
HAL Id: pasteur-03680143
https://pasteur.hal.science/pasteur-03680143v2

Submitted on 1 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Methods Included: Standardizing Computational Reuse
and Portability with the Common Workflow Language
Michael R. Crusoe, Sanne Abeln, Alexandru Iosup, Peter Amstutz, John
Chilton, Nebojša Tijanić, Hervé Ménager, Stian Soiland-Reyes, Bogdan

Gavrilović, Carole Goble, et al.

To cite this version:
Michael R. Crusoe, Sanne Abeln, Alexandru Iosup, Peter Amstutz, John Chilton, et al.. Methods
Included: Standardizing Computational Reuse and Portability with the Common Workflow Language.
Communications of the ACM, 2021, 65 (6), pp.54-63. �10.1145/3486897�. �pasteur-03680143v2�

https://pasteur.hal.science/pasteur-03680143v2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

HAL Id: pasteur-03682252
https://hal-pasteur.archives-ouvertes.fr/pasteur-03682252

Submitted on 30 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Methods included
Michael Crusoe, Sanne Abeln, Alexandru Iosup, Peter Amstutz, John Chilton,

Nebojša Tijanić, Hervé Ménager, Stian Soiland-Reyes, Bogdan Gavrilović,
Carole Goble, et al.

To cite this version:
Michael Crusoe, Sanne Abeln, Alexandru Iosup, Peter Amstutz, John Chilton, et al.. Methods in-
cluded. Communications of the ACM, Association for Computing Machinery, 2022, 65 (6), pp.54-63.
�10.1145/3486897�. �pasteur-03682252�

https://hal-pasteur.archives-ouvertes.fr/pasteur-03682252
https://hal.archives-ouvertes.fr

54 COMMUNICATIONS OF THE ACM | JUNE 2022 | VOL. 65 | NO. 6

contributed articles

I
M

A
G

E
 B

Y
 A

N
D

R
E

W
 O

S
T

R
O

V
S

K
Y

COMPUTATIONAL WORKFLOWS ARE widely used in data
analysis, enabling innovation and decision-making
for the modern society. But their growing popularity
is also a cause for concern. Unless we standardize
computational reuse and portability, the use of
workflows may end up hampering collaboration. How
can we enjoy the common benefits of computational
workflows and eliminate such risks?

To answer this general question, in this work we
advocate for workflow thinking as a shared method
of reasoning across all domains and practitioners,
introduce Common Workflow Language (CWL) as a
pragmatic set of standards for describing and sharing
computational workflows, and discuss the principles
around which these standards have become central
to a diverse community of users across multiple fields
in science and engineering. This article focuses on an
overview of CWL standards and the CWL project and

is complemented by the technical de-
tail available in the CWL standards.a

Workflow thinking is a form of “con-
ceptualizing processes as recipes and
protocols, structured as dataflow [or
workflow] graphs with computational
steps, and subsequently developing
tools and approaches for formalizing,
analyzing, and communicating these
process descriptions.”14 It introduces
the workflow, an abstraction which
helps decouple expertise in a spe-
cific domain—for example, specific
science or engineering fields—from
computing expertise. Derived from
workflow thinking, a computational
workflow describes a process for com-
puting where different parts of the
process (the tasks) are interdepen-
dent—for instance, a task can start
processing after its predecessors have
(partially) completed and where data
flows between tasks.

Currently, many competing sys-
tems exist to enable simple workflow
execution (workflow runners) or offer
comprehensive management of work-
flows and data (workflow management
systems). Each has its own syntax or
method for describing workflows and
infrastructure requirements, which
can limit computational reuse and
portability. Although dataflows are be-
coming more complex, most workflow
abstractions do not enable explicit
specifications of dataflows, signifi-
cantly increasing the cost to have third
parties reuse and port the workflow.

a Common Workflow Language Standards, v1.2:
https://w3id.org/cwl/v1.2/.

Methods
Included

DOI:10.1145/3486897

Standardizing computational reuse
and portability with the Common Workflow
Language.

BY MICHAEL R. CRUSOE, SANNE ABELN, ALEXANDRU IOSUP,
PETER AMSTUTZ, JOHN CHILTON, NEBOJŠA TIJANIĆ,
HERVÉ MÉNAGER, STIAN SOILAND-REYES, BOGDAN GAVRILOVIĆ,
CAROLE GOBLE, AND THE CWL COMMUNITY

 key insights
 ˽ Common Workflow Language is a set

of open standards for describing and
sharing computational workflows, used in
many science and engineering domains.

 ˽ CWL standards support critical workflow
concepts such as automation, scalability,
abstraction, provenance, portability, and
reusability.

 ˽ CWL standards are developed around
core principles of community and shared
decision making, reuse, and zero cost for
participants.

https://w3id.org/cwl/v1.2/
http://dx.doi.org/10.1145/3486897

JUNE 2022 | VOL. 65 | NO. 6 | COMMUNICATIONS OF THE ACM 55

56 COMMUNICATIONS OF THE ACM | JUNE 2022 | VOL. 65 | NO. 6

contributed articles

Figure 1. Excerpt from a large microbiome bioinformatics CWL workflow.27,*

This part of the workflow, which is interpretable/executable on its own, aims to match the workflow inputs
of genomic sequences to provided sequence models, which are dispatched to four sub-workflows (for
instance, find_16S_matches). The sub-workflows are not detailed in the figure. Sub-workflow outputs are
collated to identify unique sequence hits and then provided as overall workflow outputs. Arrows define the
connection between tasks and imply their partial ordering, depicted here as layers of tasks that may execute
concurrently. Workflow steps—for example, “mask_rRNA_and_tRNA”—execute command-line tools, shown
here with indicators for their different programming languages ([Py] for Python, [C] for the C language).

* Diagram adapted from https://w3id.org/cwl/view/git/7bb76f33bf40b5cd2604001cac46f967a209c47f/
workflows/rna-selector.cwl, which was originally retrieved from a corresponding CWL workflow of the
EBI Metagenomics project, itself a conversion of the “rRNASelector”25 program into a well-structured
workflow, allowing for better parallelization of execution and provenance tracking.

