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Abstract 
 
Infection with Mycobacterium ulcerans results in a necrotizing skin disease known as a Buruli ulcer, the pathology 
of which is directly linked to the bacterial production of the toxin mycolactone. Recent studies have identified 
the protein translocation machinery of the endoplasmic reticulum (ER) membrane as the primary cellular target 
of mycolactone, and shown that the toxin binds to the core subunit of the Sec61 complex. Mycolactone binding 
strongly inhibits the capacity of the Sec61 translocon to transport newly synthesized membrane and secretory 
proteins into and across the ER membrane. Since the ER acts as the entry point for the mammalian secretory 
pathway, and hence regulates initial access to the entire endomembrane system, mycolactone treated cells have 
a reduced ability to produce a range of proteins including secretory cytokines and plasma membrane receptors. 
The global effect of this molecular blockade of protein translocation at the ER is that the host is unable to mount 
an effective immune response to the underlying mycobacterial infection. Prolonged exposure to mycolactone is 
normally cytotoxic, since it triggers stress responses activating the transcription factor ATF4 and ultimately 
inducing apoptosis.   
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A. BURULI ULCER, THE THIRD MOST COMMON MYCOBACTERIAL DISEASE 
 
A1. Epidemiology, transmission and clinical management of BU 
 
Buruli ulcer (BU) is a necrotizing skin disease caused by infection with Mycobacterium ulcerans, the third most 
prevalent mycobacterial disease after Tuberculosis and Leprosy (Demangel et al., 2009). Following its first clinical 
description by Sir Albert Cook in Uganda in 1897, BU was recognized in an increasing number of countries of 
Africa, South America and Western Pacific regions, prompting the World Health Organization (WHO) to declare 
BU as an emerging public health concern in 1998 (Wansbrough-Jones and Phillips, 2006). Today, BU is reported 
in 33 countries and considered by the WHO as one of the 17 neglected tropical diseases. Although its annual 
incidence has decreased from ~5000 to ~2000 cases since 2010, BU is likely underreported or unrecognized in 
most endemic areas. Epidemiological and genomic studies have revealed that M. ulcerans is associated with 
lentic environments (reviewed in (Zingue et al., 2018)), and suggest that the bacteria do not spread from human-
to-human, but through displacements of reservoirs that remain to be discovered. The primary host of M. ulcerans 
is likely aquatic, and transmission of M. ulcerans from reservoirs to humans is currently believed to result from 
a combination of skin contamination with insect bites or puncture injuries (Wallace et al., 2017). BU typically 
starts as a painless subcutaneous nodule, oedema or plaque, enlarging over time. After weeks to months, the 
overlying epidermis opens to uncover indolent, necrotic lesions affecting cutaneous and subcutaneous tissues. 
Osteomyelitis may occur, as the result of an hematogenous seeding of bacteria from distant foci of infection 
(Walsh et al., 2008). The core of BU lesions, harboring clusters of extracellular bacilli, is typically devoid of 
inflammatory infiltrates (Guarner et al., 2003; Ruf et al., 2017). BU is efficiently treated by a combination of the 
antibiotics rifampicin and streptomycin administered daily for eight weeks, sometimes associated with surgical 
excision of lesional skin and skin grafting (Etuaful et al., 2005; Nienhuis et al., 2010). While rarely fatal, BU often 
results in permanent disfigurement and long-term disability.  
 
