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1, Hervé MénagerID

1, Wilfried Le Goff5, Marie-Pierre DubeID
6,7,

Peter KraftID
2,4, Iuliana Ionita-Laza8, Bjarni J. VilhjálmssonID
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Abstract

Genome-wide association studies (GWASs) have uncovered a wealth of associations

between common variants and human phenotypes. Here, we present an integrative analysis

of GWAS summary statistics from 36 phenotypes to decipher multitrait genetic architecture

and its link with biological mechanisms. Our framework incorporates multitrait association

mapping along with an investigation of the breakdown of genetic associations into clusters

of variants harboring similar multitrait association profiles. Focusing on two subsets of

immunity and metabolism phenotypes, we then demonstrate how genetic variants within

clusters can be mapped to biological pathways and disease mechanisms. Finally, for the

metabolism set, we investigate the link between gene cluster assignment and the success

of drug targets in randomized controlled trials.

Author summary

Genome-wide association studies (GWAS) established numerous associations between

genetic variants and human traits. The anonymized summary of GWAS results is gener-

ally made publicly available to the scientific community and can be explored further.

Amongst the many possible secondary analyses, one is to study the effect of a genetic vari-

ant on several traits (multi-trait GWAS) rather than a unique trait. We compared several

tests to conduct multi-trait GWAS on simulated and real data. We detected 322 new asso-

ciations that were not previously reported by standard univariate GWAS. We then

detected clusters of genetic variants having a similar effect across several traits. Focusing
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on two subsets of immunity and metabolism traits, we demonstrate how genetic variants

within clusters can be mapped to biological pathways and disease mechanisms. Finally,

for the metabolism set, we investigate the link between gene cluster and success of drug

targets in randomized controlled trials. We propose this method for improving the func-

tional interpretation of GWAS results.

Introduction

Genome-wide association studies (GWASs) have identified thousands of significant genetic

associations for multiple traits and diseases[1]. Publicly available summary statistics from

these GWASs have proven to be invaluable in human genetic studies, enabling a range of sec-

ondary analyses without requiring individual-level genotype data and thus, averting major

practical and ethical issues[2]. Among others, the estimation of phenotype heritability[3], the

derivation of polygenic risk score[4], and the assessment of causal relations between pheno-

types[5] are paragons of their critical utility. GWAS summary statistics have also been

extremely useful to investigate pleiotropy and genetic correlation between human phenotypes.

For example, recent works assessed whether significant loci for a given phenotype are also

associated with other traits[6, 7] while others estimated genome-wide[8, 9] and regional[10]

genetic correlations among phenotypes. The joint test of multiple traits can also be an efficient

way to detect genetic variants missed by univariate screening[11–23], especially those with

association patterns that deviate from the observed phenotypic correlation[24–26]. Neverthe-

less, while simulation studies and examples from real data applications in best case scenarios

have confirmed the relevance of multitrait association tests, they have seldom been applied to

large-scale datasets.

The application of multitrait association tests to a large heterogeneous set of traits requires

overcoming several practical issues including careful preprocessing of individual GWAS sum-

mary statistics to avoid statistical artifacts, the estimation of multiple global parameters, and

addressing widespread missing summary statistics. We addressed these issues in recent studies,

developing the RAISS[27] approach for imputation, and JASS preprocessing and multitrait

analysis pipeline software[28]. Nevertheless, the relative performances of existing multitrait

tests in real data have not been fully addressed. In brief, two types of methods have been devel-

oped, weighted sum of univariate statistics, assuming a specific multivariate genetic effect dis-

tribution[12, 14, 15], and an omnibus approach, allowing for one degree-of-freedom per

statistic [11, 29], with some approaches using a combination of both[30]. An extensive and fair

comparison of these methods is challenging as most face some of the aforementioned practical

issues, no readily available implementation[28], and power in real data highly depends on the

true (and unknown) multitrait genetic effect distribution. Finally, in addition to the potential

ability to detect new variants, there is increasing interest in using GWAS multitrait association

to decipher inter- and intra-phenotype genetic architecture[31, 32]. Again, real data applica-

tions are scarce, and questions remain regarding the approach to be used, the detectability of

the multitrait genetic structure behind genome-wide genetic correlation, their potential

matching to biological mechanisms, and their potential clinical utility.

Here, we build on previous works to conduct a large-scale multitrait analysis using GWAS

summary statistics from 36 phenotypes categorized into five clinically relevant sets (Immunity,
Anthropometry,Metabolism, Cardiovascular and Brain). We implemented five tests, an omni-

bus K degree freedom test (for KGWAS analyzed jointly) similar to[11, 29], and a weighted

approach using four alternative weighting schemes, including some partly similar to previously
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proposed ones[12, 14]. Comparing the relative performances of these models, we found sub-

stantial specificity of the signal identified by each approach, in terms of both association pat-

terns and expressed tissue enrichment. We then used a Gaussian mixture model on the

phenotypes with a variant association matrix to identify potential clusters of variants display-

ing similar genetic multitrait association profiles. In-depth functional analysis of the resulting

clusters demonstrates a connection between those profiles and tissue specific expression. This

breakdown of multitrait association signals highlighted how the overall genetic correlation

between phenotypes can be decomposed into likely distinct genetic pathways. Finally, we used

the phenotypes from the Immunity andMetabolism sets as case studies to demonstrate the

matching between the identified profile and known biological pathways. Notably, mapping

SNPs with unknown functions to pleiotropy profiles can indicate putative pathways. We con-

clude by investigating the potential clinical utility of the identified clusters for drug targeting.

Results

Multitrait genetic association test

The first step of our study consisted of ensuring the validity of the proposed statistical tests by

studying potential bias, and assessing their statistical power under several simulation scenarios.

