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Highlights: 15 

- Clostridioides difficile can form aggregate biofilms and surface-attached biofilms 16 

- Transition to a biofilm state is dependent on the production of c-di-GMP 17 

- Cyclic-di-GMP prevents flagellar motility and promotes type IV pili production 18 

- Initiation of biofilm formation requires metabolic adaptation for long-term viability 19 

- Metabolic reprogramming is controlled by major transition phase regulators  20 

 21 

  22 



Abstract: Clostridioides difficile is an opportunistic pathogen that causes by a high rate of 23 

recurrent infections. Persistence in the gastrointestinal tract is thought to be mediated by 24 

sporulation and/or biofilm formation. There is an increase interest in C. difficile biofilm formation 25 

and recent findings have provided a framework to model surface-attached biofilm formation. For 26 

in vitro biofilm formation, C. difficile must undergo a metabolic reprogramming as it enters 27 

stationary phase. This helps maintain long-term viability and increases responsiveness to signals 28 

leading to biofilm formation. Metabolic reprogramming and biofilm formation requires several 29 

regulatory factors and these overlap with the sporulation cascade. Despite recent advances, 30 

further research is needed to answer outstanding questions in the field. 31 

  32 



Introduction 33 

Clostridioides difficile is an opportunistic pathogen of rising public health concern due to 34 

increased resistance to the antibiotics used to treat the infections [1]. C. difficile infections (CDI) 35 

are a leading cause of hospital-acquired diarrhea and are typically associated with antibiotic-36 

induced dysbiosis [1]. Disruption of the microbiota changes the nutritional landscape of the gut 37 

and alters the concentration of microbial metabolites that have anti-C. difficile properties [2]. For 38 

example, secondary bile acids such as deoxycholate (DOCA) and short chain fatty acids (SCFA) are 39 

critical for colonization resistance against C. difficile [3]. Protective metabolites produced by the 40 

microbiota are slowly restored after completion of antibiotic treatment or fecal microbiota 41 

transplant. However, more than 30% of patients that received antibiotics to treat their first CDI 42 

relapse and 40% of the relapses are caused by the same strain that first infected the patient [1]. 43 

This suggests that C. difficile can persist in the gastrointestinal tract. 44 

Based on current evidence, persistence and recurrence is thought to be mediated by sporulation, 45 

biofilm formation, or a combination of the two [4][5]. Evidence for sporulation is based on the 46 

ability of spores to enter epithelial cells [6] and the inability of a non-sporulating spo0A-47 

inactivated strain to cause relapses [7]. However, relapses in C. difficile infections are only 48 

reduced when spore entry into epithelial cells is blocked [6] and spo0A controls other 49 

physiological processes such as metabolism and biofilm-formation [8]. These findings strongly 50 

suggest that persistence is not solely dependent on sporulation. Evidence suggesting a role for 51 

biofilm formation in relapses includes the ability of C. difficile to incorporate into multi-species 52 

biofilms formed by the gut microbiota [9][10] and biofilm-like structures are detectable on the 53 



epithelium or mucus layer of infected animals [11][12][13]. Given the potential importance of 54 

biofilm formation in C. difficile infection, researchers are trying to understand the genetic factors, 55 

molecular events and the regulatory pathways leading to biofilm formation in C. difficile. 56 

The biofilm building blocks: general characteristics of C. difficile biofilms  57 

Using different models, growth conditions and technical approaches (reviewed in [5]), the genetic 58 

factors, physiological processes, and matrix components of C. difficile biofilms were recently 59 

identified. In a mature biofilm, extracellular DNA (eDNA) is the major component of the biofilm 60 

matrix whereas polysaccharides and proteins are minor components [14][15][16][17]. However, 61 

proteins play an important role during the early steps of biofilm formation [14][15]. The role of 62 

eDNA in biofilm formation is to help C. difficile cells stick together in large aggregates or 63 

structures (Figure 1). Release of eDNA from cells for biofilm formation is thought to occur by 64 

prophage-induced lysis, sporulation, or autolysis during stationary phase [14][16][18] and current 65 

evidence supports autolysis as the main mechanism contributing to eDNA. Indeed, the absence 66 

of autolytic enzymes such as the lytic transglycosylases Cwp19 completely abolishes biofilm 67 

formation [14]. Other autolysins are probably involved but have not been tested. Overall, 68 

controlling cellular lysis is likely critical for biofilm formation in C. difficile. 69 

