De nouveaux coronavirus de chauve-souris similaires à SARS-CoV-2 éclairent l’origine de la pandémie de COVID-19

To cite this version:

HAL Id: pasteur-03663296
https://pasteur.hal.science/pasteur-03663296
Submitted on 10 May 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
De nouveaux coronavirus de chauve-souris similaires à SARS-CoV-2 éclairent l'origine de la pandémie de COVID-19.

Sarah Temmam1,2,*, Khamsing Vongphayloth3,*, Eduard Baquero Salazar4,*, Sandie Munier5,*, Massimiliano Bonomi6,*, Béatrice Regnault1,2, Bounsavane Douangboubpha7, Yasaman Karami6, Delphine Chrétien1,2, Daosavanh Sanamxay7, Vilakhan Xayaphet7, Phetphoumin Paphaphanh7, Vincent Lacoste3, Somphavanh Somlors3, Khaithong Lakeomany3, Nothasin Phommavanh3, Philippe Pérot1,2, Océane Dehan5,8, Faustine Amara5, Flora Donati5,8, Thomas Bigot1,9, Michael Nilges6, Félix A. Rey4, Sylvie van der Werf5,8, Paul T. Brey3, Marc Eloit1,2,10,+

1 Institut Pasteur, Université de Paris, Pathogen Discovery Laboratory, 25-28 rue du Dr. Roux, 75015, Paris, France.
3 Institut Pasteur du Laos, Samsenthai Road, Ban Kao-Gnot, Sisattanak District, 3560 Vientiane, Lao PDR.
4 Institut Pasteur, Structural Virology Unit, CNRS UMR 3569, 25-28 rue du Dr. Roux, 75015, Paris, France.
5 Institut Pasteur, Université de Paris, CNRS UMR 3569, Molecular Genetics of RNA Viruses Unit, Paris, France.
6 Institut Pasteur, Université de Paris, CNRS UMR 3528, Structural Bioinformatics Unit, Paris, France.
7 Faculty of Environmental Sciences, National University of Laos, Dong Dok Campus, P.O. Box: 7322, Xaythany District, Vientiane Capital, Lao PDR.
8 Institut Pasteur, National Reference Center for Respiratory Viruses, 25-28 rue du Dr. Roux, 75015, Paris, France.
9 Institut Pasteur, Bioinformatic and Biostatistic Hub - Computational Biology Department, 25-28 rue du Dr. Roux, 75015, Paris, France.
10 Ecole Nationale Vétérinaire d’Alfort, University of Paris-Est, 94704 Maisons-Alfort, France.

* co-first authors
+ corresponding author
Context

- Numerous SARS-CoV-2-related viruses identified in bats & pangolins
- First cases detected in Wuhan (Huanan seafood market & elsewhere)
- First case 8th December 2019

- Animal reservoir?
- Intermediate host?
- Routes of introduction into human populations?
- Silent circulation in humans before detection?
Objectives

• To improve the understanding of the **origins, natural history** and **dissemination** of SARS-CoV-2 and SARS-like coronaviruses in their **natural environment**
 - Identify natural reservoir(s) of SARS-CoV-2
 - Decipher interspecies transmission (bat-to-bat, bat-to-mammals, bat-to-humans)

• To detect **past coronavirus infections** in humans exposed to animal reservoirs
 - Identify early circulation of SARS-CoV-2 or SARS-CoV-2-like viruses before global spread
Workflow & consortium

Characterization of the virus

Ecological studies
- Hosts spectrum
- Seasonality
- Persistence in environment
- Virus tropism in bats
- etc.

