

De nouveaux coronavirus de chauve-souris similaires à SARS-CoV-2 éclairent l'origine de la pandémie de COVID-19

Sarah Temmam, Khamsing Vongphayloth, Eduard Baquero Salazar, Sandie Munier, Massimiliano Bonomi, Béatrice Regnault, Bounsavane Douangboubpha, Yasaman Karami, Delphine Chrétien, Daosavanh Sanamxay, et al.

▶ To cite this version:

Sarah Temmam, Khamsing Vongphayloth, Eduard Baquero Salazar, Sandie Munier, Massimiliano Bonomi, et al.. De nouveaux coronavirus de chauve-souris similaires à SARS-CoV-2 éclairent l'origine de la pandémie de COVID-19. Journées Francophones de Virologie, Apr 2022, Strasbourg, France. pasteur-03663296

HAL Id: pasteur-03663296 https://pasteur.hal.science/pasteur-03663296v1

Submitted on 10 May 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

De nouveaux coronavirus de chauve-souris similaires à SARS-CoV-2 éclairent l'origine de la pandémie de COVID-19.

Sarah Temmam^{1,2,*}, Khamsing Vongphayloth^{3,*}, Eduard Baquero Salazar^{4,*}, Sandie Munier^{5,*}, Massimiliano Bonomi^{6,*}, Béatrice Regnault^{1,2}, Bounsavane Douangboubpha⁷, Yasaman Karami⁶, Delphine Chrétien^{1,2}, Daosavanh Sanamxay⁷, Vilakhan Xayaphet⁷, Phetphoumin Paphaphanh⁷, Vincent Lacoste³, Somphavanh Somlor³, Khaithong Lakeomany³, Nothasin Phommavanh³, Philippe Pérot^{1,2}, Océane Dehan^{5,8}, Faustine Amara⁵, Flora Donati^{5,8}, Thomas Bigot^{1,9}, Michael Nilges⁶, Félix A. Rey⁴, Sylvie van der Werf^{5,8}, Paul T. Brey³, Marc Eloit^{1,2,10,+}

¹ Institut Pasteur, Université de Paris, Pathogen Discovery Laboratory, 25-28 rue du Dr. Roux,	⁷ Faculty of Environmental Sciences, National University of Laos, Dong Dok Campus, P.O. Box:
75015, Paris, France.	7322, Xaythany District, Vientiane Capital, Lao PDR
² Institut Pasteur, The OIE Collaborating Center for the detection and identification in humans of	⁸ Institut Pasteur, National Reference Center for Respiratory Viruses, 25-28 rue du Dr. Roux, 75015,
emerging animal pathogens, 25-28 rue du Dr. Roux, 75015, Paris, France	Paris, France.
³ Institut Pasteur du Laos, Samsenthai Road, Ban Kao-Gnot, Sisattanak District, 3560 Vientiane, Lao	⁹ Institut Pasteur, Bioinformatic and Biostatistic Hub - Computational Biology Department, 25-28 rue
PDR	du Dr. Roux, 75015, Paris, France.
⁴ Institut Pasteur, Structural Virology Unit, CNRS UMR 3569, 25-28 rue du Dr. Roux, 75015, Paris,	¹⁰ Ecole Nationale Vétérinaire d'Alfort, University of Paris-Est, 94704 Maisons-Alfort, France
France.	
⁵ Institut Pasteur, Université de Paris, CNRS UMR 3569, Molecular Genetics of RNA Viruses Unit,	* co-first authors
Paris, France	+ corresponding author
⁶ Institut Pasteur, Université de Paris, CNRS UMR 3528, Structural Bioinformatics Unit, Paris,	
France	

Context

- Numerous SARS-CoV-2-related viruses identified in bats & pangolins
- First cases detected in Wuhan (Huanan seafood market & elsewhere) Worobey M. 2021 Science
- First case 8th December 2019

- Animal reservoir?
- Intermediate host?
- Routes of introduction into human populations?
- Silent circulation in humans before detection?