Workflow Inputs

Workflow Outputs

5S_model

find_5S_matches

23S_model

find_23S_matches

run_id

prepend a string + an underscore to all headers

16S_model

find_16S_matches

sequences

[C] index a sequence file for use by esl-sfetch

tRNA_model

find_tRNA_matches

23S_matchesmasked_sequences5S_matches tRNA_matches16S_matches

[Py] mask_rRNA_and_tRNA

collate_unique_rRNA_hmmer_hits collate_unique_tRNA_hmmer_hits

Workflow Input/OutputLegend: Workflow Step Sub-Workflow

ecution of other tools. We also set out
to introduce the CWL standards, with a
threefold focus:

1. The CWL standards focus on
maintaining a separation of concerns
between the description and execution
of tools and workflows, proposing a
language that only includes operations
commonly used across multiple com-
munities of practice.

2. The CWL standards support
workflow automation, scalability, ab-
straction, provenance, portability, and
reusability.

3. To achieve these results, the CWL
project takes a principled, community-
first open source and open-standard
approach.

The CWL standards are the product
of an open and free standards-making
community. While the CWL project be-
gan in bioinformatics, its many contrib-
utors shaped the standards to be useful
in any domain that faces the problem
of “many tools written in many pro-
gramming languages by many parties.”
Since the ratification of the first version
in 2016, the CWL standards have been
used in other fields, including hydrol-
ogy, radio astronomy, geo-spatial analy-

sis,13,23,32 and high-energy physics,4 in
addition to fast-growing bioinformat-
ics fields such as metagenomics27 and
cancer research.24 The CWL standards
are featured in the IEEE 2791-2020
standard, sponsored and adopted by
the U.S. FDA,16 and the Netherlands’
National Plan for Open Science.34 A list
of free and open source implementa-
tions of the CWL standards is offered
in the Table. Multiple, commercially
supported systems that follow the
CWL standards for executing work-
flows are also available from vendors
such as Curii (Arvados), DNAnexus,
IBM (IBM® Spectrum LSF), Illumina
(Illumina Connected Analytics), and
Seven Bridges. The flexibility of the
CWL standards enabled, for example,
rapid collaboration on and prototyp-
ing of a COVID-19 public database and
analysis resource.15

The separation of concerns pro-
posed by the CWL standards enables
diverse projects and can also benefit
engineering and large industrial proj-
ects. Likewise, users of Docker or other
software-container technologies that
distribute analysis tools can leverage
just the CWL Command Line Tool

We thus identify an important prob-
lem in the broad, practical adoption
of workflow thinking: Although com-
munities require polylingual workflows
(workflows that execute tools writ-
ten in multiple, different computer
languages) and multiparty workflows,
adopting and managing different work-
flow systems is costly and difficult. In
this work, we propose to tame this com-
plexity through a common abstraction
that covers most features used in prac-
tice and that is (or can be) implement-
ed in many workflow systems.

In the computational workflow de-
picted in Figure 1, practitioners solved
the problem by adopting the CWL stan-
dards. In this work, we posit that the
CWL standards provide the common
abstraction that can help overcome the
main obstacles to sharing workflows
between institutions and users. CWL
achieves this by providing a declara-
tive language that allows expressing
computational workflows constructed
from diverse software tools—each ex-
ecuted through their command-line
interface, with the inputs and outputs
of each tool clearly specified and with
inputs possibly resulting from the ex-

https://w3id.org/cwl/view/git/7bb76f33bf40b5cd2604001cac46f967a209c47f/workflows/rna-selector.cwl
https://w3id.org/cwl/view/git/7bb76f33bf40b5cd2604001cac46f967a209c47f/workflows/rna-selector.cwl

JUNE 2022 | VOL. 65 | NO. 6 | COMMUNICATIONS OF THE ACM 57

contributed articles

derstand if it lacks a common frame-
work or vocabulary. The need to run the
process more frequently or with larger
inputs is unlikely to be achieved by the
initial entity—that is, either a script or
a human—running the process. What
seemed once a reasonable manual
step—run this command here, paste
the result there, and then call this per-
son for permission—will become a
bottleneck under the pressure of port-
ing and reusing. Informal logs (if any)
will quickly become unsuitable for
helping an organization understand
what happened, when, by whom, and
to which data.

standard to access a structured, work-
flow-independent description of how
to run their tool(s) in the container,
what data must be provided to the con-
tainer, expected results, and where to
find them.

Background on Workflows
and Standards for Workflows
Workflows, and standards-based de-
scriptions thereof, hold the potential
to solve key problems in many domains
of science and engineering.

Why workflows? In many domains,
workflows include diverse analysis
components, written in multiple, dif-
ferent computer languages by both end
users and third parties. Such polylin-
gual and multi-party workflows are al-
ready common or dominant in data-in-
tensive fields, such as bioinformatics,
image analysis, and radio astronomy.
We envision they could bring impor-
tant benefits to many other domains.

To thread data through analy-
sis tools, domain experts such as
bioinformaticians use specialized
command-line interfaces,12,31 while
experts in other domains use proprie-
tary, customized frameworks.2,5 Work-
flow engines also help with efficiently
managing the resources used to run
scientific workloads.7,10

The workflow approach helps com-
pose an entire application of these
command-line analysis tools: Develop-
ers build graphical or textual descrip-
tions of how to run these command-
line tools, and scientists and engineers
connect their inputs and outputs so that
the data flows through. An example of a
complex workflow problem is metage-
nomic analysis, for which Figure 1 illus-
trates a subset (a sub-workflow).

In practice, many research and en-
gineering groups use workflows of the
kind described in Figure 1. However,
as highlighted in a “Technology Tool-
box” article recently published in
Nature,29 these groups typically lack
the ability to share and collaborate
across institutions and infrastruc-
tures without costly manual transla-
tion of their workflows.

Using workflow techniques, espe-
cially with digital analysis processes,
has become quite popular and does
not appear to be slowing down. One
workflow-management system, Galaxy
Publication Library, recently celebrat-

ed its 10,000th citation, and more than
309 computational data-analysis work-
flow systems are known to exist.b A pro-
cess, digital or otherwise, may grow to
such complexity that its authors and
users have difficulties understanding
its structure, scaling and managing it,
and keeping track of what happened in
the past. Process dependencies may be
undocumented, obfuscated, or other-
wise effectively invisible. Outsiders or
newcomers may find even an extensive-
ly documented process difficult to un-

b Existing Workflow Systems: https://s.apache.
org/existing-workflow-systems.

Techniques for workflows can be implemented in many ways—that is, with varying
degrees of formalism—which tends to correlate with execution flexibility and
features. Whereas the most informal techniques typically require that all processing
components are written in or are at least callable from the same programming
language, formal workflow techniques tend to allow components to be developed in
multiple programming languages.