Let us denote the vectors of single nucleotide polymorphism (SNP) Z-scores z = (z1,. . .,zK,),

where K is the number of phenotypes (i.e., the number of GWASs analyzed jointly). The first

model we used, which we refer to as sumZ, assumes that genetic effects across the phenotype

analyzed follow a direction specified by a vector of weights w to form a weighted sum of Z-

scores. Here we considered four weighting schemes: i) uniform weighting (sumZ1); ii) weight-

ing according to the first principal component of the phenotypic correlation matrix (sumZr);
iii) weighting according to the first principal component of the genetic correlation matrix

(sumZg); and iv) weighting according to the independent component analysis of the Z-scores

matrix (sumZica). The second approach, which we refer to as omnibus, does not rely on a prior

specification on the direction or magnitude of the SNP effect across traits. In brief, it compares,

for one SNP, the vector of genetic effects z with the expected multivariate normal distribution

under the null. It is a standard omnibus test based on summary statistics that allows for one

degree of freedom per outcome (here per phenotype). Both approaches (sumZ and omnibus)
rely on a valid estimation of Sr, the variance-covariance matrix between z1,. . .,zK, under the

null hypothesis of no association, and share similarities with previous approaches (see S1

Text).

We first performed an in-depth validation of each approach, starting with a series of simu-

lations under an ideal situation, when there were no missing data and the true Z-score covari-

ance matrix, Sr is known (S1–S3 Figs). We further show using both simulated data (S4 and S5

Figs and S1 Text) and real data from the UK Biobank cohort that in the specific case of com-

plete sample overlap between GWASs, the omnibus test is asymptotically similar to a multivari-

ate analysis of variance (MANOVA) applied to individual level data (S6 Fig and S1 Text). The

only major potential source of bias we identified is the misspecification of Sr which can lead to

severe type I error inflation (S7 Fig). Misspecification can affect all variants, if Sr is estimated

naively using the z-score data as proposed in previous studies (S8 Fig). Comparing various

approaches, we found that Sr can be accurately estimated using LDscore regression[9] (S9

Fig), and the approach was therefore used to estimate Sr along the genome-wide genetic corre-

lation (Sg) for the 36 phenotypes analyzed (S2 and S3 Tables). Nevertheless, misspecification

can also be SNP-specific when sample size varies across the SNPs analyzed. Per-SNP sample

size heterogeneity can induce different proportions of sample overlap and potentially invali-

date Sr for those variants. We illustrate this potential bias by applying omnibus tests for the
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joint analysis of the four GWASs from the GC consortium[33] (S10 Fig). To address this issue,

we implemented additional tools to estimate sample size per SNP when missing and subse-

quently filtered the variants with small sample sizes (S11 andS12 Figs and S1 Text). Finally,

out of 10 million variants reported for some GWAS, fewer than 1,000 had complete summary

statistics for all 36 phenotypes analyzed. While methods exist to impute missing GWAS statis-

tics, we found them to be inaccurate for multitrait analyses and we implemented the RAISS

[27] approach we recently developed to ensure valid imputation for our context (S13 Fig). All

preprocessing steps were recently incorporated into a publicly available toolset[28]. After

applying our preprocessing pipeline to all 36 GWAS analyzed, there remained 6,978,319 SNPs

with a missing data rate of 45% (59% before imputation).

Next, to illustrate the relative detection ability of each approach, we conducted a series of

simulation studies across various scenarios. S14 Fig represents the null hypothesis rejection

boundaries of each test using a simple example with two traits, when the genetic effect follows

a single bivariate normal distribution and when it follows a mixture of two bivariate normal

distributions (to reflect our working hypothesis). In this setting, the omnibus test displays the

largest detection rate. Among the sumZ tests, sumZg and sumZica show better performances

than sumZ1 and sumZr, especially when the structure of the genetic signal is heterogeneous.

We then conducted more extensive simulations focusing on the omnibus and SumZg tests. Fig

1 lays out the results of simulations using 10 traits generated under contrasting scenarios.

Again, the omnibus test shows the best performances, especially when all traits have a high her-

itability and if the genetic signal is not structured along a specific direction. The statistical

power of the omnibus test also tends to increase with the sample overlap especially when the

environmental correlation was not aligned with the genetic correlation. Interestingly this good

performance was also observed for genetically uncorrelated traits when they have a high heri-

tability. In the case of a highly structured genetic effect sampled along a specific direction

SumZg and the omnibus test performed similarly. However, when only one of the 10 traits had

a high heritability, the omnibus test underperformed compared to the SumZg, reflecting the

cost of additional degrees of freedom in the omnibus test.

Fig 1. Statistical Power of the omnibus and sumZg tests under several simulation scenarios. Power of the omnibus and

sumZg tests with respect to sample overlap. Color of the line represents the test. Each panel correspond to a simulation

scenario. Point shape indicates if the residual covariance was generated to be partially aligned with the genetic covariance or

to be unconstrained (random). A 10 trait Z-score vector was generated as the sum of a genetic effect and a residual effect:

Z = Zg + Zres. Zres was sampled from a normal multivariate distribution with covariance matrix terms equal to sz ¼

rns=
ffiffiffiffiffiffiffiffiffin1n2

p
where n1 is the sample size of the first study, n2 is the sample size of the second study and ρ is the phenotypic

covariance among the ns overlapping samples. Zg varied depending on the simulation scenario: (eff ~ Random) Zg were

sampled from a uniform distribution with boundary [-6; 6], (eff ~ corG) Zg was sampled from a normal multivariate

distribution with a random covariance matrix, (eff ~ wG) Zg was sampled along a straight line blurred with a normal noise,

(eff ~ high H) Zg was sampled from a normal multivariate distribution simulating genetically uncorrelated traits with high

heritability, (eff ~ het H) Zg was samples from a normal multivariate distribution simulating genetically uncorrelated trait

with only the first having a high heritability.

https://doi.org/10.1371/journal.pgen.1009713.g001
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Comparison of multitrait association in real data

