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Abstract

Background: Epstein—Barr virus (EBV) targets B-cells where it establishes a latent infection. EBV can transform B-cells
in vitro and is recognized as an oncogenic virus, especially in the setting of immune compromise. Indeed, immunode-
ficient patients may fail to control chronic EBV infection, leading to the development EBV-driven lymphoid malignan-
cies. Ataxia telangiectasia (AT) is a primary immune deficiency caused by mutations in the ATM gene, involved in the
repair of double-strand breaks. Patients with AT are at high risk of developing cancers, mostly B-cell lymphoid malig-
nancies, most of which being EBV-related. Aside from immune deficiency secondary to AT, loss of ATM function could
also hinder the control of the virus within B-cells, favoring lymphomagenesis in AT patients.

Results: We used RNA sequencing on lymphoblastoid cell lines derived from patients with AT and healthy donors to
analyze and compare both cellular and viral gene expression. We found numerous deregulated signaling pathways
involving transcription, translation, oncogenesis and immune regulation. Specifically, the translational defect was
confirmed in vitro, suggesting that the pathogenesis of AT may also involve a ribosomal defect. Concomitant analysis
of viral gene expression did not reveal significant differential gene expression, however, analysis of EBV interactome
suggests that the viral latency genes EBNA-3A, EBNA-3C and LMP1 may be disrupted in LCL from AT patients.

Conclusion: Our data support the notion that ATM deficiency deregulates cellular gene expression possibly disrupt-
ing interactions with EBV latent genes, promoting the oncogenic potential of the virus. These preliminary findings
provide a new step towards the understanding of EBV regulation and of AT pathogenesis.

Keywords: EBV, ATM, Ataxia, RNA-seq, Lymphoma

Background

Epstein—Barr virus (EBV) is a human Herpesviridae
that infects about 95% of adults worldwide. Most genes
encoded by the viral genome are expressed during the
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lytic cycle and contribute to the production of viral par-
ticles. By contrast, only a restricted repertoire of viral
genes is expressed during latency, to allow a lifelong per-
sistence of the virus in the organism. EBV’s lytic cycle
takes place in the oropharyngeal epithelium whereas
the latent cycle is established in the B lymphocytes from
the underlying lymphoid tissues [1]. Chronic infection
in immunocompetent individuals is generally asympto-
matic with the virus being maintained in a latent state [2].
However, inefficient control of viral latency contributes
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to the development of malignancies such as Burkitt’s
lymphoma, Hodgkin’s lymphoma and Nasopharyngeal
carcinoma.

Several primary immune deficiencies (PID) are associ-
ated with poor EBV responses and are also at high risk for
EBV-related malignancies [3]. Ataxia telangiectasia (AT)
is a rare PID caused by mutations in the Ataxia Telangi-
ectasia Mutated (ATM) gene, involved in the DNA dam-
age response (DDR). AT patients have an increased risk
of cancer, mostly B-cell lymphoid malignancies, many
of which are related to EBV [4]. The prevailing hypoth-
esis to explain the increased incidence of malignancies in
patients with AT is based on the role of the ATM kinase
in the DDR [5]. However, the strong association of lym-
phomas with EBV also suggests an oncogenic role of
the latter. AT patients often present with antibody defi-
ciency and T-cell lymphopenia but rarely overt immu-
nodeficiency [6]. A number of PIDs exhibit a selective
susceptibility to EBV-related malignancies, while display-
ing a more restricted susceptibility to other opportun-
istic infections. In such cases, specific mechanisms may
include pathways important for T, NK and iNKT cyto-
toxicity aimed at EBV-infected B-cells, and pathways
involved in expansion of EBV-specific T-cells, leading to
an inability to cope with intense EBV induced prolifera-
tive stress like in XMEN or CTPS1 mutated patients [7].
We raised the hypothesis that the lack of ATM function
in AT patients may be associated with a less stringent
control of EBV latency in ATM-deficient B cells, thereby
promoting the oncogenic properties of the virus.

Indeed, beside DNA repair, ATM is also involved in a
multitude of signaling pathways such as cell cycle check-
point, apoptosis, mitochondrial metabolism and tel-
omere maintenance [8]. In addition, ATM is involved
both in transcription induction [9], and in transcription
inhibition in the vicinity of a double-strand break, in
nuclear [10] or ribosomal DNA [11]. ATM has a role in
the control of the latent cycle of Kaposi’s sarcoma herpes-
virus (KSHV) and Murine y-herpesvirus 68 (MHV68),
both related to EBV [12, 13].