Full genome sequencing
- Evolution history

Structural modelling
- Interaction with receptor

Pseudotyped lentiviruses
- Virus entry

Virus isolation
- In vivo studies

Expression structural proteins
- Seroprevalence studies

Ongoing studies

IPP-Laos
IPP-Pathogen discovery
IPP-Structural virology
IPP-Structural bioinformatics
IPP-Molecular Genetics of RNA Viruses
IPP-Mouse genetics
Field work

- **645 bats**
 - 48 species
 - 6 families

- **Sample types**
 - Oral swabs (608)
 - Rectal swabs (539)
 - Urine (157)
 - Blood (246)
pan-CoV screening

<table>
<thead>
<tr>
<th>Anal Swab ID</th>
<th>Bat Genus</th>
<th>Bat Species</th>
<th>CoV Genus</th>
<th>CoV Subgenus</th>
<th>Closest sequence</th>
<th>% blastN similarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>BANAL-20-27</td>
<td>Rhinolophus</td>
<td>pusillus</td>
<td>co-infection</td>
<td>Alpha/Betacoronavirus</td>
<td>unclassified</td>
<td>Rhinolophus bat coronavirus HKU32 / SARS-CoV-2</td>
</tr>
<tr>
<td>BANAL-20-51</td>
<td>Hipposideros</td>
<td>pomona</td>
<td>Alphacoronavirus</td>
<td>Decacovirus</td>
<td>Bat coronavirus HKU10</td>
<td>98%</td>
</tr>
<tr>
<td>BANAL-20-52</td>
<td>Rhinolophus</td>
<td>malayanus</td>
<td>Betacoronavirus</td>
<td>Sarbecovirus</td>
<td>SARS-CoV-2</td>
<td>99%</td>
</tr>
<tr>
<td>BANAL-20-103</td>
<td>Rhinolophus</td>
<td>pusillus</td>
<td>Betacoronavirus</td>
<td>Sarbecovirus</td>
<td>SARS-CoV-2</td>
<td>99%</td>
</tr>
<tr>
<td>BANAL-20-115</td>
<td>Hipposideros</td>
<td>pomona</td>
<td>Alphacoronavirus</td>
<td>Decacovirus</td>
<td>Bat coronavirus HKU10</td>
<td>98%</td>
</tr>
<tr>
<td>BANAL-20-116</td>
<td>Rhinolophus</td>
<td>malayanus</td>
<td>Betacoronavirus</td>
<td>Sarbecovirus</td>
<td>SARS-CoV-2</td>
<td>98%</td>
</tr>
<tr>
<td>BANAL-20-178</td>
<td>Hipposideros</td>
<td>pomona</td>
<td>Alphacoronavirus</td>
<td>Decacovirus</td>
<td>Bat coronavirus HKU10</td>
<td>98%</td>
</tr>
<tr>
<td>BANAL-20-191</td>
<td>Chaerephon</td>
<td>plicatus</td>
<td>Alphacoronavirus</td>
<td>Pedacovirus</td>
<td>Porcine epidemic diarrhea virus (PEDV)</td>
<td>93%</td>
</tr>
<tr>
<td>BANAL-20-197</td>
<td>Chaerephon</td>
<td>plicatus</td>
<td>Alphacoronavirus</td>
<td>Pedacovirus</td>
<td>Porcine epidemic diarrhea virus (PEDV)</td>
<td>93%</td>
</tr>
<tr>
<td>BANAL-20-212</td>
<td>Chaerephon</td>
<td>plicatus</td>
<td>Alphacoronavirus</td>
<td>Pedacovirus</td>
<td>Porcine epidemic diarrhea virus (PEDV)</td>
<td>93%</td>