 
A2. Genetics, chemistry and biodistribution of mycolactone 
 
M. ulcerans is unique amongst human pathogens in its capacity to produce a diffusible toxin called mycolactone  
(George et al., 1999). The biosynthesis of mycolactone is permitted by giant polyketide synthases, whose genes 
are harbored by a megaplasmid (Stinear et al., 2004). M. ulcerans strains of different geographical origins, or 
genetically related mycobacteria, produce variants of a canonical mycolactone structure, corresponding to a 12-
membered lactone ring substituted with two polyketide-derived chains (Figure 1; reviewed in (Gehringer and 
Altmann, 2017; Saint-Auret et al., 2017)). Mycolactone is central to the pathogenesis of BU. Its production is 
required for bacterial virulence, and injection of purified mycolactone in the dermis of rodent models is sufficient 
to induce BU-like lesions (George et al., 1999). While M. ulcerans bacteria rarely disseminate beyond the skin, 
mycolactone has a body-wide distribution. Its distinctive mass spectrometric signature was detected in 
peripheral blood cells, spleen, liver and kidneys of mice experimentally infected with M. ulcerans (Hong et al., 
2008). In patients with progressive disease, structurally intact mycolactone was detected in ulcer exudates, 
healthy skin around ulcers and serum (Sarfo et al., 2011, 2014). Notably, mycolactone’s presence was detected 
in perilesional skin several weeks after completion of antibiotic therapy (Sarfo et al., 2011, 2014), indicating a 
slow elimination rate. Alterations in the systemic production of IFN-g, that are resolved after surgical excision of 
the lesions, have also been reported in several immunological studies of BU patients (Gooding et al., 2001; 
Phillips et al., 2009; Prevot et al., 2004; Westenbrink et al., 2005; Yeboah-Manu et al., 2006). Notably, defective 
production of IFN-g in ex vivo stimulation assays of whole blood was observed with both antigen-specific 
(Gooding et al., 2001; Prevot et al., 2004) and non-specific (Phillips et al., 2009; Westenbrink et al., 2005; Yeboah-
Manu et al., 2006) activation stimuli (such as the T-cell mitogen PHA). Multi-analyte profiling of PHA-stimulated 
whole blood culture supernatants revealed that in fact, most T cell-derived cytokines were suppressed during 
disease progression (Phillips et al., 2009). Moreover, patients with BU displayed a distinctive proteomic signature 
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in their serum, marked by a downregulation of multiple mediators of inflammation (Phillips et al., 2009, 2014). 
The immunosuppressive signature of BU persisted weeks after completion of antibiotic therapy in treated 
individuals (Phillips et al., 2009, 2014), thus correlating with the continued presence of mycolactone. 
 
 
A3. Mycolactone: more than just a cytotoxin 
 
The contribution of mycolactone to each manifestation of BU disease, including skin necrosis associated with a 
relative lack of inflammatory infiltrates and pain, and defective cellular responses at the systemic level, have 
been the subject of intensive research over the past decades. The following section provides an overview of the 
main findings.  
 
The cellular mechanism(s) of mycolactone-induced skin ulceration were first investigated by monitoring the 
cytopathic effects of mycolactone on cultured keratinocytes, fibroblasts, epithelial and endothelial cells. 
Fluorescently-labelled mycolactones penetrated cultured fibroblasts in a non-saturable and non-competitive 
manner, compatible with passive diffusion across the plasma membrane, to localize in the cytosol (Chany et al., 
2011; Guenin-Mace et al., 2015; Snyder and Small, 2003). According to recent studies using computer simulations 
or lipid monolayers (Lopez et al., 2018; Nitenberg et al., 2018), the passage of mycolactone across cellular 
membranes may nevertheless alter their dynamic properties, and cause mechanical and physical perturbations 
(see also Section B3). Short-term (4-16h) exposure to mycolactone induced rapid alterations in the actin 
cytoskeleton of HeLa cells, coinciding with a defective capacity of the cells to establish adhesive contacts and 
migrate directionally in wound-healing assays in vitro (Guenin-Mace et al., 2013). In all skin cells studied, longer 
treatments (>48h) induced cell retraction followed by detachment and apoptosis, albeit with slight differences 
in time-to-death across cell types (Bieri et al., 2017; Dangy et al., 2016; Gama et al., 2014; George et al., 2000; 
Guenin-Mace et al., 2013; Ogbechi et al., 2015; Snyder and Small, 2003). In human dermal microvascular 
endothelial cells, mycolactone treatment also resulted in the depletion of the blood coagulation regulator 
thrombomodulin from the cell surface (Ogbechi et al., 2015). When mycolactone was injected intradermally into 
mouse ears, it caused major alterations in the architecture of the epidermis (Guenin-Mace et al., 2013). 
Collectively, these studies thus suggested that mycolactone provokes BU formation by a combination of cell 
death in dermis and subcutaneous tissues, remodelling of the epidermis, loss of healing potential and coagulation 
control. 
 