We performed RNA sequencing (RNA-seq) on lymph-
oblastoid cell lines (LCL) generated from AT patients and
healthy donors, to explore the specific expression pattern
of both the cellular and viral genomes and investigate a
possible role of ATM in the regulation of EBV latent
cycle.

Results

Identification of differentially expressed genes

We conducted RNA-seq on LCL from AT patients (LCL-
AT, n=7) and healthy donors (LCL-WT, n=>5), previ-
ously phenotyped for ATM function (Additional file 1:
Fig. S1), using [llumina HiSeq 2500 technology (Fig. 1a).

Page 2 of 11

An average of 82 million paired-end reads were generated
per sequenced sample (range 64—138 million). Mapping
on the human genome (GRCh38) and the viral genome
(V01555.2) gave an average of 63% (range 56—76%) and
0.19% (range 0.10-0.44%) of mapped reads respectively
(Fig. 1b). A total of 30,794 transcripts were detected
using a threshold of one transcript in at least one sample,
including 30,687 on the human genome and 107 on the
viral genome. Principal component analysis (PCA) shows
that LCL-AT and WT segregate into two distinct groups
(Fig. 1c).

1899 (6.2%) of the genes were differentially expressed
(adjusted p value <0.05), among which 941 (49.5%) had
an absolute log2 fold-change (|log2FC|)>1. These genes
and their corresponding fold-changes are given in Addi-
tional file 2: Table S1. A heatmap of the DE genes with
|log2FC|>1 demonstrating a separation of the 2 groups is
shown in Fig. 1d. Of the 1899 DE genes, 875 were upreg-
ulated and 1024 were downregulated in AT (Fig. 1e).

Analysis of the cellular genome

We applied the over-representation tool from the PAN-
THER classification system to the list of DE genes. 1703
(90%) DE genes were annotated in the GO-database [14].
Over-represented categories, which are more highly
represented in the DE gene list than would be expected
by chance [15], were determined for biological process,
molecular function and cellular component. This resulted
in a total of 38 over-represented GO-categories (Fig. 2a—
¢). 11 GO categories corresponding to cellular compo-
nent were judged as too general and non-informative
(Additional file 3: Fig S2).

Interestingly, 8 GO-categories (21%) corresponding to
general transcription, and 8 GO-categories (21%) cor-
responding to rRNA synthesis were over-represented in
the DE genes list. The mitochondrial part was also over-
represented with 4 GO-categories (11%). We isolated the
gene list pertaining to the GO-categories related to gen-
eral transcription, to rRNA synthesis and, using annota-
tions from BioMart tool, all mitochondrial DE genes,
including nuclear and mitochondrial encoded genes.
A heatmap for each of these gene-sets was generated
(Fig. 2d—f) and shows that LCL-AT have a defect in ribo-
some and transcription-related gene expression, and in
mitochondrial genes. Gene lists related to each heatmap
are given in Additional file 4: Table S2.

The rRNA fraction of the RNA prepared prior to RNA-
seq was analyzed by capillary gel electrophoresis. The
results show that LCL-AT have a slightly lower percent-
age of rRNA than LCL-WT (Additional file 5: Fig. S3A).
Among these rRNAs, we observed a significant decrease
in the percentage of the 28S RNA and 285+ 18S RNA
(Fig. 2g) but no difference for the 18S RNA (Additional
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Fig. 1 Overview of RNA-seq data generated from lymphoblastoid cell lines derived from 7 AT and 5 unaffected control individuals. a Experimental
design and bioinformatic data analysis for dual RNA-seq. b Result of reads alignment on the human and EBV references genomes. For each sample,
the number of mapped or unmapped read are shown on the y-axis. ¢ Principal component analysis (PCA) plot visualizing the similarities between
biological replicates and the separation between LCL-WT (red dots) and LCL-AT (blue dots). d Hierarchical clustering dendrogram of LCL-WT and
LCL-AT normalized gene expression, with expression levels of differentially expressed genes with [log2FC|> 1 showed as a heatmap. Red represent
downregulated genes and green represent upregulated genes. e Volcano plot displaying log2 fold change against —log10 (p-adjusted). DESeq?2
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file 5: Fig. S3B). The 28S/18S ratio and the RNA integrity
number (RIN) attested that RNA was of good quality and
that there was no difference in RNA degradation between
LCL-AT and LCL-WT (Additional file 5: Fig. S3C-D).

