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Abstract: Trinucleotide repeats are a peculiar class of microsatellites whose expansions are responsible
for approximately 30 human neurological or developmental disorders. The molecular mechanisms
responsible for these expansions in humans are not totally understood, but experiments in model
systems such as yeast, transgenic mice, and human cells have brought evidence that the mismatch
repair machinery is involved in generating these expansions. The present review summarizes, in
the first part, the role of mismatch repair in detecting and fixing the DNA strand slippage occurring
during microsatellite replication. In the second part, key molecular differences between normal
microsatellites and those that show a bias toward expansions are extensively presented. The effect
of mismatch repair mutants on microsatellite expansions is detailed in model systems, and in vitro
experiments on mismatched DNA substrates are described. Finally, a model presenting the possible
roles of the mismatch repair machinery in microsatellite expansions is proposed.
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1. Microsatellites and Mismatch Repair

Microsatellites are short sequence repeats (SSR), whose base motif is 1–9 bp repeated
in tandem. They have been encountered in all genomes sequenced so far, although they are
less frequent in prokaryotes. In eukaryotes, several dozen to several hundred microsatellites
are found per megabase of nuclear DNA [1]. In our genome itself, they account for 3% of
the total sequence, similar to the amount of coding sequence [2]. Their tandemly repeated
nature makes them prone to small length changes by slippage, occurring during DNA
synthesis associated with S-phase replication, gene conversion, or DNA repair [1].

Almost 30 years ago, it was shown in the budding yeast Saccharomyces cerevisiae,
that the rate of instability of a (GT)30 dinucleotide repeat was 10−4 per cell division [3],
orders of magnitude higher than single nucleotide substitutions [4]. The second important
discovery of this yeast study was that no effect of a microsatellite’s orientation on its
stability could be seen. Repeat length changes happened with similar frequencies when
the GT sequence was on the lagging-strand template or on the leading-strand template,
showing that no preferential newly synthesized strand was more prone to slippage. Shortly
thereafter, it was discovered that the mismatch repair machinery (Hereafter abbreviated
“MMR”) was directly responsible for fixing replication errors made during replication
slippage within microsatellites. Using an elegant experimental system, relying on an
URA3 reporter gene in which a (GT)33 microsatellite was integrated, Thomas Petes and
collaborators showed that inactivation of MSH2, MLH1, or PMS1 increased the rate of
instability in the GT tract by several hundred-fold [5]. Microsatellite sequencing showed
that most of the length changes involved additions or subtractions of one dinucleotide
(2 bp). Later on, it was proven that mononucleotide repeats were also destabilized in
mismatch-repair deficient yeast strains. The +1 or −1 bp instability of poly-A, poly-C,
poly-G, or poly-T microsatellites increased by several thousand-fold in the absence of
functional mismatch repair [6–8]. Additional experiments showed that microsatellite

Cells 2021, 10, 1019. https://doi.org/10.3390/cells10051019 https://www.mdpi.com/journal/cells

https://www.mdpi.com/journal/cells
https://www.mdpi.com
https://orcid.org/0000-0002-8233-3532
https://doi.org/10.3390/cells10051019
https://doi.org/10.3390/cells10051019
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cells10051019
https://www.mdpi.com/journal/cells
https://www.mdpi.com/article/10.3390/cells10051019?type=check_update&version=2


Cells 2021, 10, 1019 2 of 13

instability during replication increased with increasing tract length [9] and decreased when
the repeat tract was interrupted by variant motifs [10]. Microsatellite instability was also
observed with tetra- to octa-nucleotide repeats, although the effect of the mismatch repair
machinery was much stronger on shorter motifs [11]. Similar observations were made in
the fission yeast Schizosaccharomyces pombe [12].