Among the informal techniques, the do-it-yourself approach uses built-in
capabilities from a particular programming language. For example, Python provides
a threading library, and the Java-based Apache Hadoop33 provides MapReduce
capabilities. To gain flexibility when working with a particular programming
language, general third-party libraries, such as ipyparallel,a can enable remote or
distributed execution without having to rewrite one’s code.

A more explicit workflow structure can be achieved by using a workflow library
focusing on a specific programming language. For example, in Parsl,2 the workflow
constructs (“this is a unit of processing” or “here are the dependencies between the
units”) are made explicit and added by the developer to a Python script, to upgrade it
to a scalable workflow. (While we list Parsl as an example of a monolingual workflow
system, it also contains explicit support for executing external command-line tools.)

Two approaches—the use of per-language add-in libraries or the use of the
Portable Operating System Interface command-line interface (POSIX CLI)30—can
accommodate polylingual workflows, where components are written in more
than one programming language or where components come from third parties
and the user does not want to or cannot modify them. Using per-language add-in
libraries entails either explicit function calls (for example, using Python ctypes to
call a C libraryb) or the addition of annotations to the user’s functions; this requires
mapping/restricting to a common, cross-language data model.

Essentially all programming languages support the creation of POSIX CLIs, which
are familiar to many Linux and macOS users as scripts or binaries that can be invoked
on the shell with a set of arguments, reading and writing files, and executed in a
separate process. Choosing the POSIX command-line interface as the coordination
point means the connection between components is performed by an array of string
arguments representing program options (including paths to data files) along with
string-based environment variables (key-value pairs). Using the command line as a
coordination interface has the advantage of not needing additional implementation
in every programming language but is challenged by process start-up time and a very
simple data model. (As a polylingual workflow standard, CWL uses the POSIX CLI
data model.)

a IPython Parallel (ipyparallel) is a Python package and collection of CLI scripts for control-
ling clusters of IPython processes, built on the Jupyter protocol. See https://pypi.org/project/
ipyparallel/.

b ctypes is a foreign function library for Python. See https://docs.python.org/3/library/ctypes.
html.

Monolingual and
Polylingual
Workflow Systems

https://s.apache.org/existing-workflow-systems
https://s.apache.org/existing-workflow-systems
https://pypi.org/project/ipyparallel/
https://pypi.org/project/ipyparallel/
https://docs.python.org/3/library/ctypes.html
https://docs.python.org/3/library/ctypes.html

58 COMMUNICATIONS OF THE ACM | JUNE 2022 | VOL. 65 | NO. 6

contributed articles

Figure 2. Example of CWL syntax and progressive enhancement.

(a) and (b) describe the same tool, but (b) is enhanced with additional features: human-readable
documentation; file format identifiers for better validation of workflow connections; recommended software
container image for more reproducible results and easier installation; and dynamically specified resource
requirements to optimize task scheduling and resource usage without manual intervention. Resource
requirements are expressed as hints. (c) shows an example of CWL Workflow syntax, where the underlying
tool descriptions (“grep.cwl” and “wc.cwl”) are in external files for ease of reuse.

3. Dynamic Resource
Requirements

1. Community Maintained
File Format Identifier

2. Software Container

A

B C

to later answer structured queries.
Why workflow standards? Al-

though workflows are very popular,
prior to the CWL standards, all work-
flow systems were incompatible with
each other. This means that users
who do not use the CWL standards
are required to express their compu-
tational workflows in a different way
each time they use another workflow
system, leading to local success but
global unportability.

The success of workflows is now their
biggest drawback. Users are locked into
a particular vendor, project, and often
a specific hardware setup, hampering
sharing and reuse. Even non-academics
suffer from this situation, as the lack of
standards, or their adoption, hinders ef-
fective collaboration on computational
methods within and between compa-

nies. Likewise, this unportability affects
public/private partnerships and the
potential for technology transfer from
public researchers.

A second significant problem is that
incomplete method descriptions are
common when computational analysis
is reported in academic research.17 Re-
production, reuse, and replication11 of
these digital methods requires a com-
plete description of which computer
applications were used, how they were
used, and how they were connected to
each other. For precision and interop-
erability, this description should also
be in an appropriate, standardized,
machine-readable format.

A standard for sharing and reusing
workflows can provide a solution to de-
scribing portable, reusable workflows
while also being workflow-engine and
vendor neutral.

Sharing workflow descriptions based
on standards also addresses the sec-
ond problem: The availability of the
workflow description provides needed
information when sharing, and the
quality of the description provided
by a structured, standards-based ap-
proach is much higher than the cur-
rent approach of casual, unstruc-
tured, and almost always incomplete
descriptions in scientific reports.
Moreover, the operational parts of the

Workflow techniques aim to solve
these problems by providing the ab-
straction, scaling, automation, and
provenance (ASAP) features.8 Work-
flow constructs enable a clear ab-
straction about the components, the
relationships between them, and the
inputs and outputs of the components
turning them into well-labeled tools
with documented expectations. This
abstraction enables:

 ˲ Scaling: Execution can be parallel-
ized and distributed.

 ˲ Automation: The abstraction can
be used by a workflow engine to track,
plan, and manage task execution.

 ˲ Provenance tracking: Descrip-
tions of tasks, executors, inputs, and
outputs—with timestamps, identifi-
ers (unique names), and other logs—
can be stored in relation to each other

Selected F/OSS workflow runners and platforms that implement the CWL standards.

Implementation Platform Support

cwltool Linux, macOS, MS Windows (via WSL 2) local execution only

Arvados In the cloud on AWS, Azure, and Google Cloud Platform (GCP), on-premise and
hybrid clusters using Slurm or LSF

Toil35 AWS, Azure, GCP, Grid Engine, HTCondor, IBM Spectrum LSF, Mesos, OpenStack,
Slurm, PBS/Torque; also local execution on Linux, macOS, and MS Windows (via WSL 2)

CWL-Airflow21 Local execution on Linux, OS X, or via dedicated Airflow-enabled cluster.

StreamFlow6 Kubernetes, HPC with Singularity (PBS, Slurm), Occam, multi-node SSH,
and local-only (Docker, Singularity)

REANA Kubernetes

JUNE 2022 | VOL. 65 | NO. 6 | COMMUNICATIONS OF THE ACM 59

contributed articles

Figure 3. Example of CWL portability.

The same workflow description runs on the scientist’s own laptop or single machine, on any
batch-production environment, and on any common public or private cloud. The CWL standards
enable execution portability by being explicit about data locations and execution models.

Authors of CWL
tool and workflow

descriptions

Backends supported by various F/OSS CWL
implementations

Local execution on Linux, macOS, and MS Windows
via the CWL reference implementation (cwltool) and
Docker/uDocker/Singularity/podman/...

