

Analyzing Oxidative Stress in Murine Intestinal Organoids using Reactive Oxygen Species-Sensitive Fluorogenic Probe

Aline Stedman, Antonin Levy, Philippe Sansonetti, Giulia Nigro

▶ To cite this version:

Aline Stedman, Antonin Levy, Philippe Sansonetti, Giulia Nigro. Analyzing Oxidative Stress in Murine Intestinal Organoids using Reactive Oxygen Species-Sensitive Fluorogenic Probe. Journal of visualized experiments: JoVE, 2021, 175, 10.3791/62880. pasteur-03584354

HAL Id: pasteur-03584354 https://pasteur.hal.science/pasteur-03584354

Submitted on 22 Feb 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

- 1 TITLE:
- 2 Analyzing Oxidative Stress in Murine Intestinal Organoids Using Reactive Oxygen Species-3 Sensitive Fluorogenic Probe
- 4

5 AUTHORS AND AFFILIATIONS:

- 6 Aline Stedman^{1,a}, Antonin Levy^{1,b}, Philippe J. Sansonetti^{1,2,c}, Giulia Nigro^{1,d*}
- 7
- 8 ¹Molecular Microbial Pathogenesis Unit, Institut Pasteur, INSERM U1202, 75015 Paris, France
- 9 ²Chaire de Microbiologie et Maladies Infectieuses, Collège de France, 75231 Paris, France
- 10
- 11 Present address:
- 12 aSorbonne Université, CNRS UMR7622, INSERM U1156, Institut de Biologie Paris Seine (IBPS) -
- 13 Developmental Biology Unit, 75005 Paris, France.
- 14 ^bMolecular Radiotherapy, INSERM U1030, Gustave Roussy, Université Paris-Saclay, F-94805
- 15 Villejuif, France
- 16 ^cThe Center for Microbes, Development and Health, Institut Pasteur Shanghai and Chinese
- 17 Academy of Sciences, Shanghai, China
- 18 ^dMicroenvironment and Immunity Unit, Institut Pasteur, INSERM U1224, 75015 Paris, France
- 19
- 20 Email addresses of the authors:
- 21 Aline Stedman (<u>aline.stedman@sorbonne-universite.fr</u>)
- 22 Antonin Levy (antonin.levy@gustaveroussy.fr)
- 23 Philippe J. Sansonetti (philippe.sansonetti@ips.ac.cn)
- 24 Giulia Nigro (<u>giulia.nigro@pasteur.fr</u>)
- 25

28

- 26 *Email address of the corresponding author:
- 27 Giulia Nigro (giulia.nigro@pasteur.fr)

29 **KEYWORDS**:

- 30 Murine intestinal organoids, ROS detection, Flow cytometry analysis, Live imaging detection,
- 31 intestinal stem cells, ROS-sensitive dye, oxidative stress, fluorogenic probes
- 32

33 SUMMARY:

- 34 The present protocol describes a method to detect reactive oxygen species (ROS) in the intestinal
- 35 murine organoids using qualitative imaging and quantitative cytometry assays. This work can be
- 36 potentially extended to other fluorescent probes to test the effect of selected compounds on
- 37 ROS.
- 38

39 ABSTRACT:

- 40 Reactive oxygen species (ROS) play essential roles in intestinal homeostasis. ROS are natural by-
- 41 products of cell metabolism. They are produced in response to infection or injury at the mucosal
- 42 level as they are involved in antimicrobial responses and wound healing. They are also critical
- 43 secondary messengers, regulating several pathways, including cell growth and differentiation. On
- 44 the other hand, excessive ROS levels lead to oxidative stress, which can be deleterious for cells

45 and favor intestinal diseases like chronic inflammation or cancer. This work provides a 46 straightforward method to detect ROS in the intestinal murine organoids by live imaging and flow 47 cytometry, using a commercially available fluorogenic probe. Here the protocol describes 48 assaying the effect of compounds that modulate the redox balance in intestinal organoids and 49 detect ROS levels in specific intestinal cell types, exemplified here by the analysis of the intestinal 50 stem cells genetically labeled with GFP. This protocol may be used with other fluorescent probes. 51

52 INTRODUCTION:

53 Reactive oxygen species (ROS) are natural by-products of cellular metabolism. They can also be 54 actively produced by specialized enzymatic complexes such as the membrane-bound NADPH-55 Oxidases (NOX) and Dual Oxidases (DUOX), which generate superoxide anion and hydrogen 56 peroxide¹. By expressing antioxidant enzymes and ROS scavengers, cells can finely tune their 57 redox balance, thereby protecting tissue homeostasis². Although ROS can be highly toxic to the 58 cells and damage DNA, proteins, and lipids, they are crucial signaling molecules². In the intestinal 59 epithelium, moderate ROS levels are required for stem and progenitor cell proliferation³; high 60 ROS levels lead to their apoptosis⁴. Chronic oxidative stress is linked to many gastrointestinal 61 diseases, such as inflammatory bowel diseases or cancer. As an example, in a mouse model of 62 Wnt-driven intestinal cancer, elevated ROS production through activation of NADPH-oxidases was found to be required for cancer cells hyperproliferation^{5, 6}. Defining how intestinal cells and, 63 64 in particular, stem cells manage oxidative stress and how the cellular environment can impact 65 this capacity is essential to understand the etiology of this disease better⁷.

66

In a tissue, different cell types present a basal oxidative state that may vary according to their function and metabolism and the expression of varying levels of oxidant and antioxidant molecules^{4, 7}. Monitoring ROS *in vivo* is very challenging. Cell permeable dyes that emit fluorescence according to their redox state have been developed to visualize and measure cellular ROS in living cells and animals. However, their efficacy depends on their diffusion inside living tissues and their rapid readout, making them difficult to use in animal models⁸.

73

In the past, the study of the effect of compounds on ROS generation was done using cell lines, but this may not reflect the *in vivo* situation. The intestinal organoid model, developed by the group of Clevers⁹, enables the growth of intestinal primary cells *ex vivo*. Culture of intestinal crypts in matrices, in the presence of defined growth factors, leads to three-dimensional structures, called organoids (mini-gut), which reproduce the crypt-villus organization, with cells from the different epithelial lineages lining an internal lumen, and the intestinal stem cells residing in small crypts-like protrusions.