We analyzed the 36 GWASs of European ancestry (S1–S3 Tables) using the aforementioned

multitrait approaches applied to seven phenotype sets: five medical-based sets (Immunity,
Anthropometry,Metabolism, Cardiovascular and Psychiatric), a BMI related set including

anthropometry traits and lipids (referred further as the Composite set), and finally all 36 phe-

notypes jointly (Fig 2). Note that we included bone mineral density traits in the Immunity set

because an enrichment of BMD genome wide significant loci in immune pathways and

immune cell regulatory regions has been previously reported[34, 35]. We derived the overlap

of significant loci of the multitrait tests per phenotype set (S15–S21 Figs), and after merging

all analyses (Fig 3A). We applied a Bonferroni correction to the joint tests and used a p-value

threshold of 10−8 instead of the standard 5x10-8. Univariate phenotype associations were

included in the comparison using the minimum of univariate p-value across all outcomes

(noted Puniv). Across all phenotype sets, 391 associations were identified by the multitrait tests

only, 392 were identified by univariate association tests only, and 1557 were significant for

both univariate and multitrait tests (see Fig 3A). The largest number of new associations was

detected by the omnibus test. The performances of the sumZ tests varied substantially depend-

ing on the phenotype set. For example, the weighting scheme based on phenotypic correlation

(SumZr), detects slightly more signals than other weights for the Immunity set (S19 Fig) but

Fig 2. Analysis overview. The diagram presents the overall analysis pipeline. A total of 36 GWAS were included

covering several common diseases and quantitative traits. All GWAS summary statistics went through extensive pre-

processing and quality control filtering, and missing single SNP statistics were imputed when possible. Multitrait

approaches were then applied to all clean GWAS data and on each clinically based set (All, Immunity,Metabolism,

Brain, Cardiovascular, Anthropometry, and Composite). After combining univariate and multivariate results, and

merging SNPs within locus, a total of 6,767 associations were identified. After a comparison of results per approach, a

clustering analysis was performed for variants within each set. Finally, we performed in-silico functional analysis of the

clusters derived in theMetabolism set to assess their biological relevance.

https://doi.org/10.1371/journal.pgen.1009713.g002
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Fig 3. Multitrait approach comparison. Panel (A) shows independent variants detected across the six approaches: univariate test (univ), omnibus test (omni),
weighted sum of Z-score with uniform weight (sumZ1), weight defined as the loading of the first principal component of the phenotypic correlation (sumZr), the

genetic correlation (sumZg), or defined using the loadings of an independent component analysis (sumZica). Each line corresponds to a test and each column to a

set of significant variants. For each set, the test for which variants are significant are represented with a black dot on the test line. The barplot at the left represents

the total number of significant independent signals detected by each approach. The stack bar at the top represents the cardinality of the sets. The next panels

show the link between strengths of univariate association signal and the relative performance (i.e. larger power) of the four most tests: univ, omni, sumZg, and

sumZica, for each phenotype set: anthropometry (B), cardiovascular (C), immunity (D),metabolism (E), brain (F), composite (G), and all phenotypes (H). Within

each phenotype set, we split the top associated SNPs per region based on the most significant test, and derived the median chi-squared for each test. The radar

plots show the derived median per test and illustrate the strong heterogeneity in patterns identified. For example, out of the 1605 SNPs from the anthropometry
set, 1235 had stronger signal with univ as compared with other tests. The median chi-squares in that group were 49.1, 1.1, 2.0, 1.0, and 0.7 for height, body mass

index (BMI), hip circumference (Hip), waist circumference (WC), and waist to hip ratio (WHR). Comparatively, the 267 SNPs harboring a stronger signal with

omnibus, had median of 6.8, 20.1, 15.9, 11.2, and 7.2 for the same phenotypes.

https://doi.org/10.1371/journal.pgen.1009713.g003
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fewer associations in other phenotype sets (Fig 3A). While the Omnibus detected the largest

number of new associations, the substantial share of signals found by other models suggests

that applying several multivariate tests, especially the combination omnibus, sumZica, and
sumZg, could be an interesting solution to maximize detection. Finally, we checked the 392

associations identified by the multitrait test only in these data against previously reported asso-

ciations from the GWAS catalog[1] for the same phenotypes. Altogether, we report a total of

322 new associations (S4–S10 Tables).

To further understand the relative performances of those three tests (omnibus, sumZica,
sumZg) along the univariate test, we explored which multitrait signal was associated with the

largest increase in detection per test. To this end, we listed all loci found associated with at

least one of the four approaches, and assigned each locus to a test based on the lowest p-value.

We then derived the median squared z-score by phenotype across the loci assigned to each

test. As shown in Fig 3B–3H, the median pattern varied substantially across tests and pheno-

type sets. Higher power for the univariate test was, as expected, observed for strong association

signals for a single phenotype, and mostly reflected a very large sample size for that phenotype

and/or a strong heritability (e.g. height in the anthropometry set, Fig 3B, or atrial fibrillation

in the cardiovascular set, Fig 3C). A strong association signal for the omnibus test was linked

to the inclusion of correlated phenotypes and sample overlap, resulting in a high residual

covariance (Sr, S2 Table). For example, the median squared z-score was elevated for any

stroke (AS), any ischemic stroke (AIS) and cardioembolic stroke (CES) in the Cardiovascular
set. The patterns preferentially detected by the sumZg test are harder to interpret. However, we

noticed that sumZg displays a strong signal for SNPs associated with physiologically related

traits (e.g., T2D and fasting glucose in the metabolism set, Fig 3E, or bone mineral density of

neck and spine in the immunity set, Fig 3D).

