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ABSTRACT In the mammalian host, Trypanosoma brucei is coated in a single-variant
surface glycoprotein (VSG) species. Stochastic switching of the expressed VSG allows
the parasite to escape detection by the host immune system. DNA double-strand
breaks (DSB) trigger VSG switching, and repair via gene conversion results in an anti-
genically distinct VSG being expressed from the single active bloodstream-form
expression site (BES). The single active BES is marked by VSG exclusion 2 (VEX2) pro-
tein. Here, we have disrupted monoallelic VSG expression by stably expressing a sec-
ond telomeric VSG from a ribosomal locus. We found that cells expressing two VSGs
contained one VEX2 focus that was significantly larger in size than the wild-type
cells; this therefore suggests the ectopic VSG is expressed from the same nuclear
position as the active BES. Unexpectedly, we report that in the double VSG-express-
ing cells, the DNA sequence of the ectopic copy is lost following a DSB in the active
BES, despite it being spatially separated in the genome. The loss of the ectopic VSG
is dependent on active transcription and does not disrupt the number or variety of
templates used to repair a BES DSB and elicit a VSG switch. We propose that there
are stringent mechanisms within the cell to reinforce monoallelic expression during
antigenic variation.

IMPORTANCE The single-cell parasite Trypanosoma brucei causes the fatal disease human
African trypanosomiasis and is able to colonize the blood, fat, skin, and central nervous
system. Trypanosomes survive in the mammalian host owing to a dense protective
protein coat that consists of a single-variant surface glycoprotein species. Stochastic
switching of one VSG for an immunologically distinct one enables the parasite to
escape recognition by the host immune system. We have disrupted monoallelic anti-
gen expression by expressing a second VSG and report that following DSB-triggered
VSG switching, the DNA sequence of the ectopic VSG is lost in a transcription-depend-
ent manner. We propose that there are strict requirements to ensure that only one
variant antigen is expressed following a VSG switch, which has important implications
for understanding how the parasite survives in the mammalian host.

KEYWORDS Trypanosoma brucei, VSG, antigenic variation

T rypanosoma brucei resides in the extracellular spaces of its mammalian host (1, 2),
where survival is dependent on the stochastic switching of the dense variant sur-

face glycoprotein (VSG) coat, consisting of over 10 million molecules of a single VSG
species (3). Trypanosomes have dedicated a remarkably large proportion of their ge-
nome to antigenic variation, with a repertoire of over 2,000 VSG genes, pseudogenes,
and gene fragments found in the subtelomeric regions (4–6); however, only one VSG is
expressed at any one time from a specialized subtelomeric locus known as a blood-
stream-form expression site (BES). There are approximately 15 to 20 BESs in the T.
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brucei genome, and the structure is broadly conserved (7), with the VSG gene flanked
upstream by a block of repetitive sequences known as the 70-bp repeats and down-
stream by the telomere (4, 5, 8). Unusually the single active VSG is transcribed by RNA
polymerase I (RNA Pol I) (9, 10), which is normally reserved for the transcription of rRNA
genes (11) at a specialized transcription compartment known as the expression site body
(ESB) (9, 12, 13). The active BES occupies a distinct chromatin architecture, which is
depleted of nucleosomes (14, 15) and is enriched for highly sumoylated chromatin-associ-
ated proteins (16) and the high-mobility group box (HMGB) chromatin protein TDP1 (17,
18). The recently identified VSG exclusion (VEX) complex, consisting of VEX1 and VEX2,
localizes to the active BES in a transcription-dependent manner and defines the single
active BES (19, 20). The chromatin assembly factor, CAF-1, maintains the epigenetic status
of the active BES during DNA replication, and VEX complex association with the spliced
leader locus ensures sufficient processing of the VSGmRNA (19–21).

To escape detection by the host immune system, the single expressed VSG is sto-
chastically switched. VSG gene switching can occur by an in situ transcriptional BES
switch (22, 23); however, the main pathway used is gene conversion (GC), which allows
access to the subtelomeric archival VSGs via recombination (24). Antigenic variation is
thought to be driven by DNA double-stranded breaks (DSB) that naturally accumulate
in the BESs (25, 26), with the 70-bp repeats critical for recombination (5, 8, 27, 28).
Indeed, disruption of factors involved in preserving genome integrity leads to elevated
VSG switch frequency. Depletion of the RNases H1 and H2, which resolve RNA-DNA
hybrids known as R-loops, increases replication-associated DNA damage and VSG
switching (29, 30). RNase H2 interacts with the histone methyl transferase DOT1b, and
DOT1b deletion results in RNA-DNA hybrids forming, DNA damage, and increased
recombination-driven VSG switching (31). Similarly, knockdown of ataxia telangiectasia
and Rad3-related (ATR) kinase increases recombination-driven VSG switching, which is
associated with elevated levels of DNA damage (32, 33). The RTR complex (RECQ2-
TOPO3a-RMI1) removes recombination intermediates during mitotic crossover, and
loss of the RECQ2 helicase or RMI1 deficiency leads to increased VSG gene switching by
recombination (34, 35), while TOPO3a knockdown results in a RAD51-dependent
hyperswitching phenotype (36). The telomere (37, 38), telomeric chromatin (39), nu-
clear lamina protein NUP-1 (40), and histone variants H3.V and H4.V (6) have also been
shown to influence VSG switching.

While VSG expression is strictly monoallelic, this has been disrupted in the labora-
tory through the selection for activation of a second BES (41, 42) or by introducing a
second VSG into the active BES (43–46) or an rDNA locus (41, 47, 48). While cell growth
is not disrupted in parasites with a dual coat (42–44, 46), it has been proposed that si-
multaneous expression of two VSG genes is unstable and the induction of high levels
of expression of a second VSG from a ribosomal locus results in transcriptional attenua-
tion of the BES VSG (48). Upon selection for activation of two BESs, both VSGs colocalize
to a single transcription compartment, where they undergo dynamic transcriptional
switches between the two BESs, with monoallelic expression rapidly restored upon the
removal of drug selection (42). The occupation of two BESs within a single ESB is
thought to be energetically unfavorable (42), and attempts to select for the simultane-
ous activation of three BESs were unsuccessful (49).

The VSG transcript is essential for cell survival, and knockdown triggers precytokine-
sis cell cycle arrest (50) and global translation arrest (45). This lethal phenotype is res-
cued by VSG switching (50) or the expression of a second VSG (45). Consistent with
this, a DSB introduced in the actively transcribed BES is a highly toxic lesion that results
in over 95% cell mortality and all of the DSB survivors having switched the active VSG
(26, 34). Here, we asked whether the toxicity of a BES DSB could be rescued by the
expression of a second VSG and if this modified the VSG switching pathway used. We
established a cell line in which monoallelic VSG expression is disrupted by the stable
expression of a second telomeric VSG from a ribosomal DNA (rRNA gene) locus, result-
ing in the presence of both the ectopic and native VSGs at the cell surface. We found
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that using a targeted DSB in the active BES to trigger a VSG switch, the DNA sequence
of the ectopic VSG is lost, despite it being located at a distinct genomic locus. Deletion
of the ectopic VSG is transcription dependent and does not affect the number or the
variety of genomic templates used for BES repair. We propose that monoallelic expres-
sion is strictly reinforced during antigenic variation, preventing multiple VSG switching
events occurring at once, which would compromise parasite survival.