81

Here, taking advantage of this model, a simple method is described to study oxidative stress in
primary intestinal cells at the single-cell resolution by adding a commercially available ROSsensitive dye into the organoid culture medium.

85

Plate readers are often used to detect ROS production in a total population. This protocol uses
 flow cytometry or imaging assay to detect ROS in a particular cell type with genetically modified
 cells or specific antibody staining. This work involves mouse intestinal organoid culture and ROS

89	visuali	zation by confocal imaging and quantification by flow cytometry. Using Lgr5-GFP mice-		
90	derived small intestinal organoids, it has been shown that it is possible to specifically analyze the			
91	level of oxidative stress in intestinal stem cells upon different treatments. This protocol can be			
92	dinont	ide (MDD) ¹⁰ on the DOS belance offer stimulating arganeids with the selected		
95	compo	sunde		
94	compe	Julius.		
95	DPOTO			
90		mal experiments were carried out after approval by the Institut Pasteur Use Committee		
98	and h	the French Ministry of Agriculture no. 2016-0022 All the steps are performed inside a		
99	tissue	culture hood		
100	lissue			
101	1	Prenaration of reagents and materials for culturing intestinal organoids		
101	1.	reparation of reagents and materials for culturing intestinal organolas		
103	1.1.	To prepare growth culture medium, mix advanced DMFM/F-12 supplemented with 1x		
104	glutam	nine. 1x penicillin/streptomycin (P/S) solution. 10 mM of HEPES. 50 ng/mL of murine EGE.		
105	20 ug/	mL of murine Noggin 500 ng/mL of mouse R-Spondin1 (see Table of Materials). Leave the		
106	mediu	m at room temperature (RT) during the crypt's extraction.		
107	meara			
108	NOTE:	Freeze the unused medium in aliquots at -20 °C. Avoid freeze and thaw.		
109				
110	1.2.	Fill a 50 mL tube with 40 mL of Advanced DMEM/F-12 and keep it on ice.		
111				
112	NOTE:	Keep the unused medium at 4 °C. It will be used for organoids passaging.		
113				
114	<mark>1.3.</mark>	Pre-warm the cell culture plates (μ-Slide 8 well chambers and/or 96-well round bottom)		
115	<mark>in the</mark>	incubator at 37 °C.		
116				
117	1.4.	Thaw basement membrane matrix (BMM) (see Table of Materials) aliquots on ice (before		
118	startin	g the protocol or at least 1 h before plating crypts).		
119				
120	NOTE:	The BMM will quickly solidify if not kept cold.		
121				
122	1.5.	Prepare washing/flushing solution adding 1% penicillin-streptomycin solution to DPBS		
123	(DPBS-	·P/S).		
124				
125	1.6.	Fill a 100 mm petri-dish with 10 mL of cold DPBS-P/S. Fill six 15 mL tubes with 10 mL of		
126	DPBS a	and label them from F1 to F6.		
127				
128	1.7.	Prepare 30 mL of 10 mM EDTA solution by dilution from 0.5 M EDTA in DPBS. Fill two 15		
129	mL tub	pes with 10 mL of 10 mM EDTA, and label them E1 and E2.		
130				
131	1.8.	Keep all solutions pre-cooled at 4°C and keep them on the ice during the procedure.		
132				

2.	Intestinal organoids culture
2.1.	Sacrifice a 8-10 weeks-old Lgr5-EGEP-IRES-creERT2 (Lgr5-GEP) mouse according to the
natio	nal rules and regulations.
2.2.	Collect 5-8 cm of the jejunum encompassing the region between the duodenum (5 cm
rom	the stomach) and the ileum (10 cm from the cecum) and keep in cold DPBS-P/S on ice.
2.3.	Clean the intestinal content by flushing with 5-10 mL of cold DPBS-P/S.
NOTE	: Home-made flushing syringes can be obtained by plugging a 200 μ L tip onto a 10 mL
syring	ge nozzle.
ว /	Onen the intesting longitudingly using hall tip spissors (see Table of Materials) (to
4. 	Open the intestine longitudinally using ball tip scissors (see Table of Materials) (to
preve	
2.5.	Using forceps, transfer the tissue into a petri dish containing cold DPBS-P/S at room
temp	erature and shake it to rinse.
2.6.	With a plastic Pasteur pipette, grab the intestine by aspiration and transfer it into a 15 mL
tube	labeled E1 containing 10 mL cold 10 mM EDTA.
<u></u>	la sent de a la time a and in substance instance fan 10 min
2.7.	invert the tube 3 times and incubate on ice for 10 min.
2.8.	Using a plastic Pasteur pipette, transfer the tissue in tube F1 containing 10 mL DPBS.
Vorte	ex for 2 min (on normal vortex, holding the tube by hand and ensuring that the intestine
swirls	s nicely).
2.9.	Put 10 μL of the fraction in a petri dish and assess the quality of the fraction under a
micro	oscope.
ΝΟΤΕ	· All vortex steps are performed at maximum speed, and the quality of each fraction should
be as	sessed under the microscope (Figure 1).
2.10.	With a plastic Pasteur pipette, grab the intestine by aspiration and transfer it in tube F2
conta	nining 10 mL DPBS and vortex for 2 min.
2.11.	Repeat step 2.10, transferring the tissue in tube F3 containing 10 mL DPBS and vortex for
2 mir	h.
2 1 2	Repeat EDTA incubation as in step 2.6, transferring the tissue in tube F2 containing 10
mM I	-DTA.
2.13.	Invert the tube 3 times and incubate on ice for 5 min.