At the same time these important discoveries were being made in yeast, it was found
that hereditary non-polyposis colon cancer (HNPCC) was associated with a mutation of
the human MSH2 gene [13]. In this type of cancer, microsatellite instability is increased
by several orders of magnitude compared with non-cancerous cells. Several genes whose
function are related to cell proliferation were subsequently found to be mutated in such
cancer lines. The type II transforming growth factor β [14], IGFIIR, the insulin-like growth
factor II receptor [15], and BAX, regulating apoptosis [16] were all found to contain somatic
mutations in microsatellites, leading to repeat length changes in mono- or dinucleotide
repeats. As was observed in budding yeast, most mutations were additions or deletions of
one repeated motif.

2. Trinucleotide Repeat Expansions and Human Disorders

Concomitantly, the first of a rapidly growing family of human disorders was found
to be linked to the expansion of trinucleotide repeats, a class of microsatellites with very
peculiar properties. Fragile X syndrome, the most common cause of hereditary mental
retardation, and characterized by chromosomal fragility, is triggered by an expansion of
a CGG trinucleotide repeat in the 5’ UTR of the FMR1 gene [17]. Huntington’s chorea, a
dramatic neurodegenerative disorder is due to an expansion of a CAG triplet repeat within
the first exon of the gene encoding the huntingtin protein [18]; myotonic dystrophy type 1
(also called Steinert disease or DM1) is induced by the expansion of a CTG trinucleotide
repeat in the 3’ UTR of the DMPK gene [19]; and Friedreich’s ataxia, a recessive neurological
disorder characterized by a defect in iron metabolism, is provoked by the expansion of a
GAA repeat in the first intron of the FRDA gene [20]. Shortly after, it would be discovered
that other microsatellites besides trinucleotide repeats could be found expanded in such
disorders (in the present review, “trinucleotide repeat” or “triplet repeat” will be used
indiscriminately for any microsatellite prone to expansion linked to a human disorder).
This is the case with myotonic dystrophy type 2, induced by the expansion of a CCTG
repeat [21], and amyotrophic lateral sclerosis (ALS) due to the expansion of a GGGGCC
hexanucleotide repeat [22]. At the present time, microsatellite expansions are responsible
for approximately thirty neurological or developmental disorders [23,24]. Several molecu-
lar mechanisms, including S-phase DNA replication slippage, homologous recombination,
and DNA repair, have been shown to modulate trinucleotide repeat expansions and con-
tractions [25–29]. These DNA sequences exhibit length polymorphism in the non-affected
population, a property shared by other microsatellites. However, there are four specific
features that distinguished them from other, non-expandable, microsatellites:

1. All of them have been shown to form stable secondary structures in vitro, and this
unusual feature was proposed to trigger the expansion process [30,31]. CAG and
CTG trinucleotide repeats are able to form imperfect hairpins, CGG triplet repeats
fold into hairpins or G-quadruplex, and GAA repeats have the ability to form triple
helices, containing both Watson–Crick and Hoogsteen bonds. At the present time, the
possibility that these secondary structures also form in living cells is still a matter of
debate [32].

2. Trinucleotide repeats exhibit a clear bias toward expansions, at each generation. There
are, however, reported cases of rare contractions suppressing the symptoms of the
pathology [33,34].

3. Unlike other microsatellites that generally increase or decrease their length by one
repeated motif, trinucleotide repeat expansions behave differently. They expand from
a few triplets at a time, like in Huntington’s disease, to hundreds or even thousands of
triplets in one single generation, like in myotonic dystrophies 1 and 2. Expansions (or
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contractions) of more than one repeat unit may happen in other microsatellites, but
they are rare and never reach the length alterations seen with trinucleotide repeats.

4. The instability of a given trinucleotide repeat is highly dependent on its orientation
during replication. This was first demonstrated in Escherichia coli [35] and soon
after confirmed in yeast [36,37]. When a CAG/CTG repeat tract was replicated in
such a way that the CTG sequence was on the lagging-strand template, frequent
contractions were observed and almost never expansions. However, when the CAG
sequence was on the lagging-strand template, the general instability was reduced
and some expansions were visible (although contractions remained predominant).
This was explained by a more frequent formation of secondary structures on the
lagging-strand template and by the observation that CTG hairpins are more stable
than CAG hairpins [38].

