1ðy < lkÞ + ðy� ukÞ1ðy > ukÞ
� ��

, [1]

where y is the observed outcome, F is the forecast distribution, m is the point
forecast, 1(.) is the indicator function, and uk and lk are the predictive upper and
lower quantiles corresponding to the central prediction interval level k, respec-
tively. We use K = 11 interval scores, for α = 0.02, 0.05, 0.1, 0.2, … , 0.9.

We include in individual models a set of predictors, chosen for their availabil-
ity in near–real time and their potential to help anticipate the trajectory of hospi-
tal admissions. Over the training period, three types of predictors are considered:

nine epidemiological predictors describing the dynamics of the epidemics (e.g.,
growth rate of the number of hospital admissions, the number of positive tests,
and the proportion of positive tests among symptomatic people), six mobility
predictors (e.g., the change in volume of visits to workplaces, transit stations,
residential places, or parks [Google data]), and four meteorological predictors
[temperature, absolute and relative humidity, and the Index PREDICT de trans-
missivit�e climatique de la COVID-19 (IPTCC), an index characterizing climatic con-
ditions favorable for the transmission of COVID-19 (20)]. All predictors and data
sources are described in SI Appendix, Supplementary Text and Figs. S2–S4. For
each individual model, covariates are selected using a forward stepwise selection
approach over the training period (not using data from the test period) (SI
Appendix, Supplementary Text).

In order to determine the importance of the different predictors and explore
their effect on the growth rate, we retrospectively fit the best individual models
from June 3, 2020, to March 6, 2021, on all regions together, whenever possi-
ble. We start the fit on June 3, 2020, when all the predictors are available. The
parameters of the ARDL model vary with the prediction horizon, and those of the
ARIMA2 model vary by region. Therefore, only four models (BRT, RF, MLR, and
GAM2) are included in this subanalysis.

In a second step, to build the ensemble model, we keep the models that out-
performed the baseline model at all prediction horizons for both the RMSE and
the WIS, at the national and regional levels. Individual model forecasts are com-
bined into an ensemble forecast by taking the unweighted mean of the point
predictions and the unweighted mean of the 95% confidence intervals. We test
the performance of the ensemble model on the period running from March 7,
2021, to July 6, 2021 (the test period).

To assess the performance of the ensemble model, in addition to the RMSE
and the WIS used to compare the models, we also report the MAPE, the mean of
the ratio of the absolute error to the observed value, because its interpretation in
terms of relative error is straightforward, as well as the 95% prediction interval
coverage (proportion of 95% prediction intervals that contain the observed value).

Over the test period, we use in individual models the previously selected pre-
dictors and include the vaccine coverage and the proportion of VOC (SI
Appendix, Supplementary Text and Fig. S9). Indeed, these two predictors, which
are negligible over the training period, can significantly affect the dynamic of
hospitalizations observed from March 2021.

In order to determine whether the effects of the different predictors may
have changed over time, we also retrospectively fit four of the individual models
from June 3, 2020, to July 6, 2021, and compare the results with those
obtained over the previous time period.

Modeling ICU Admissions and Bed Occupancy in ICU and General Wards.

Predictions for the number of ICU admissions and bed occupancy in the ICU and
general wards are derived from predicted numbers of hospital admissions. The
expected number HICUðtÞ of ICU admissions at time t is given by the formula:

HICUðtÞ = pICUðtÞ∑
u≤t

HðuÞgHðt� uÞ, [2]

where HðuÞ is the number of hospital admissions at time u, pICUðtÞ is the proba-
bility of being admitted to ICU once in the hospital, and gHðt � uÞ is the delay
distribution from hospital to ICU admission—i.e., the probability for an individual
who entered the hospital on day u to have a delay of d ¼ t� u days before ICU
admission. We compute gHðt� uÞ assuming that the delay from hospital to ICU
admission is exponentially distributed with mean = 1.5 d (11). The probability of
ICU admission in the time interval T ¼ ½t1, t2� can be estimated as follows:

pICUðTÞ =
∑t∈THICUðtÞ

∑t∈T∑u≤tHðuÞgHðt� uÞ : [3]

In practice, we estimate pICU on a 10 d rolling window, which makes the esti-
mates relatively stable.

The number of general ward (BHðtÞ) and ICU (BICUðtÞ) beds occupied by
COVID-19 patients at time t can be expressed as:

BHðtÞ=
�
1�pICUðtÞ

�
∑
u
Hðt�uÞsHðuÞ+pICUðtÞ∑

u
Hðt�uÞsH�ICUðuÞ

BICUðtÞ=∑
u
HICUðt�uÞsICUðuÞ

, [4]

where sHðuÞ is the probability of staying in the hospital for u days before dis-
charge, sH�ICUðuÞ is the probability of spending u days in the hospital general
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ward and then moving to the ICU, and sICUðuÞ is the probability of spending u
days in the ICU. For sH and sICU we use gamma survival functions with the mean
to be estimated and the coefficient of variation (i.e., the SD over the mean) fixed
at 0.9 for sH and 0.8 for sICU, while, analogous to gH, we take sH�ICUðuÞ to be
an exponential survival function with a mean of 1.5 d. We minimize the sum of
squared errors over the last 5 data points to estimate the free parameters of sH
and sICU. Once all the parameters are estimated and the forecast of H is avail-
able, we use the equations above to forecast HICU, BH, and BICU, assuming that
all parameter estimates remain constant.

To account for uncertainty in parameter estimates, we use the bootstrapped
smoothed trajectories of hospital admissions to generate 95% prediction inter-
vals for the three other targets.

To assess the forecasts of ICU admissions and bed occupancy in the ICU and
general wards, we report the MAPE because its interpretation in terms of relative
error is straightforward, the 95% prediction interval coverage, and the RMSE.

Data Availability. Anonymized (aggregated COVID-19 hospitalization data for
France) data and code have been deposited in Gitlab (https://gitlab.pasteur.fr/
mmmi-pasteur/COVID19-Ensemble-model) (21).
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