177		
178	2.14.	Repeat step 2.10, transferring the tissue in tube F4 containing 10 mL DPBS and vortex for
179	3 min.	
180		
181	2.15.	Repeat step 2.14, transferring the tissue in tube F5 containing 10 mL DPBS and vortex for
182	3 min.	
183		
184	<mark>2.16.</mark>	Repeat step 2.15, transferring the tissue in tube F6 containing 10 mL DPBS and vortex for
185	<mark>3 min.</mark>	
186		
187	<mark>2.17.</mark>	Combine the best fractions filtering by gravity through a 70 µm cell strainer into a 50 mL
188	<mark>tube (c</mark>	on ice) to eliminate villi and significant debris.
189		
190	NOTE:	Usually, F5 and F6 are the fractions containing numerous crypts and less debris.
191		
192	<mark>2.18.</mark>	Spin the crypts at 150 x g at 4 °C for 3 min.
193		
194	<mark>2.19.</mark>	Empty the tube, disrupt the pellet mechanically, and add 5 mL of cold DMEM/F12.
195	2.20	
196	2.20.	Put 10 µL of the suspension in a petri dish and count the number of crypts present in the
197	aliquot	manually under a microscope.
198	NOTE.	De net equat single calle exempli debuis
199	NOTE:	Do not count single cells of small debris.
200	2 21	Calculate the volume (λ) of crute suspension required in μ , considering that 200 crutes
201	z.zi.	tod per well. W is the number of wells, and N is the number of crypts counted out of 10.
202		ted per weil, wills the number of weils, and wills the number of crypts counted out of 10
203	μεσιι	
204	NOTE	$V = 300 \times W \times 10/N$ Then transfer the solution to a new 15 mL tube. If a small volume is
205	used in	the planned experiment a 1.5 ml centrifuge tube can be used
200	useun	r the planned experiment, a 1.5 me centinage tabe can be abed.
208	2.22	Spin the crypts at 200 x a at 4 °C for 3 min.
209		
210	2.23.	Carefully remove the supernatant using a pipette.
211		
212	2.24.	Mechanically disrupt the pellet and gently add growth culture medium to obtain a
213	concer	itration of 90 crypts/µL.
214		
215	2.25.	Add 2 volumes of undiluted BMM to have a final concentration of 30 crypts/µL. Carefully
216	pipette	e up and down without introducing air bubbles into the mix.
217		
218	NOTE:	Always keep the tube on ice to avoid BMM solidification.
219		

220 2.26. Plate 10 μL of the crypts/BMM mix into each well. For Flow cytometry analysis, use round 221 bottom 96-well plates. Distribute 10 μL at the center of each well as a dome. For imaging, use μ 222 slide 8 well (see **Table of Materials**) and deposit the 10 μL as a thin layer.
 223

223

225

228

230

232

236

238

241

246

248

251

NOTE: Plate the organoids as a thin layer for the imaging assay to enable their in-depth imaging.

226 2.27. Leave the plate for 5 min at RT to allow the BMM to solidify. Place the plate in the
 227 incubator at 37 °C and 5% CO₂ for 15 min.

229 2.28. Add 250 μL of growth medium into each well, taking care not to detach the BMM.

231 **2.29.** Place the plates in the incubator at 37 °C and 5% CO₂.

2.30. Perform the ROS analysis between days 4 and 6 of culture. Otherwise, change the medium
and split the organoids after the appearance of several and long budding structures and when
dead cells accumulate into the organoids lumens.

237 **3.** Organoids passaging

3.1. Start passaging small intestinal organoids from the 6th day of culture, when significant
budding structures have formed, and the organoids lumens have become dark.

NOTE: The organoid's lumen becomes dark due to the accumulation of dead cells, debris, and mucus. Avoid letting the organoids overgrow before splitting. The splitting ratio depends on the organoids' growth. Passaging the organoids with a ratio of 1:2 at day 6 and 1:3 at day 10 is recommended.

247 3.2. Fill a 15 mL tube with 4 mL of cold Advanced DMEM/F-12 and keep it on ice.

NOTE: Here, volumes for a 96-well culture plate are provided. If a different format is used, adjustthe volume accordingly.

252 3.3. Carefully aspirate the medium with a pipette or a vacuum pump from the wells without253 touching the BMM domes, and discard it.

254

257

255 3.4. Add 100 μ L of cold Advanced DMEM/F-12 per well. Pipette up and down to break the 256 BMM and transfer the content of the well into the 15 mL tube.

258 3.5. Wash the well with 200 μL cold Advanced DMEM/F-12 and collect it in the same tube.

NOTE: If passaging multiple wells from the same experimental condition, the contents of the
wells can be pooled in the same 15 mL collecting tube.

262

263 3.6. Spin the 15 mL collecting tube at $100 \times g$ for 5 min at 4°C.

264 3.7. 265 Discard the supernatant and add 1mL of cold Advanced DMEM/F-12 to the pellet. Using 266 a P1000 tip, take up a P10 tip (without filter) and pipette up and down at least 20 times. 267 268 3.8. Add 4 mL of cold Advanced DMEM/F-12 to the tube. Spin at $300 \times q$ for 5 min at 4°C. 269 270 3.9. Aspirate the supernatant with a pipette or a vacuum pump without disturbing the pellet. 271 Then, disrupt the pellet mechanically. 272 273 3.10. Add BMM diluted in growth culture medium (2:1 ratio). Carefully pipette up and down 274 without introducing air bubbles into the mix. 275 276 Plate 10 µL of the crypts/BMM mix into each well. 3.11. 277 278 3.12. Keep the plate for 5 min at RT to allow the BMM to solidify. Place the plate in the 279 incubator at 37 °C and 5% CO₂ for 15 min. 280 281 3.13. Add 250 µL of growth medium into each well. 282 283 NOTE: Be careful not to detach the BMM. 284 285 Place the plates in the incubator at 37 °C and 5% CO₂. 3.14. 286 287 Preparation of reagents and materials to assess oxidative stress in intestinal organoids 4. 288 289 4.1. Prepare a 250 mM stock solution of inhibitor N-acetylcysteine (NAC) (see Table of 290 Materials), resuspend 10 mg with 245 µL of DPBS. Use at 1 mM final concentration. 291 292 4.2. Prepare a 50 mM stock solution of inducer Tert-butyl hydroperoxide (tBHP), 70% in water, 293 dilute 3.22 µL with 496.8 µL of DPBS. Use at 200 µM final concentration. 294 295 4.3. For the Flow cytometry study, prepare a 250 µM working solution of a fluorogenic probe 296 (see Table of Materials) by diluting the stock solution 1/10 in DMSO. Use at 1 μ M final 297 concentration. 298 299 NOTE: As indicated in the manufacturer's instructions, the fluorogenic probe is sensitive to light 300 and oxygen. Stocks and aliquots should not be open and close too many times. 301 302 For the imaging study, prepare a 1.25 mM working solution of the fluorogenic probe by 4.4. 303 diluting the stock solution 1/2 in DMSO. Use at 5 μ M final concentration. 304 Prepare a final solution of 0.1 µg/mL DAPI in DPBS, to be used for dead cell discrimination 305 4.5. 306 in the Flow cytometry assay. 307