Despite these clear-cut differences between trinucleotide repeats and other non-
expandable microsatellites, early experiments designed to determine the mechanisms
by which these expansions occurred, naturally turned to the usual suspect: the mismatch
repair machinery.

3. A Tale of Yeast, Mice, and Men
3.1. Early Yeast Experiments

Experiments designed to test the effect of mismatch repair deficiency on trinucleotide
repeats were first carried out in yeast, in which eukaryotic MMR genes were first identified
and studied. Trinucleotide repeats of different lengths were integrated into a chromosome,
in yeast cells deficient in mismatch repair genes. Repeat tract length was assessed by PCR
run on sequencing gels in order to detect changes as small as one triplet. Unsurprisingly,
inactivation of MSH2 or PMS1 increased the frequency of small changes (±1–2 triplets) [39],
similarly to what was already described for other microsatellites. However, the frequency
of larger expansions and contractions was apparently unchanged.

An elegant genetic assay was designed by Bob Lahue in S. cerevisiae, taking advantage
of the fact that the S. pombe ADH1 promoter exhibits specific spacing requirements to
function in budding yeast. A CTG trinucleotide repeat was integrated in this promoter
and the ADE8 gene was used as a reporter in a colony color assay. When the repeat
was long enough, the promoter was off, and the yeast cells were white. When repeat
contraction occurred, the promoter was turned on, and the cells became red [40]. This assay
was subsequently adapted to score expansions with other reporter genes besides ADE8.
It presented the advantage of scoring only large expansions or contractions. Therefore, all
small additions or subtractions of one or two triplets would remain undetected. The effect
of MMR mutants on CTG trinucleotide instability was addressed using this experimental
system. Remarkably, it showed that deletion of MSH2 or MSH3 dramatically decreased
expansion rates in both CAG and CTG orientations, using different repeat tract lengths
(Table 1) [41–43]. Interestingly, MSH6 had a small opposite effect, its inactivation slightly
increased expansion rates in both orientations [42]. The Msh2 and Msh6 proteins form the
MutSα heterodimeric complex, involved in detecting and fixing single base mismatches
and small insertions or deletions, whereas Msh2 and Msh3 form the MutSβ complex,
whose function is to repair larger indels [44,45]. Therefore, these results suggested that
large loops were leading to expansions by a mechanism dependent on a functional MutSβ
complex. Chromatin immunoprecipitation of Msh2 showed an enrichment of this protein
at a long CAG/CTG repeat in yeast. This enrichment was lost in a msh3∆ mutant in both
orientations, and in a msh6∆ mutant, only in the CAG orientation [46]. This suggested
different roles for both MutS complexes at trinucleotide repeats.

Interestingly, the effect of MMR mutations on large repeat contractions were, most
of the time, not significant in most experimental systems [39,40,47], proving that large
CAG/CTG trinucleotide repeat expansions and contractions happened in yeast by dis-
tinct mechanisms.
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The expansion frequency of a (GAA)100 sequence integrated in a yeast chromosome
increases by two-fold in a msh2∆ mutant [48], and the frequency of arm loss following
chromosomal breakage decreases by 30-fold in the same mutant [49]. This rather modest
increase, as compared to what was observed with CAG/CTG repeats, suggests that the
MMR may play a significantly different role in GAA repeat metabolism.

Table 1. Trinucleotide repeat expansions per cell division in yeast mismatch repair mutants.

Genotype Nbr of Triplets CAG Orientation CTG Orientation Reference

WT 25 5 × 10−7 1 × 10−5 [41]
msh2∆ 25 3 × 10−8 (↓17×) 9 × 10−6 (=)

WT 25 1 × 10−6 3 × 10−5 [42]
msh3∆ 25 2.4 × 10−7 (↓5×) 1 × 10−6 (↓30×)
msh6∆ 25 2.4 × 10−6 (↑2×) 1.5 × 10−4 (↑5×)

WT 47–59 4.2–7.8 × 10−1 ND [43]
msh3∆ 47–59 1.7–5 × 10−2 (↓15–25×) (1) ND

WT 30–34 ND 4.3–4.7 × 10−1

msh3∆ 30–34 ND 0.8–1.2 × 10−1 (↓4–5×) (1)

(1) Depending on whether expansions are computed after 7 or 14 days.