To confirm the relevance of the associations detected by multivariate tests, we also con-

ducted a tissue enrichment analysis to significant variants identified by the multitrait

approaches and by the univariate analyses separately (S11 and S12 Tables). Overall, univariate

variants and multitrait variants harbored a very similar functional enrichment landscape (S22

Fig). Most enriched tissues are already known to be involved in the phenotype in question,

including liver, fat and pancreas for theMetabolism set, immune cell types and thymus for the

Immunity set, and heart for the Cardiovascular set. Our enrichment study also confirmed less

obvious observations, which have nevertheless been noted before: the involvement of immu-

nity in brain-related traits (e.g. autisms and schizophrenia)[36, 37] and the overrepresentation

of brain tissues in theMetabolism set[38, 39].

Distinct genetic association profiles correspond to distinct genetic

correlations

Our comparison of approaches highlights that associated genetic variants display a broad

range of multitrait association profiles. We investigated how these profiles can be broken

down into groups of homogeneous multivariate genetic effects. This is directly related to the

principle of genetic correlation, which quantifies the concordance of genetic effects across

traits (e.g. [9]). The difference here, is that genetic correlation captures only the average over

the whole genome, and as discussed in recent studies, more localized genetic structures likely

exist for many pairs of traits[10]. To detect such a structure, we implemented a multivariate

Gaussian mixture model (MGMM)[40] for the identification of clusters among SNPs found

associated with at least one approach. We applied MGMM assuming between 2 and 10 clusters

and used the BIC and silhouette criteria to determine the most relevant number of clusters.

We further bootstrapped the computation of the clustering criteria to ensure the robustness of
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the selection (S1 Text). The best suited number of clusters is 6, 8, 8, 9, 3, 2 and 5 for theMetab-
olism, Immunity, Cardiovascular, Anthropometry, Psychiatric, Composite, and All sets, respec-

tively (S23 Fig). As illustrated for theMetabolism set in S24 Fig, adding significant SNPs from

the multitrait tests to those identified by the univariate tests enabled us to detect more clusters.

We assessed the uncertainty in cluster assignation by deriving the entropy for each variant

(see S1 Text). We observed some heterogeneity in the distribution of entropy values across

phenotype sets and clusters (Fig 4C and S16 and S17 Tables). The difficulty to attribute a clus-

ter for certain variants might be due to the lack of representative cluster (i.e. sub-structure not

captured in our analysis) or to shared functionalities between clusters that are not modelled in

the GMM framework. Because differentiating those two possibilities using the available data

would be very challenging, we decided to remove outlier variants (N = 28 across all sets) with

entropy above 0.75 from further analyses.

The resulting clustering is presented in Fig 4 for theMetabolism set and in S25-S31 Figs for

the other sets. Each figure presents a heatmap of Z-scores along with an alluvial plot displaying

Fig 4. Multitrait genetic association clusters for theMetabolism set. The panels summarize the clustering of the 392 independent SNPs selected from theMetabolism set

analysis. The set includes 10 phenotypes: triglyceride (TG), total cholesterol (TC), type 2 diabetes (T2D), low-density lipoprotein cholesterol (LDL-C), high-density

lipoprotein cholesterol (HDL-C), glycated hemoglobin (HbA1c), Homeostasis model assessment of β-cell function (HOMA-B), homeostasis model assessment of insulin

resistance (HOMA-IR), fasting insulin, and fasting glucose. The alluvial plot in panel A) represents the decomposition of univariate genetic association and its rewiring to

the six inferred clusters. The flow widths represent the proportion of phenotype’s variance explained by the subset of SNPs assigned to each specific cluster, relative to the

total genetic variance explained by all 392 SNPs. For example, SNPs from cluster 6 capture approximatively 41.7% and 54.6% of that genetic variance for TC and LDL,

respectively. For clarity, flows explaining less than 0.1% of the variance are not represented. Panel B) shows the heatmap of normalized beta coefficients per phenotype

within each cluster. Each column is a SNP, with blue and red colors indicating negative and positive beta, respectively. Coded alleles have been defined according to the per

cluster first principal component. The boxplots in panel C) shows the distribution per cluster of SNP’s entropy, an indicator of the fitness of the SNP-cluster assignment.

SNPs perfectly assigned are expected to have entropy close to zero.

https://doi.org/10.1371/journal.pgen.1009713.g004
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both the shared explained variance between phenotypes and the proportion of explained vari-

ance by clusters for each phenotype. The complete list of SNPs for theMetabolism set per clus-

ter is presented in S16 Table. The multivariate effects vary substantially from one cluster to

another. For instance, inMetabolism clusters, SNPs from the cluster 3 display increased

HDL-C and decreased triglycerides, while SNPs from cluster 5 are more specific to

triglycerides.

The alluvial figures and heatmaps provide an overview of the magnitude of genetic effects

from one cluster to another. To further characterize the concordance or discordance of genetic

contributions across phenotypes, we computed the pairwise SNP-based genetic correlations

for each cluster (see S1 Text). Fig 5 presents those estimates for a subset of phenotypes within

theMetabolism and Immunity phenotype sets. In the Immunity set, the correlations between

Fig 5. Heterogeneity of genetic correlation across clusters for theMetabolism and Immunity sets. We derived the genome-wide genetic correlation between

phenotypes using LDscore regression and using Pearson correlation from all SNP Z-scores (top panels), and for SNPs within the identified clusters. Results for

theMetabolism set are presented in panel (A) using only the four key traits, LDL, HDL, Triglyceride (TG) and type 2 diabetes (T2D). Results for the Immunity
set are presented in the panel (B). For clarity only significant correlation are represented. The boldness of the line is proportional to the strength of the genetic

correlation. Positive correlations are represented in blue and negative correlations in red. The values of the genetic correlation are indicated by the number next

to the trait. Solid lines represent significant correlation (after Bonferroni correction) whereas dashed lines represent correlation significant only before

Bonferroni correction. Note that because the clusters are inferred from the multivariate associations, the absolute value of the significance of the correlations is

of limited interest. Nevertheless, it provides a useful descriptive statistic to identify the key structures within each cluster.