RESULTS
Expression of a second VSG does not rescue the toxicity of a DSB at the active

BES. The established VSGup cell line facilitates the induction of a specific DSB adjacent
to the 70-bp repeats in BES1 (25, 26), from which VSG-2 (also known as VSG221 [5]) is
actively expressed (Fig. 1Ai). Tetracycline (Tet)-inducible expression of the I-SceI mega-
nuclease cleaves an 18-bp recognition site adjacent to the 70-bp repeats upstream of
the VSG in BES1 and is highly deleterious to the cell population, with only 5% of the
population able to survive. Among the population of DSB survivors, there is a 5,000-
fold increase in the rate of VSG switching (26). Previous reports have shown that the si-
multaneous expression of two VSGs does not disrupt T. brucei parasite growth (42, 43,
46, 51) and, therefore, to determine whether the expression of a second copy of a VSG
gene could rescue the toxic effect of a DSB at the active BES, we introduced an ectopic
copy of VSG-5 into the VSGup cell line at a ribosomal promoter using the p5NTMF con-
struct (19). The VSG-5 expression construct contains a 200-bp telomere seed, and the
single crossover event at the ribosomal promoter therefore generates a de novo telo-
mere (19, 52) (Fig. 1Aii). Approximately 20% of the transformed clones show high-level
VSG-5 expression (Fig. S1A in the supplemental material), and the presence of both
VSG-2 and VSG-5 at the cell surface was confirmed by immunofluorescence assay (IFA)
(Fig. 1B). Clones expressing high levels of VSG-5 are Double EXpressing (DEX) and are
referred to as VSGupDEX. Clones where VSG-5 expression was not detected are referred
to as VSGupDEX_OFF. The p5NTMF construct contains an NPT gene for selection and,
therefore, to determine whether VSG-5 expression is stable, the VSGupDEX clones were
grown in the absence of NPT selection for 7 days by removal of the G418 drug from
the growth medium. Protein analysis revealed that both VSG-5 and NPT are expressed
in the absence of selection pressure, indicating that the expression of ectopic VSG-5 is
stable (Fig. S1B). We then monitored the rate of parasite proliferation in the VSGup and
VSGupDEX cell lines under both DSB-inducing and -noninducing conditions. We did not
observe growth differences (Fig. 2A, solid lines), nor an increase in survival of VSGupDEX

cells (Fig. 2A, dashed lines), indicating that the expression of a second VSG alone does
not ameliorate the toxicity of a BES DSB.

The site of VSG transcription is marked by an extranucleolar pool of RNA Pol I called
the ESB (9, 12) and the VEX complex (19, 20). VEX2 forms a single focus in the nucleus
that is coincident with the actively expressed BES (20). We therefore asked whether the
ectopically expressed VSG-5 was able to recruit VEX2 and whether the number of foci
was consistent between the VSGup and VSGupDEX. One allele of VEX2 was natively
tagged (20) and the nucleolus marked using the L1C6 antibody (53). VSGup and
VSGupDEX cells were scored for one or two VEX2 foci in G1- and S-phase cells (Fig. 2B).
For VSGup and VSGupDEX, 96% and 92% of cells, respectively, had one VEX2 focus prior
to DSB induction, and this did not change following a DSB (Fig. 2B). Two active BESs
have been shown to colocalize to a single ESB (42), and the identification of a single
VEX2 focus in the large majority of VSGupDEX cells suggests that ectopic VSG-5
expressed from an rDNA locus occupies the same transcription compartment as BES1.
During our experiments, we observed that the VEX2 foci appeared larger in the
VSGupDEX cells, which led us to carry out measurements of the length of the VEX2 focus
in both cell lines. In the VSGup cell line, the average VEX2 focus length was 0.30 mm,
while in the VSGupDEX cells, it was significantly larger, with an average length of
0.38 mm (P , 0.0001) (Fig. 2C). We then assessed the size of the VEX2 focus following a
DSB. We found that the length of the VEX2 focus in the VSGupDEX cell line was reduced
to an average length of 0.29 mm, which is not significantly different from the
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uninduced VSGupDEX and is similar to the VSGup cell line. This indicates that in the
VSGupDEX cell line, the VEX2 VSG transcription compartment is larger, possibly as a
result of accommodating the transcription of two VSGs, but this is not maintained fol-
lowing a DSB and subsequent repair. To directly test this, we performed DNA fluores-
cent in situ hybridization (FISH) using probes to the Pseudo gene, found in the active
BES, and the NPT gene in the p5NTMF construct. In order to compare the position of
the NPT gene, and thus the ectopic VSG, in the nucleus when actively expressed and
silenced, we examined both the VSGupDEX and VSGupDEX_OFF cell lines. We found that in
the VSGupDEX cells, the Pseudo and NPT foci were an average distance of 0.4 6 0.19 mm
apart, which was significantly closer in proximity than the VSGupDEX_OFF cells, where the
foci were 1.02 6 0.312 mm apart (Fig. 2D). We also noted that in the VSGupDEX_OFF cells,

FIG 1 Two VSGs are stably expressed at the parasite cell surface. (A, i) Schematic of the VSGup cell
line, showing BES1 on chromosome 6a. An I-SceI meganuclease recognition site (I-SceI DSB) is
inserted upstream of the actively expressed VSG-2. (A, ii) Schematic of the p5NTMF reporter construct
that is integrated in a single-crossover event at an rDNA promoter to generate the VSGupDEX cell line.
mRNA-processing sequences are shown as black boxes. VSG-5 is flanked by the procyclin 59 UTR and
896 bp of the VSG-2 downstream processing sequence. NPT is flanked by 59 and 39 aldolase-
processing sequences. PES, native BES1 promoter, striped boxes, 70-bp repetitive sequence; PAC,
puromycin N-acetyltransferase resistance gene; PrDNA, ribosomal DNA promoter, NPT, neomycin
phosphotransferase resistance gene; black circles, telomeric sequence. Figure created with
BioRender.com. (B) Immunofluorescence analysis of surface VSGs using antibodies specific to VSG-2
and VSG-5, VSG-2 and VSG-5 wild-type (WT) single expressing cell lines are controls. Scale bars, 2 mm.
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the NPT focus was seen within the nucleolus, as expected given that integration of this
construct is at a ribosomal promoter (Fig. S2). This, along with the increase in the size
of the VEX2 foci, indicated that the ectopic VSG-5 copy occupies the same transcription
compartment as BES1 (Fig. 2D).