The teichoic-like acid PS-II is detected in the biofilm matrix [14][15] although it is not clear how 70 

PS-II is organized within the biofilm matrix. Cellulose might contribute to the biofilm matrix since 71 

a secreted polysaccharide composed of acetylated glucose subunits is detected in culture 72 

supernatants [19]. Moreover, the genome of C. difficile encodes for proteins predicted to 73 

synthesize cellulose [20]. However, deletion of the bscA orthologue (ccsA), encoding a 74 



glycosyltransferase involved in cellulose synthesis, did not significantly alter biofilm formed in 75 

the presence of DOCA [21]. Therefore, the identity and the exact role of the polysaccharides 76 

involved are not characterized.  77 

78 
Figure 1: Model of biofilm formation and regulation in Clostridioides difficile. This model has two 79 

different modes of biofilm formation: aggregate biofilm and attached biofilm. Both modes are dependent 80 

on metabolic reprogramming following the depletion of the preferred energy source. This reprogramming 81 

is controlled by regulation factors such as CodY, CcpA, SigL, SigH and Spo0A and is required for C. difficile 82 

to use alternate source of energy such as glycine and cysteine, and eventually, pyruvate. This ensures that 83 

C. difficile maintains high viability during stationary phase while chromosomal DNA (extracellular DNA 84 

[eDNA]) is released by dying cells. Once enough eDNA has accumulated. C. difficile can then pass the 85 

“biofilm threshold”. In the aggregate biofilm, cyclic-di-GMP (c-di-GMP) production is increase in response 86 

to environmental cues or changes in cellular heterogeneity of the population. This leads to the production 87 

of type IV pilus (T4P) and auto-aggregation. As time progresses, the aggregates grow via auto-aggregation 88 

or increase presence of eDNA release by autolysis. Aggregates can sink and start or contribute to the 89 

development and maturation of an attached biofilm. (1) In the attached biofilm model, reversible 90 

attachment to surfaces is likely mediated by the flagellum, surface structures or general adhesins. (2) Once 91 

attached, signal transduction systems will induce c-di-GMP accumulation, which initiates the production 92 

of T4P and surface proteins such as CD630_2831 and CbpA. These newly synthesized adhesion molecules 93 

will provide stronger binding to the surface. (3) The tightly attached bacteria will multiply and start 94 

forming a microcolony. During microcolony formation, autolysis will release chromosomal DNA and will 95 

contribute to the biofilm matrix. (4) Maturation will lead to reorganization of the biofilm structure and 96 



metabolism, including metabolic specialization of sub-populations. (5) As time progresses, subpopulations 97 

will undergo different processes such as phase variation that will create cellular heterogeneity. This will 98 

lead to sporulation, decrease c-di-GMP concentrations and will ultimately cause dispersion of the biofilm. 99 

Events at the cell surface will also have an impact on biofilm formation. For example, S-layer 100 

processing by the cysteine protease Cwp84 is critical for maintaining cellular hydrophobicity and 101 

proper processing of surface proteins, which are important features for surface adhesion and 102 

cell-cell attachment. Inactivation of Cwp84 can abolish or increase biofilm formation in a strain 103 

dependent manner [15][22]. The most important surface structure appears to be the type IV pilus 104 

(T4P) encoded by the pilA1 locus [21], which is important for early steps in biofilm formation but 105 

is dispensable during the later stages [23]. Among the other surface proteins, the fibronectin-106 

binding protein FbpA [24] and two collagen binding proteins, CbpA (CD630_31450) [25] and 107 