308	4.6.	Dilute Hoechst 33342 to 1.25 mg/mL in DPBS. Use at 5 µg/mL final concentration to be	
309	used for nuclear staining in the imaging assay.		
310			
311	4.7.	Warm DMEM without phenol red at 37 °C.	

312

317

319

322

324

327

329

332

335

337

340

343

ithout phenoi red at 37

313 NOTE: These steps describe using negative and positive controls that must be included in any 314 assays, using the conditions indicated in Figure 2A. The assay can be used to test anti- or pro-315 oxidant compounds. The steps are the same, and the only difference is when the compounds are 316 added before using the fluorogenic dye.

318 5. Visualization of oxidative stress in 3D organoids by confocal microscopy

320 5.1. Take the organoids plated in the μ -Slide 8 well chambers and add 1 μ L NAC stock solution 321 in the corresponding wells to obtain a final concentration of 1 mM.

- 323 Incubate for 1 h at 37 °C and 5% CO₂. 5.2.
- 325 Add 1 µL tBHP stock solution in the corresponding wells to obtain a final concentration of 5.3. 326 200 μM.
- 328 5.4. Incubate for 30 min at 37 °C and 5% CO₂.
- 330 5.5. Add 1 µL per well of the 1.25 mM dilution of the fluorogenic probe to obtain a final 331 concentration of 5 μM.
- 333 Add 1 µL per well of the 1.25 mg/mL dilution of Hoescht to obtain a final concentration 5.6. 334 of 5 µg/mL.
- 336 5.7. Incubate for 30 min at 37 °C and 5% CO₂.
- 338 Remove the medium without disturbing the BMM. Gently, add 250 µL of warm DMEM 5.8. 339 without phenol red.

341 NOTE: If a long-term acquisition is planned, add growth factors compounds to DMEM without 342 phenol red.

344 5.9. Image the organoids using a confocal microscope equipped with a thermic chamber and 345 gas supply that detects the fluorogenic probe (ROS).

- 346
- 347 NOTE: The excitation/emission (ex/em) for the fluorogenic probe is 644/665, ex/em for Hoechst 348 (nuclei) is 361/486, and ex/em for GFP (intestinal stem cell from the Lgr5-GFP mice) is 488/510. 349 A 63x oil immersion objective is used to detect signals in stem cells. Do not change laser settings 350 between samples. A 20x objective might be used to allow an overview of ROS production.
- 351

352	5.10. Use the positive control to set up laser intensity and time exposure for the ROS signal and
353	check that this signal is lower in the negative control.
354	
355	5.11. Using eyepiece screen the slide to identify the organoids expressing GFP and adjust laser
356	intensity.
357	
358	NOTE: This step is manually performed. The eyepiece screens the slide to identify the GFP
359	expressing organoids.
360	
361	5.12. Define positions to obtain a stitched image of the whole organoid. Setup a z-stack of 25
362	μ m (step size 5 μm) to get a section of the organoids showing one layer of cells.
363	
364	NOTE: Refer to the microscope user manual to optimize the setup. Using living cells, the
365	acquisition should be done within 1 h after the end of the incubation.
366	
367	5.13. Open the images in an open-source image processing software (see Table of Materials).
368	
369	5.14. Go through the z-stack and choose the section in which the middle of the organoids is
370	well represented and create a new image with the selected area.
371	
372	5.15. Quantify the images as per steps 5.15.1 – 5.15.5.
373	
374	5.15.1. Select the freehand line tool.
375	
376	5.15.2. Draw a line following the nuclei.
377	
378	NOTE: Select only regions presenting GFP-positive cells if only stem cells are analyzed.
379	
380	5.15.3. Increase the line width to cover the cell layer with the line without including the luminal
381	debris.
382	
383	5.15.4. Select the channel for the ROS signal and measure the fluorescence intensity in the
384	selected region and annotate the values.
385	
386	5.15.5. Draw a line where there is no signal and measure the fluorescent intensity of the
387	background that will be subtracted to the previous value to get the final intensity.
388	
389	Quantification of the oxidative stress on the dissociated organoids using flow cytometer
390	
391	6.1. Add 1 μL NAC stock solution in the wells for negative controls to obtain a final
392	concentration of 1 mM.
393	
394 205	NUTE: Use the organolas plated in the 96-well round-bottom plates.
395	