VSG-2 and VSG-5 are lost from the cell surface following a DSB. Given the
increase and subsequent decrease in the size of the VEX2 focus in the VSGupDEX, we
assessed the expression of VSG-2 and VSG-5 protein following a DSB. An I-SceI DSB was
induced in the VSGupDEX cell lines in the absence of any drug selection. Protein analysis

FIG 2 Expression of ectopic VSG-5 results in an increase in the size of VEX2 foci. (A) Cumulative growth of
VSGup and VSGupDEX cell lines. Error bars represent standard deviation between a single induction in a pair of
biological clones. Dashed lines indicate growth under DSB-inducing conditions (1Tet). (B) Percentage of cells
with one or two VEX2 foci in the VSGup and VSGupDEX cell lines. Cells gown under either uninduced conditions
or DSB-inducing conditions for 7 days (1Tet) were scored for 1 or 2 VEX2 foci. Only cells in the G1 or S phase
were counted. For the VSGup cell line, error bars represent standard deviation between a pair of technical
replicates. For the VSGupDEX cell line, error bars represent standard deviation between a pair of biological
clones. n . 100 cells for each condition. (C) VEX2 foci length (mm) in VSGup and VSGupDEX cell lines. Individual
black circles represent a single measurement in a G1- or S-phase cell. 1Tet indicates growth under DSB-
inducing conditions for 7 days. Horizontal bar represents the mean. Significance was calculated using an
unpaired t test; ****, P , 0.0001. Righthand panel shows representative IFA image of an uninduced VSGupDEX.
Scale bar, 2 mm. Inset shows a �2 to �3 magnification of the nucleus with black line to represent an example
of the measurements made. (D, Left) Quantification of the distance between Pseudo and NPT foci in the
VSGupDEX and VSGupDEX_OFF cell lines. n = 12 and n = 15 cells counted for the VSGupDEX and VSGupDEX_OFF cell
lines, respectively; the average value is shown with a horizontal bar 6 SD, and the significance of
colocalization as ****, P , 0.0001. Images were randomized to allow for blind counting. (D, Right) Schematics
of BES1 and p5NTMF reporter with a black bar representing the DNA FISH probe. Representative images of the
DNA FISH from the VSGupDEX and VSGupDEX_OFF cell lines.
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revealed that VSG-2 decreased over 96 h following a DSB (Fig. 3A), which is expected,
as the VSG-2 gene is located downstream of the DSB site (Fig. 1Ai) and lost following a
break (26). Protein analysis of both VSG-5 and NPT also showed a decrease over the
course of the induction (Fig. 3A), suggesting that VSG-5 is not maintained at the cell
surface following a DSB at the active BES. We next examined parasite populations for
surface VSGs by immunofluorescence assay. As it takes approximately 4.5 days to com-
pletely replace the VSG coat (46), we analyzed cells at 7 days post-DSB induction.
Neither VSG-2 nor VSG-5 were detected in the population (Fig. 3B). We then wanted to
assess this finding in individual subclones. For this, we generated a panel of five unin-
duced subclones and 20 DSB repaired subclones for each of the VSGup and VSGupDEX

cell lines. DSB induction was confirmed in all induced subclones by sensitivity to

FIG 3 VSG-2 and VSG-5 are lost from the cell surface following a DSB. (A) Western blot analysis of protein extracted from VSGupDEX clones over 96 h
following induction of an I-SceI DSB. VSG-2 and VSG-5 WT single expressing cell lines are controls. Protein extracts were probed using antibodies specific to
VSG-2, VSG-5. and NPT. The bottom panel is Coomassie stained and serves as a loading control and also reveals the major VSGs. (B) IFA of VSGupDEX using
antibodies specific for VSG-2 and VSG-5. 1Tet indicates 7 days DSB induction. (C) Immunofluorescence assay showing the presence of VSG-2 and VSG-5 at
the cell surface of VSGupDEX subclones. Uninduced subclones, n = 5; induced subclones (1Tet), n = 20. (D) Analysis of VSGupDEX surface VSGs 0 and 7 days
post-DSB induction by flow cytometry. Quantitation of the abundance of VSG-5 stained with Alexa Fluor 488 secondary antibody is shown on the x axis,
while VSG-2 stained with Alexa Fluor 647 secondary antibody is shown on the y- axis. (D, Top) Single expressing WT cell lines. (D, Bottom) VSGupDEX

uninduced is shown on the left-hand side, and induced with tetracycline for 7 days (1Tet) is shown on the right-hand side.
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puromycin. The puromycin resistance gene is located downstream of the DSB site in
the VSGup cell line and is either lost or disrupted following a DSB. All induced subclones
were puromycin sensitive, while all uninduced subclones were puromycin resistant,
confirming I-SceI cleavage. While both VSG-2 and VSG-5 were detected at the surface
of all uninduced subclones, both were lost from the surface of all 20 DSB-induced sub-
clones (Fig. 3C). This was confirmed by fluorescence-activated cell sorting (FACS) of a
population at 0 and 7 days post-DSB. In the uninduced cells, both VSG-2 and VSG-5 are
detected at the surface of 99.1% of cells, and this was reduced to 6.5% of cells 7 days
post-DSB induction (Fig. 3D), with a second clone behaving in a similar manner
(Fig. S3). The remaining 6.5% VSG-2/VSG-5-positive cells most likely represent those
not cleaved by I-SceI. This suggests that a DSB in BES1 results in the loss of VSG-5 from
the cell surface, despite the VSG-5 gene being located at a distinct locus to BES1.

Ectopic VSG-5 is lost from the genome following a DSB. The concurrent reduc-
tion in VSG-2 and VSG-5 at the trypanosome surface following a BES DSB led us to ask
how the VSGupDEX cells repaired the I-SceI DSB. It has been shown that a DSB in the
active BES is repaired predominantly via gene conversion using the 70-bp repetitive
sequences for homology (25, 26, 54). To map individual repair events in the VSGup and
VSGupDEX cell lines, we used our cohort of subclones (5 uninduced and 20 induced sur-
vivor subclones for each cell line) and a series of established PCR assays to assess the
presence or absence of several marker genes in BES1 (26, 55). Using primers specific to
VSG-2, we found that for both VSGup and VSGupDEX, all uninduced subclones (n = 5)
were VSG-2 positive by PCR, and all induced subclones (n = 20) were VSG-2 negative
(Fig. 4A; Fig. S4A and B), supporting both the IFA and FACS data showing loss of the
protein in VSGupDEX (Fig. 3B and C). BES1 contains two blocks of 70-bp repeats; the first
block is located immediately upstream of the VSG, and a second, smaller, 70-bp repeat
region is found further upstream, flanked by the pseudo gene and ESAG1 (Fig. 4A) (7).
Cells that are PCR positive for ESAG1 and pseudo are expected to have undergone GC
using the 70-bp repeats directly upstream of VSG-2 as a homologous template. If
pseudo is lost but ESAG1 preserved, repair has likely occurred by GC using the smaller
block of 70-bp repeats. Subclones that have lost ESAG1, pseudo, and VSG-2 have likely
undergone BES loss. Following a VSGup DSB, 75% of subclones (n = 15) retained both
ESAG1 and pseudo (Fig. 4A and Fig. S4A), in agreement with previous findings that the
large block of 70-bp repeats immediately upstream of the DSB is favored for repair (25,