HTC

HTCondor Grid Engine

PBS/TORQUE

Microsoft
Azure

ables the execution of CWL workflows
in diverse environments as provided by
various implementations of the CWL
standards: the local environment of the
author-scientist (for instance, a single
desktop computer, laptop, or work-
station), a remote batch production
environment (for example, a cluster,
an entire data center, or even a global
multi-data center infrastructure), and
an on-demand cloud environment.

The CWL standards explicitly sup-
port the use of software container tech-
nologies, such as Docker and Singu-
larity, to enable the portability of the
underlying analysis tools. Figure 2b,
Item 2 illustrates the process of pull-
ing a Docker container image from the
Quay.io registry; then, the workflow en-
gine automates the mounting of files
and folders within the container. The
container included in the figure has
been developed by a trusted author
and is commonly used in the bioinfor-
matics field, with the expectation that
its results are reproducible. Indeed,
the use of containers can be seen as a
confirmation that a tool’s execution is
reproducible when using only its ex-
plicitly declared runtime environment.
Similarly, when distributed execution
is desired, no changes to the CWL tool
description are needed. File or directo-
ry inputs are already explicitly defined
in the CWL description, so the (distrib-
uted) workflow runner can handle job
placement and data routing between
compute nodes without additional
configuration.

Via these two features—special han-

description can be automated by the
workflow-management system rather
than by domain experts.

While (data) standards are com-
monly adopted and have become ex-
pected for funded projects in knowl-
edge representation fields, the same
cannot yet be said about workflows and
workflow engines.

Features of the Common
Workflow Language Standards
The Common Workflow Language stan-
dards aim to cover the common needs
of users and the commonly implemented
features of workflow runners or plat-
forms. The remainder of this section
presents an overview of CWL features,
how they translate to executing work-
flows in CWL format, and where the
CWL standards are not helpful.

The CWL standards support poly-
lingual and multi-party workflows, for
which they enable computational reuse
and portability. To do so, each release of
the CWL standards has twoc main com-
ponents: (1) a standard for describing
command-line tools and (2) a standard
for describing workflows that compose
such tool descriptions. The goal of the
CWL Command Line Tool Description
Standard is to describe how a particular
command-line tool works: What are the
inputs and parameters and their types?
How do you add the correct flags and
switches to the command-line invoca-
tion? Where do you find the output files?

The CWL standards define an explic-
it language, both in syntax and in its data
and execution model. Its textual syntax,
derived from YAML,d does not restrict
the amount of detail. For example, Fig-
ure 2a depicts a simple example with
sparse detail, and Figure2b depicts the
same example but with the execution
augmented with more details. Each in-
put to a tool has a name and a type—for
instance, File (see Figure 2b, Item 1).
Tool-description authors are encour-
aged to include documentation and
labels for all components (as shown
in Figure 2b), to enable the automatic
generation of helpful visual depictions

c The third component, Schema Salad, is only of
interest to those who want to parse the syntax
of the schema language that is used to define
the syntax of CWL itself.

d JSON is an acceptable subset of YAML, and
common when converting from another for-
mat to CWL syntax.

and even graphical user interfaces
(GUIs) for any given CWL description.
Metadata about the tool-description
authors encourages attribution of their
efforts. As shown in Figure 2b, Item 3,
these tool descriptions can contain
well-defined hints or mandatory re-
quirements, such as which software
container to use or the amount of re-
quired compute resources: memory,
number of CPU cores, amount of disk
space, and/or the maximum time or
deadline to complete the step or entire
workflow.

The CWL execution model is explic-
it. Each tool’s runtime environment
is explicit, and any required elements
must be specified by the CWL tool-de-
scription author (in contrast to hints,
which are optional).e Each tool invoca-
tion uses a separate working directory,
populated according to the CWL tool
description—for example, with the
input files explicitly specified by the
workflow author. Some applications
expect particular filenames, directory
layouts, and environment variables,
and there are additional constructs in
the CWL Command Line Tool stan-
dard to satisfy their needs.

The explicit runtime model enables
portability, by being explicit about data
locations. As Figure 3 indicates, this en-

e For details on how the CWL Command Line
Tool standard specifies that tool executors
should set up and control the runtime envi-
ronment, visit: https://w3id.org/cwl/v1.2/Com-
mandLineTool.html#Runtime_environment,
which also specifies which directories tools
are allowed to write to.

https://w3id.org/cwl/v1.2/CommandLineTool.html#Runtime_environment
https://w3id.org/cwl/v1.2/CommandLineTool.html#Runtime_environment

60 COMMUNICATIONS OF THE ACM | JUNE 2022 | VOL. 65 | NO. 6

contributed articles

Standard builds upon the CWL Com-
mand Line Tool Standard. It has the
same YAML- or JSON-style syntax, with
explicit workflow-level inputs, out-
puts, and documentation (Figure 2c).
Workflow descriptions consist of a list
of steps, comprising CWL Command
Line Tools or CWL sub-workflows,
each re-exposing their tool’s required
inputs. Inputs for each step are con-
nected by referencing the name of ei-
ther the common workflow inputs or of
outputs from other steps. The workflow
outputs expose selected outputs from
workflow steps, making explicit which
intermediate-step outputs will be re-
turned from the workflow. All connec-
tions include identifiers, which CWL
document authors are encouraged
to name meaningfully—for example,
“reference_genome” instead of “input7.”

CWL workflows form explicit data-
flows, as required for a particular com-
putational analysis. The connectiv-
ity between steps defines the partial
execution order. Parallel execution of
steps is permitted and encouraged
whenever multiple steps have all their
inputs satisfied. For example, in Figure
1, “find_16S_matches” and “find_S5_
matches” are at the same data-depen-
dency level and can execute concur-

rently or sequentially in any order.
Additionally, a scatter construct allows
the repeated execution of a CWL step
(perhaps overlapping in time, depend-
ing on the available resources), where
most of the inputs are the same except
for one or more inputs that vary. This is
done without having to modify the un-
derlying tool description. Starting with
CWL version 1.2, workflows can also
conditionally skip execution of a step
(tool or workflow), based upon a speci-
fied intermediate input or custom
Boolean evaluation. Combining these
features allows for a flexible branch
mechanism, which allows workflow
engines to calculate data dependen-
cies before the workflow starts and
thus retains the predictability of the
dataflow paradigm.