396 397	6.2.	Incubate for 1 h at 37 °C and 5% CO ₂ .
398	6.3.	Add 1 uL tBHP stock solution in the corresponding wells to obtain a final concentration of
399	200 uN	
400	<u></u>	
401	64	Incubate for 30 min at 37 °C and 5% CO_2
402	0	
403	6.5.	With a multichannel pipette, remove the medium without disturbing the attached BMM
404	and tra	ansfer it to another 96-well round bottom plate. Keep this plate aside.
405		
406	6.6.	Add 100 µL of trypsin, and with a multichannel pipette, pipette up and down at least five
407	times t	o destroy the BMM.
408		
409	6.7.	Incubate for not more than 5 min at 37 °C and 5% CO ₂ .
410		
411	6.8.	With a multichannel pipette, pipette up and down at least five times to dissociate the
412	organd	pids.
413		
414	<mark>6.9.</mark>	Spin at 300 x g for 5 min at RT.
415		
416	<u>6.10.</u>	Discard the supernatant by inverting the plate. Add back the medium collected in step 6.3
417	to the	corresponding wells and resuspend the cells by pipetting up and down 5 times.
418		
419	<mark>6.11.</mark>	Add the fluorogenic probe at the final concentration of 1 μ M. Add 1 μ L per well from the
420	<mark>250 μΝ</mark>	A dilution and incubate for 30 min at 37 °C and 5% CO ₂ .
421		
422	NOTE:	Do not add the fluorogenic probe to the wells needed for the instrument's settings (Figure
423	2B).	
424		
425	<mark>6.12.</mark>	Spin at 300 x g for 5 min at RT.
426		
427	6.13.	Resuspend the cells with 250 μ L of 0.1 μ g/mL DAPI solution. Transfer the samples in the
428	<mark>proper</mark>	Flow cytometry tubes, keep the tubes on ice, and proceed with the analysis.
429		
430	NOTE:	Add PBS instead of DAPI to the wells needed for the instrument's settings (Figure 2B).
431		
432	<mark>6.14.</mark>	Optimize the forward and side scatter voltage settings on unstained control and laser
433	voltage	es for each fluorophore using mono-stained samples.
434		
435	<u>6.15.</u>	Using an appropriate gating strategy (Figure 4A), collect a minimum of 20,000 events.
436		
437	NOTE:	50,000 events are preferred. Detailed acquisition settings vary according to the instrument
438	used.	
439		

440 **REPRESENTATIVE RESULTS:**

As a proof of concept of the described protocol, the crypts obtained from the Lgr5-eGFP-IRES-CreERT2 mouse line were used in which intestinal stem cells display mosaic GFP expression, which was established by Barker et al., to characterize intestinal stem cells¹⁰ initially and allow to map these cells based on their GFP expression. A model is thereby provided to compare ROS levels in a specific cell type population upon different treatments. A ROS inhibitor (NAC) was used, and an inducer (tBHP), known to act on cellular ROS to visualize changes in their levels.

447

448 Figures 1A and 1B show representative images of fractions F1 and F4 obtained during the crypts 449 extraction procedure for the intestinal organoid culture. Each fraction must be checked under a 450 microscope or binocular during the extraction procedure to follow crypts detachment and define 451 those fractions enriched in crypts, rather than villi, single cells, or debris. The chosen fractions 452 are then pooled together and passed through a 70 µm cell strainer to remove all the remaining 453 fragments of villi and obtain a preparation with only crypts (Figure 1C). The crypts start to close 454 within a few hours of embedding in BMM, and at D1, round organoids were observed (Figure 455 **1D**). After 3-5 days, the organoids will appear with budding structures representing the "newly 456 formed crypts." The organoids are ready for ROS analysis (Figures 1E and 1F).

457

458 In the protocol of imaging oxidative stress by confocal microscopy, the slide containing the 459 organoids, incubated with the probe, was imaged with a confocal fluorescence microscope equipped with lasers and filters to detect the Hoechst (ex/em: 361/486), the GFP (ex/em: 460 461 488/510) and the fluorogenic probe (ex/em): 644/665) signals. A confocal microscope equipped 462 with 20x air and 63x oil immersion objective allowed the visualization of ROS. In Lgr5-GFP mice, 463 the GFP-positive cells are Lgr5-expressing intestinal stem cells. Supplementary Figure 1 shows 464 representative images obtained with the 20x objective providing an overview of the ROS in 465 several organoids. Figure 3 shows representative images, obtained with the 63x oil objective, of 466 intestinal organoids expressing GFP, non-treated (NT), or pre-incubated or not with the ROS 467 inhibitor NAC, and stimulated or not for 30 min with the ROS inducer tBHP.

468

In the presence of the inhibitor, the only signal from the dead cells contained in the lumen of the organoid is visible. In the non-treated organoid, the basal ROS levels are shown, proving that stem cells produce higher ROS than differentiated cells (according to the microscope settings, the ROS signal might also be visualized in non-stem cells). GFP-positive cells present a more significant cytoplasmic signal with the inducer in the presence of the fluorogenic probe, demonstrating that ROS levels increase particularly in stem cells after treatment.

475

476 Figure 4 shows representative results obtained when analyzing ROS production in intestinal 477 organoids stimulated or not with ROS inhibitor or inducer, using a Flow cytometer equipped with 478 405 nm, 488 nm, and 630 nm lasers. The gating strategy presented in Figure 4A makes it possible 479 to evaluate ROS production at the level of the whole organoids cell population, defining intact 480 and living cells based on physical parameters and DAPI exclusion (SSC-A vs. FSC-A and DAPI vs. 481 FSC-A) and FSC-H vs. FSC-A) or only in the intestinal stem cells, further gated on cells with GFP 482 high signal. Figure 4B shows the ROS levels in the total population upon collection of 50,000 483 events. Basal ROS levels in the non-treated (NT) cells decrease after stimulation with the inhibitor

484 (NAC), and on the contrary, increase after challenge with the inducer (tBHP). Cells pre-treated 485 with the inhibitor and then stimulated with the inducer present a lower level than those 486 stimulated with the inducer alone. The results were then analyzed using appropriate software, 487 obtaining the median fluorescent intensity (MFI). The obtained values are presented as a ratio 488 over the non-treated cells, as shown in the graph presented on the right of Figure 4B. Figure 4C 489 shows the same parameters described in Figure 4B in the stem cells, gated as GFP positive cells, 490 showing a 3.5-fold decrease in ROS level upon NAC treatment and 4-fold increase upon tBHP 491 treatment over non-stimulated cells. This result demonstrates that following this protocol, it is 492 possible to quantify differences in ROS levels at the level of the whole cell population or in GFP 493 positive stem cells upon their treatment of the organoids with specific compounds.

494

495 **FIGURE LEGENDS**:

496

Figure 1: Representative images of crypts and organoids. (A) Example of fraction F1 obtained
after the first incubation with EDTA, enriched in villi (square), with some debris (star) and crypts
(circle). (B) Example of fraction F4 enriched in crypts. (C) Suspension presenting only isolated
crypts obtained after the filtration with a 70 µm cell strainer (scale bar, 200 µm). (D, E, and F).
Typical organoids were obtained after 1, 3, and 5 days respectively, after embedding the crypts
in BMM (scale bar, 100 µm).