</tr>
<tr>
<td>BANAL-20-213</td>
<td>Chaerephon</td>
<td>plicatus</td>
<td>Alphacoronavirus</td>
<td>Pedacovirus</td>
<td>Porcine epidemic diarrhea virus (PEDV)</td>
<td>93%</td>
</tr>
<tr>
<td>BANAL-20-236</td>
<td>Rhinolophus</td>
<td>marshalli</td>
<td>Betacoronavirus</td>
<td>Sarbecovirus</td>
<td>SARS-CoV-2</td>
<td>99%</td>
</tr>
<tr>
<td>BANAL-20-242</td>
<td>Rhinolophus</td>
<td>malayanus</td>
<td>Betacoronavirus</td>
<td>Sarbecovirus</td>
<td>SARS-CoV-2</td>
<td>99%</td>
</tr>
<tr>
<td>BANAL-20-247</td>
<td>Rhinolophus</td>
<td>malayanus</td>
<td>Betacoronavirus</td>
<td>Sarbecovirus</td>
<td>SARS-CoV-2</td>
<td>99%</td>
</tr>
<tr>
<td>BANAL-20-251</td>
<td>Hipposideros</td>
<td>khaokhouayensis</td>
<td>Alphacoronavirus</td>
<td>Decacovirus</td>
<td>Bat coronavirus HKU10</td>
<td>97%</td>
</tr>
<tr>
<td>BANAL-20-273</td>
<td>Rhinolophus</td>
<td>pusillus</td>
<td>Alphacoronavirus</td>
<td>unclassified</td>
<td>Rhinolophus bat coronavirus HKU32</td>
<td>92%</td>
</tr>
<tr>
<td>BANAL-20-289</td>
<td>Rhinolophus</td>
<td>affinis</td>
<td>Alphacoronavirus</td>
<td>Rhinacovirus</td>
<td>Rhinolopbus affinis bat coronavirus HKU2-related / Swine acute diarrhea syndrome related coronavirus (SADS-CoV)</td>
<td>98%</td>
</tr>
<tr>
<td>BANAL-20-290</td>
<td>Eonycteris</td>
<td>spelaea</td>
<td>Betacoronavirus</td>
<td>Nobecovirus</td>
<td>Rousettus bat coronavirus GCCDC1</td>
<td>99%</td>
</tr>
<tr>
<td>BANAL-20-390</td>
<td>Eonycteris</td>
<td>spelaea</td>
<td>Betacoronavirus</td>
<td>Nobecovirus</td>
<td>Rousettus bat coronavirus GCCDC1</td>
<td>97%</td>
</tr>
<tr>
<td>BANAL-20-395</td>
<td>Eonycteris</td>
<td>spelaea</td>
<td>Betacoronavirus</td>
<td>Nobecovirus</td>
<td>Rousettus bat coronavirus GCCDC1</td>
<td>99%</td>
</tr>
<tr>
<td>BANAL-20-398</td>
<td>Eonycteris</td>
<td>spelaea</td>
<td>Betacoronavirus</td>
<td>Nobecovirus</td>
<td>Rousettus bat coronavirus GCCDC1</td>
<td>99%</td>
</tr>
<tr>
<td>BANAL-20-403</td>
<td>Eonycteris</td>
<td>spelaea</td>
<td>Betacoronavirus</td>
<td>Nobecovirus</td>
<td>Rousettus bat coronavirus GCCDC1</td>
<td>99%</td>
</tr>
<tr>
<td>BANAL-20-416</td>
<td>Cynopterus</td>
<td>sphinx</td>
<td>Betacoronavirus</td>
<td>Nobecovirus</td>
<td>Rousettus bat coronavirus GCCDC1</td>
<td>99%</td>
</tr>
<tr>
<td>BANAL-20-497</td>
<td>Myotis</td>
<td>sp.</td>
<td>Alphacoronavirus</td>
<td>Pedacovirus</td>
<td>Bat alphacoronavirus*</td>
<td>99%</td>
</tr>
</tbody>
</table>