CD630_28310 [16][26], contribute to biofilm formation. Finally, the flagellum is another 108 

important adhesion factor although C. difficile can still form biofilms without flagellum and with 109 

a non-motile flagellum [15][27]. 110 

Several genetic factors are indirectly involved in biofilm formation due to their pleiotropic effects 111 

on C. difficile physiology. These include the RNA chaperone Hfq [28], the Ser/Thr kinase PrkC [29], 112 

the protein chaperone DnaK [30] and the SOS-response regulator LexA [31]. For example, 113 

absence of DnaK and LexA affects motility [30][31], and PrkC affects cell division and lysis [32]. 114 

These effects could explain the impact of DnaK, LexA or PrkC on biofilm formation. Therefore, 115 

these should not be viewed as regulators of biofilm formation. 116 

How and when the biofilm building blocks are assembled: physiology and 117 

regulation behind biofilm formation 118 



Based on recent advances in the C. difficile field and new biofilm formation models in bacteria 119 

[33], we are proposing a model for surface-attached biofilm formation of C. difficile (see Figure 120 

1) that incorporates two different modes of biofilm formation: aggregate biofilm and surface-121 

attached biofilm. Through this proposed model, a framework for the regulation of each biofilm 122 

formation stage can be proposed as described in the next section. 123 

Pre-conditioning of planktonic cells: Biofilms formed by C. difficile are typically measured 12h to 124 

7 days after inoculation [8][17][23][34]. This indicates that biofilm formation is mainly induced in 125 

the stationary phase. The transition from exponential phase to stationary phase requires 126 

metabolic adaptation and reprogramming as preferred energy sources become depleted. This 127 

adaptation and reprogramming are controlled by several regulators (see Figure 1 and 2) including 128 

CcpA, CodY, and the sigma factors SigL and SigH, that are required for biofilm formation 129 

[8][14][15][21][34][35]. Inactivation of the sporulation master regulator Spo0A results in 130 

decreased biofilm formation in different growth conditions and models [8][14][15]. Spo0A is 131 

controlled by SigH, the key sigma factor of transition phase, and also by SinR whose activity is 132 

controlled by SinR’. The absence of SinR increased biofilm formation [34], but had no measurable 133 

effect on DOCA-induced biofilms [21]. Based on the current literature, we think that SinR-SinR’ 134 

represses biofilm formation by rerouting Spo0A regulatory activity towards sporulation. This is 135 

consistent with the fact that the sporulation cascade is probably not required since inactivation 136 

of SigE or SigF had no measurable effect on DOCA-induced biofilm formation [14]. Therefore, the 137 

role of SigH and Spo0A in controlling metabolic adaptation and decreasing motility is critical for 138 

biofilm formation (Figure 2). 139 



140 
Figure 2: Proposed regulatory network controlling the biofilm-sporulation nod. Under biofilm forming 141 

conditions, SigH and Spo0A control metabolic adaptation of cells entering a nutrient limited environment. 142 

Metabolic regulators and Spo0A inhibit SinR activity leading to up-regulation of c-di-GMP and Type 4 pili, 143 

and down-regulation of motility. Bolded font and line size indicate the dominant pathways. 144 

Metabolic adaptation and reprogramming are required for C. difficile to stay metabolically active 145 

and viable during stationary phase. At the end of the exponential phase, preferred nutrient 146 

sources are depleted and this leads to the down-regulation of the preferred metabolic pathways 147 

and the up-regulation of alternative pathways [21][34][36]. Specifically, glycolysis and the 148 

pentose phosphate pathway are downregulated, and butanoate and propanoate fermentation 149 

become up-regulated (Figure 1) [21][34]. The latter process probably uses acetyl-CoA, 150 

oxaloacetate and pyruvate, which might be produced by glycine metabolism [37]. Furthermore, 151 

the Wood-Ljungdhal pathway and the glyoxylate shunt are important to generate energy to 152 