In contrast to hard-coded approach-
es that rely on implicit file paths spe-
cific to each workflow, CWL workflows
are more flexible, reusable, and por-
table, which enables scalability. The
use of explicit runtime environments
in the CWL standards, combined with
explicit inputs/outputs to form the
dataflow, enables step reordering and
explicit handling of iterations. The
same features enable scalable remote
execution and, more generally, flexible
use of runtime environments. More-
over, individual tool definitions from
multiple workflows can be reused in
any new workflow.

CWL workflow descriptions are also
future proof. Forward compatibility of
CWL documents is guaranteed, as each
CWL document declares which ver-
sion of the standards it was written for,
and minor versions do not alter the re-
quired features of the major version. A
standalone upgrader can automatical-
ly upgrade CWL documents from one
version to the next, and many CWL-
aware platforms will internally update
user-submitted documents at runtime.

Execution of workflows in CWL for-
mat. CWL is a set of standards, not a
particular software product to install,
purchase, or rent. The CWL standards
need to be implemented to be useful;
a list of some implementations of the
CWL standards is in the Table. Work-
flow/tool runners that claim compli-
ance with the CWL standards are al-
lowed significant flexibility in how and
where they execute a user’s CWL docu-
ments as long as they fulfill the require-

dling of data paths and the optional but
recommended use of software contain-
ers—the CWL standards enable por-
tability (execution “without change”).
While portability can be affected by
various factors not controllable by
software container technology—for
instance, variation in the underlying
operating-system kernel or in proces-
sor results—in practice, the exact same
software container and data inputs
lead to portability without further ad-
justment from the user.

To support features that are not in
the CWL standards, the standards de-
fine extension points that permit name-
spaced, vendor-specific features in
explicitly defined ways. If these exten-
sions do not fundamentally change
how the tool should operate, then they
are added to the hints list, and other
CWL-compatible engines can ignore
them. However, if the extension is re-
quired to properly run the tool being
described—for instance, due to the
need for some specialized hardware—
then the extension is listed under re-
quirements, and CWL-compatible
engines can recognize and explicitly
declare their inability to execute that
CWL description.

The CWL Workflow Description

Free and Open Source implementations of the CWL standards. As of 2021, the CWL
standards have gained much traction and are widely supported in practice. In addition
to the implementations in the Table, Galaxy1 and Pegasus10 also have in-development
support for the CWL standards.

Wide adoption benefits from our principles: The CWL standards include
conformance tests, but the CWL community does not yet test or certify
implementations of the standards or specific technology stacks. Instead, the authors
and service providers of workflow runners and workflow-management systems self-
certify support for the CWL standards, based on a particular technology configuration
they deploy and maintain.

F/OSS tools and libraries for working with CWL-format documents.a CWL plug-ins exist
for Atom, Vim, Emacs, Visual Studio Code, IntelliJ, gedit, and any editor that supports
the Language Server Protocol (LSP)b standard. There are tools to generate CWL syntax
from Python (via argparse/click or via functions), ACD,c CTD,d and annotations in
IPython Jupyter Notebooks. Libraries to generate and/or read CWL documents exist
in many languages: Python, Java, R, Go, Scala, Javascript, Typescript, and C++.

a Summarized from https://www.commonwl.org/tools/.
b https://microsoft.github.io/language-server-protocol/.
c “Ajax Command Definitions” as produced by the EMBOSS tools: http://emboss.source-

forge.net/developers/acd/.

d XML-based “Common Tool Descriptors”9 originating in the OpenMS project: https://

github.com/WorkflowConversion/CTDSchema.

The CWL Project
and Free/Open Source
Software (F/OSS)

https://www.commonwl.org/tools
https://microsoft.github.io/language-server-protocol
http://emboss.sourceforge.net/developers/acd
http://emboss.sourceforge.net/developers/acd
https://github.com/WorkflowConversion/CTDSchema
https://github.com/WorkflowConversion/CTDSchema

JUNE 2022 | VOL. 65 | NO. 6 | COMMUNICATIONS OF THE ACM 61

contributed articles

and community. Indeed, these require-
ments were part of the foundational
design principles for CWL; in the long
run, these principles have fostered free
and open source software (see sidebar
“The CWL Project and Free/Open
Source Software”) and a vibrant and ac-
tive ecosystem.

The CWL principles. The CWL project
is based on a set of five principles:

 ˲ Principle 1: At the core of the project
is the community of people who care
about its goals.

 ˲ Principle 2: To achieve the best
possible results, there should be few,
if any, barriers to participation. Specifi-
cally, to attract people with diverse ex-
periences and perspectives, there must
be no cost to participate.

 ˲ Principle 3: To enable the best out-
comes, project outputs should be used
as people see fit. Thus, the standards
themselves must be licensed for reuse,
with no acquisition price.

 ˲ Principle 4: The project must not
favor any one company or group over
another, but neither should it try to be
all things to all people. The commu-
nity decides.

 ˲ Principle 5: Concepts and ideas
must be tested frequently. Tested and
functional code is the beginning of
evaluating a proposal, not the end.

Over time, CWL project members
learned that this approach is a super-
set of the OpenStand Principles, a joint
“Modern Paradigm for Standards” pro-
moted by the IAB, IEEE, IETF, Internet
Society, and W3C. The CWL project
additions to the OpenStand Principles
are 1) to keep participation free of cost,
and 2) the explicit choice of Apache Li-
cense 2.0 for all its text, conformance
tests, and reference implementations.

Necessary and sufficient. All these
principles have proven to be essential
for the CWL project. For example, Prin-
ciples 2 and 3 have enabled many im-
plementations of the CWL standards,
several of which reuse different parts
of the reference implementation of
the CWL standards (reference runner).
Being community-first, per Principle
1, has led participants to create sev-
eral projects that are outside the CWL
standards; the most important contri-
butions have made their way back into
the project (Principle 4).

As part of Principle 5, contributors
to the CWL project have developed a

ments written in those documents. For
example, they are allowed (and encour-
aged) to distribute execution of a work-
flow across all available computers
that can fulfill user-specified resource
requirements. Aspects of execution not
defined by the CWL standards include
Web APIs for workflow execution and
real-time monitoring.

For example, details about when a
step should be considered ready for ex-
ecution are available in Section 4 of the
CWL Workflow Description standard,
but once all the inputs are available,
the exact timing is up to the workflow
engine itself.

Step execution may result in a tem-
porary or permanent failure, as defined
in Section 4 of the CWL Workflow De-
scription standard. The workflow en-
gine must control any automatic fail-
ure recovery attempts—for instance, to
re-execute a workflow step. Most work-
flow engines that implement the CWL
standards feature the ability to attempt
several re-executions, set by the user,
before reporting permanent failure.