3.2. Trinucleotide Repeat Expansions in Mice Are Mismatch-Repair Dependent

The effect of mismatch repair on trinucleotide repeat expansions was also studied
in transgenic mice. A long CTG trinucleotide repeat from a DM1 patient integrated into
the mouse genome exhibited both intergenerational and somatic instability [50], and in
some cases very large expansions, similar to those observed in the human population [51].
The trinucleotide repeat was replicated from a downstream origin, in such a way that the
CAG sequence was on the lagging-strand template, the expansion-prone orientation [52].
Inactivation of both copies of Msh2 in animals carrying an expanded human allele of the
Huntington’s disease gene led to a clear reduction of the instability in all tissues studied,
with a marked decrease in expansion size [53]. In a DM1 mouse model, expansions were
suppressed in the sperm, quadriceps, and cerebellum of a Msh2 mutant, [54]. Msh2-
dependent expansions occurred in spermatogonia as early as at seven weeks of age and
continued throughout life [55]. It was subsequently showed that Msh3 inactivation led
to a very similar phenotype, both in maternal and paternal transmissions, whereas Msh6
deletion decreased expansions only during maternal transmissions [56], suggesting slightly
different roles for both MutS complexes, a finding reminiscent of what was previously
observed in yeast. Intergenerational instability depends on Msh2 ATPase activity, its
inactivation by a point mutation leading to the same phenotype as a null mutant [57]. It was
suggested that large CAG/CTG trinucleotide repeat hairpins could bind MMR proteins
in an inactive conformation, “hijacking” the repair activity, and ultimately leading to
expansions. However, experiments using HeLa cell extract did not confirm this hypothesis,
since both MutSα and MutSβ competent extracts were shown to efficiently repair CAG
and CTG hairpins [58].

Interestingly, Msh3 was also shown to be driving expansions in a mouse model for
Huntington’s disease. In a mice background in which Msh3 is expressed at a low level,
expansions are decreased similarly to a Msh2 null animal [59]. It is known that MMR protein
levels vary between mouse tissues, but Msh3 is often more abundant than Msh6 [60]. This
may partly explain the tissue-specific instability of CAG/CTG trinucleotide repeats. Msh3,
as well as Mlh1, were also shown to be specifically involved in expansions in a transgenic
mice model for Huntington’s disease [61]. MLH1 together with PMS2, form the MutLα
heterodimeric complex, which binds to both MutSα and MutSβ to trigger mismatch repair
activity. It is the main MutL player. In addition, MutLβ is made of MLH1 and PMS1
proteins, and its function is not fully understood. Finally, MLH1 and MLH3 assemble into
MutLγ, whose primary function is in meiotic recombination. It is also a MutLα backup [44].
In a DM1 mouse model, inactivation of Pms2, also decreased the rate of expansions [62],
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proving that not only MutSβ, but also the MutLα complex (at least), were responsible for
inducing CTG repeat expansions [63].

Besides CAG/CTG repeats, which have been the most extensively studied, transgenic
mice for CGG/CCG repeats responsible for X fragile syndromes were also constructed [64].
In mice in which both Msh2 alleles were inactivated, expansions were decreased both during
paternal and maternal transmissions, although the effect was more marked during the
former [65]. When Msh3 was inactivated, expansions were suppressed while contractions
increased, in both types of transmission [66]. In mice deficient for Pms2, Pms1 or Mlh3,
expansions were suppressed, showing that all three MutL complexes were involved in the
expansion mechanism [67,68].

The third trinucleotide repeat that has been studied in mice is the GAA/TTC repeat
tract, responsible for Friedreich’s ataxia. In a mice model, inactivation of both Msh2
alleles led to an increase of GAA repeat contractions, whereas expansions were unchanged.
The same phenotype was observed in a Msh3 mutant background, with an increase in
contractions and no apparent effect on expansions. In Msh6 null mice, both expansions
and contractions were increased, whereas in Pms2 mutant animals, expansions were
largely increased while contractions were decreased [69]. These striking differences with
CAG/CTG repeat stability in mice deficient for MMR proteins is reminiscent of what was
observed in yeast cells for the same repeat tracts and strongly suggests that the mismatch
repair machinery is playing different roles in GAA/TTC repeats compared to CAG/CTG
repeats (Table 2).