induce biofilm formation [34]. In the presence of DOCA, C. difficile relies on proteins degradation, 153 

peptides and amino acids uptake, and the oxidative Stickland fermentation pathways to produce 154 



energy to drive biofilm formation [21]. Such metabolic adaptation and reprogramming are 155 

dependent on the available nutrients and excreted metabolites. Overall, pyruvate, which is one 156 

of the excreted metabolites, produced from the available precursors is a critical inducer of biofilm 157 

formation [21][34[36]. The level of pyruvate is sensed by the two-component regulatory system 158 

encoded by CD630_2601 and CD630_2602, which then probably induce expression of pyruvate 159 

transporters including CstA [21]. 160 

Additionally, intracellular levels of the alarmone pGpp and cyclic-di-GMP (c-di-GMP) can also 161 

increase during the transition to the stationary phase in response to changes in nutrient 162 

availability [35][38][39][40], and for the latter, to induce biofilm formation during stationary 163 

phase [34]. Overall, metabolic reprogramming prepares and improves the responsiveness of 164 

planktonic cells to signals leading to biofilm formation. In the host, this reprogramming will be 165 

influenced by the availability of nutrient such as mucus derived sugars [41][42] or microbiota-166 

derived metabolites [14][21]. 167 

Attachment and aggregation: Reversible attachment to a surface is an important event initiating 168 

the biofilm formation cascade and, in C. difficile, this could be mediated by the flagellum. In 169 

support of this, the absence of flagella rotation increased biofilm whereas complete absence of 170 

the flagella did not [27][43]. Furthermore, highly motile clinical isolates formed more biofilm than 171 

clinical isolates with no or low motility [44]. On the other hand, the absence of a flagellum also 172 

influences auto-agglutination and sedimentation leading to an increase in biomass accumulation 173 

in static biofilm models [15][27][43]. Adhesion via the flagellum is likely relevant for biofilms 174 

formed in the gut as the interaction between the C. difficile flagellum and the Fusobacterium 175 

nucleatum adhesin RadD enhanced biofilm formation [45]. 176 



Surface adhesion or nutritional signals will induce an increase in c-di-GMP level that turns off 177 

flagellar motility via a type I riboswitch and induces production of the T4P via a type II riboswitch 178 

(Figure 2) [39][46]. This would lead to a stronger attachment for cells at the surface (i.e. 179 

irreversible attachment) or increase aggregation for planktonic cells [47]. Production of other c-180 

di-GMP controlled surface proteins, such as CD630_28310 and CbpA, will also increase surface 181 

adhesion. 182 

Microcolony formation and maturation: Once C. difficile irreversibly attaches, the cells will form 183 

a larger cluster called microcolony. This process is mediated by cell division, large aggregate 184 

sedimentation and production of the biofilm matrix. Cell division is supported by the metabolic 185 

state of the bacteria and metabolic reprogramming controlled by regulatory factors such as CcpA, 186 

CodY, SigL, SigH and Spo0A. Extracellular pyruvate and glycine metabolism, which is mediated by 187 

glycine riboswitches [48], are probably also involved in this maturation steps [21][34]. This 188 

reprogramming is required for a majority of C. difficile cells to maintain high viability while a small 189 

fraction of the population releases chromosomal DNA, which accumulates in the biofilm. When 190 

there is enough eDNA, C. difficile can then pass the “biofilm threshold”. 191 

Control of cell lysis is critical at this point because it contributes eDNA to attached and aggregate 192 

biofilms (Figure 1). As aggregate biofilms grow, these will sediment and start forming new or 193 

contribute to pre-existing microcolony. Expression and production of extracellular 194 

polysaccharides should also increase at this point. Recent studies suggested that C. difficile can 195 

synthesize cellulose and produce an exopolysaccharide composed of acetylated glucose subunits 196 

hypothesized to be cellulose but their roles remain unconfirmed [19][20]. 197 



Quorum-sensing molecules production should be at its peak during microcolony formation and 198 

biofilm maturation as population density is reaching its peak and cells are in very close proximity. 199 