Foxwell and co-workers were the first to demonstrate that mycolactone also displays intrinsic 
immunomodulatory properties. In their seminal 1999 paper, the authors showed that mycolactone prevents the 
lipopolysaccharide-induced release of the cytokines TNF and IL-10 by human monocytes, and the production of 
IL-2 by activated T lymphocytes, under conditions that do not alter cell viability (Pahlevan et al., 1999). 
Subsequent work by others showed that non-cytotoxic treatments with mycolactone impair the phenotypic and 
functional maturation of dendritic cells (DCs), resulting in a reduced ability to activate T cells and produce 
inflammatory chemokines in response to stimulation (Coutanceau et al., 2007). Mycolactone was also found to 
decrease DC expression of MHC class I and II, in a dose-dependent manner that affected both direct and indirect 
antigen presentation (Grotzke et al., 2017). In monocytes and macrophages, mycolactone prevented the 
activation-induced production of cytokines and chemokines post-transcriptionally, and irrespective of the 
activation stimulus (Hall et al., 2014; Simmonds et al., 2009). In resting T cells, it downregulated the basal 
expression of the T Cell Receptor (TCR) and homing receptor L-selectin (CD62L), leading to altered responsiveness 
to TCR stimulation and an impaired capacity to reach peripheral lymph nodes in vivo (Boulkroun et al., 2010; 
Guenin-Mace et al., 2011, 2015). Mycolactone also limited the capacity of T cells to produce cytokines in 
response to activation stimuli that bypass the TCR, in spite of a robust induction of cytokine mRNAs (Boulkroun 
et al., 2010). It is important to note that primary macrophages, DCs were susceptible to prolonged (>48h) 
treatment with mycolactone (>10nM) (Coutanceau et al., 2007; Guenin-Mace et al., 2015). In contrast, the 
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viability of human primary T cells and polymorphonuclear neutrophils treated under the same conditions was 
minimally affected (Guenin-Mace et al., 2015), showing that certain cell types resist mycolactone toxicity. Recent 
work indicated that in sensory neurons, Schwann cells and microglia, nanomolar concentrations of mycolactone 
similarly prevent the activation-induced production of pro-inflammatory cytokines (Isaac et al., 2017). Further, 
the systemic administration of mycolactone protected mice against chronic skin inflammation and rheumatoid 
arthritis (Guenin-Mace et al., 2015), whilst intrathecal injection of mycolactone in rats downregulated the basal 
production of inflammatory cytokines in the spinal cord (Isaac et al., 2017). 
 
BU lesions typically show axonal degeneration and disruption of nerve fibers (Zavattaro et al., 2012). In mice, 
neural pathology associated with hypoesthesia was induced by infection with M. ulcerans, or injection of purified 
mycolactone (En et al., 2008; Goto et al., 2006). Short-term exposure to mycolactone (24h, 100 nM) induced 
significant neurite degeneration in rat and human primary dorsal root ganglion (DRG) sensory neurons (Anand 
et al., 2016). Longer treatments (>48h) induced massive mortality of primary DRGs in two studies (Anand et al., 
2016; Isaac et al., 2017), although a third study reported a minimal loss of viability following exposure to 
mycolactone doses of up to 70µM (Song et al., 2017). Prolonged (>48h) exposure to nanomolar concentrations 
of mycolactone also caused significant mortality in Schwann cells and microglia (Isaac et al., 2017). Whether 
mycolactone reaches the central nervous system in vivo is unknown. However, with cytotoxic concentrations of 
mycolactone matching with its estimated level in BU lesions (Sarfo et al., 2014), these cellular studies support 
the view that BU-associated analgesia may be due, at least partially, to its cytopathic effects on peripheral nerves. 
It is noteworthy that infection with M. ulcerans, or injection of low doses (5µg) mycolactone, can induce local 
hypoesthesia in the absence of nerve destruction (Marion et al., 2014). Moreover, systemic administration of 
mycolactone (2µg) limited the development of inflammatory pain in mouse footpads (Guenin-Mace et al., 2015). 
Therefore, mycolactone likely reduces BU-associated pain by multiple mechanisms besides cytotoxicity, as 
discussed further in Section B.  
 