Table 2. Effect of mismatch repair mutations on trinucleotide repeat instability, compared to wild-type
transgenic mice.

Parental
Genotype

CAG/CTG
Expansions

CAG/CTG
Contractions Transmission Reference

msh2−/− ↓ ↑ unspecified [54]
msh3−/− ↓ ↑ ♂and ♀ [56]
msh6−/− = = ♂ [56]
msh6−/− ↓ ↑ ♀ [56]
mlh1−/− ↓ = unspecified [61]
pms2−/− ↓ ↑ unspecified [63]
mlh3−/− ↓ = unspecified [61]

Parental
genotype

CGG/CCG
expansions

CGG/CCG
contractions Transmission Reference

msh2−/− ↓ ↑ ♂and ♀ [65]
msh3−/− ↓ ↑ ♂and ♀ [66]
pms2−/− ↓ ↑ unspecified [68]
pms1−/− ↓ = unspecified [68]
mlh3−/− ↓ ↑ unspecified [68]

Parental
genotype

GAA/TTC
expansions

GAA/TTC
contractions Transmission Reference

msh2−/− = ↑ unspecified [69]
msh3−/− = ↑ unspecified [69]
msh6−/− ↑ = unspecified [69]
pms2−/− ↑ ↓ unspecified [69]

3.3. Genetic Drivers of Trinucleotide Repeat Expansions in Humans

Early on, the question arose of the role of mismatch repair in trinucleotide repeat ex-
pansions in humans. A panel of Huntington’s disease patients was screened for mutations
at eight other microsatellite loci known to be unstable in colorectal cancer, but little or
no instability was detected at any of these loci. Conversely, the HD and SCA1 loci, both
containing a CAG trinucleotide repeat, were highly unstable in colorectal cancer cell lines,
like any other microsatellite [70]. This suggested that MMR had a stabilizing effect on the
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CAG repeat tract, as expected, but also that an additional mechanism was contributing to
HD instability.

Most of the subsequent efforts have focused on designing transgenic mice that could
serve as models for the most common trinucleotide repeat disorders. The effects of mis-
match repair mutations were tested in these mice, as hereabove described. This approach
was somewhat surprising, since there was no report of trinucleotide repeat expansion
disorders in mice, and it was unknown whether mechanisms suspected in humans would
be similar to those identified in animals. There was one study reporting the germline and
somatic instability of a GGCA tetranucleotide repeat in mice, but not associated with a
bias toward expansions [71]. Therefore, undertaking experiments in mice was betting that
results obtained in animals would be relevant to humans.

Genome wide association studies (GWAS) rely on the use of known genetic polymor-
phisms in order to identify those linked to a particular disease or phenotypic trait. Former
linkage analysis studies used microsatellite markers, especially CA dinucleotide repeats,
which are the most common microsatellites in the human genome [72]. More recent linkage
studies have depended on SNPs, which are much more frequent, although somewhat less
informative than microsatellites. A large GWAS study was built using several cohorts of
patients affected with Huntington’s disease and genotyped by SNP arrays. This study
identified two SNPs, on chromosomes 8 and 15, that were significantly associated with the
“residual age of onset” of the disease (defined as the difference between the age at which
symptoms are observed compared to the age predicted, based on the trinucleotide repeat
length), as well as three others, on chromosomes 3, 5, and 21, for which association was
suspected, but just below significance. Identification of the genes in these regions found
they belonged to three metabolic categories. DNA repair was particularly well represented,
with hits in MLH1 and other mismatch repair genes, as well as in FAN1, a gene encod-
ing a nuclease involved in processing inter-strand DNA links. The two other categories
were genes involved in oxydo-reductase activity or in mitochondrial and peroxisomal
metabolisms [73]. Another GWAS study, using different HD cohorts, led to the identifi-
cation of several MMR genes, including MSH3, PMS2, and MLH1 [74]. Later on, it was
found that the MSH3 gene contains a 9 bp tandem repeat in its coding sequence, exhibiting
both length and sequence polymorphisms. One of its shortest alleles was associated with
HD and DM1 phenotypes, suggesting that both disorders may have a common genetic
origin [75]. Another MSH3 allele was found associated with DM1 in a Costa Rican cohort of
199 individuals [76]. Interestingly, knockdown of MLH1 or MLH3 using shRNA in a human
cell model of Friedreich’s ataxia led to a significant reduction of GAA/TTC trinucleotide
repeat expansions, but knockdown of PMS2 led to a small increase, reminiscent of what
was observed in transgenic mice [77]. It must be noted that GAA/TTC repeats show a bias
toward expansions in induced pluripotent stem cells (iPSC), in which both MutSα and
MutSβ complexes are abundant as compared to fibroblasts or neurospheres [78].