FIG 4 The ectopic copy of VSG-5 is lost following a DSB. (A) PCR analysis of repair at the active BES of VSGup

and VSGupDEX subclones. (A, Top) Schematic of the modified BES1 with black arrows to show the position of
primer binding sites used for subclone analysis; all other details as in Fig. 1Ai. (A, Bottom) PCR analysis of
VSGup and VSGupDEX subclones to detect the presence or absence of VSG-2, pseudo, and ESAG1. Uninduced
subclones (2Tet), n = 5; induced subclones (1Tet) n = 20. (B, Top) Schematic with primers used to specifically
amplify VSG-5 and NPT shown in black arrows; all other details as in Fig. 1Aii. (B, Bottom) PCR analysis of NPT
and VSG-5 in VSGupDEX subclones. Uninduced subclones (2Tet), n = 5; induced subclones (1Tet), n = 20.
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26). For VSGupDEX, the findings were notably similar, with 70% (n = 14) and 75% (n = 15)
retaining pseudo and ESAG1, respectively (Fig. 4A and Fig. S4B). Six repaired VSGupDEX

subclones had lost pseudo, and 5 lost ESAG1, suggesting repair by recombination
upstream of these genes or loss of the entire BES. The one induced subclone that was
ESAG1 positive but pseudo negative likely repaired the DSB via gene conversion with
the smaller block of 70-bp repeats upstream of pseudo gene. Importantly, these analy-
ses demonstrate that the expression of a second VSG does not disrupt the regions of
homology used within the BES to repair the DSB.

We next looked for the presence or absence of the ectopic expression construct
genes VSG-5 and NPT in the VSGupDEX subclones. The T. brucei genome contains three
copies of VSG-5 (6), and amplification of the ectopic copy of VSG-5 was achieved using
primers specific to the procyclin 59 untranslated region (UTR) and VSG-5 (Fig. 4B). In
this construct, the procyclin 59 UTR is used for processing. Unexpectedly, all VSGupDEX-
induced subclones (n = 20) were negative for both VSG-5 and NPT (Fig. 4B and
Fig. S4C). This indicates that the loss of VSG-5 at the cell surface is accompanied by loss
of the DNA sequence. To validate loss of these sequences, we carried out whole-ge-
nome sequencing on 2 uninduced and 4 induced VSGupDEX subclones. Reads aligning
uniquely to NPT were not observed in any of the four induced subclones (Fig. S5), con-
sistent with the findings of the PCR assay. We were unable to identify reads specifically
mapping to ectopic VSG-5 using short paired-end reads. Together, these data demon-
strate that the loss of VSG-5 and NPT protein is a result of loss of the DNA sequence.

The NPT resistance cassette used for integration of the VSG-5 expression construct
allowed us to test whether we could retain the ectopic VSG-5 copy using G418 selec-
tion. We saw no difference between the VSGup, VSGupDEX, or VSGupDEX_OFF cells grown
under DSB-inducing conditions and selection using 2 mg/mL of G418 for 7 days
(Fig. S6A). We expect the VSGupDEX_OFF cells to behave similarly to the VSGup cells, as
they contain the VSG-5 ectopic construct, but it is not transcribed. The presence of
VSG-2 and VSG-5 at the cell surface was then examined by IFA. In the uninduced cells,
100% of the cell population expressed only VSG-2 in VSGup and VSGupDEX_OFF, and 100%
of the VSGupDEX population expressed both VSG-2 and VSG-5 on their surface (Fig. S6B).
Following DSB induction in VSGup, 95% of cells switched. In the VSGupDEX and
VSGupDEX_OFF cells, induction and selection with G418 resulted in 96% and 3% of cell
switching, respectively (Fig. S6B). We then assessed a panel of subclones to determine
the efficiency of I-SceI cutting and DSB repair in the cells. Out of 30 induced subclones
tested, 29 were puromycin resistant (Fig. S6C), indicating that the majority of the sub-
clones were not subject to an I-SceI DSB. Given that the I-SceI meganuclease has over
95% efficiency of cutting (56), this suggests that by using G418 selection, we have
applied a strong selective pressure for uncut cells. The single puromycin-sensitive sub-
clone was VSG-2 and VSG-5 positive by IFA (data not shown) and has likely repaired
the DSB using short regions of homology for imperfect repair, resulting in disruption of
the puromycin open reading frame but preserving VSG-2 in BES1. We were unable to
identify any cells that had undergone GC to repair the DSB while maintaining VSG-5 at
the cell surface. This indicates that it is highly unfavorable to undergo VSG switching
while a second VSG is present at the cell surface.

Loss of VSG-5 is dependent on transcription. Loss of the ectopic VSG-5 expression
construct following a DSB was unexpected, and we hypothesized that its transcrip-
tional state could be an influence. Of the 10 VSGupDEX cell lines we originally generated,
only 20% expressed VSG-5 (Fig. S1); we therefore selected 2 clones where VSG-5 is
silenced and VSG-2 is the singly dominant VSG expressed. We refer to this cell line as
VSGupDEX_OFF (Fig. 5A and Fig. S7A). As in the VSGupDEX cell line, cell growth was not
affected in VSGupDEX_OFF, demonstrating that growth is not affected by the integration
of the p5NTMF construct (Fig. 5B). We then generated a cohort of 5 uninduced and 20
induced VSGupDEX_OFF subclones for further analysis. All induced subclones were puro-
mycin sensitive, indicating efficient cutting by I-SceI. Using our PCR assays, we found
that 95% of the induced VSGupDEX_OFF subclones had lost VSG-2, and 65% had retained
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the pseudo gene (Fig. 5C and Fig. S7B), indicating that repair using the 70-bp repeats
for recombination dominated. In striking contrast to the VSGupDEX cell line, all 20
VSGupDEX_OFF subclones retained both VSG-5 and NPT following DSB induction (Fig. 5C
and Fig. S7B). This demonstrates that the loss of VSG-5 and NPT in the VSGupDEX cell line
is transcription dependent.