https://doi.org/10.1371/journal.pgen.1009713.g005
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rheumatoid arthritis (RA), ulcerative colitis (UC) and Crohn’s disease (CD) provide a striking

illustration of how the genome-wide genetic correlation can be composed of smaller struc-

tures. The genome-wide genetic correlations between UC and CD is strong (0.41), but near 0

and not significant for RA (see S3 Table). In Fig 5B, we noticed a fairly large negative correla-

tion in clusters 2 and 3 between RA both CD and UC whereas, the cluster 5 captures a group

of variants displaying a strong positive correlation across the three traits. Similar negligible

genome-wide correlations along with opposite genetic correlations across clusters were

observed in theMetabolism set. For example, variants from cluster 1 display a strong concor-

dant effect between LDL and T2D, but variants from cluster 6 harbor an equally strong nega-

tive correlation. Fig 5 also highlights that significant genome-wide genetic correlations across

highly related phenotypes such as UC-CD and LDL-TG are not distributed evenly across

variants.

Biological meaning of genetic clusters

We conducted series of in silico functional analyses with the objective of mapping clusters to

candidate biological functions. For each phenotype set, we evaluated two types of enrichment:

tissue-specific chromatin mark enrichment per cluster (S13 Table) and a pathway enrichment

framework (S14 and S15 Tables) which integrates multiple databases such as Gene Ontology

(GO) and KEGG. Here, we focused on the Immunity andMetabolism sets as a case study.

Given a phenotype set, while using the same set of traits for all clusters, we observed large dif-

ferences in pathways, tissues and cell type enrichments between clusters.

For the Immunity set, clusters 1 and 4 predominantly capture genetic effects of bone-min-

eral density; clusters 2, 3 and 5 affect inflammatory bowel disorder (IBD); and clusters 6, 7 and

8 capture variants with pleiotropic effects on rheumatoid arthritis and IBD (S27 Fig). Both

enrichment analyses pointed toward an overrepresentation of the immune system with all

clusters–even those affecting primarily bone-mineral density–being enriched for at least one

immunologic pathway or one immunological tissue. We highlight the top enriched tissues and

top pathways in Table 1. Concerning pathway enrichment, immune related pathways regulat-

ing the shape of the immune response, such as cytokines and the JAK-STAT signaling pathway

were recurrent. Interestingly, variants from those clusters map to a distinct set of cytokines

and cluster of differentiation genes (e.g., IL4, IL13, IL33 for cluster 1 and IL3, IL5, IL10, IL19,

IL20, IL21, IL27 for cluster 5), which suggests that they may impact different components of

the immune system. Concerning tissue-specific active chromatin mark enrichment, clusters 2

and 3 contained multiple SNPs enriched primarily in transcriptionally active regions of “pri-

mary natural killer cells from peripheral blood” whereas cluster 7 and 8 are enriched for “pri-

mary T helper cells.” We also observed enrichment in the tissue where immune damage

occurred for cluster 5 (colonic mucosa), which highlights the complex interaction between the

immune system and the inflamed tissue.

TheMetabolism set includes several molecular phenotypes, which we expect to be closer to

biological mechanisms than some of the macrophenotypes from other sets. Overall, cluster 1 is

mostly associated with an increase in fasting glucose and impaired β-cell function; cluster 2 is

highly pleiotropic and notably increased the risk of T2D; and clusters 3 to 6 are mostly associ-

ated with lipids (Fig 4). Accounting for the direction of effects, we also noted that the genetic

associations in cluster 5 match the known phenotypic correlation with the inverse relationship

between circulating levels of HDL-C with those of LDL-C and, more especially, TGs observed

in epidemiological studies[41]. At the tissue level, we observed modest enrichment for adipo-

cytes in clusters 1 and 2 (FDR p-value 0.028 and 0.01 respectively, S13 Table) and cluster 3

SNPs are up-regulated in the liver (FDR p-value 0.005).
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As shown in S14 Table, each cluster was significantly enriched for a large number of GO

terms. We report some specific and illustrative examples: cluster 1 is enriched for the carbohy-

drate homeostasis set (q-value = 2.5 x 10−3), cluster 3 is enriched for the reverse cholesterol

transport set (q-value = 2.8 x 10−13), cluster 4 is enriched for the plasma lipoprotein clearance

set (q-value = 1.7 x 10−5), cluster 5 is enriched for the protein lipid complex assembly set (q-

value = 1.08x10-9) and cluster 6 is enriched for the low density lipoprotein particle remodeling

set (q-value = 1.07x10-2). Cluster 4 also exhibits active chromatin tissue enrichment in immune

T cells (q-value = 2.3x10-3), highlighting the link between cholesterol and immunity. Indeed,

cholesterol and modified forms of cholesterol, such as oxidized cholesterol and cholesterol

crystals, promote inflammatory and immune responses through multiple pathways including

the activation of the Toll-like receptor (TLR) signaling, the NLRP3 inflammasome and myelo-

poiesis[42, 43]. While the promotion of inflammation and immunity is carried by LDL parti-

cles, HDL particles were proposed to counteract this effect in part through reverse cholesterol

transport[44]. However, cluster 3, which is enriched for reverse cholesterol transport did not

exhibit such tissue enrichment in immune T cells, indicating that the link between HDL and

immunity may be more complex, as recently pointed out by Madsen et al[45].

Metabolism pathways and diseases

To provide a perspective on the specificity of genetic variants across clusters and their potential

contribution to human diseases, we investigated the lipids from theMetabolism set. We first

projected each cluster gene onto KEGG pathways. Here, we used only maps corresponding to

enriched GO gene sets identified or to tissue identified in the enrichment analysis at the previ-

ous stages (S14 and S15 Tables): fat digestion and absorption, cholesterol metabolism, and

Table 1. Top tissue associations and Immune related Genes by Clusters for the Immunity set.