In conclusion, experiments in yeast, mice, and human cells, as well as GWAS data,
all point to a role of MMR proteins in trinucleotide repeat expansions by a mechanism that
seems to be unrelated to classical strand slippage during the replication of non-expandable
microsatellites [79].

4. Slipped-Stranded DNA, Trinucleotide Repeats, and Mismatch Repair Proteins

One of the very first experiments that suggested that MMR proteins exhibit unusual
interactions with CAG/CTG trinucleotide repeats was performed by Christopher Pearson,
using purified human MSH2 protein and slipped-stranded DNA structures. Plasmids
containing 30 or 50 CAG/CTG triplets from the DM1 locus were denatured, labeled, mixed,
and renatured in equimolar conditions in order to form different homo- and heteroduplex
DNA species. Linear homoduplexes containing either 30 or 50 triplets did not bind MSH2,
whereas slipped-stranded duplexes containing 30 or 50 triplets showed a strong interaction
with MSH2, by band-shift assays. Interestingly, the shifted signal was stronger with an
excess of CAG compared to CTG, indicating that CAG triplets were bound more efficiently;
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but the shift was higher with an excess of CTG, suggesting that maybe more proteins
were bound to CTG triplets [80]. These results were already pointing to there being
subtle differences in CAG/CTG instability, which depends on which strand (CAG or CTG)
secondary structures formed. Later experiments using a similar setup showed that nicked
heteroduplex slipped-stranded substrates were repaired independently of MMR proteins.
This suggested that the mismatch repair machinery may play a role in an earlier step that
leads to the formation of such substrates, but not in their subsequent repair [81]. Additional
experiments refined these observations, by showing that short slipped-stranded loops were
efficiently repaired by MutSβ, and to a lesser extent by MutSα, whereas multiple small
loops or large loops could not be fixed by the mismatch repair machinery [82]. Repair of
small-loops was also shown to be dependent on MLH1 and PMS2 [83]. These results were
confirmed by independent experiments using purified human proteins on synthetic DNA
substrates. The authors showed that CAG or CTG loops of fewer than four triplets needed
MutSβ and MutLα to be efficiently repaired, whereas loops containing at least four triplets
were resistant to repair. In this experimental system MutSα was unable to repair any of the
loops tested [84].

Purified MSH2 and MSH3 human proteins were incubated with different substrates
containing a small loop or larger CAG hairpins. Intriguingly, ATP hydrolysis by MutSβ was
inhibited by CAG hairpins, this inhibition increasing with the number of A•A mismatches
on the hairpin. The authors suggested that the CAG secondary structure bound the MSH2–
MSH3 complex in an inactive form, compromising its efficient repair [85]. However, an
independent study did not find any inhibitory effect of CAG hairpins on MutSβ activity,
and this is therefore still an open question [58].