The accumulation of single-stranded DNA is delayed in VSGupDEX cells. Following a
DSB, resection proceeds rapidly to facilitate repair. Given the loss of both the native
VSG-2 sequence and the ectopic VSG-5 sequence, we next investigated whether the
timing of the DNA damage response at the active BES was disrupted. A quantitative
resection assay was employed (55, 57, 58) that makes use of a HindIII site within VSG-2
to assess the timing of single-stranded DNA (ssDNA) accumulation at the active BES
(Fig. 6A). In brief, genomic DNA was harvested at 0, 6, and 12 h post-DSB induction.
The genomic DNA (gDNA) was then either digested with HindIII or mock digested. If
the gDNA is single stranded (ssDNA) at the HindIII site, the restriction digest will be

FIG 5 Loss of ectopic VSG-5 is dependent on transcription. (A) Schematic of the VSGupDEX_OFF cell line
setup. (i) Modified BES1; details as in Fig. 1Ai; (ii) the transcriptionally silenced p5NTMF construct. The
ribosomal promoter upstream of VSG-5 is silenced, as indicated by a black rectangular bar. All other
details as in Fig. 1Aii. (B) Cumulative growth of the VSGupDEX_OFF cell line over 96 h. (C) PCR analysis of
VSGupDEX_OFF subclones. Primer binding sites for PCRs are shown as black arrows in Fig. 6A. 2Tet,
n = 5; 1Tet, n = 20.
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inhibited, and a PCR product will be amplified (Fig. 6A). If the DNA is double stranded,
HindIII digestion will proceed, and the template for the PCR amplification is destroyed.
Therefore, a PCR product will only be amplified if the originating gDNA is single
stranded at the HindIII site. For each sample, the amount of PCR product is compared
to that of an undigested “mock”-digested sample in which the template remains intact
and a PCR product is amplified. For the VSGup cell lines, we found that ssDNA increased
over time following a DSB at 0, 3, 6, 9, and 12 h, respectively (Fig. 6B and C), in

FIG 6 The expression of a second VSG disrupts the timing of repair at the active BES. (A) Schematic of
the quantitative assay used to measure ssDNA resection. Black lines represent genomic DNA harvested
from parasites at different time points following I-SceI induction. The I-SceI recognition site in BES1 is
shown as a blue bar and the HindIII digestion site with a red bar. Pathway 1 shows the outcome if the
DNA adjacent to the I-SceI restriction site is single stranded. HindIII digestion will not proceed, as shown
with a red cross. PCR amplification of either side of the HindIII site, demonstrated with red arrows, will
produce a product as the template is intact (green tick). Pathway 2 shows the outcome if the DNA
adjacent to the I-SceI restriction site is double stranded. HindIII will digest (green tick), and the PCR will
not yield a product, as the template has been destroyed (red cross). Mock digestion with HindIII is used
as a control. Figure created with BioRender.com (B) Quantification of DNA end resection, measured in
VSGup and VSGupDEX cell lines 0, 3, 6, 9, and 12 h following induction of a DSB. The VSGup error bars
represent standard deviation between a pair of technical replicates, while the VSGupDEX error bars
represent standard deviation between a pair of biological clones. The qPCR assay was performed in
triplicate. Significance was calculated using an unpaired t test; **, P , 0.001. (C) Table summarizing the
percentage of ssDNA in each cell line following induction of a DSB.
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agreement with previously published data (26, 55). For VSGupDEX, the relative amount of
ssDNA was significantly lower at 6 and 9 h post-DSB compared to VSGup (P , 0.0001)
(Fig. 6B). By 12 h, the VSGupDEX cell lines’ ssDNA was similar to that of VSGup at the same
time point. Therefore, the initial stages of DNA resection are delayed in VSGupDEX cell line.

Access to the VSG archive is not affected in the VSGupDEX cells. The transcription-
dependent loss of VSG-5 following a VSG switch indicates that there are stringent mecha-
nisms at play to ensure that more than one VSG is not activated during VSG switching,
preventing multiple switching events from occurring at once. Taken together with the ini-
tial delay in resection, which is critical to repair pathway choice, we wanted to determine
whether the cohort VSG genes expressed in the repaired cells indicated a shift in the VSG
switching pathway used. To assess this, we used VSG sequencing (VSG-seq) (59) to exam-
ine the number of distinct VSG transcripts arising in the population following a VSG switch.
The expressed VSGs in the VSGup and VSGupDEX cell lines were amplified and sequenced at
0 and 7 days post-DSB induction. VSG genes were considered significantly enriched when
the log2 fold change (FC) of the induced sample compared to the uninduced is.2, with a
P value of ,0.05. We identified 64 VSG sequences that were significantly enriched in the
VSGup cell line and 66 in the VSGupDEX cell line (Fig. 7A). We next looked at the genomic
locations of the significantly enriched genes by mapping them to the T. brucei 427 ge-
nome (6) with the minichromosomal VSGs added from the VSGnome (7) (Fig. 7B). We
found that for the VSGup cell line, 9 VSGs were located on the BESs, 20 on the minichromo-
somes, and 16 on the megabase chromosomes (Fig. 7B and C). For the VSGupDEX cells, the
results were strikingly similar, with 9, 20, and 17 VSGs located on the BESs, minichromo-
somes, and megabase chromosomes, respectively (Fig. 7B and C). Therefore, the number
and genomic positions of the templates used to repair a VSGupDEX DSB are analogous to
that of VSGup, indicating that despite the expression and subsequent loss of VSG-5 follow-
ing a BES DSB, repair at the BES continues unabated. We then used primers specific to
BES1 and VSG-8 on BES12, which is silent in VSGup and VSGupDEX prior to induction
(Fig. S8). No VSG-8 product was amplified in the uninduced samples, as expected, but
products were amplified in both the 196-h induced samples in both VSGup and VSGupDEX

(Fig. S8). This suggests that repair of a DSB in BES1 occurs using silent VSGs that are gene
converted into the active BES. The multiple-banding pattern seen in the induced samples
suggests gene conversion events using different lengths of 70-bp repeats for homology.
Interestingly, we noted a preference for intrachromosomal repair in both cell lines. VSG-2
is expressed from chromosome 6, and 8% and 11% of enriched genes aligned to chromo-
some 6 in the VSGup and VSGupDEX cells, respectively. The preference for intrachromosomal
repair may be associated with the proximity of the repair template to the site of the DSB.

DISCUSSION

Here, we report that the expression of a second VSG is not tolerated during a VSG
switching, with stringent mechanisms to reinforce monoallelic expression in antigenic
variation. We disrupted single antigen expression through the integration of an ectopic
copy of VSG-5 approximately 7 kbp upstream of a de novo telomere at an rDNA pro-
moter, which drives transcription of VSG-5 expression while avoiding competition with
the native BES promoter (19, 60). Using an rDNA promoter to replace a BES promoter
does not disrupt allelic exclusion (61), and the ectopic copy of VSG-5 is also subject to
allelic exclusion (19), with both VSG-2 and VSG-5 present at the cell surface in equal
levels. Expression of VSG-2 and VSG-5 was stable, even in the absence of drug selection
pressure (Fig. S1B), likely due to the de novo telomere seed, which allows for recruit-
ment of the VEX complex and stable transcription of VSG-5.