 
B. MYCOLACTONE BLOCKS PROTEIN TRANSLOCATION AT THE ENDOPLASMIC RETICULUM 
 
Since mycolactone alone recapitulates the effects of an M. ulcerans infection (George et al., 1999; Sarfo et al., 
2016), the compound could be exploited to identify physiologically relevant molecular targets. One such target 
is the Sec61 translocon, a membrane embedded protein complex responsible for the translocation of newly 
synthesized polypeptides into the endoplasmic reticulum (ER), and hence the eukaryotic secretory pathway (Lang 
et al., 2017). 
 
 
B1. Mycolactone acts at the Sec61 complex 
 
The first indication that mycolactone selectively inhibited protein translocation across the ER membrane, and 
that it did so by inhibiting the heterotrimeric Sec61 complex, was the finding that the toxin blocked the 
translocation of model secretory and membrane proteins (Hall et al., 2014). Hence, mycolactone strongly 
inhibited the translocation of precursor proteins that use the well-defined signal recognition particle (SRP)-
dependent co-translational route into the ER ((Hall et al., 2014); see Figure 2, Co-). At a global level, the 
mycolactone treatment of cells led to a selective reduction in the production of N-glycosylated membrane and 
secretory proteins (Hall et al., 2014), consistent with the effects of other inhibitors of protein translocation at 
the ER ((Cross et al., 2009); Figure 2). Furthermore, non-translocated forms of specific precursor proteins could 
be stabilized in cell culture models by using proteasome inhibitors (Hall et al., 2014), suggesting that the non-
translocated forms of these hydrophobic precursor proteins are normally degraded via cytosolic quality control 
pathways (Casson et al., 2016).  
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Hall et al. showed that the inhibition of Sec61-dependent protein translocation by mycolactone can be studied 
in the absence of other cellular effects by using cell-free protein synthesis performed in the presence of ER 
derived membrane vesicles (Hall et al., 2014). This approach has helped to define the range of protein substrates 
affected by mycolactone and establish at what stage during the translocation of nascent polypeptides across the 
ER membrane it exerts its effects. In this way, it was shown that although mycolactone strongly inhibits the co-
translational translocation of typical mammalian secretory proteins, it is less effective at blocking the post-
translational translocation of the more unusual short secretory proteins ((McKenna et al., 2016); see Figure 2, 
Post-). For short secretory proteins, both the length of the precursor and the precise composition of its ER 
targeting signal influenced the effectiveness of the mycolactone blockade (McKenna et al., 2016). This behavior 
of short secretory proteins suggests that the toxin does not simply close the Sec61 channel to all subsequent 
polypeptide translocation. Alternatively, in the case of proteins that are delivered to the Sec61 complex via a 
post-translational mechanism (Figure 2), other factors, such as the actions of the ER luminal chaperone BiP, may 
be able to mitigate the effects of mycolactone (Hassdenteufel et al., 2018). By using established techniques, 
including cross-linking, to study different stages of the ER translocation process in this cell-free system (Cross et 
al., 2009), the point of the pathway at which mycolactone acts was identified ((McKenna et al., 2016); see also 
Figure 2). It was found that the binding of SRP to the hydrophobic ER targeting signal as it emerges from the 
ribosomal exit tunnel is unaffected, as is the delivery of the resulting targeting complex to the ER membrane 
embedded SRP receptor and the subsequent engagement of the nascent polypeptide with the Sec61 complex 
(Figure 2, see stages 1 to 3). However, in the presence of mycolactone the ability of these nascent polypeptides 
to proceed to the next step of the ER translocation process (Figure 2, see stage 4) is either efficiently prevented 
(co-translational substrates) or variably reduced (post-translational substrates) (McKenna et al., 2016).  
 