503

Figure 2: Outline of the experimental plan. (A) Conditions used in this protocol included in each
 experiment: non-treated wells (NT), inducer-treated wells (tert-Butyl hydroperoxide - tBHP),
 inhibitor-treated wells (N-acetyl cysteine - NAC), and inhibitor- and inducer-treated wells (NAC tBHP). (B) Plate format for the flow cytometry assay. Each condition is plated in triplicate (line A).
 Lines B, C, and D include wells for flow cytometer setting with only the fluorogenic probe, only
 DAPI, or non-stained (NS) samples.

510

511 Figure 3: Representative confocal images of ROS staining in organoids. Stitched images were 512 obtained with a confocal microscope equipped with a high-speed EMCCD Camera, 63x/1.4 oil 513 objective, and slit 35 µm, using the lasers 405, 488, 640, and filters 460/50, 535/50, 700/75 to 514 acquire Hoechst, GFP, and the fluorogenic probe respectively. Confocal optical sections of 515 organoids non-treated (NT), treated with the ROS-inhibitor (NAC), with the ROS-inducer (tBHP), 516 or pre-treated with the ROS inhibitor and then stimulated with the ROS-inducer (NAC-tBHP). In 517 grey, nuclei stained with Hoechst; in green, Lgr5-GFP cells; in red, the fluorogenic probe (scale 518 bar, 50 μm).

519

520 Figure 4: Representative flow cytometry analysis of ROS in cells derived from organoids. (A) 521 Schematic representation of the gating strategy used in flow cytometry analysis: gating for cell 522 shape (exclusion of dead cells and debris accumulated in the organoids lumen), gating for living 523 cells (cells not incorporating DAPI-laser 405), gating for single cells (doublet discrimination), and 524 stem cells (GFP positive cells-laser 488) (FSC: forward scatter, SSC: side scatter). The ROS signal 525 has been acquired using the 630 laser. (B) On the left, histograms were obtained with an 526 appropriate software showing the intensity ROS signals for the total living population (after 527 gating around 10,000 events per condition) in the different samples NT: non-treated; NAC:

- 528 inhibitor-treated; tBHP inducer-treated; NAC-tBHP: inhibitor- and inducer-treated. On the right,
- 529 a typical example of the calculated ratio for MFI values over the NT samples obtained during an
- experiment starting from 3 samples per condition (mean \pm SD) (*** P = 0.0003). (C) Same as in B
- for the GFP positive population (1,000 events per condition) (* P = 0.02).
- 532

533 Supplementary Figure 1: Representative confocal images of ROS staining in organoids. Stitched 534 images were obtained with a confocal microscope equipped with a high-speed EMCCD Camera, 535 20x objective, and slit 35 μm, using the lasers 405, 488, 640, and filters 460/50, 535/50, 700/75 536 to acquire Hoechst, GFP, and fluorogenic probe respectively. Confocal optical sections of 537 organoids non-treated (NT), treated with the ROS-inhibitor (NAC), with the ROS-inducer (tBHP), 538 or pre-treated with the ROS inhibitor and then stimulated with the ROS-inducer (NAC-tBHP). In 539 grey, nuclei stained with Hoechst; in green, Lgr5-GFP cells; in red, fluorogenic probe (scale bar, 540 100 µm).

541

542 **DISCUSSION:**

543 This work provides a step-by-step protocol to isolate murine jejunal crypts, culture them into 3D 544 organoids, and analyze ROS in organoids by combining a ROS-sensitive fluorogenic probe with 545 qualitative microscopy imaging of whole organoids and quantitative ROS measurement using 546 flow cytometry on single cells following organoid dissociation.

547

The first critical step in this method is the crypts extraction procedure. Indeed, the quality of 548 549 crypts preparation is the key to successful organoids formation. It is therefore essential to obtain 550 fractions with enriched crypts and few cellular debris or dying cells. The crypts may be found in 551 different fractions to those indicated in the protocol, as dissociation may vary with the age and 552 health status of the mouse. The number of EDTA incubations can be modified accordingly. If 553 crypts do not seem to be detaching after fraction 4, a 3 min EDTA incubation needs to be 554 repeated. Inversely, suppose crypts already detach after the first EDTA incubation. In that case, 555 the second EDTA incubation may not be necessary, and the sequential vortex steps in DPBS 556 should be done until fractions are obtained with enough crypts devoid of debris. If no dissociation occurs, make sure DPBS without Ca²⁺ and Mg²⁺ is used to prepare the collecting tubes, and 557 558 replace EDTA with a new solution. Crypts are fragile structures, so they should be kept as much 559 as possible on ice and rapidly plated after isolation.

560

561 Different plates and drop volumes may be used to cultivate organoids. For instance, crypts can 562 also be plated in 24 or 48 well plates after adjusting the crypts concentration, the volume of the 563 BMM drop, and the medium added in each well. Multiple drops may be plated in the same well 564 in a 12- or 6-well plate. Generally, crypts decrease in size and round up to form small round 565 organoids at day 1 of culture. Formation of new buds should be observed 2-3 days after the 566 plating.

567

568 For studying changes in ROS levels in intestinal stem cells, the advantage of the Lgr5-eGFP-IRES-569 CreERT2 mouse line was taken. A caveat of this model is the selective silencing of the knocked-in

- allele and the consequent mosaicism of the GFP expression, which can be absent in patches of
- 571 stem cells or entire crypts. During the imaging protocol, not all the organoids will present stem

572 cells expressing GFP; therefore, not all the organoids will be considered unless it is possible to 573 rely on the spatial position of the cells. Instead, this must be considered when analyzing the GFP 574 negative cell population in the Flow cytometry protocol. Indeed, as it is impossible to rely on the 575 spatial position, the GFP-negative population will be composed of non-stem cells and GFP-576 negative stem cells.

577

Here a protocol is provided for the qualitative evaluation of ROS in intestinal organoids. A critical aspect for this part is linked to the working distance of the objectives that are used. The organoids are grown in BMM; they are not attached to the bottom of the well, introducing a distance from the objective focus plan. For this reason, it is critical to plate the organoids in a thin layer of BMM, to minimize this issue. Even in this optimized setting, not all the organoids will be in the correct position to be adequately imaged.