We initially anticipated that expression of VSG-5 would be coincident with the
nucleolus, given the integration of the expression construct at a ribosomal promoter.
Our data suggest that the ectopic VSG-5 locus is expressed from the same position in
the nucleus as the active BES and that this leads to an increase in the size of the VEX2
focus at this position. The increase in size is dependent on the expression of two VSGs,
and we show, using DNA FISH, that VSG-2 and VSG-5 transcription is coincident.
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FIG 7 The expression of a second VSG does not disrupt VSG switching pathway. (A) Volcano plots showing the significantly enriched VSG genes identified
by VSG-seq following a BES DSB in the VSGup and VSGupDEX cell lines. RNA was extracted 0 and 7 days following I-SceI induction. Red circles represent
genes that are significantly upregulated after 7 days DSB induction (log2FC . 2 and P , 0.05), and black circles represent genes that are not significantly
upregulated; n = 3. (B) Map of the T. brucei 427 genome showing the position of significantly upregulated VSG genes following a DSB. Megabase
chromosomes are shown as black horizontal lines and genes as gray vertical lines. VSG genes that are significantly upregulated following a DSB are
highlighted with blue bars for the VSGup and red bars for VSGupDEX. BESs are highlighted with a red star on the genome map, and individual BESs are
shown separately on the right-hand side. An enlarged version of chromosome 6 is shown below. (C) Table summarizing the position of enriched VSG genes
identified by VSG-seq.
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Indeed, two VSGs expressed from distinct BESs colocalize to a single ESB (42). It has
previously been reported that ectopic expression from an rDNA locus is achievable but
unable to compensate for loss of active VSG expression (41); we suggest that the
recruitment of the VEX complex by the telomere is necessary for the localization of the
ectopic VSG locus to the active VSG transcription compartment. Previous work by
Batram et al. has shown that inducing high levels of expression of a second VSG from
an rDNA spacer using a T7 RNA polymerase promoter led to initial attenuation of the
actively expressed BES VSG in a process that is reversed in around 5 days (48). We sug-
gest that in our cell line, the stable expression of VSG-2 and VSG-5 is supported by their
proximity to a telomere and their ability to recruit telomeric chromatin components. In
the context of this study, we have assessed only one pair of VSG genes but believe our
findings would be supported using additional pairs of VSG genes.

What leads to the transcription-dependent break-induced loss of VSG-5 is unknown, but
one hypothesis is that following a DSB, VSG-5 transcription increases to compensate for the
loss of VSG-2. This could lead to genomic instability through the formation of R-loops (62),
which, in T. brucei, have been shown to form in both the active BES (29) and at rDNA loci
(30). R-loop-induced genomic instability can result in chromosome rearrangements (63)
and could account for the loss of VSG-5. Alternatively, increased transcription of VSG-5may
result in clashes between the transcription and replication machinery, leading to DNA DSBs
that are repaired by recombination and resulting in genetic changes (64). In the DEX cells,
we observed a significant decrease in ssDNA in the first 6 to 9 h following a DSB. The prox-
imity of the available templates has been shown to influence the frequency of recombina-
tion (6), and it is possible that after a DSB in the BES, repair is initiated using the ectopic
VSG-5 gene, which is in close spatial proximity; however, limited homology results in an
unsuccessful recombination event which is eventually degraded, as is seen in fission yeast
(65). Recombination intermediates could temporarily stall ssDNA formation until the
homology search is reestablished. Despite the delay in the timing of DSB repair, the mecha-
nism of repair at the BES continued undisrupted with the preference for repair using the
70-bp repeats maintained and the access to the genomic archive of VSG genes unabated.

Two studies have previously reported frequent deletion of an active BES during VSG
switching. Rudenko et al. used selection markers within the silent BES to activate a tran-
scriptional switch and observed deletion of the originally active BES (66), with up to 100
kbp of telomeric sequence lost and large changes in chromosome size seen. Cross et al.
reported a similar finding using a negative selectable marker for BES inactivation, where
they found that the majority of switching events were coupled to the deletion of the
entire previously active BES, with large changes in chromosome size also seen (67). The
mechanism of chromosome truncation is unclear; however, it was proposed that they
could arise from either random chromosome breakage and healing as is seen in
Plasmodium falciparum (68, 69), interchromosomal recombination, or a failed recombina-
tion event that is destroyed by exonucleases (67). Both studies propose that there is a strict
requirement for the inactivation of the previously active VSG prior to activation of a new
one, either by a transcriptional switch or deletion of the previously active BES (66, 67). The
mechanisms by which expressed VSG genes are counted to ensure monoallelic expression
are not fully understood; however, it has been proposed that sequences in the VSG gene
and downstream sequences, including the telomeric TTAGGG repeats, which share a high
degree of homology with other BESs, could act as repressive elements in a VEX-dependent
manner (19). The ectopic VSG-5 expression construct used in this study contains the native
VSG-2 39 UTR and associated downstream sequences and a de novo telomere which facili-
tates recruitment of the VEX complex, allowing it to escape VSG silencing (19). Given the
close proximity of the ectopically expressed VSG-5 and native VSG-2 alleles in the nucleus,
an I-SceI-induced DSB may cause a transient release of the VEX complex from both, but
only recruited back to the repaired BES expressing a new VSG gene. This would leave the
ectopic locus depleted of the VEX complex, impairing expression.

Here, we report that monoallelic expression is rapidly restored during a VSG switch-
ing event. We propose that this occurs in order to prevent multiple VSG switching
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events from occurring at once, preserving monoallelic expression. It is of note that a
number of studies into VSG switching have been unable to distinguish between BES
GC, in which an entire BES is duplicated and replaces the previously active one, and an
in situ switch coupled to deletion of the originally active BES (35, 39, 70–72). The result-
ing structure of the active BES is identical in both cases, and the loss of the previously
active BES will only be identified by examining chromosome truncations. Therefore, it
is possible that deletion of the previously active BES occurs frequently during a VSG
switch; however, these events have so far gone largely undetected.

T. brucei evasion of the mammalian host is dependent on both the monoallelic
expression of a single surface antigen in order to avoid clearance by the host immune
system (18) and the periodic switching of the single expressed VSG species. Here, we
demonstrate that monoallelic expression is maintained at an unexpected level during
antigenic variation, which has important implications for our understanding of how
the parasite evades immune detection.

MATERIALS ANDMETHODS
T. brucei cell growth and manipulation. T. brucei Lister 427 cell lines were grown in HMI-11 me-

dium at 37.4°C (73) with 5% CO2, and the density of cell cultures was measured using a hemocytometer.
Wild-type (WT) cell lines used in this study were T. brucei Lister 427 MITat 1.2 clone 221a (VSG-2 WT or
VSG221 WT) and MITat 1.5 (VSG-5 WT, or VSG118 WT). Transformation of cell lines was carried out by
centrifuging 2.5 � 107 cells at 1,000 � g for 10 min at room temperature. The cell pellet was resus-
pended with 10 mg linearized DNA in 100 mL warm cytomix solution (74), placed in a cuvette (0.2-cm
gap), and transformed using a Nucleofector (Lonza) (X-001 function) (75). Transfected cells were recov-
ered in 36 mL of warm HMI-11 at 37°C for 4 to 6 h, after which cells were plated out in 48-well plates
with the required drug selection. G418 selection was carried out at 2 mg/mL, puromycin at 2 mg/mL,
blasticidin at 10 mg/mL, and tetracycline (Tet) at 1 mg/mL. Puromycin, phleomycin, hygromycin, blastici-
din, and G418 selection was maintained at 1 mg/mL. The VSGup cell line has been described previously
(26). The VSGupDEX cell line was generated by transfecting the VSGup cell line with the p5NTMF reporter
construct (19) and clones with detectable VSG-5 expression selected. The VSGupDEX_OFF cell line was gen-
erated in the same way; however, cells that do not express VSG-5 were selected.