The CWL community has developed
the following optimizations without
requiring that users rewrite their work-
flows to benefit:

 ˲ Automatic streaming of data in-
puts and outputs instead of waiting for
all data to be downloaded or uploaded
(where those data inputs or outputs are
marked with “streamable: true”).

 ˲ Workflow step placement based on
data location,18 resource needs, and/or
cost of data transfer.19

 ˲ The reuse of the results from previ-
ously computed steps, even from a dif-
ferent workflow, as long as the inputs
are identical. This can be controlled by
the user via the “WorkReuse” directive
in the CWL Workflow Standard.

Real-world usage at scale. CWL users
and vendors routinely report that they
analyze 5,000 whole-genome sequenc-
es in a single workflow execution. One
customer of a commercial vendor re-
ported a successful workflow run con-
taining an 8,000-wide step; the entire
workflow had 25,000 container execu-
tions. By design, the CWL standards
do not impose any technical limita-
tions on the size of files processed or
to the number of tasks run in parallel.
The major scalability bottlenecks are
hardware-related—not having enough
machines with enough memory, com-

pute power, or disk space to process
ever-growing data at a greater scale. As
these boundaries move in the future
with technological advances, the CWL
standards should be able to keep up
and not be a limitation.

When is CWL not useful? The CWL
standards were designed for a particu-
lar style of command-line, tool-based
data analysis. Therefore, the following
situations are out of scope and not ap-
propriate (or possible) to describe us-
ing CWL syntax:

 ˲ Safe interaction with stateful (web)
services.

 ˲ Real-time communication be-
tween workflow steps.

 ˲ Interactions with command-line
tools beside 1) constructing the com-
mand line and making available file
inputs (both user-provided and syn-
thesized from other inputs just prior
to execution) and 2) consuming the
output of the tool once its execution is
finished, in the form of files created/
changed, the POSIX standard output
and error streams, and the POSIX exit
code of the tool.

 ˲ Advanced control-flow techniques
beyond conditional steps.

 ˲ Runtime workflow graph ma-
nipulations: dynamically adding or
removing new steps during workflow
execution, beyond any predefined con-
ditional step execution tests that are in
the original workflow description.

 ˲ Workflows that contain cycles:
“Repeat this step or sub-workflow a
specific number of times” or “Repeat
this step or sub-workflow until a condi-
tion is met.”f

 ˲ Workflows that need specific steps
run on a specific day or at a specific
time.

Open Source, Open Standards,
Open Community
Given the numerous and diverse set of
potential users, implementers, and
other stakeholders, we posit that a
project like CWL requires the com-
bined development of code, standards,

f Supporting cycles/loops as an optional feature
has been suggested for a future version of the
CWL standards, but it has yet to be put forth
as a formal proposal with a prototype imple-
mentation. As a work around, one can launch
a CWL workflow from within a workflow sys-
tem that does support cycles, as documented
in the eWaterCycle case study with Cylc.28

62 COMMUNICATIONS OF THE ACM | JUNE 2022 | VOL. 65 | NO. 6

contributed articles

The CWL is a family of standards for
the description of command-line tools
and of the workflows made from these
tools. It includes many features devel-
oped in collaboration with the commu-
nity: support for software containers,
resource requirements, workflow-level
conditional branching, and more.
Built on a foundation of five guiding
principles, the CWL project delivers
open standards, open source code, and
an open community.

For the past six years, the CWL com-
munity has grown organically. Organi-
zations looking to write, use, or fund
data-analysis workflows based upon
command-line tools should adopt or
even require the CWL standards, be-
cause they offer a common yet reduced
set of capabilities that are both used
in practice and implemented in many
popular workflow systems. There are
other ways CWL offers value: It is sup-
ported by a large-scale community,
diverse fields have already adopted it,
and its adoption is rapidly growing.
Specifically:

1. With a reduced set of capabili-
ties, the CWL standards limit the
complexity encountered by new users
when they first start and by operators
during implementation. Feedback
from the community indicates these
are appreciated.

2. CWL’s use of declarative syntax
allows users to specify workflows even
if they do not know exactly where the
workflows would (later) run.

3. The CWL project is governed in
the public interest and produces free-
ly available open standards. The CWL
project itself is not a specific work-
flow-management system, workflow
runner, or vendor. This allows poten-
tial users, operators, and vendors to
avoid lock-in and be more flexible in
the future.

4. By offering standards, the CWL
project distinguishes itself, especially
for the complex interactions that ap-
pear in scientific and engineering
collaborations. These interactions in-
clude defining workflows from many
different tools (or steps), sharing work-
flows, long-term archiving, fulfilling re-
quirements of regulators (for example,
U.S. FDA), and making workflow execu-
tions auditable and reproducible. This
is especially useful in cooperative envi-
ronments, where groups that compete

suite of conformance tests for each
version of the CWL standards. These
publicly available tests were critical
to the CWL project’s success: They
helped assess the reference imple-
mentation of the CWL standards, they
provided early adopters with concrete
examples, and they enabled develop-
ers and users of production imple-
mentations of the CWL standards to
confirm their accuracy.

The CWL ecosystem. Beyond the
ratified initial and updated CWL stan-
dards released over the last six years,
the CWL community has developed
many tools, software libraries, and
connected specifications, and has
shared CWL descriptions for popular
tools. For example, there are software
development kits (SDKs) for both Py-
thon and Java that are generated auto-
matically from the CWL schema. This
allows programmers to load, modify,
and save CWL documents using an ob-
ject-oriented model that directly cor-
responds to the standards themselves.
CWL SDKs for other languages are pos-
sible by extending the code generation
routines.g (See Sidebar: The CWL Proj-
ect and Free/Open Source Software for
practical details.)

The CWL standards offer strong sup-
port for the acute need to reuse (and,
correspondingly, to share) information
on workflow execution as well as on au-
thoring and provenance. The CWLPROV
prototype was created to show how ex-
isting standards3,22,26 can be combined
to represent the provenance of a spe-
cific execution of a CWL workflow.20 Al-
though, to date, CWLProv has only been
implemented in the CWL reference
runner, interest in further development
and implementation is high.

Conclusion
The problem of standardizing com-
putational reuse is only increasing in
prominence and impact. Addressing
this problem, various domains in sci-
ence, engineering, and commerce have
already started migrating to workflows,
but efforts focusing on the portability
and even definition of workflows re-
main scattered. In this work, we raise
awareness to this problem and pro-
pose a community-driven solution.

g See the *codegen*.py files in https://pypi.org/
project/schema-salad/7.1.20210316164414/.