Transcription and translation rates were assessed by
incubating LCL-WT and LCL-AT with 5-ethynyl uridine
(EU), an RNA nucleotide analogue, or with O-Propargyl-
puromycin (OPP), an agent incorporated during trans-
lation. EU incorporation did not show any significant
difference in the transcription rate between LCL-WT and
LCL-AT (Fig. 2h) but OPP incorporation showed a sig-
nificant decrease (p value <0.05) in protein synthesis rate
in LCL-AT (Fig. 2i). These results indicated that LCL-AT
have a generalized protein synthesis defect. Mitochon-
drial respiration was also assessed by SeaHorse analysis
but did not show any difference between LCL-WT and
LCL-AT (data not shown).

In order to further analyze the DE gene pathways,
we performed the Ensemble of Gene Set Enrichment

Analyses (EGSEA) [16]. Given the large amount of data
generated (Additional file 6: Table S3), we kept only
Gene-Sets (GS) with adjusted p value <0.05 and absolute
average log2FC with genes regulated in the same direc-
tion as the GS (|avg.logfc.dir|) > 2 (Fig. 3).

GS related to cancer were particularly enriched. DE
genes were enriched in the signature of the KRAS-
dependent Prostate Cancer in both directions. This trend
was also corroborated by the GS “Neoplasm” and “Breast
Cancer” However, GS related to telomere maintenance
was found to be significantly downregulated in LCL-AT.
DE-GS related to immunity were also particularly dereg-
ulated in LCL-AT, suggesting that LCL-AT may have
immunological disorders. There was also a high enrich-
ment of cytokines and interleukin GS in LCL-AT. Other
DE-GS related to immunity included NK-cell cytotoxic-
ity, abnormal innate immunity or abnormal level of class
II molecules (Fig. 3).
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(See figure on next page.)

Fig. 2 GO analysis of differentially expressed genes and functional exploration. a—c The PANTHER statistical over-representation test tool was used
to determine over-representation of defined functional GO classes for the 1895 differentially expressed genes: a biological process; b molecular
function; ¢ cellular component. Expected and observed frequencies for each GO category are shown by gray and black bars respectively. The
number of genes assigned to each category can be determined from the x-axis, and p value for each GO category is given on the right of each
bar. d and e Non-redundant genes in over-represented GO categories were regrouped into functional classes and displayed as heatmaps: d GO
categories related to transcription (GO:0010467; GO:0006396; GO:0016070; GO:0051252; GO:0003723; GO:0090304; GO:0019219; GO:0034654). e
GO categories related to ribosome (GO:0022613; GO:0042254; GO:0016072; GO:0006364; GO:0030684; GO:0005730; GO:0030686; GO:1990904). f
All mitochondrial differentially expressed genes, as determined by the BioMart R annotation package are displayed as a heatmap. g Expression of
rRNA in LCL-AT and LCL-WT shown as a percentage of total RNA expression for 285 and 185+ 28S. h Analyze of nascent RNA transcription in LCL-AT
and LCL-WT 1 h after 10 uM 5-ethynyl uridine (EU) incorporation. i Analyze of nascent protein synthesis in LCL-AT and LCL-WT 30 min after 50 uM

O-Propargyl-puromycin (OPP) incorporation. h and i MFI: Mean fluorescence intensity. *pval < 0.05. Data are mean 4 SD

Analysis of the viral gene expression

The normalized viral counts were viewed using the
IGV software (Fig. 4a). A zoom on an intergenic region
showed no reads, supporting the absence of contami-
nating reads from cellular DNA (Additional file 7: Fig.
S4). The AT2, AT4 and AT6 lines express more viral
transcripts than the other lines (Fig. 4b). This could be
explained by a difference in lytic cycle induction between
all lines at the time of RNA extraction. Indeed, there is
always 0.1-4% of cells undergoing lytic cycle [17]. EBV-
infected cells in the latent phase express 9 latent genes
and 2 non-coding EBERs, whereas during the lytic cycle
the cells express around a hundred lytic genes under the
control of BZLF1, the lytic cycle master-gene regulator
[1]. Knowing that cells in latent cycle express little viral
RNA, a small difference in the proportion of cells under-
going lytic cycle would be enough to drastically change
the total number of viral transcripts expressed in each
line. Indeed, we confirmed that the expression of BZFL1
follows the same pattern (Pearson correlation=0.97) as
the total viral counts (Fig. 4c).