The Sec61a subunit of the heterotrimeric Sec61 complex is a multi-spanning integral membrane protein that 
forms the core of the regulated channel through which the majority of newly synthesized membrane and 
secretory proteins access both the lipid bilayer and lumen of the ER ((Lang et al., 2017), Figure 2). Sec61a is the 
target for several small molecule inhibitors, including cotransin, decatransin and apratoxin, that bind directly to 
it (Junne et al., 2015; Mackinnon et al., 2014; Paatero et al., 2016). Mycolactone treatment alters the 
conformation of Sec61a as judged by protease sensitivity (McKenna et al., 2016), and mycolactone efficiently 
displaces cotransin (CT7) from its previously defined binding site on Sec61a (Baron et al., 2016), both indicative 
of a direct interaction. Definitive evidence that mycolactone binds to Sec61a came from the finding that a single 
amino acid change to the protein that reverses the inhibitory effect of cotransin by disrupting its binding, also 
negates the effects of mycolactone, and hence cells that express the R66G mutant of Sec61a are resistant to the 
toxin (Baron et al., 2016).  
 
 
B2. Mycolactone: potent yet selective 
 
In cell-free systems, the co-translational translocation of a range of precursor proteins that are synthesized with 
a hydrophobic ER targeting signal was inhibited by mycolactone (Baron et al., 2016; Hall et al., 2014; McKenna 
et al., 2016). These inhibitory effects of mycolactone extended to both fully translocated soluble proteins and 
integral membrane proteins and can affect precursors with both cleavable and non-cleavable ER targeting signals 
(Figure 3). Single-spanning membrane proteins that integrate via the Sec61 complex may be classified as either 
type I, II or III transmembrane proteins, according to the presence of a cleavable targeting signal and the location 
of N-terminus of the mature polypeptide relative to the ER membrane ((Goder and Spiess, 2001); Figure 3). Using 
these criteria, the translocation of soluble secretory proteins and ER resident chaperones, and the integration of 
type I and type II membrane proteins were all strongly inhibited by mycolactone ((Baron et al., 2016; Hall et al., 
2014; McKenna et al., 2016); Figure 3). To date, only a handful of multi-spanning membrane proteins have been 
studied using this cell-free system, but one of these model substrates was completely refractive to the toxin 
(Baron et al., 2016).  
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The substrate specific actions of mycolactone were further underlined by a complete absence of any effect on 
the Sec61 dependent insertion of type III membrane proteins (McKenna et al., 2017) that have a single 
transmembrane span, which also acts as the ER targeting signal (Figure 3). Furthermore, the effectiveness with 
which mycolactone blocks the insertion of a type I membrane protein can be influenced by both the distance 
between its N-terminal signal peptide (Figure 3, SP) and the properties of its transmembrane spanning domain 
((McKenna et al., 2017), Figure 3, TMD). Thus, exactly how a nascent precursor protein engages the Sec61 
complex (Figure 2, stage 4) is probably an important factor in determining the effectiveness with which 
mycolactone blocks its subsequent translocation (McKenna et al., 2017). The profiling of mycolactone’s signature 
in the proteomes of CD4+ T lymphocytes, DCs and DRG neurons (Baron et al., 2016; Grotzke et al., 2017; Morel 
et al., 2018), broadly supports this model for the effects of mycolactone on different classes of single-spanning 
membrane proteins ((McKenna et al., 2017), Figure 3). The global effects of mycolactone on the biogenesis of 
multi-spanning membrane proteins are more complex, and further cell-free studies of such substrates should 
help reveal how they arise from the inhibition of the Sec61 complex.  
 