By design,
the CWL standards
do not impose
any technical
limitations on
the size of files
processed
or to the number of
tasks run in parallel.

JUNE 2022 | VOL. 65 | NO. 6 | COMMUNICATIONS OF THE ACM 63

contributed articles

Microbiology 49, 4 (September
2011), 689. https://doi.
org/10.1007/s12275-011-1213-z.

26. Missier, P., Belhajjame, K.,
and Cheney, J. The W3C
PROV family of specifications
for modelling provenance
metadata. In Proceedings
of the 16th Intern. Conf. on
Extending Database Technology.
Association for Computing
Machinery (2013). https://doi.
org/10.1145/2452376.2452478.

27. Mitchell, A-L. MGnify: The microbiome analysis
resource in 2020. Nucleic Acids Research 48, D1
(January 2020), D570–D578. https://doi.org/10.1093/
nar/gkz1035.

28. Oliver, H. Workflow automation for cycling systems:
The Cylc Workflow Engine. Computing in Science
Engineering (2019), 1–1. https://doi.org/10.1109/
MCSE.2019.2906593 00000.

29. Perkel, J.M. Workflow systems turn raw data into
scientific knowledge. Nature 573 (September 2019),
149–150. https://doi.org/10.1038/d41586-019-02619-z.

30. POSIX.1-2008: IEEE Std 1003.1™-2008 and The Open
Group Technical Standard Base Specifications, Issue
7. IEEE and The Open Group, https://pubs.opengroup.
org/onlinepubs/9699919799.2008edition/.

31. Seemann, T. Ten recommendations for creating usable
bioinformatics command line software. GigaScience
2, 2047-217X-2-15 (December 2013). https://doi.
org/10.1186/2047-217X-2-15.

32. Simonis, I. OGC Earth observation applications
pilot: Summary engineering report. Open Geospatial
Consortium Public Engineering Report OGC 20-073
(2020), https://docs.ogc.org/per/20-073.html.

33. Taylor, R.C. An overview of the Hadoop/MapReduce/
HBase framework and its current applications in
bioinformatics. BMC Bioinformatics 11, 12 (December
2010), S1. https://doi.org/10.1186/1471-2105-11-S12-S1.

34. van Wezenbeek, W.J.S.M., Touwen, H.J.J., Versteeg,
A.M.C., and van Wesenbeeck, A.J.M. National Open
Science Plan. Ministry of Education, Culture, and
Science, Netherlands, (2017). https://doi.org/10.4233/
uuid:9e9fa82e-06c1-4d0d-9e20-5620259a6c65.

35. Vivian, J. Toil enables reproducible, open source, big
biomedical data analyses. Nature Biotechnology 35,
4 (April 2017), 314–316. https://doi.org/10.1038/
nbt.3772.

Michael R. Crusoe is a promovendus at VU Amsterdam,
Department of Computer Science, Netherlands.; CWL
Project Lead at Software Freedom Conservancy, Inc.,
USA; and Project Leader Compute Platform in ELIXIR-NL
at DTL Projects, Utrecht, Netherlands.

Sanne Abeln is an associate professor in Bioinformatics
at VU Amsterdam, Department of Computer Science,
Netherlands.

Alexandru Iosup is a university research chair and full
professor at VU Amsterdam, Department of Computer
Science, Netherlands.

Peter Amstutz is a principal software engineer at Curii
Corporation, Sommerville, MA, USA.

John Chilton is a computational scientist at the
Nekrutenko Lab at Pennsylvania State University
Department of Biochemistry and Molecular Biology, State
College, PA, USA.

Nebojša Tijanić was a software engineer at Seven
Bridges Genomics Inc., Charlestown, MA, USA.

Hervé Ménager is a research engineer at the Institut
Pasteur, Université de Paris, Bioinformatics and
Biostatistics Hub, F-75015, Paris, France.

Stian Soiland-Reyes is a technical architect at The
University of Manchester, Department of Computer
Science, Manchester, U.K.; and a Ph.D. candidate at
the Informatics Institute, University of Amsterdam,
Netherlands.

Bogdan Gavrilović is a product development director at
Seven Bridges Genomics Inc., Charlestown, MA, USA.

Carole Goble (CBE FREng FBCS CITP) is a full professor
of Computer Science at The University of Manchester,
Department of Computer Science, Manchester, U.K.

• more online

For additional
information,
access the
supplementary
material for this
article at https://
dl.acm.org/
doi/10.1145/
3486897.

also need to collaborate, or in scientific
papers where results can be reused very
efficiently if the analysis is described in
a CWL workflow with publicly available
software containers for all steps.

5. The CWL standards are already
implemented, adopted, and used,
with many production-grade imple-
mentations available as open source
and with zero-cost. Thus, the differ-
ent communities of users of the CWL
standards already offer numerous
workflow and tool descriptions. This
is akin to how the Python ecosystem
of shared libraries, code, and recipes
is already helpful.

This is a call for others to embrace
workflow thinking and join the CWL
community in creating and sharing
portable and complete workflow de-
scriptions. With the CWL standards,
the methods are included and ready
to (re)use.

Acknowledgments
The list of those involved in the CWL
project we would like to acknowledge is
extensive. A comprehensive list is avail-
able in the online supplementary mate-
rial: https://bit.ly/3MoOPfQ. Funding
acknowledgments: European Commis-
sion grants BioExcel-2 (SSR) H2020-IN-
FRAEDI-02-2018 823830, BioExcel (SSR)
H2020-EINFRA-2015-1 675728, EOSC-
Life (SSR) H2020-INFRAEOSC-2018-2
824087, EOSCPilot (MRC) H2020-IN-
FRADEV-2016-2 739563, IBISBA 1.0
(SSR) H2020-INFRAIA-2017-1-two-stage
730976, ELIXIR-EXCELERATE (SSR, HM)
H2020-INFRADEV-1-2015-1 676559, AS-
TERICS (MRC) INFRADEV-4-2014-2015.
ELIXIR the research infrastructure for
life-science data, Interoperability Plat-
form Implementation Study (MRC).
2018-CWL. Various universities have
also co-sponsored this project. We
thank Vrije Universiteit of Amsterdam,
the Netherlands, where the first three
authors have their primary affiliation.

References
1. Afgan, E. et al. The Galaxy platform for accessible,

reproducible and collaborative biomedical analyses:
2018 update. Nucleic Acids Research 46, W1 (July 2018),
W537–W544. https://doi.org/10.1093/nar/gky379.