To verify that the small proportion of cells undergo-
ing lytic reactivation, do not significantly modify the
overall latent gene expression, we downloaded 464 EBV
standardized read counts from the EBV Portal plat-
form [18], which gather EBV RNA-seq results of LCL-
WT sequenced within the 1000 genome project. We
established 4 quartiles according to BZLF1 expression,
(Fig. 4f). Total and latent viral counts were calculated
for each quartile. The results show that total viral counts
depend on BZLF1 expression, with a significant increase
in total viral counts between each quartile (Fig. 4g), but
not latent viral counts (Fig. 4h). Total viral counts are
relative to BZLF1 expression and have no correlation
with latent counts. This allows us to analyze latent genes,
regardless of lytic genes expression.

Differential analysis of latent genes did not show any
DE genes between LCL-AT and LCL-WT (Fig. 4d, e) and
all latent genes were expressed in LCL-WT and LCL-
AT. We compared the cellular DE genes list with the

non-redundant viral latent genes interactome available on
the Polygenic pathways database. From this analysis we
found 71 interactions representing 54 DE genes, of which
42 have an |log2FC|>1. EBNA-3A appears to interact
with 39 DE genes (Fig. 5a), EBNA-3C with 11 DE genes
(Fig. 5b) and LMP1 with 11 DE genes (Fig. 5¢). These
data suggest that although the EBNA-3A, EBNA-3C and
LMP1 transcripts were not DE, the activity of these genes
may be disrupted in LCL-AT. Interestingly, most of the
DE genes described as downregulated or upregulated by
EBNA-3A were also downregulated or upregulated in
LCL-AT respectively, indicating that EBNA-3A may be
more active in LCL-AT than in LCL-WT.

Discussion

AT patients have a high risk of developing lymphoid
malignancies with a high rate of association with EBV.
Mechanisms associated with this specific susceptibil-
ity may be due cellular immune deficiency in a number
of AT patients, or to other specific immune dysfunctions
that remain to be explored. We raised the hypothesis that
ATM defect in EBV-infected cells could play a role per se
in the control of EBV latency, favoring a latent program
more prone to lymphomagenesis [19]. In the present
study, we used strand-specific RNA seq strategy to pro-
file the RNA expression landscape of ATM deficient LCL
versus control, in order to assess the involvement of ATM
in EBV latent cycle regulation.

Our data suggests a previously unsuspected riboso-
mal defect in LCL-AT. In addition, we found that LCL-
AT display a distinct pattern of cancer associated gene
expression, most notably by overexpressing certain
oncogenes and downregulation of tumor suppressors,
and also exhibit features of immune dysfunction. We
also confirmed that latent gene expression can be stud-
ied regardless of lytic gene expression. Our data, based
on the single technique of RNA-seq analysis, will require
validation by additional studies.
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Our results suggest that LCL-AT may have a transcrip-
tional and translational defect. Indeed LCL-AT express
less 28S RNA and have a lower translational rate than
LCL-W'T, but transcription capacities did not differ

significantly from LCL-WT. The possible transcriptional
defect does not appear to affect EBV latency genes, as
observed by the absence of DE latency genes between
LCL-AT and LCL-WT. Housekeeping genes were not
DE, suggesting that transcriptional alterations may affect
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specific genes such as ribosomal genes. Interestingly,
the signaling pathways for transcription and translation
were not found in the EGSEA results but stand out sig-
nificantly with a lower log.fold.dir. This underscores the
need for several complementary methods to study RNA-
seq data.

The alteration of 285 RNA and translational rate in
LCL-AT suggest that the pathophysiology of ataxia-telan-
giectasia may also include aspects of ribosomal disease.
ATM participates in the modification of the nucleolus
architecture in case of double-strand break within rDNA
[20] and It has been suggested that ATM participates in
basal nucleolar transcription [21]. Other immunode-
ficiencies with specific susceptibility to EBV—such as
CTPS1 deficiency—are characterized by altered nucleic

acid metabolism leading to rapid T-cell exhaustion upon
massive proliferation induced by EBV infection [22]. We
hypothesize that the massive protein synthesis rate in
cytotoxic T-cells during EBV-driven proliferative stress
is inefficiently sustained in ataxia-telangiectasia, result-
ing in a defective control of EBV. Further studies are
needed to address this hypothesis. Transcription of many
mitochondrial genes were decreased in LCL-AT includ-
ing several genes involved in the respiratory chain and in
ribosomal protein synthesis. Inhibition of ATM leads to
mitochondrial dysfunction and ROS production [23]. The
latter could be involved in the increased incidence of can-
cers in patients with ataxia-telangiectasia by increasing
genotoxic stress.
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quantile, total viral counts (G) and latent counts (H) were determinated. ***pval < 0.001