Importantly, these global proteomic analyses also highlighted alterations beyond those on the Sec61 substrates 
detailed above, most-likely resulting from the cascading effects of the protein translocation blockade (Baron et 
al., 2016; Grotzke et al., 2017; Morel et al., 2018) and from cellular stress responses that are described below in 
Section C. These effects have particularly important consequences for the immune control of M. ulcerans 
infection (Baron et al., 2016; Grotzke et al., 2017); and all clinical manifestations of BU (as outlined in Section C). 
Taken together (Baron et al., 2016; Hall et al., 2014; McKenna et al., 2016, 2017), these detailed molecular studies 
suggest that the efficiency with which mycolactone inhibits the biogenesis of individual membrane and secretory 
protein precursors is dependent upon the precise nature by which they employ the Sec61 translocation complex 
(Figures 2 and 3). This process is unexpectedly complex (Devaraneni et al., 2011; Hassdenteufel et al., 2018; 
Watson et al., 2013) and may also be influenced by a number of accessory components that are beyond the 
scope of this review (see (Lang et al., 2017) for further details).  
  
 
B3. Mycolactone perturbs the lipid bilayer 
 
Mycolactone was originally isolated from acetone-soluble lipids prepared from M. ulcerans, indicative of its 
lipophilic properties ((George et al., 1999); see Figure 1), and recent biophysical and computational studies 
confirm that mycolactone binds to a range of artificial phospholipid membranes (Lopez et al., 2018; Nitenberg 
et al., 2018). Interestingly, the inclusion of cholesterol in these model systems promotes the insertion of 
mycolactone into the lipid phase leading to potential membrane destabilization (Lopez et al., 2018; Nitenberg et 
al., 2018). In the case of the cholesterol rich plasma membrane (Jacquemyn et al., 2017), these findings have 
clear implications for the mechanism by which mycolactone enters the cytosol and thereby accesses its 
intracellular targets, including the Sec61 complex. Likewise, toxin induced changes to the plasma membrane 
bilayer (Lopez et al., 2018; Nitenberg et al., 2018) might contribute to its cellular effects. Cholesterol is inhibitory 
to co-translocation protein translocation via the Sec61 complex (Kalies and Romisch, 2015), and hence its level 
in the ER membrane is comparatively low (Jacquemyn et al., 2017). Given that a single point mutation in the 
Sec61a subunit confers broad resistance to mycolactone (Baron et al., 2016), the potential significance of any 
mycolactone-mediated disruption of the phospholipid component of the ER membrane to its strong inhibitory 
effects on protein translocation remains unclear. 
 
 
 
C. MYCOLACTONE-MEDIATED SEC61 BLOCKADE AND CLINICAL MANIFESTATIONS OF BU 
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Expression of a toxin resistant mutant of Sec61a abolished the inhibitory effect of mycolactone on the homing 
potential and effector functions of immune cells (Baron et al., 2016), demonstrating that the Sec61 complex is 
the host receptor mediating the diverse immunomodulatory effects of mycolactone. Production of IFN-g by T 
cells, and IFN-g induced expression of nitric oxide synthase (iNOS) in infected macrophages are essential 
parameters of host resistance to mycobacterial infection (Bieri et al., 2016; Flynn and Chan, 2001). By blocking 
the production of IFN-g and the IFN-g receptor, mycolactone-mediated inhibition of Sec61 not only prevents the 
autocrine activation of IFN-responsive genes in lymphocytes, but also hampers the capacity of macrophages to 
produce iNOS in response to IFN-g stimulation (Baron et al., 2016). Hence, the protein translocation blockade 
detailed above (Section B) provides a molecular explanation for how mycolactone impairs the development of 
protective immune responses in patients that are infected with M. ulcerans (Figure 4).  
 