- To improve the understanding of the origins, natural history and dissemination of SARS-CoV-2 and SARS-like coronaviruses in their natural environment
 - Identify natural reservoir(s) of SARS-CoV-2
 - Decipher interspecies transmission (bat-to-bat, bat-to-mammals, bat-to-humans)
- Ecological factors that lead to SARS-CoV-2 emergence
- To detect **past coronavirus infections** in humans exposed to animal reservoirs
 - Identify early circulation of SARS-CoV-2 or SARS-CoV-2-like viruses before global spread

• etc.

Field work

Harp trap

Mist net

- 645 bats
 - 48 species
 - 6 families
- > Sample types
 - Oral swabs (608)
 - Rectal swabs (539)
 - Urine (157)
 - Blood (246)

pan-CoV screening

JOURNAL OF VIROLOGY, Dec. 2011, p. 12815–12820 0022-538X/11/\$12.00 doi:10.1128/JVI.05838-11 Copyright © 2011, American Society for Microbiology. All Rights Reserved. Vol. 85, No. 23

Avian Coronavirus in Wild Aquatic Birds^v†‡

Daniel K. W. Chu,¹ Connie Y. H. Leung,¹ Martin Gilbert,² Priscilla H. Joyner,² Erica M. Ng,¹ Tsemay M. Tse,¹ Yi Guan,¹ Joseph S. M. Peiris,^{1,3*} and Leo L. M. Poon^{1*}

N=539 rectal swabs

Anal Swab ID	al Swab ID Bat Genus Bat Species		CoV Genus	CoV Subgenus	Closest sequence	similarity	
BANAL-20-27	Rhinolophus	pusillus	co-infection Alpha/Betacoronavirus	unclassified Decacovirus/ Sarbecovirus	Rhinolophus bat coronavirus HKU32 / SARS-CoV-2	80%	
BANAL-20-51	Hipposideros	pomona	Alphacoronavirus	Decacovirus	Bat coronavirus HKU10	98%	
BANAL-20-52	Rhinolophus	Malayanus	Betacoronavirus	Sarbecovirus	SARS-CoV-2	99%	
BANAL-20-103	Rhinolophus	pusillus	Betacoronavirus	Sarbecovirus	SARS-CoV-2	99%	
BANAL-20-115	Hipposideros	pomona	Alphacoronavirus	Decacovirus	Bat coronavirus HKU10	98%	
BANAL-20-116	Rhinolophus	malayanus	Betacoronavirus	Sarbecovirus	SARS-CoV-2	98%	
BANAL-20-178	Hipposideros	pomona	Alphacoronavirus	Decacovirus	Bat coronavirus HKU10	98%	
BANAL-20-191	Chaerephon	plicatus	Alphacoronavirus	Pedacovirus	Porcine epidemic diarrhea virus (PEDV)	93%	
BANAL-20-197	Chaerephon	plicatus	Alphacoronavirus	Pedacovirus	Porcine epidemic diarrhea virus (PEDV)	93%	
BANAL-20-212	Chaerephon	plicatus	Alphacoronavirus	Pedacovirus	Porcine epidemic diarrhea virus (PEDV)	93%	
BANAL-20-213	Chaerephon	plicatus	Alphacoronavirus	Pedacovirus	Porcine epidemic diarrhea virus (PEDV)	93%	
BANAL-20-236	Rhinolophus	marshalli	Betacoronavirus	Sarbecovirus	SARS-CoV-2	99%	
BANAL-20-242	Rhinolophus	malayanus	Betacoronavirus	Sarbecovirus	SARS-CoV-2	99%	
BANAL-20-247	Rhinolophus	malayanus	Betacoronavirus	Sarbecovirus	SARS-CoV-2	99%	
BANAL-20-251	Hipposideros	khaokhouayensis	Alphacoronavirus	Decacovirus	Bat coronavirus HKU10	97%	
BANAL-20-273	Rhinolophus	pusillus	Alphacoronavirus	unclassified Decacovirus	Rhinolophus bat coronavirus HKU32	92%	
BANAL-20-289	Rhinolophus	affinis	Alphacoronavirus	Rhinacovirus	Rhinolophus affinis bat coronavirus HKU2-related / Swine acute diarrhea syndrome related coronavirus (SADS-CoV)	98%	
BANAL-20-290	Eonycteris	spelaea	Betacoronavirus	Nobecovirus	Rousettus bat coronavirus GCCDC1	99%	
BANAL-20-390	Eonycteris	spelaea	Betacoronavirus	Nobecovirus	Rousettus bat coronavirus GCCDC1	97%	
BANAL-20-395	Eonycteris	spelaea	Betacoronavirus	Nobecovirus	Rousettus bat coronavirus GCCDC1	99%	
BANAL-20-398	Eonycteris	spelaea	Betacoronavirus	Nobecovirus	Rousettus bat coronavirus GCCDC1	99%	
BANAL-20-403	Eonycteris	spelaea	Betacoronavirus	Nobecovirus	Rousettus bat coronavirus GCCDC1	99%	
BANAL-20-416	Cynopterus	sphinx	Betacoronavirus	Nobecovirus	Rousettus bat coronavirus GCCDC1	99%	
BANAL-20-497	Mvotis	sp.	Alphacoronavirus	Pedacovirus	Bat alphacoronavirus*	99%	