N=539 rectal swabs

Vincent Lacoste
IP-Laos (former member)
Betacoronavirus enrichment

- *In-silico probe design* from nucleotide sequence alignment of all *Betacoronavirus* subgenera
 - 13-mer primers pan-generic or specific to each subgenus (MSSPE method)
 - Deng X. et al., 2020 Nat. Microbiol. doi: 10.1038/s41564-019-0637-9
 - 432 primers

1. Reverse transcription with **spiked + random** primers (10/1)
2. Second-strand synthesis
3. Library preparation with or without random pre-amplification
Evolution history of bat CoVs

- **At the whole genome level**
 - BANAL viruses close to SARS-CoV-2 early strains
 - High degree of conservation between CoVs carried by different *Rhinolophus* species living in sympatry

- **Similarity along the genome**
 - BANAL viruses present >95% nt identity along the genome, BANAL-52 the closest known to date
 - In the spike, BANAL viruses closer to SARS-CoV-2 than bat and pangolin CoVs
 - No furin site
Numerous recombinations in SARS-CoV-2 history

- No pangolin CoV as direct contributor
- One / multiple ancestors depending on the fragment of genome
- In the spike: RaTG13 CoV for the NTD, BANAL CoVs for RBD and N-terminal part of S2 (including the furin site)
Bat CoV RBD highly similar to SARS-CoV-2

- Alignment of the RBD region
 - BANAL-52 (R. malayanus) closer to SARS-CoV-2 than any bat / pangolin CoVs
Insights into RBD/hACE2 complex

- Determination of the crystal structure of BANAL RBDs

- Effects of mutations in RBD-hACE2 interactions
 - BANAL mutation H498Q disrupt transient hydrogen bonds but is known to increase affinity of SARS-CoV-2 RBD for hACE2 (Huang et al., 2021 EBioMedicine)
 - BANAL mutations K493Q → 2 additional salt bridges formed between BANAL-236 RBD & ACE2 → possible ↑ affinity

- Biolayer interferometry
 - K_d BANAL viruses << SARS-CoV-2 → affinity of BANAL viruses compared to SARS-CoV-2 Wuhan strain
Cell entry through ACE2-dependent pathway

- **Lentiviral pseudoparticles expressing Wuhan or BANAL-236 wild type spikes**
 - Entry in 293T cells expressing hACE2
 - Entry blocked by SARS-CoV-2 neutralizing sera

- **BANAL-236 virus isolation**
 - Infection VeroE6 expressing endogenous ACE2
 - Infection blocked by soluble ACE2 (-3,6 log_{10}) similar to Wuhan (-3,8 log_{10})
Virus isolation

BANAL-236 virus growth
- Efficient replication in VeroE6, similar yield compared to Wuhan
- Lower replication in human cells expressing endogenous ACE2
 - No CPE observed compared to Wuhan
Ongoing studies

- **Pathogenicity in animal model (mice + primates)**
 - Level of replication in classical or humanized mice
 - Virus tropism in different organs
 - Adaptation mutations
 - Immune response to infection
 - Cross-protection against SARS-CoV-2
 - etc...

- **Infection of Laotian populations?**
 - In 2020, low seroprevalence in humans
 - Impact of governmental measures?
 - Young age population?
 - Cross-protective immunity?
 - Serosurvey of general vs bat-exposed populations
 - LIPS: RBD, N, full S
 - PNT

Virachith et al., 2021 Lancet Reg Health West Pac.
Conclusions

- **SARS-CoV-2 origin**
 - Recombination from different *Rhinolophus* CoVs living in the limestone cave system of S-E. Asia
 - Rich diversity of bats living in sympatry ➔ exchanges of viruses
 - Major route of transmission: feces (but oral swabs also >0 for BANAL-27)
 - No need for an intermediate host to increase affinity for ACE2, but...
 - Origin of the furin cleavage site?
 - Route of introduction to the human population?

- **Risk of emergence of other bat CoVs?**
 - Exposure of guano collectors, religious communities, tourists?
 - If yes, symptomatic infection? Cross-protection against SARS-CoV-2?
Acknowledgments

Pathogen Discovery Laboratory
Sarah Temmam, Béatrice Regnault, Delphine Chrétien, Souand Mohamed Ali, Nicolas Da Rocha, Philippe Pérot, Thomas Bigot, Marc Eloit.

Molecular Genetics of RNA Viruses Unit
Sandie Munier, Flora Donati, Faustine Amara, Océane Dehan, Angela Brisebarre, Mikaël Attia, Sylvie van der Werf.

Structural Virology Unit
Eduard Baquero-Salazar, Félix A. Rey.

Structural Bioinformatics Unit
Massimiliano Bonomi, Yasaman Karami, Michael Nilges.

Mouse Genetics Unit
Laurine Conquet, Xavier Montagutelli.

Institut Pasteur du Laos

Faculty of Environmental Sciences
National University of Laos
Bounsavane Douangboubpha, Daosavanh Sanamxay, Vilakhan Xayaphet, Phetphoumin Paphaphanh.

Financial support
- Biomics platform – IPP
- Covid taskforce – IPP
- LabEx IBEID – IPP
- H2020 ReCoVER – EU
- UK embassy grant
- Luxembourg Development special grant