Cl. #SNPa #geneb Top GTEx Tissue (q-val) Top Immunologic pathways (q-val) Immunity related genes

1 32 55 - - http://www.gsea-msigdb.org/gsea/msigdb/geneset_page.jsp?

geneSetName=GOMF_CYTOKINE_ACTIVITY&keywords=

GOMF_CYTOKINE_ACTIVITY

(1.9
x10-3)

IL4, IL13,IL33, STAT6, TNFSF11, TSLP, FAM3C,

TNFRSF11B

2 40 55 Primary Natural Killer

cells from peripheral

blood

(6.2x10-5) KEGG_JAK_STAT_SIGNALING_PATHWAY (1.9
x10-9)

IL10, IL12B, IL3, IL4, IL5, IL13, IL19, IL3,

IL12RB2, IL23R, CSF2

3 83 190 Primary Natural Killer

cells from peripheral

blood

(2.8x10-4) KEGG_JAK_STAT_SIGNALING_PATHWAY (6.2
x10-7)

IL3, IL26, IFNG,IL12RB2, IL17REL, IL23R,

IFNGR2, CD244, CD274, STAT5A, STAT3, LIF,

OSMR, CSF2, CCL13, CCL1, TNFSF15, TNFSF8,

JAK2

4 39 96 Bone Marrow Derived

Cultured Mesenchymal

Stem Cells

(3.5 x10-2) KEGG_JAK_STAT_SIGNALING_PATHWAY (0.020) IL2, IL21, IL1R1, IL1RL2, CSF3, STAT3, SPRY1,

TSLP

5 170 430 Colonic Mucosa (7.5 x10-5) https://www.gsea-msigdb.org/gsea/msigdb/geneset_page.jsp?

geneSetName=IMMUNE_SYSTEM_PROCESS&keywords=

IMMUNE_SYSTEM_PROCESS

(1.8
x10-8)

IL3, IL5, IL10, IL19, IL20, IL21, IL27, IL12RB2,

IL18R1, IL1R2, IL1RL1, IL23R, CD19, CCL2,

CCL7, CCL11, NOD2, TNFRSF9, JAK2

6 90 198 - - https://www.gsea-msigdb.org/gsea/msigdb/geneset_page.jsp?

geneSetName=IMMUNE_RESPONSE&keywords=

IMMUNE_RESPONSE

(1.3
x10-7)

ILF3, IL12RB2, IL18RAP, IL23R, CD28,CD40, C5,

STAT4, STAT1, TYK2

7 20 18 Primary T helper naive

cells from peripheral

blood

(7.5 x10-5) - -

8 121 59 Primary T helper memory

cells from peripheral

blood 2

(2.5 x10-4) - IL6R, TNFAIP3

Cluters (Cl.) not mapping to neither tissues nor pathways are indicated by a “-” sign. All reported p-value are FDR corrected.
a Count includes only the most associated SNP per region.
b Count of genes mapped to SNPs.

https://doi.org/10.1371/journal.pgen.1009713.t001
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PPAR signaling pathways. We constructed a synthesis of these observations on the metabolic

map presented in Fig 6A and 6B. Genes associated with clusters (S16 Table) had functions in

agreement with their effects on blood lipid levels: cluster 3 is enriched in genes involved in

HDL-C biogenesis and metabolism (LCAT, ABCA1, SR-B1, CETP, PLTP, LIPG, APOAx and
APOCx), clusters 4 and 6 with genes related to LDL-C clearance (SORT1, PCSK9, LDLR,

LDLRAP1, APOB and APOE), and cluster 5 to genes related to triglycerides and chylomicron

transport (LPL, APOAx and APOCx).

We then assessed the effect of variants from each cluster with three diseases known to be

associated with serum lipids: coronary artery diseases (CAD), stroke, and obesity (defined as a

BMI> 30) (S19 Table). Within each cluster, we aligned the SNP alleles with the main trend of

the corresponding cluster so that all coded alleles fit the multitrait pattern defined in Fig 6C

(see S1 Text). For example, all SNPs from cluster 5 were recoded to be associated with an

increase in TGs, TC and LDL-C and a decrease in HDL-C. We plotted in Figs 6D and S31 the

genetic effect of each SNP on the three diseases (using the effect on BMI as a proxy for obesity)

after the aforementioned alignment, and we performed a sign test to assess the significance of

the observed trend (S19 Table). SNPs from several clusters displayed a significant increase in

the risk of CAD: cluster 2 (P = 6.6x10-5), cluster 4 (P = 2.9x10-2), cluster 5 (P = 3.9x10-3) and

cluster 6 (P = 2.8x10-4). SNPs from cluster 2 also displayed a nominally significant increase in

the risk of stroke (P-value = 1.6x10-2). Finally, a large fraction of SNPs from cluster 3 had a

negative effect on BMI (P = 6.4x10-4). Interestingly, several SNPs from this cluster show associ-

ation with CAD, but with heterogeneous effects–some associated with an increased risk and

other associated with a decreased risk–so the absence of a global trend. The associations of

clusters 4 and 6 with CAD add to the evidence of a causal effect of LDL-C on CAD[46], which

has been established by prospective epidemiological studies[47], Mendelian randomization

[48] and randomized clinical trials evaluating the effect of LDL-C reducing therapies[49].

Moreover, the association of cluster 5 with CAD risks corroborates a potential causal role of

TGs[5] and remnant cholesterol[50, 51] in CAD. The role of TGs in CAD has also been con-

firmed by epidemiological studies[52], genome-wide association studies[5], Mendelian ran-

domization studies[53] and randomized controlled trials aiming the lower of TGs[54]. Cluster

3, which is associated with increases in HDL-C, does not have a protective effect on CAD,

which is again in agreement with Mendelian randomization analyses reporting no link

between HDL and CAD[48, 55]. Finally, the association of cluster 2 with CAD and strokes fur-

ther supports the potential causal effect of type 2 diabetes on CAD and stroke[56].