Vincent Lacoste IP-Laos (former member)

Betacoronavirus enrichment

- > In-silico probe design from nucleotide sequence alignment of all Betacoronavirus subgenera
 - 13-mer primers pan-generic or specific to each subgenus (MSSPE method) Deng X. et al., 2020 Nat. Microbiol. doi: 10.1038/s41564-019-0637-9
 - 432 primers

Béatrice Regnault IPP – Pathogen Discovery lab.

Sarah Temmam,

- BANAL viruses close to SARS-CoV-2 early strains
- High degree of conservation between CoVs carried by different *Rhinolophus* species living in sympatry

Similarity along the genome

- BANAL viruses present >95% nt identity along the genome, BANAL-52 the closest known to date
- In the spike, BANAL viruses closer to SARS-CoV-2 than bat and pangolin CoVs
- No furin site

Evolution history of bat CoVs

Numerous recombinations in SARS-CoV-2 history

- No pangolin CoV as direct contributor
- One / multiple ancestors depending on the fragment of genome
- In the spike: RaTG13 CoV for the NTD, BANAL CoVs for RBD and N-terminal part of S2 (including the furin site)

Bat CoV RBD highly similar to SARS-CoV-2

CADO CATE O Lánacas A	210	DUCODERCTUDEDNI			KIND KD T O	IOUR DUOI	TT MALON OF OT	NOVCI I DEVI ND			DOTADCOM		120
SARS-COV-2 lineage A	319	RAÕLIPPINL	INTCHEGRALI	VATREASVIE	WNRKRISI	CVADIS	VLINSASISTI	RCIGVSPIKLNDI	LCFINVIADS	EVIRGDEV	RQIAPGQTG	RIADINIKLPDDI	T 430
SARS-CoV-2 lineage B	319	RVQPTESIVRFPNI	INLCPFGEVF	VATRFASVY	WNRKRIS	CVADYS	VLYNSASFSTE	FKCYGVSPTKLNDI	LCFTNVYADS	FVIRGDEV	RQIAPGQTG	KIADYNYKLPDDE	ST 430
BANAL-20-52	319			T			T			v			430
Bat RaTG13	319	D		T			T			т			430
Pangolin P4L	317	I		sk			T			vĸ		v	428
BANAL-20-103	315	D		T			T			v			426
BANAL-20-236	315	D		T			T			v			426
Pangolin Guangdong-1	315			T			т			v		R	426
Pangolin MP789	315			T			T			v		R	426
Bat PrC31	315	Q.V	VHK	P	.E.TKI	О.ІТ	.FT	SI.	T	.LFS	v	v	426
Bat RpYN06	315	Q.V	VHN	P	.E.TKI	о.іт	.FT	SI.		.LFS	v	v	426
Cambodian bat RShSTT182	306	.TSTQV		T	R		TT			v			.M 417
BANAL-20-116	298	L.STEV	FDK	PN	.Q. TKI	D.IТ	T	SI.	st	.LFS	E	v	409
BANAL-20-247	298	L.STEV	FDK	PN	.Q. TKI	D.IТ	T	S I.	st	.LFS	E	v	409
Bat RmYN02	298	.IL.STEV	FDK	PN	.Q.TKI	о.іт	Т	SI.		.LFS	E	v	409
Thai bat RacCS203	298	L.STEV	FDK	PN	.Q.TKI	о.іт	т	SI.		.LFS	E.	v	409
Japanese bat Rc-o319	293	QDTV	s	т	R		T	.gs		v		v	404
		* * • * * * * * *	** *** •**	*** * ***	****	• * • * * * • •	* • * * • • * * * * *	* • * * * * * * * * * * * * * *	**** *****	* • • **	** * * * * * * *	*********	k