584

A quantitative analysis of the images might be done using an appropriate image analysis software, evaluating the mean fluorescent intensity of the images in the ROS signal channel as described in the protocol. For this purpose, it is necessary to acquire a high number of images to get a sufficient number of events to be statistically significant. As mentioned before, using the Lgr5-GFP mice, not all the organoids will express GFP, requiring a considerable number of samples to be imaged.

591

592 During the flow cytometry procedure, a critical step is the dissociation of the organoids into single 593 cells. If the dissociation is too harsh, cells may die and release DNA. A rock-inhibitor, Y-27632, to 594 counteract anoikis, and DNAse may be added to the dissociation buffer if they do not interfere 595 with the studied pathway. Trypsin dilution or reduced incubation times may be used.

596

597 Finally, it is crucial to define the best time point to analyze ROS production after the different 598 treatments (anti- or pro-oxidant) tested. In the case of drugs that rapidly induce ROS within 599 minutes or hours, the imaging assay can be used to determine when there is the maximal 600 induction by adding the fluorogenic probe before the tested compounds. The fluorescence 601 intensity of the probe after organoids stimulation may vary between experiments performed on 602 different days. Therefore, it is crucial always to calculate the ratio with the non-stimulated 603 samples and add controls (oxidant /antioxidant) to verify the reactivity of the probe. NAC and 604 tBHP were used as negative and positive controls as they gave the most conclusive results. Still, 605 other reagents may be used, such as resveratrol as an antioxidant or paraguat/menadione as 606 oxidants. Incubating cells for too long with the fluorogenic probe may be toxic and even modify 607 the cell redox balance, so incubation times must also be tightly controlled. Cells stained with the 608 probe may be fixed and analyzed a few hours after. In this case, for the flow cytometry analysis, 609 the DAPI cannot discriminate between living and dead cells. Instead, a fixable dye for live/dead 610 discrimination should be used before fixation.

611

Organoids may also be grown for several days (more than 7), but this will increase the number of living and proliferative cells and the dead cells that accumulate in the organoids lumens, generating high background, particularly in the imaging assay. If an abnormal increase in the fluorogenic probe signal is observed, ensure that the solution used to resuspend stimulating

- 616 compounds is not pro-oxidant per se (i.e., ethanol).
- 617

618 One concern to consider when using this protocol is that live imaging and cell dissociation

619 followed by flow cytometry may induce oxidative stress in cells and generate a background signal.

- 620 Fixation of the organoids may be considered according to the experiment. Another limitation
- arises from the difficulty in the in-depth imaging of organoids grown in a 3D matrix. As mentioned
- 622 in the protocol, the BMM should be distributed on the slide as a thin layer to limit this aspect.
- 623

624 Here, the protocol is designed using a commercially available fluorogenic dye. Its primary 625 advantage is its compatibility with multi-color staining of organoids so that specific cell types. For 626 instance, antibody staining for cell surface markers immediately after the fluorogenic probe 627 incubation may be done to detect particular sub-types. However, the probe is not specific to a 628 specific ROS species as it can detect Superoxide, Nitrite peroxide, and hydrogen peroxide¹¹⁻¹³. 629 For this reason, it is generally used to detect global oxidative stress. Although commercialized as 630 a cytosolic-only probe, the selected fluorogenic probe could be found to reach mitochondria¹⁴. 631 As its specificity can vary between different cellular contexts, we suggest using other 632 complementary approaches to measure ROS when possible. Alternative dyes such as probes 633 specific to detect mitochondria-generated superoxide anions could be used¹⁰. A repertoire of 634 chemiluminescent probes was also developed to detect specific ROS species with high sensitivity, such as luciferin-based probes^{15, 16}. These have the advantage of being compatible with *in vivo* 635 imaging but can't be used to map ROS production with specific cell types. Finally, this protocol 636 637 can be applied to other types of organoids, for instance, colonic organoids derived from human 638 biopsies. In this case, the culture growth medium should be adapted accordingly¹⁷. To further 639 analyze the redox machinery within intestinal cells, the organoids culture and dissociation 640 procedures described in this protocol can be combined with transcriptomic and proteomic 641 approaches on whole organoids or Fluorescence activated cell sorted (FACS) organoids cells.

642

643

644 **ACKNOWLEDGMENTS**:

This work was supported by French National Research Agency (ANR) grant 17-CE14-0022 (i-546 Stress).

647

648 **DISCLOSURES:**

649 The authors have nothing to disclose.

650 651 **REFERENCES:**

- Aviello, G., Knaus, U. G. NADPH oxidases and ROS signaling in the gastrointestinal tract
 review-article. *Mucosal Immunology*. **11** (4), 1011–1023 (2018).
- Holmström, K. M., Finkel, T. Cellular mechanisms and physiological consequences of redox dependent signalling. *Nature Reviews Molecular Cell Biology*. **15** (6), 411–421 (2014).
- van der Post, S., Birchenough, G. M. H., Held, J. M. NOX1-dependent redox signaling
 potentiates colonic stem cell proliferation to adapt to the intestinal microbiota by linking
 EGFR and TLR activation. *Cell Reports.* **35** (1), 108949 (2021).
- 659 4. Schieber, M., Chandel, N. S. ROS function in redox signaling and oxidative stress. *Current*

660 *Biology*. **24** (10), 453–462 (2014).