The genome of C. difficile encodes two different quorum sensing systems: a LuxS/autoinduce-2 200 

system and agr peptide system. The LuxS system affects biofilm formation under certain 201 

conditions [15][18] but was dispensable in DOCA-induced biofilm formation [21]. LuxS is also 202 

involved in sulfur metabolism and there is a lack of genetic evidence for an autoinducer-2 203 

receptor in C. difficile [49][50]. Thus, the observed effect might be associated with metabolism 204 

rather than quorum sensing. Strain 630 only has an incomplete agr type quorum sensing system 205 

(agr1: agrD1B1) [51] which is not required for DOCA-induced biofilm formation [21]. However, a 206 

complete (agr2: agrACDB) and an incomplete (agr1: agrD1B1) agr system are present in strain 207 

R20291, whose role in biofilm formation is not known [51]. Therefore, there is still a need to 208 

assess the role of quorum sensing in C. difficile biofilm formation. 209 

Biofilm maturation leads to reorganization of the biofilm structure and metabolism, including 210 

metabolic specialization of sub-populations. The creation of sub-populations typically leads to 211 

division of labor or dispersion. Other mechanisms could also intervene within these sub-212 

populations as C. difficile also possess phase variation mechanisms that can influence flagellar 213 

motility, and c-di-GMP phosphodiesterases (PDEs) expression, that affect colony morphology 214 

[52][53][54]. Moreover, epigenetic regulation could also create population diversity as DNA 215 

methylation by CamA affects biofilm formation [55]. 216 

Dispersion: Cell leaving the biofilm is an important step that is under studied in C. difficile. 217 

Dispersion could be triggered by sporulation or decrease c-di-GMP levels, which could be driven 218 

by an increase in phosphodiesterase activity. For example, the metalloprotease ZmpI is produced 219 



when c-di-GMP levels are low [26][56]. This protease is exported to the cell wall, cleaves both 220 

surface proteins CbpA and CD630_28310, and causes bacterial detachment from the surface 221 

[26][56]. Other enzymes might also be exported to the cell surface to digest the eDNA (DNase) 222 

or polysaccharides present in the matrix as C. difficile encodes a glycosyl hydrolase, CcsZ, within 223 

the cellulose biosynthesis operon [20]. Sporulation could also cause biofilm collapse by 224 

sequestering calcium from the biofilm matrix. This mechanism was recently identified in Bacillus 225 

subtilis [57]. Furthermore, calcium is bound by eDNA, which is the major building block of the C. 226 

difficile biofilm matrix and is important to maintain structural integrity of the biofilm [58]. 227 

Conclusion 228 

We propose a biofilm formation model incorporating two different modes of biofilm formation: 229 

aggregate biofilm and surface-attached biofilm. Our model is based on experimental data 230 

generated using well plates and liquid medium; however, we think this model should help guide 231 

future research on biofilm formation by C. difficile. We also must consider that some members 232 

of the microbiota will influence C. difficile biofilm formation by providing nutrients (i.e., cross-233 

feeding) or helping adhesion (for examples see [42][45]). 234 

Development of new tools for genetically modifying C. difficile strains [59], will allow molecular 235 

dissection of the regulation cascade leading to biofilm formation and answer outstanding 236 

questions in this important field (see Box 1). 237 
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Box 1: Outstanding questions for future research 445 

1. What is the exact role of SinR and SinR’ during biofilm formation? 446 

2. Do sporulation- and prophage-mediated lysis contribute to biofilm formation? 447 

3. Are quorum sensing systems required for biofilm formation? 448 

4. Are the exopolysaccharides produced during biofilm formation and what are their role? 449 

5. How is dispersion initiated and regulated? 450 



6. What are the mechanisms behind the influence of the microbiota on C. difficile biofilm 451 

formation (adhesion, cross-feeding, etc.)? 452 

7. How do biofilms contribute to persistence of C. difficile in the gut and participate in 453 

relapses 454 
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