			_				_			_		_	_					
SARS-CoV-2 lineage A	431	GCVIAWNSNNLDSKVG	SNYNYI	YRLFF	RKSNLKPF	FERDISTEIY	AGSTPO	NGVEG	FNCYF	PLQ	SYGF	'QFTN	GVGY	QPYRVV	/LSFELLHAP	ATVCGPKKS	TNLVKNKCVNF	N 541
SARS-CoV-2 lineage B	431	GCVIAWNSNNLDSKVG	GN.NYI	YRLF	RKSNLKPF	FERDISTEIY	AGSTPO	NGVEG	FNCYF	PLQ	SYGF	Q PTN	GVGY	QPYRVV	/LSFELLHAP	ATVCGPKKS	TNLVKNKCVNF	N 541
BANAL-20-52	431											н			N		I	. 541
Bat RaTG13	431		F		A		ĸ.	QT.	г	Ү	R	YD	H		N			. 541
Pangolin P4L	429	VKQ.ALT.	G		к				гч	E	R	нт	N.	F	NG.	L.	.TD	. 539
BANAL-20-103	427											н			N		I	. 537
BANAL-20-236	427									ĸ		н			N		I	. 537
Pangolin Guangdong-1	427											н			N	Q.		. 537
Pangolin MP789	427											н			к	õ.		. 537
Bat PrC31	427		S.F	sh	.STK	L.SDE		R-		T.S	г. D.	N.NV	PLE.	.AT	N	Ĩ.	.00	. 518
Bat RpYN06	427		F	sh	.STK	L.SDE		·R-		T.S	r.d.	N.NV	PLE.	.AT	N	L.	.õõ	. 518
Cambodian bat RShSTT182	418	ISA	s.y		V	QL	DK	s	PD		Y.	.s			N		.ñv.~	. 523
BANAL-20-116	410	LTAQQ.IG	S.F	SH	. AVK	L.SDE		R-		T.S	r.d.	N.NV	PLD.	.AT	N	L .	.QR	. 501
BANAL-20-247	410	LTAQQ.IG	S.F	SH	. AVK	L.SDE		·R-		T.S	F .D.	N.NV	PLD.	.AT	N	ь.	.QR	. 501
Bat RmYN02	410	LTAQQ.IG	S.F	sh	.AVK	L.SDE		·R-		T.S	г. D.	N.NV	PLD.	.AT	N	L.	.0R	. 501
Thai bat RacCS203	410	LTAKQ.IG	S.F	sh	.AVK	L.SDE		·R-		T.S	r.d.	N.NV	PLD.	.AT	N	L.	.QR	. 501
Japanese bat Rc-o319	405	LR.Q.ASTS	FY		.SEK.R	AHYD	V. TOFF	(S		s.ĸ	м	YSSA	. DSF		N		.Ē.I	. 506
-		***********	۳. × ۱	** *	* * * * *	****••	~			*	* *			* ****	******	******~~	* * • • • * * * *	*

> Alignment of the RBD region

- BANAL-52 (*R. malayanus*) closer to SARS-CoV-2 than any bat / pangolin CoVs
- 15-16/17 aa residues interacting with hACE2 receptor conserved between BANAL viruses and SARS-CoV-2 (13/17 for Cambodian bat *R. shameli* and 11/17 for Chinese bat *R. affinis* RaTG13)