In contrast, a Sec61 blockade is unlikely to explain the rapid effects of mycolactone on actin polymerization and 
cell adhesion described in Section A3. In cell-free assays of actin polymerization, mycolactone mimicked 
endogenous GTPase CDC42 in the activation of Wiskott-Aldrich syndrome proteins WASP and N-WASP (Guenin-
Mace et al., 2013). A significant co-localization of mycolactone and active WASP was consistently observed 1h 
after the treatment of HeLa cells (Guenin-Mace et al., 2013). On this basis, a fraction of mycolactone may bind 
to cytosolic WASP/N-WASP following its diffusion through the plasma membrane, leading to the uncontrolled 
assembly of actin and defective cell-matrix adhesion. Although this mechanism may not be central to BU 
pathogenesis, we speculate that it may synergize with Sec61-dependent alterations in skin integrity (Figure 4). 
 
Mycolactone was shown to activate Type 2 angiotensin II receptors (AGTR2) in neurons, leading to phospholipase 
A2-mediated arachidonic acid (AA) liberation, the generation of prostaglandin E2 from AA by cyclooxygenase-1, 
and subsequent activation of KCN4 potassium channels. The resulting hyperpolarization of neurons was 
proposed to mediate the analgesic properties of mycolactone (Marion et al., 2014). In support of this model, the 
hypoesthesia that is associated with skin lesions in mice infected with M. ulcerans, or injected with mycolactone, 
was reduced by local administration of an AGTR2 blocker (Marion et al., 2014). Based on the current model 
described in Section B, it is possible that the biogenesis of the multi-spanning membrane protein AGTR2 may be 
resistant to the effects of mycolactone on protein translocation. Nevertheless, the data presented in Section A3 
strongly suggest that the Sec61-dependent anti-inflammatory activity of mycolactone on the immune and 
nervous systems, and toxicity in neurons, also contribute to BU-associated analgesia (Figure 4). 
 
By transducing cells with the mycolactone-resistant R66G mutant of Sec61, it was shown that mycolactone’s 
toxicity strictly depends on its binding to Sec61 (Baron et al., 2016). Ogbechi et al. found that the mycolactone-
dependent inhibition of Sec61-mediated protein translocation in both RAW264.7 and HeLa cells induces the 
integrated stress response (ISR) via cytosolic sensors that are linked to the activity of the ATF4 transcription 
factor (Ogbechi et al., 2018). Whilst the ISR provides some degree of protection against the effects of 
mycolactone, prolonged exposure to the toxin results in programmed cell death via increases in the level of the 
pro-apoptotic factor Bim (Ogbechi et al., 2018). Interestingly in this study the translational activation of ATF4 
was observed in the absence of an unfolded protein response (UPR) (Ogbechi et al., 2018) that is indicative of ER 
stress (Oakes and Papa, 2015). In contrast, we observed that DCs display clear hallmarks of ER stress-specific 
activation signals within hours of mycolactone treatment (Morel et al., 2018), consistent with a broad-ranging 
blockade of protein translocation (Grotzke et al., 2017). However, mycolactone-driven ER stress in DCs differed 
from a conventional UPR since there was a downregulation of BiP (Morel et al., 2018), a master regulator of the 
UPR that is induced by canonical ER stress but that relies on mycolactone-sensitive, Sec61 dependent, 
translocation to access the ER lumen ((Baron et al., 2016), Figure 3). In practice, whether mycolactone-driven 
ATF4 induction results from the ISR, the UPR, or a combination of these stress responses, may well depend on 
cell type. Importantly, both studies conclude that a sustained, mycolactone-mediated, Sec61 blockade triggers 
cellular stress responses that eventually induce apoptosis via the ATF4/CHOP/Bim signaling pathway (Morel et 
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al., 2018; Ogbechi et al., 2018). The ability of mycolactone to induce apoptosis via Bim may be further enhanced 
as a consequence of its inhibition of the mTOR signaling pathway (Bieri et al., 2017). 
 