To measure cumulative cell growth, a hemocytometer was used, and cells were diluted to 1 � 105 cells/
mL every 24 h. DSB induction was carried out with 1 mg/mL tetracycline. A pair of clones was analyzed for
VSGupDEX. Generation of subclones was carried out by clonogenic assays in which VSGup and VSGupDEX cells
were plated out in 96-well plates. For the uninduced (2Tet) plates, 32 cells were seeded per 96-well plate,
and for the induced (1Tet), 480 cells were seeded per plate and induction carried out using 1mg/mL tetra-
cycline for 4 to 7 days. Cells grown under induced conditions had puromycin and G418 drug selection
removed. DSB induction was confirmed in all induced subclones using a puromycin-sensitivity assay in
which induced subclones were grown in the absence and presence of 2 mg/mL puromycin, and only those
clones that did not grow in the presence of puromycin were considered sensitive.

Plasmids. The p5NTMF plasmid (19) was linearized using SmaI. Epitope tagging of VEX2 at the native
locus was achieved using the VEX26myc plasmid (20), digested using SphI.

Immunofluorescence analysis. Immunofluorescence was carried out according to standard protocols.
In brief, cells were fixed in 1% (vol/vol) formaldehyde and incubated on ice for 30 min. Fixed cells were cen-
trifuged for 1 min at 6,000 rpm and washed with 1 mL ice-cold phosphate-buffered saline (PBS) twice. Cells
were settled onto poly-L-lysine-treated slides for up to 30 min and washed 3� for 5 min in PBS. Blocking was
carried out for 15 min in 50% fetal bovine serum (FBS) in PBS, and all antibody dilutions were in 3% FBS. For
visualization of internal antigens, antigen retrieval was carried out prior to blocking by incubation at 95°C for
1 min in antigen retrieval buffer (100 mM Tris, 5% urea, pH 9.5) as described in reference 19. Primary antisera
used were rat a-VSG-2 (1: 50,000), rabbit a- VSG-5 (1: 50,000), rabbit a-myc (Cell Signaling; catalog no.
71D10) (1:200), and mouse a-L1C6 (1:100) (53), a gift from the Bastin laboratory. Secondary antisera used
were goat a-rat rhodamine conjugated (1:100), goat a-mouse fluorescein isothiocyanate (FITC) conjugated
(1:100), both Invitrogen, and goat a-rabbit Alexa Fluor 555 and goat a-mouse Alexa Fluor 488, both used at
1:2,000 dilution and provided by Thermo Fisher. Cells were mounted in Vectashield (Vector Laboratories)
containing 4,6-diamidino-2-phenylindole (DAPI). DAPI-stained nuclei and kinetoplast were used as cytologi-
cal markers to determine the cell cycle stage (76). Cells with one nucleus and one kinetoplast are G1, one nu-
cleus and one elongated kinetoplast (IN:1eK) are S phase, one nucleus and two kinetoplasts (1N:2K) are G2/
M, and cells with two nuclei and two kinetoplasts are postmitosis. Images were acquired using a Zeiss Axio
Imager Z2 epifluorescence microscope combined with an Axiocam 506 monocamera. Images were proc-
essed using ImageJ, version 2.1.0 (77). Statistical analysis was carried out in GraphPad Prism, version 9.

Protein analysis. Protein analysis was carried out using standard procedures (78). Primary antisera
used were rabbit a-VSG-2 and a-VSG-5, both at 1:50,000; and rabbit a-histone H3 at 1:100,000, rabbit
a-NPT at 1:8,000 (Fitzgerald), and mouse a-EIF1a at 1:20,000 (Millipore). Secondary antibodies used
were horseradish peroxidase-coupled goat a-rabbit and goat a-mouse (Bio-Rad), used at 1:1,000.
Protein blots were developed using an enhanced chemiluminescence kit (Amersham).

Flow cytometry. Flow cytometry experiments were performed as described in reference 19.
Approximately 1 � 107 cells were collected for analysis for each sample. VSGs were detected using mouse
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a-VSG-5 (1:10,000) and rat a-VSG-2 (1:10,000) primary antibodies. Secondary antibodies used were goat
a-rabbit Alexa Fluor 488 (Thermo Fisher) and goat a-rat Alexa Fluor 647 (Thermo Fisher), both at 1:2,000
dilution. Samples were analyzed on a MoFlo Astrios EQ cell sorter, and data were analyzed using FlowJo
software.

DNA analysis. Primers were used to amplify VSG-2, ESAG1, and Pseudo genes as described in ref-
erence 26. Primers used to amplify NPT were Neo.2 F (GATGGATTGCACGCAGGTTCTC) and Neo.2 R
(CCTTGAGCCTGGCGAACAG), and to amplify the start of VSG-5 were rP2 F (AGATTAAGCAGTAAAAGTAGCGC)
and VSG-5 R (CTTTTGTAGTTTTAGGCCGTGATTG).

DNA FISH. DNA probes were generated by PCR using standard conditions with Phusion high-fi-
delity DNA polymerase (Thermo Scientific) and labeled using FISH Tag DNA multicolor kit
(Invitrogen). For the Pseudo gene probe, a 1,328-bp fragment was amplified with PSEUDO_FISHF
(AACAGCGCCGAATTTAATGCAAT) and PSEUDO_FISHR (GTTTCGCCTTCCCATTTGCAT) primers and labeled
with Alexa Fluor 488 dye (Invitrogen). For the NTP probe, a 1,200-bp fragment was amplified from the
pTMF-8U2 plasmid using NTP_FW CTAACAGGCACGGAAGCCTA and NTP_RV CTCCAAAGCAAACATGCAGA
primers and labeled with Alexa Fluor 555 dye. Synthesis and labeling of the amine-modified DNA were
done following the manufacturer’s conditions (Invitrogen) using 1 mg of purified amplification product. For
hybridization, each DNA probe was used at a final concentration of 10 ng/mL in hybridization buffer (50%
formamide, 10% dextran sulfate, 2� SSC [1� SSC is 0.15 M NaCl plus 0.015 M sodium citrate]) containing
herring sperm DNA (10mg/mL; Sigma) and yeast tRNA (10mg/mL; Invitrogen).