As a final exploratory analysis, we reported the cluster and multitrait genetic effect of genes

targeted to mitigate hyperlipemia to prevent CAD (Table 2). Drug targets corresponding to

cluster 3 (ABCA1, CETP, NR1H3) did not lead to successful clinical trials, whereas targets

(PCSK9, NPC1L1, APOC3,HMGCR) in clusters 4, 5 and 6 were mostly successful or promis-

ing. The example of the CETP gene, that is classified in cluster 3, a cluster not associated with

CAD, is of particular interest. CETP has been the target of failed clinical trials that attempted

to prevent CAD by inhibiting CETP and consequently increasing circulating HDL-C[57–59].

Cholesteryl ester transfer protein (CETP) promotes the heteroexchange of cholesteryl esters

and TGs between HDL-C and APOB-containing lipoproteins connecting HDL-C and TG

metabolism[57]. Pharmacological inhibition of CETP was motivated by GWAS[60] and pro-

spective cohorts[61] that indicated that CETP variants were associated with higher circulating

HDL-C levels and lower LDL-C, TGs and CVD risk. However, although all CETP inhibitors

achieved an effective increase in HDL-C, only anacetrapib led to a significantly lower inci-

dence of major coronary events[62] in patients who were receiving statin therapy, an effect

that might account for the reduction in ApoB (non-HDL-C) rather than the elevation of HDL,

as suggested by Mendelian randomization analyses[63]. In addition to these well-known
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Fig 6. Mapping clusters to pathways. We projected cluster’s genes from theMetabolism phenotype set onto KEGG pathways and reconstructed a synthetic

metabolic map. Panel A) presents the results for the lipoprotein component and panel B) for the lipid component. Gene names are highlighted by the colors of

their associated clusters. When a gene is associated to several SNPs belonging to different clusters it is represented with several colors. To improve interpretation,

we also present in panel C) a proxy for the relative contribution of each phenotype per cluster, defined as the loadings of the first principal component derived

from the matrix of Z-score for the subset of SNPs in that cluster. Finally, panel D) shows the distribution of standardized beta for association between SNPs from

each cluster and three diseases: any stroke (AS), coronary artery disease (CAD), and obesity (using body mass index as a proxy).

https://doi.org/10.1371/journal.pgen.1009713.g006
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drugs, we provide a systematic listing of potential drug targets by cluster (S20 Table) based on

the druggable genome database[64].

Altogether, these results suggest that drug development might be more effective by account-

ing for the gene context, i.e., by selecting candidate genes not from their individual features

but based on the disease association trend of genes displaying similar multitrait association

profiles. Under this working hypothesis, the proposed inference of genetic functional groups

can provide a means to identify those genes and therefore to select potential candidates.

Discussion

In this study, we conducted multitrait analyses of GWAS summary statistics from 36 human

phenotypes combining association tests and clustering to detect the shared and specific genetic

substructures underlying those phenotypes and to explore the links between those substruc-

tures and biological pathways and diseases. The question of substructures underlying genome-

wide genetic correlation has been partially explored in other recent studies[8, 10]. Our work is

in agreement with these studies, confirming the presence of regional genetic correlation differ-

ences and offering a data-driven approach for identifying primary substructures across mil-

lions of possibilities. Nevertheless, an understanding of whether those genetic functional

groups are only statistical constructs or correspond to meaningful biological mechanisms is

critical. In the latter, it means that a data-driven approach, such as the one proposed in the

present study, can be used to dissect the genetic contribution of complex human phenotypes.

Here, we used two complementary functional enrichment analyses to map these multitrait

association profiles to pathways, and we report a detailed view of these profiles for the Immu-
nity andMetabolism phenotype sets. In these analyses, the most enriched tissues varied sub-

stantially across clusters within each phenotype set, highlighting the potential of such an

approach for characterizing distinct genetic mechanisms.

Table 2. Drug target genes and associated SNPs in the metabolism set

Targeta Drug (phase) rsIDb Clu. SNP-phenotype associationc Comment

HDL LDL TC TG CAD AS BMI
ABCA1 Probucol (4) rs11789603 3 7.70 1.6 4.66 2.07 1.42 0.25 -1.50 This LDL-c lowering drug was approved but subsequently

discontinued because of its lowering effect on HDL-c

CETP Cetrapid (4) rs12448528 3 27.79 -4.61 4.96 -4.60 0.25 -0.28 1.21 Three clinical trials were halted because they showed adverse

effect and/or no therapeutic efficacy, except in the case of

anacetrapid use for preventing new acute coronary events in

high-risk individuals.

NR1H3 HDCA (1) rs12575609 3 9.11 -0.19 1.89 -3.26 0.76 0.06 -3.9 The RCT results were not produced due to AtheroNova Inc.

bankruptcy.

PCSK9 alirocumab,

Evolocumab (4)

rs7523242 4 -1.16 10.49 9.28 1.92 3.25 1.03 -0.29 Approved second line treatment for high cholesterol

individuals whose cholesterol is not controlled by Statin alone.

NPC1L1 Ezetimibe (4) rs217386 4 -0.80 6.60 5.96 2.44 2.19 0.86 -1.47 Currently used to lower the absorption of cholesterol and is

often used in association with statin.

APOC3,

APOA1

Volanesorsen (3) rs1815787 5 -2.09 5.45 9.41 16.60 0.39 0.26 0.614 A triglyceride-reducing drug currently in phase 3 RCT.

HMGCR Statins (4) rs59014134 6 0.79 15.79 16.06 1.34 2.01 -0.36 -4.59 The most common cholesterol lowering drugs.