Oncogenesis and immune dysfunction

The EGSEA results show enrichment in pro-tumori-
genic GS particularly oncogenes, growth factors and
downregulation of tumor suppressors in keeping with
the increased cancer risk in AT [24]. Among the main
oncogenes induced in LCL-AT, we find BCL11A (log2FC
4.20), a modulator of transcriptional repression fre-
quently upregulated in B-cell malignancies [25, 26]
or TCL1A (log2FC 3.41), a survival promoting factor
strongly associated with Burkitt lymphoma and related
to other malignancies [27, 28]. The main tumor suppres-
sors downregulated in AT are PCDH10 (log2FC —4.76),
a protocadherin whose promoter is methylated in diffuse

large B-cell lymphomas [29] or PTPN13 (log FC: —2.84)
an inhibitor of FAS-induced apoptosis associated with
aggressive breast cancer [30].

Telomere maintenance pathway, including TERT, was
downregulated in LCL-AT, (log2FC —4.78). Inhibition
of TERT in LCL decreases cell proliferation and induces
apoptosis in an ATM dependent manner [31] as well as
induces the EBV lytic cycle, which was not the case in
LCL-AT (data not shown). LCL-AT may use an alterna-
tive lengthening of telomeres pathway [32]. Whether
TERT related induction of the EBV lytic cycle is also
ATM dependent should be further explored.
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Fig. 5 Heatmaps of EBV interactome. a-c Heatmaps showing all differentially expressed genes that were described, according to the

Polygenicpathway EBV database, as regulated by: a EBNA-3A, b EBNA-3C, ¢ LMP1

A modulation of innate immunity in LCL-AT is sug- ATM participates in the regulation of EBV’s lytic cycle

gested by several DE-GS. The gene expression of HLA-  and is necessary for a proper viral replication in epithe-
C, a major NK cell inhibitory molecule, is upregulated lial cells [37]. In LCL however, ATM inhibition through
in LCL-AT (log2FC 5.63). Similarly, CD200R1, CD276, caffeine treatment [38] or the lack of ATM in our LCL-
SLAMF7, LILRB1 were overexpressed, suggesting that AT did not affect viral replication. On the other hand,
AT patients may have a disrupted NK cell function. On  LCL treated by the pan-PIKK inhibitor (to which the
the other hand, LAIR1, another inhibitory molecule, =~ ATM kinase belongs) LY294002 were shown to inhibit
was downregulated (log2FC — 4.99). viral replication. It is thus possible that another kinase
IL4 and IL10 were also upregulated in LCL-AT compensates for ATM deficiency in LCL, to promote
(log2FC 2.23 and 3.58, respectively). These two viral replication. ATR is a good candidate as it activates
cytokines participate in the proliferation, plasma cell the same downstream targets as ATM.
differentiation and antibody production of B lym- However, the impact of ATM on the control of EBV
phocytes [33, 34]. IL10 also inhibits CD8 cytotoxic latency may not be manifested in a highly artificial sys-
T-cells [35]. The cGAS, STING (TMEM173) [36] and tem such as LCL, but appear in the context of natural
interferon P1 (IFNB1) transcripts were downregu- EBV-B cell infection.
lated (log2FC —0.70; —2.39 and —2.51 respectively),
suggesting a possible defect in antiviral response in
LCL-AT. Conclusion
In summary, we show that LCL-AT display a gene
expression pattern consistent with the observed
EBV regulation increased incidence of EBV-related malignancies in
We found no significant difference in EBV latent gene  patients with Ataxia-Telangiectasia. The dysregulated
expression between LCL-AT and LCL-WT. Several pathways uncovered by this approach need to be fur-
deregulated cellular genes in LCL-AT interact with ther explored to better understand the biological mech-
EBNA-3A, EBNA-3C and LMP1 suggesting an overall anisms involved in the regulation of EBV latency and
differential impact on cellular homeostasis. lymphomagenesis. Elucidation of these pathways may
contribute to the development of novel approaches to
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treat or prevent EBV associated lymphoproliferations
in AT patients where conventional chemotherapy is
very toxic because of the DDR defect, and also in the
general population.