All the above in vitro experiments used slipped-stranded substrates assembled from
denatured plasmidic DNA or synthetic sequences. If such structures exist in living cells,
it is predicted that heteroduplex DNA will segregate after replication as two alleles of
different lengths, giving rise to sectored colonies (Figure 1). This was observed in a cell
model, in which mixed colonies were more abundant in a MutSβ deficient background [86].
Interestingly, in a yeast model in which sectored colonies occur frequently in the CTG
orientation, overexpression of MSH2 increased their frequency by 10-fold, in a MSH3
and MSH6-dependent manner. A point mutation in the MSH2 Walker B motif (Glu768 ->
Ala768) that does not affect heterodimerization nor binding, but dramatically decreases
ATPase activity, resulted in a partial suppression of sectored colonies [46]. This shows
that in yeast the intracellular balance of both MutS complexes is crucial for keeping CTG
heteroduplexes at a low level.
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Figure 1. Possible roles of mismatch repair in trinucleotide repeat instability. Slippage during CAG/CTG replication on 
the newly synthesized lagging strand generates heteroduplex DNA. This mismatch is recognized by the MutSβ complex 
(and to a lesser extent by MutSα) and by MutLα (and probably other MutL complexes too). If the old strand is fixed using 
the newly synthesized strand as a template, a small repeat expansion will occur (Top). If the hairpin is removed, and the 
newly synthesized strand is fixed using the old strand as a template, no size change occurs. (Middle). If the heteroduplex 
escapes repair by the MMR, segregation of both strands during the following cell cycle will lead to a mixed progeny 
(sectored colony). Note that several rounds of small expansions may occur during somatic cell divisions. In addition, 
above a certain length threshold, a large expansion may occur, by a yet unknown mechanism, which may involve DNA 
repair and/or recombination. 

5. Conclusions and Perspectives 
In the light of observations made in model organisms and GWAS analyses, it is ob-

vious that the mismatch repair machinery is involved in trinucleotide repeat instability. 
However, some important differences with non-expandable microsatellites are notewor-
thy: (i) a strong bias toward expansions compared to contractions; (ii) the critical role of 
MutSβ compared to MutSα, suggesting that large mismatches are the rule; and (iii) the 
frequent occurrence of mixed progeny, suggesting that hairpin-containing heteroduplex 
DNA frequently escapes repair. Present models propose that expansions occur if the old 
strand is repaired using the newly synthesized strand as a template, generating a small 
expansion whose size is equal to the length of the hairpin (Figure 1) [79,87]. Conversely, 
if the new strand is fixed using the old one as a template, no size change occurs. In support 
of this mechanism, in vitro experiments have shown that MutLγ induces a nick in the 
DNA strand that does not contain a short CTG loop, forcing repair to use the loop-con-
taining strand as a template, eventually leading to repeat expansion [88]. In addition, the 
fragility of a (CAG)70 repeat tract was decreased in yeast in mlh1Δ and mlh3Δ strains, as 
well as in a mlh3-D523N mutant that abolishes MulLγ endonuclease activity. This sug-
gests that MutLγ is responsible for making nicks in CAG/CTG hairpins, increasing chro-
mosomal fragility [89]. 

Finally, if the mismatch escapes repair by the MMR, the heteroduplex will persist 
until the next cell division, during which it will segregate into different cells, giving rise 
to a sectored colony in experimental systems in which such events can be observed. It is 
likely that this mechanism occurs several times in the same cell line, leading to successive 
small expansions of the trinucleotide repeat tract. It is also possible that after reaching a 
given length threshold, another mechanism triggers large expansions such as those ob-
served in several human disorders that are not seen with regular microsatellites. Note that 
this model may explain results obtained with CAG/CTG and CCG/CGG trinucleotide re-

Figure 1. Possible roles of mismatch repair in trinucleotide repeat instability. Slippage during CAG/CTG replication on
the newly synthesized lagging strand generates heteroduplex DNA. This mismatch is recognized by the MutSβ complex
(and to a lesser extent by MutSα) and by MutLα (and probably other MutL complexes too). If the old strand is fixed using
the newly synthesized strand as a template, a small repeat expansion will occur (Top). If the hairpin is removed, and the
newly synthesized strand is fixed using the old strand as a template, no size change occurs. (Middle). If the heteroduplex
escapes repair by the MMR, segregation of both strands during the following cell cycle will lead to a mixed progeny
(sectored colony). Note that several rounds of small expansions may occur during somatic cell divisions. In addition, above
a certain length threshold, a large expansion may occur, by a yet unknown mechanism, which may involve DNA repair
and/or recombination.