- 661 5. Myant, K. B. et al. ROS production and NF-κB activation triggered by RAC1 facilitate WNT662 driven intestinal stem cell proliferation and colorectal cancer initiation. *Cell Stem Cell*. 12
 663 (6), 761–773 (2013).
- 6. Juhasz, A. et al. NADPH oxidase 1 supports proliferation of colon cancer cells by modulating
 reactive oxygen species-dependent signal transduction. *Journal of Biological Chemistry*.
 292 (19), 7866–7887 (2017).
- Aviello, G., Knaus, U. G. ROS in gastrointestinal inflammation: Rescue Or Sabotage? *British Journal of Pharmacology*. **174** (12), 1704–1718 (2017).
- 669 8. Gomes, A., Fernandes, E., Lima, J. L. F. C. Fluorescence probes used for detection of
 670 reactive oxygen species. *Journal of Biochemical and Biophysical Methods*. 65 (2–3), 45–80
 671 (2005).
- 672 9. Sato, T. et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a 673 mesenchymal niche. *Nature*. **459** (7244), 262–265 (2009).
- Levy, A. et al. Innate immune receptor NOD2 mediates LGR5+ intestinal stem cell
 protection against ROS cytotoxicity via mitophagy stimulation. *Proceedings of the National Academy of Sciences.* **117** (4), 1994–2003 (2020).
- 677 11. Choi, H., Yang, Z., Weisshaar, J. C. Single-cell, real-time detection of oxidative stress
 678 induced in escherichia coli by the antimicrobial peptide CM15. *Proceedings of the National*679 *Academy of Sciences of the United States of America*. **112** (3), E303–E310 (2015).
- Amri, F., Ghouili, I., Amri, M., Carrier, A., Masmoudi-Kouki, O. Neuroglobin protects
 astroglial cells from hydrogen peroxide-induced oxidative stress and apoptotic cell death. *Journal of Neurochemistry.* 140 (1), 151–169 (2017).
- Ahn, H. Y. et al. Two-Photon Fluorescence Microscopy Imaging of Cellular Oxidative Stress
 Using Profluorescent Nitroxides. *Journal of the American Chemical Society*. **134** (10), 4721–
 4730 (2012).
- Bidaux, G. et al. Epidermal TRPM8 channel isoform controls the balance between
 keratinocyte proliferation and differentiation in a cold-dependent manner. *Proceedings of the National Academy of Sciences.* **112** (26), E3345–E3354 (2015).
- Van de Bittner, G. C., Dubikovskaya, E. A., Bertozzi, C. R., Chang, C. J. In vivo imaging of
 hydrogen peroxide production in a murine tumor model with a chemoselective
 bioluminescent reporter. *Proceedings of the National Academy of Sciences.* 107 (50),
 21316 LP 21321 (2010).
- Rabbani, P. S., Abdou, S. A., Sultan, D. L., Kwong, J., Duckworth, A., Ceradini, D. J. In vivo
 imaging of reactive oxygen species in a murine wound model. *Journal of Visualized Experiments.* 141, e58450 (2018).
- Sato, T. et al. Long-term expansion of epithelial organoids from human colon, adenoma,
 adenocarcinoma, and Barrett's epithelium. *Gastroenterology*. 141 (5), 1762–1772 (2011).
- 698 699

Control	Non-treated	NT
Positive signal	tert-Butyl hydroperoxide	tBHP
Middle signal	N-acetyl cysteine and tert-Butyl hydroperoxide	NAC-tBHP
Negative signal	N-acetyl cysteine	NAC

А

....

NAC-tBHP

Fluorogenic Probe

Nuclei

Lgr5-GFP

Fluorogenic Probe

NAC

tBHP

NAC-tBHP

Mice

Lgr5-EGFP-IRES-creERT2 (Lgr5-GFP)

Company The Jackson Laboratory+A3:B3

Catalog Number

Comments/Description

Growth culture medium	Company	Catalog Number	Stock Concentration
Advanced DMEM F12 (DMEM/F12)	ThermoFisher	12634010	
B-27 Supplement, minus vitamin A	ThermoFisher	12587010	stock: 50X
GlutaMAX (glutamine)	ThermoFisher	35050038	stock: 100x
Hepes	ThermoFisher	15630056	stock: 1M
Murine EGF	R&D	2028-EG-200	stock: 500 μg/mL in PBS
murine Noggin	R&D	1967-NG/CF	stock: 100 μg/mL in PBS
Murine R-spondin1	R&D	3474-RS-050	stock: 50 μg/mL in PBS
N-2 Supplement	ThermoFisher	17502048	stock: 100x
Penicillin-Streptomycin (P/S)	l hermoFisher	15140122	stock: 100x (10,000 units/mL of penicillin and 10,000 µg/mL of streptomycin)
Name of Material	Company	Catalog Number	Comments/Description
70 um cell strainer	Corning	352350	comments/Description
96-well round bottom	Corning	3799	
hall tin seissor	Eine Science Tools GMBH	1/086-09	
CellBOX® Deen Red Reagent	ThermoEisher	C10422	
DAPI (4' 6-diamidino-2-phénylindole	ThermoFisher	D1306	stock at 10 mg/ml
dichlorhydrate) (fluorgenic probe)	mermonisher	51300	
DPBS 1x no calcium no magnesium (DPBS)	ThermoFisher	14190144	
FLuoroBrite DMEM (<i>DMEM no phenol</i> red)	ThermoFisher	A1896701	
Hoechst 33342	ThermoFisher	H3570	stock at 10 mg/mL
Matrigel Growth Factor Reduced,	Corning	356231	once received thaw o/n in the fridge,
Phenol Red Free (<i>Basement</i>	0		keep for 1h on ice and, make 500 µL
Membrane Matrix)			aliquots and store at -20°C
u-Slide 8 Well chambers	Ibidi	80826	
N-acetylcysteine (NAC)	Sigma	A9165	
tert-Butyl hydroperoxide	Sigma	458139	
(tBCHP)solution (70%wt. In H2O2)			
TrypLE Express Enzyme (1X), no	ThermoFisher	12604013	
	Theree Cicher	45575020	
V 27622	Linermorisner	15575020	Deek inhibitor to be used to minimize
Y-27632	Sigma	10503	Rock-Inhibitor to be used to minimize
B			cell death upon tissue dissociation
Atturne Nut (Flaus Grament	The sum of Southern		Comments/Description
Attune NXT (Flow Cytometer)	I nermorischer		Flow cytometer analyzer
Fiji/imagej	nloads		images generation
FlowJo	BD Bioscience		FACS analysis
Observer.Z1	Zeiss		
Opterra (swept-field confocal)	Bruker		confocal system
high speed EMCCD Camera Evolve Delta 512	Photometrics		comotal system

Prism

GraphPad Software

statistical analysis