Methods

Celllines and culture

LCL were generated according to standard protocols
at the Genethon Laboratory and at the Imagine Insti-
tute Biological Resource Center. LCL were cultured in
RPMI containing 10% FBS at 37 °C in a 5% CO, incuba-
tor and passed every 3 days replacing half of the culture
medium with fresh medium.

RNA extraction and sequencing

LCL-WT and LCL-AT were harvested in an exponen-
tial growth phase. Total RNA was extracted using the
RNeasy Plus Mini Kit (Qiagen). The concentration of
total RNA was measured spectrometrically using Xpose
(Trinean). The RNA integrity was analyzed by capil-
lary electrophoresis using a Tape-Station (Agilent).
The NUGEN Ovation Universal RNA-Seq system was
used to construct the RNA-seq libraries from 100 ng
of total RNA according to the manufacturer protocol.
RNA sequencing was performed by the genomics plat-
form of Imagine Institute on HiSeq 2500 (Illumina), by
multiplexing 12 libraries per line to obtain a sequenc-
ing depth of 70 million pair-end reads per library, with
aread length of approximately 130 nucleotides.

Reads quantification and differential analysis

Salmon v0.8.2 [39] was used to pseudo-align raw RNA-
seq reads to both human and viral genomes and get
quantification estimates at the transcript level. The
human reference genome GRCh38 was downloaded
from the ENSEMBL website [40] (http://ftp.ensembl.
org/pub/release-92/fasta/homo_sapiens/cdna), and the
EBV genome B95-8/Raji from Flemington Lab (http://
www.flemingtonlab.com/rnaseq.html). Differential
analysis was performed using R software, version 3.5.0
[41] and the negative binomial generalized linear mod-
elling implemented in DESeq2 package version 1.20.0
[42]. A Wald test was applied on viral transcripts to
perform comparisons among conditions. p Values were
corrected for multiple testing using Benjamini—Hoch-
berg correction [43]. The BioMart R package [44] was
used to annotate human differentially expressed genes.

Genome visualization
Reads were mapped on the human genome (hg38)
using STAR v2.5.0a [45] and the unmapped reads were
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aligned to the EBV genome using bowtie2 v2.3.4.2 [46].
The format conversions, sorting, and indexing inter-
mediate operations on the data were performed using
samtools v1.7 [47] and bedtools v2.26 [48]. The snap-
shots obtained in Fig. 4a and Additional file 7: Fig S4
were obtained with IGV v2.4.15 [49].

Gene ontology and gene sets analysis

Differentially expressed genes were subjected to GO-
Analysis, using the over-representation test within the
PANTHER classification system [50] (version 13.1). Sta-
tistically over-represented GO-categories (FDR<0.05)
containing less than 25% of the input were selected for
visualization. Functional analysis was carried out using
the Ensemble of Gene Set Enrichment Analyses (EGSEA)
R package (version 1.8.0). EGSEA uses 12 algorithms and
combine the results by calculating a Wilkinson adjusted
p-value. The EGSEA database consists of approximately
25.000 genes-sets classified into 16 collections from
the MSigDB [51, 52], GeneSetDB [53] and KEGG [54]
databases.

Transcription and translation assay

Cells were incubated with 5-ethynyl uridine (EU) on 1 h
or with O-Propargyl-puromycin (OPP) on 30 min. Tran-
scription and translation rate were assessed using the
Click-it assay Kit (Invitrogen), followed by flow-cytome-
ter analysis. Statistical comparison between LCL-AT and
LCL-WT were performed using a Mann—Whitney—Wil-
coxon non-parametric test, using Prism (version 7.00,
GraphPad Software).

1000 Genome project and EBV interactome data

EBV standardized read counts sequenced within the
1000 genome project were downloaded on the EBV Por-
tal platform (https://ebv.wistar.upenn.edu) and the EBV
interactome data from the Polygenic pathways website
(http://www.polygenicpathways.co.uk/epsteinbarr.htm).

Abbreviations

AT: ataxia-telangiectasia; |avg.logfc.dir|: average log2FC with genes regulated
in the same direction as the GS; DDR: DNA damage response; DE: differentially
expressed; EBV: Epstein—Barr virus; EGSEA: ensemble of gene set enrichment
analyses; EU: 5-ethynyl uridine; GS: gene-set; LCL: lymphoblastoid cell line;
[log2FC]: absolute Log2 fold-change; OPP: O-propargyl-puromycin; PANTHER:
protein analysis through evolutionary relationships; PID: primary immune
deficiencies; RIN: RNA integrity number.
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