5. Conclusions and Perspectives

In the light of observations made in model organisms and GWAS analyses, it is ob-
vious that the mismatch repair machinery is involved in trinucleotide repeat instability.
However, some important differences with non-expandable microsatellites are noteworthy:
(i) a strong bias toward expansions compared to contractions; (ii) the critical role of MutSβ
compared to MutSα, suggesting that large mismatches are the rule; and (iii) the frequent
occurrence of mixed progeny, suggesting that hairpin-containing heteroduplex DNA fre-
quently escapes repair. Present models propose that expansions occur if the old strand is
repaired using the newly synthesized strand as a template, generating a small expansion
whose size is equal to the length of the hairpin (Figure 1) [79,87]. Conversely, if the new
strand is fixed using the old one as a template, no size change occurs. In support of this
mechanism, in vitro experiments have shown that MutLγ induces a nick in the DNA strand
that does not contain a short CTG loop, forcing repair to use the loop-containing strand
as a template, eventually leading to repeat expansion [88]. In addition, the fragility of a
(CAG)70 repeat tract was decreased in yeast in mlh1∆ and mlh3∆ strains, as well as in a mlh3-
D523N mutant that abolishes MulLγ endonuclease activity. This suggests that MutLγ is
responsible for making nicks in CAG/CTG hairpins, increasing chromosomal fragility [89].

Finally, if the mismatch escapes repair by the MMR, the heteroduplex will persist until
the next cell division, during which it will segregate into different cells, giving rise to a
sectored colony in experimental systems in which such events can be observed. It is likely
that this mechanism occurs several times in the same cell line, leading to successive small
expansions of the trinucleotide repeat tract. It is also possible that after reaching a given
length threshold, another mechanism triggers large expansions such as those observed
in several human disorders that are not seen with regular microsatellites. Note that this
model may explain results obtained with CAG/CTG and CCG/CGG trinucleotide repeats.
The different observations made with GAA/TTC repeats are clearly not totally compatible
with this model. This might be due to the very distinct nature of the secondary structures
formed by these triplet repeats [32].
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It would be futile to conclude this review without a reminder of the crucial discovery
made by Miroslav Radman, more than 30 years ago, on the role of the mismatch repair
machinery during homologous recombination. The conjugation between Escherichia coli
and Salmonella typhimurium is normally very inefficient, presumably because sequence
identity between these two species is too low (~80%). However, when S. typhimurium
strains with MMR gene defects were used as recipients for conjugation, a 1000-fold in-
crease in RecA-dependent recombination was observed, proving that mismatch repair
was inhibiting interspecific homeologous recombination [90]. The role of mismatch repair
in trinucleotide repeat instability has been addressed in E. coli, by several independent
laboratories. Despite disparate observations, a few clear conclusions may be drawn from
these studies. Mutations in mutS destabilize CAG/CTG trinucleotide repeats, mainly by
increasing the frequency of +1 or −1 triplet mutations [91,92]. In addition, large repeat
contractions were less frequent in such mutants [91,93], opposite from what was found in
other organisms. This discrepancy may have been because of the use of plasmid-borne
repeats or due to subtle differences between bacteria and eukaryotes.

Gene conversion associated with homologous recombination has been definitely
linked with frequent expansions and contractions of CAG/CTG trinucleotide repeats in S.
cerevisiae. These frequent length changes depend on the Mre11–Rad50–Xrs2 complex [47,94],
occur during both meiotic and mitotic recombination [95], and do not involve unequal
crossovers [96]. The precise role of the mismatch repair machinery in this highly regulated
process has not yet been addressed, but it might help throw light on the amazingly complex
molecular processes regulating trinucleotide repeat instability in eukaryotes.
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