- > Determination of the crystal structure of BANAL RBDs
- Effects of mutations in RBD-hACE2 interactions
 - BANAL mutation ^H498^Q disrupt transient hydrogen bonds but is known to increase affinity of SARS-CoV-2 RBD for hACE2 Huang et al., 2021 EBioMedicine
 - BANAL mutations ^K493^Q → 2 additional salt bridges formed between BANAL-236 RBD & ACE2 → possible ↗ affinity
- Biolayer interferometry
 - K_d BANAL viruses << SARS-CoV-2 A affinity of BANAL viruses compared to SARS-CoV-2 Wuhan strain</p>

BANAL-236

- Lentiviral pseudoparticles expressing Wuhan or BANAL-236 wild type spikes
 - Entry in 293T cells expressing hACE2
 - Entry blocked by SARS-CoV-2 neutralizing sera
- **BANAL-236** virus isolation

Α.

RLU

- Infection VeroE6 expressing endogenous ACE2
- Infection blocked by soluble ACE2 (-3,6 \log_{10}) similar to Wuhan (-3,8 \log_{10})

Virus isolation

Viruses

BANAL-236 virus growth

- Efficient replication in VeroE6, similar yield compared to Wuhan
- Lower replication in human cells expressing endogenous ACE2
 - No CPE observed compared to Wuhan

Ongoing studies

IP-Laos

IPP-Pathogen discovery

IPP-Molecular Genetics of RNA Viruses

IPP-Mouse genetics

> Pathogenicity in animal model (mice + primates)

- Level of replication in classical or humanized mice
- Virus tropism in different organs
- Adaptation mutations
- Immune response to infection
- Cross-protection against SARS-CoV-2
- etc...

Expression structural proteins Seroprevalence studies

- Infection of Laotian populations?
 - In 2020, low seroprevalence in humans
 - Impact of governmental measures?
 - Young age population?

or...

- Cross-protective immunity?
- Serosurvey of general vs bat-exposed populations
 - LIPS: RBD, N, full S
 - PNT

Virachith et al., 2021 Lancet Reg Health West Pac.

Conclusions

SARS-CoV-2 origin

- Recombination from different *Rhinolophus* CoVs living in the limestone cave system of S-E. Asia
 - Rich diversity of bats living in sympatry →
 ↗ exchanges of viruses
 - Major route of transmission: feces (but oral swabs also >0 for BANAL-27)
- No need for an intermediate host to increase affinity for ACE2, but...
 - Origin of the furin cleavage site?
- **Route of introduction** to the human population?

Risk of emergence of other bat CoVs?

- Exposure of guano collectors, religious communities, tourists?
- If yes, symptomatic infection? Cross-protection against SARS-CoV-2?

Acknowledgments

Pathogen Discovery Laboratory

Sarah Temmam, Béatrice Regnault, Delphine Chrétien, Souand Mohamed Ali, Nicolas Da Rocha, Philippe Pérot, Thomas Bigot, Marc Eloit.

Molecular Genetics of RNA Viruses Unit

Sandie Munier, Flora Donati, Faustine Amara, Océane Dehan, Angela Brisebarre, Mikaël Attia, Sylvie van der Werf.

Structural Virology Unit

Eduard Baquero-Salazar, Félix A. Rey.

Structural Bioinformatics Unit

Massimiliano Bonomi, Yasaman Karami, Michael Nilges.

Mouse Genetics Unit

Laurine Conquet, Xavier Montagutelli.

- Biomics platform IPP
- Covid taskforce IPP
- LabEx IBEID IPP

Institut Pasteur du Laos

Khamsing Vongphayloth, Vincent Lacoste, Somphavanh Somlor, Khaithong Lakeomany, Thonglakhone Xaybounsou, Somsanith Chonephetsarath, Nothasin Phommavanh, Anthony Black, Paul T. Brey.

Faculty of Environmental Sciences National University of Laos

Bounsavane Douangboubpha, Daosavanh Sanamxay, Vilakhan Xayaphet, Phetphoumin Paphaphanh.

- H2020 ReCoVER **EU**
- UK ambassy grant
- Luxembourg Development special grant

Financial support