 
 
D. CONCLUSIONS 
 
Recent years have witnessed tremendous progresses in our understanding of the molecular mechanisms 
underpinning mycolactone biology, and therefore BU pathogenesis. In addition to highlighting the critical 
importance of Sec61 activity for immune cell function, migration and communication, the substrate selectivity 
of mycolactone inhibition reveals clear gaps in our understanding of membrane protein integration (McKenna et 
al., 2017; Morel et al., 2018). Further, studies using mycolactone have identified a novel mechanism of 
immunomodulation that has been evolved by M. ulcerans, and there is hope that this might be exploited 
therapeutically in order to limit inflammatory disorders. Hence, in mouse models of human diseases, 
systematically delivered mycolactone was effective in limiting skin inflammation and inflammatory pain (Guenin-
Mace et al., 2015). There is also hope that small molecule inhibitors of protein translocation at the ER, including 
mycolactone, may provide a starting point for the development of new therapeutic agents such as novel 
anticancer drugs (Van Puyenbroeck and Vermeire, 2018).  
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FIGURE LEGENDS 
 
Figure 1: Structure of M. ulcerans-derived mycolactone stereoisomers A/B. The red line indicates the region 
where A and B differ (from (Kishi, 2011)). 
 
Figure 2: Mycolactone inhibits Sec61-dependent protein translocation. The majority of secretory and 
membrane protein precursors are delivered to the cytosolic face of the endoplasmic reticulum as ribosome 
bound nascent chains (Co-). This co-translational delivery pathway starts with the binding of the signal 
recognition particle (SRP) to a hydrophobic signal sequence (Stage 1). The binding of SRP to its cognate receptor, 
SR (Stage 2) facilitates the transfer of the ribosome nascent chain complex to the Sec61 membrane translocation 
complex (Stage 3). Mycolactone appears to act by inhibiting the subsequent events of nascent chain engagement 
with (Stage 4) and membrane insertion by the Sec61 complex (Stage 5). For precursors that are delivered to the 
ER post-translationally (Post-), only proteins that require the Sec61 translocon are targets for mycolactone. 
Hence, the translocation of some short secretory proteins (SSPs) is inhibited, but the membrane insertion of tail-
anchored (TA) proteins is unaffected. 
 
Figure 3: The effects of mycolactone on different categories of Sec61 clients. The Sec61 complex is capable of 
mediating the full translocation of both soluble secretory and ER resident proteins into the ER lumen (Lang et al., 
2017). Likewise, it can facilitate the membrane insertion of a range of integral membrane proteins with different 
combinations of signal sequences and transmembrane topologies, typically denoted Type 1, Type II and Type III 
(Goder and Spiess, 2001). In contrast, tail-anchored (TA) membrane proteins do not require the Sec61 complex 
for membrane insertion (Johnson et al., 2013).  The effects of mycolactone on these different classes of proteins, 
as determined using both cell-free translation systems (CFT) and cell culture studies (Baron et al., 2016; Hall et 
al., 2014; McKenna et al., 2016, 2017; Morel et al., 2018), are summarized above. The N-terminal signal peptides 
(SP) found on secretory and Type I membrane proteins are cleaved after the precursor is targeted to the ER.  The 
transmembrane domains (TMD) found on Type II and Type III proteins act as signal-anchor sequences and are 
not removed from the mature proteins. 
 
Figure 4: Parallels between BU hallmarks and the biological effects of mycolactone-mediated Sec61 blockade. 
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• Pro-apoptotic in keratinocytes, endothelial cells and fibroblasts 
• Depletion of thrombomodulin from dermal endothelial cells
• Ulceration of the skin following in situ injection of mycolactone in rodent models

Established and predicted in vivo consequences of mycolactone-mediated 
Sec61 blockade

• Pro-apoptotic in neurons, Schwann cells and microglia
• Altered cytokine production by neurons, Schwann cells and microglia
• Inhibition of inflammatory pain and neuro-inflammation in mycolactone-injected rodents

• Pro-apoptotic in macrophages, DCs and B cells
• Altered activation-induced production of cytokines/chemokines by all immune cell subsets
• Altered DC maturation, defective direct and indirect antigen presentation by DCs
• Altered T cells migration, altered IFN-g signaling in T cells and macrophages
• Inhibition of systemic inflammation in mycolactone-injected mice
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