2. Babuji, Y. et al. Parsl: Pervasive parallel programming
in Python. In Proceedings of the 28th Intern. Symp. on
High-Performance Parallel and Distributed Computing.
Association for Computing Machinery (2019), 25–36.
https://doi.org/10.1145/3307681.3325400.

3. Belhajjame, K. et al. Using a suite of ontologies for
preserving workflow-centric research objects. J. of
Web Semantics 32 (May 2015), 16–42. https://doi.
org/10.1016/j.websem.2015.01.003.

4. Bell, T. et al. Web-based Analysis Services Report.

Technical Report CERN-IT-Note-2018-004. (2017),
CERN, Geneva, Switzerland. http://cds.cern.ch/
record/2315331/.

5. Berthold, M.R et al. KNIME–The Konstanz information
miner: Version 2.0 and beyond. ACM SIGKDD
Explorations Newsletter 11, 1 (Nov. 2009), 26–31.
https://doi.org/10.1145/1656274.1656280.

6. Colonnelli, I. et al. StreamFlow: Cross-breeding cloud
with HPC. IEEE Transactions on Emerging Topics
in Computing (2020), 1–1. https://doi.org/10.1109/
TETC.2020.3019202.

7. Couvares, P. et al. Workflow management in Condor.
In Workflows for e-Science: Scientific Workflows for
Grids, I.J. Taylor, E. Deelman, D.B. Gannon, and M.
Shields (Eds.). Springer, London (2007), 357–375.
https://doi.org/10.1007/978-1-84628-757-2_22.

8. Cuevas-Vicenttín, C. et al. Scientific workflows and
provenance: Introduction and research opportunities.
Datenbank-Spektrum 12, 3 (Nov. 2012), 193–203.
https://doi.org/10.1007/s13222-012-0100-z.

9. de la Garza, L. et al. From the desktop to the grid:
Scalable bioinformatics via workflow conversion. BMC
Bioinformatics 17, 1 (March 2016), 127. https://doi.
org/10.1186/s12859-016-0978-9.

10. Deelman, E. et al. Pegasus, a workflow management
system for science automation. Future Generation
Computer Systems 46 (May 2015), 17–35. https://doi.
org/10.1016/j.future.2014.10.008

11. Feitelson, D.G. From repeatability to reproducibility
and corroboration. ACM SIGOPS Operating
Systems Review 49, 1 (Jan. 2015), 3–11. https://doi.
org/10.1145/2723872.2723875.

12. Georgeson, P. et al. Bionitio: Demonstrating and
facilitating best practices for bioinformatics
command-line software. GigaScience 8, giz109 (Sept.
2019). https://doi.org/10.1093/gigascience/giz109.

13. Gonçalves, P. OGC Earth observations applications
pilot: Terradue engineering report. OGC Public
Engineering Report OGC 20-042. Open Geospatial
Consortium. http://docs.opengeospatial.org/per/20-
042.html.

14. Gryk, M.R. and Ludäscher, B. Workflows and
provenance: Toward information science solutions
for the natural sciences. Library Trends 65, 4 (2017),
555–562. https://doi.org/10.1353/lib.2017.0018.

15. Guarracino, A. et al. COVID-19 PubSeq: Public SARS-
CoV-2 sequence resource. Bioinformatics Open Source
Conference (July 2020), https://sched.co/coLw.

16. IEEE standard for bioinformatics analyses generated
by high-throughput sequencing (HTS) to facilitate
communication. (May 11, 2020), https://doi.
org/10.1109/IEEESTD.2020.9094416.

17. Ivie, P. and Thain, D. Reproducibility in scientific
computing. ACM Computing Surveys 51, 3 (July 2018),
63:1–63:36. https://doi.org/10.1145/3186266.

18. Jiang, F. Castillo, C., and Ahalt, S. TR-19-01: A cloud-
agnostic framework for geo-distributed data-intensive
applications. RENCI, University of North Carolina at
Chapel Hill, (2019), https://renci.org/technical-reports/
tr-19-01/.

19. Jiang, F., Ferriter, K., and Castillo, C. PIVOT: Cost-
aware scheduling of data-intensive applications in a
cloud-agnostic system. RENCI, University of North
Carolina at Chapel Hill, (2019). https://renci.org/
technical-reports/tr-19-02/.

20. Khan, F.Z. et al. Sharing interoperable workflow
provenance: A review of best practices and their
practical application in CWLProv. GigaScience 8, 11
(November 2019), giz095. https://doi.org/10.1093/
gigascience/giz095.

21. Kotliar, M., Kartashov, A.V., and Barski, A. CWL-Airflow:
A lightweight pipeline manager supporting Common
Workflow Language. GigaScience 8, 7 (July 2019),
giz095. https://doi.org/10.1093/gigascience/giz084.

22. Kunze, J., Littman, J., Madden, E., Scancella, J., and
Adams, C. The BagIt file packaging format (V1.0).
(October 2018), DOI 10.17487/RFC8493. https://www.
rfc-editor.org/info/rfc8493.

23. Landry, T. OGC Earth observation applications
pilot: CRIM engineering report. Open Geospatial
Consortium Public Engineering Report 20-045 (2020),
http://docs.opengeospatial.org/per/20-045.html

24. Lau, J.W. et al. The Cancer Genomics Cloud:
Collaborative, reproducible, and democratized—A
new paradigm in large-scale computational research.
Cancer Research 77, 21 (Oct. 2017), e3–e6. https://doi.
org/10.1158/0008-5472.can-17-0387.

25. Lee, J-H., Yi, H., and Chun, J. rRNASelector: A
computer program for selecting ribosomal RNA
encoding sequences from metagenomic and
metatranscriptomic shotgun libraries. The J. of

This work is licensed under a http://
creativecommons.org/licenses/by/4.0/

https://doi.org/10.4233/uuid:9e9fa82e-06c1-4d0d-9e20-5620259a6c65
https://doi.org/10.4233/uuid:9e9fa82e-06c1-4d0d-9e20-5620259a6c65
https://dl.acm.org/doi/
10.1145/3486897
https://doi.org/10.1093/nar/gky379
http://cds.cern.ch/record/2315331
http://cds.cern.ch/record/2315331
https://doi.org/10.1145/1656274.1656280
https://doi.org/10.1007/s13222-012-0100-z
https://doi.org/10.1145/2723872.2723875
https://doi.org/10.1145/2723872.2723875
https://sched.co/coLw