FISH protocol was adapted from Budzak et al. (42). Cells were fixed directly in medium with ice-cold
paraformaldehyde at a final concentration of 4% for 10 min in ice. Cells were washed three times in cold
1� PBS buffer and settled within previously adhered Gene Frames (Thermo Scientific) on Polysine mi-
croscopy slides for 30 min. Cell permeabilization was made with 0.1% Nonidet P-40 for 10 min and washed
three times in 1� PBS. RNase treatment was carried out with 50mg/mL RNAse A (Thermo Scientific) for 1 h
at 37°C. We added 25 mL of probe mix to the slide before placing the Gene Frames coverslip; denaturation
was carried out at 82°C for 5 min, followed by overnight incubation at 37°C in a wet chamber. After hybrid-
ization, slides were washed in DNA wash buffer (50% formamide, 2� SSC) for 30 min at 37°C, followed by
washes in 1� SSC, 2� SSC, and 4� SSC at 50°C for 10 min each. Slides were dipped in water and air-dried,
followed by counterstaining with 1 mg/mL Hoechst for 10 min in the dark. Samples were rinsed in 1� PBS
and mounted in SlowFade Gold antifade (Invitrogen). Images were acquired using a Zeiss Axio Imager Z2
epifluorescence microscope combined with an Axiocam 506 monocamera. Images were processed using
ImageJ, version 2.1.0 (77). Statistical analysis was carried out in GraphPad Prism, version 9.

Whole-genome sequencing. Two uninduced and four 7-day DSB-induced VSGupDEX subclones were
harvested at 5 � 107 cells and DNA extracted using a Qiagen DNeasy blood and tissue kit according to the
standard protocol. DNA was sequenced on a BGISEQ-500 platform in paired-end mode at the Beijing
Genomics Institute (BGI). The number of reads per library was as follows: 10.92 million for VSGupDEX unin-
duced 1, 12.05 million for VSGupDEX uninduced 2, 10.91 million for VSGupDEX induced 1, 11.63 million for
VSGupDEX induced 2, 12.86 million for VSGupDEX induced 3, and 12.77 million for VSGupDEX induced 4.
Sequences were aligned to the T. brucei Lister 427 genome (6), with the minichromosomal VSGs (5) and
p5NTMF sequences added, using Bowtie2 (79) with “–very-sensitive” parameters and BAM files generated
using SAMtools (80). The percentages of reads successfully aligning to the genome were as follows:
96.70% for VSGupDEX uninduced 1, 99.03% for VSGupDEX uninduced 2, 98.19% for VSGupDEX induced 1,
99.03% for VSGupDEX induced 2, 98.59% for VSGupDEX induced 3, and 98.94% for VSGupDEX induced 4. The ge-
nome was visualized using Artemis genome browser (81), and reads were filtered for uniqueness using a
mapping quality (MAPQ) cutoff of 1.

Quantitative resection assay. Quantification of ssDNA by qPCR was carried out using an adapted ver-
sion of reference 57. In brief, DNA was harvested at 0, 3, 6, 9, and 12 h following growth in 1mg/mL tetracy-
cline. Five hundred nanograms of extracted DNA were digested with either HindIII or mock digested (no
enzyme) overnight at 37°C. For the quantitative PCR (qPCR), primers used were VSG21b forward
(AGGCCAAGAAAGCGCTAACA) and VSG21b reverse (CCACTGGCTGCTCGGATATG) (55). Luna Universal qPCR
master mix (New England Biolabs) was used with 600 pM primer mix and 5 ng DNA per reaction. The PCR
cycling conditions were 95°C for 3 min and then 40 cycles of 95°C for 10 s and 55°C for 30 s on a thermal
cycler. The quantification cycle (DCq) was calculated by subtracting the average Cq of the mock digest from
the digested Cq. The percentage of ssDNA was calculated using the following formula: % resection = 100/
[(1 1 2Dcq)/2], assuming 100% efficiency of the I-SceI meganuclease. Three technical replicates were carried
out for each experiment. Statistical analysis was carried out in GraphPad Prism, version 9.

VSG sequencing. For both the VSGup and VSGupDEX cell lines, 5 � 107 cells were harvested from unin-
duced and 7-day DSB-induced cells, and RNA was extracted using an RNeasy RNA extraction kit (Qiagen).
For the VSGup cell line, experiments were carried out in duplicate, and VSGupDEX experiments were carried
out in triplicate. First-strand synthesis was performed using 500 ng of RNA, SuperScript IV reverse transcrip-
tase (Thermo Fisher), and 200 nM “All-VSG 39-UTR” primer (GTGTTAAAATATATC) (59) that binds specifically
to the conserved 14-mer in the VSG 39 UTR. The product was cleaned up using AmPureXP beads (Beckman
Coulter). To specifically amplify all of the VSGs expressed in a population, conserved sequences in the 59
spliced leader and 39 UTR of every VSG mRNA were used (59). VSG cDNA was amplified by PCR using 1 mg
of cDNA, 0.2 mM deoxynucleoside triphosphates (dNTPs) (NEB), 1� PCR buffer (NEB), Phusion DNA poly-
merase (NEB), 200 nM spliced leader (SL) forward primer (ACAGTTTCTGTACTATATTG), and 200 nM SP6-
14mer reverse primer (GATTTAGGTGACACTATAGTGTTAAAATATATC) (59). The PCR conditions were 5 cycles
of 94°C for 30 s, 50°C for 30 s, and 72°C for 2 min, followed by 18 cycles of: 94°C for 30 s, 55°C for 30 s, and
72°C for 2 min carried out on a thermal cycler machine. The VSG PCR products were then cleaned up using
AmpPureXP beads (Beckman Coulter) according to the manufacturer’s protocols. Sequencing was carried
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out using a minimum of 4 mg product per sample at Beijing Genomics Institute (BGI) using the BGISEQ-500
platform in paired-end mode. The number of million reads per library was 9.21 for VSGup uninduced repli-
cate 1, 9.29 for VSGup uninduced replicate 2, 8.01 for VSGup induced replicate 1, 7.98 for VSGup induced repli-
cate 2, 9.50 for VSGupDEX uninduced replicate 1, 9.63 for VSGupDEX uninduced replicate 2, 8.42 for VSGupDEX

uninduced replicate 3, 8.02 for VSGupDEX induced replicate 1, 8.02 for VSGupDEX induced replicate 2, and 8.06
for VSGupDEX induced replicate 3. Reads were aligned to the T. brucei Lister 427 genome (6) with the mini-
chromosomal VSGs added from the VSGnome (7) using Bowtie2 (80) with “–very-sensitive” parameters and
BAM files generated using SAMtools (80). The overall alignment was 95.21% for VSGup uninduced replicate
1, 95.24% for VSGup uninduced replicate 2, 97.51% for VSGup induced replicate 1, 97.08% for VSGup induced
replicate 2, 97.08% for VSGupDEX uninduced replicate 1, 97.83% for VSGupDEX uninduced replicate 2, 97.81%
for VSGupDEX uninduced replicate 3, 98.41% for VSGupDEX induced replicate 1, 98.52% for VSGupDEX induced
replicate 2, and 99.08% for VSGupDEX for VSGupDEX induced replicate 3. Reads aligning to each transcript
were acquired using featureCounts (82), and EdgeR (83) was used to perform differential expression analysis
on all genes. The R script used to generate the volcano and genome plots and perform differential genome
analysis was adapted from reference 55.

Data availability. Whole-genome sequencing data have been deposited onto the ENA under study
accession number PRJEB43910 and unique study name ena-STUDY-INSTITUT PASTEUR-24-03-2021-19:28:45:
086-149. Transcriptomic data have been deposited onto the ENA under study accession number PRJEB49263.
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