APOB Mipormersen (4) rs1041968 6 -6.96 22.94 20.92 9.38 2.45 -1.20 -1.75 Can be used for risk management in familial

hypercholesterolemia but can cause fatty liver disease.

aNote that for probucol, the molecule inhibit ABCA1, but is not specific to ABCA1.
bPrimary associated SNP and corresponding cluster. But note that for several loci, there is a few other SNPs from other cluster.
cDefine as the association Z-score for the most associated variant in the gene.

https://doi.org/10.1371/journal.pgen.1009713.t002
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The variability in pleiotropy profiles across SNPs identified in GWASs has been previously

discussed. For example, earlier reports[33] on inflammatory diseases have highlighted such

patterns, or proposed grouping of SNPs based on the direction of association[65]. However,

those studies used only a handful of SNPs identified at the time of publication. Our analysis

based on formal clustering and functional enrichment analyses and using the results of

GWASs performed in much larger sample size offers a new and much more detailed qualita-

tive perspective on these profiles. More recent publications have also discussed approaches

focusing on the characterization of SNPs displaying pleiotropic effects[66], the inference of

shared and distinct genetic pathways between related phenotypes[67], and the identification of

genetic components linked to disease subtypes[31, 68]. Our approach shares objectives with

some of these methods but also has unique features and advantages. Studies based on compo-

nent decomposition techniques alike principal component analysis[31, 67] yields endotypes of

interest from a biological standpoint, but do not provide the SNP-level genetic decomposition

that we are addressing. Approaches that rely on individuals’ genotypes are limited by the ethi-

cal and practical cumbersome aspects tied to this type of data[68], sometimes without increas-

ing statistical power. For example, as demonstrated in this study, the MANOVA derived from

individual-level data is equivalent to the proposed omnibus test derived using the summary

statistics only.

Past studies have shown that sufficiently curated genetic information can enhance the

chance of success of clinical trials[69, 70]. We further argue that fine analysis of pleiotropic

effects, as performed in the present study, is a very promising path forward to help identify

drug targets with a minimal risk of serious side effects. In particular, the picture of the links

between coronary artery disease risk and lipid pathways inferred from our analysis is coherent

with the state-of-the-art, while providing critical new evidence. While the association of

LDL-C and TGs with CAD is largely documented[46, 71], the relation linking HDL-C with

CAD is more complex, as both low and high HDL-C levels have been associated with a risk of

cardiovascular disease and mortality[72, 73]. Recent studies pointed out that the functionality

of HDL rather than the static measure of its circulating cholesterol level accounts for the rela-

tionship between HLD-C and CVD and mortality[73, 74], with a potential role of HDL in rem-

nant cholesterol transport. Overall, evidence for the presence or absence of a causal effect

between lipid cholesterol measures and CAD as reported by Mendelian randomization analy-

ses should be considered with caution, as lipid traits result from a complex interconnexion of

multiple biological pathways. Our analysis suggests that the genetic contribution to the estab-

lished negative correlation between HDL-C and CAD might be driven only by a subset of

genes within a few specific genetic pathways. Under this hypothesis, drugs targeting mecha-

nisms outside these pathways would be ineffective in decreasing CAD risk. Note that such ret-

rospective analysis can be only suggestive of the potential deleterious side effects of drug

targets. Nevertheless, the identification of those candidates might limit cost of further analysis

using both in silico analyses in independent data, and ex vivo study to examine the role of the

identified genetic variants on additional intermediate molecular phenotypes (gene expression,

protein, etc).

A number of further analyses can be conducted based on the results we obtained. First, we

focused on a limited number of phenotype sets. Extending analyses to other sets of phenotypes

might help refine potential genetic functional groups and better characterize their link to bio-

logical mechanisms. To our knowledge, there are no trivial solutions to solve the intrinsic

combinatorial issue (i.e., one can build over 6x1010 sets of phenotypes from 36 GWASs). Addi-

tionally, note that we worked with a data freeze dated from December 2018. Hence, at the date

of the publication of this paper, newer summary statistics are available for a few traits. We

accounted for these new publications when counting newly identified variants by filtering
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associations reported in the latest version of the GWAS catalog. Another critical component of

our analysis is the methodological choices for clustering. Here, we considered a Gaussian mix-

ture model, mainly to enable missing values, and used BIC and silhouette to decide the optimal

number of clusters. Other methods and alternative criteria might result in slightly different

clusters. Moreover, we assume that genetic variants belong to distinct clusters, but it is likely

that some variants belong to multiple biological pathways. Note that GMM provides posterior

probability of cluster assignment and has the potential to explore overlapping clusters, but bet-

ter approaches might potentially exist to address that specific question. Additionally, our

implementation does not automatically address the problem of allele coding (i.e., the choice of

the coded allele) inducing, in some cases, symmetric clusters that we had to merge a posteriori.
Again, alternative approaches might offer the possibility of solving this issue.

To summarize, we ensured the theoretical reliability of a panel of multitrait tests and dem-

onstrated their capacity to detect new associations on diverse sets of traits. Considering inde-

pendent significant associations, we stratified SNPs in multitrait profiles corresponding to

biological pathways. We believe this stratification to be relevant for multiple applications rang-

ing from functional annotation to drug targeting.

Online methods

Multivariate association test

Consider a vector z of K Z-scores statistics for a single nucleotide polymorphism (SNP)

obtained from standard univariate genome-wide association screenings of K phenotypes.

Under the null hypothesis, z = (z1,. . .,zK,) follows a normal distribution N(0,Sr), where Sr is

the residual phenotypic covariance matrix (S1 Text), while under the alternative, z is expected

to display additional covariance due to shared genetics (defined by a genetic correlation matrix

Sg). We first considered an Omnibus test of the vector of Z-scores, which can be performed

using the multivariate Wald statistics:

Tomni ¼ ztΣ� 1

r z

where Tomni follows a chi-square with K degree of freedom (df) under the null hypothesis of no

phenotype-genotype association. We also considered a classic weight-based test defined as:

TsumZ ¼
ðwtzÞ2

wtΣrw

where w is a vector of K weights applied to the Z-score. Under the null, TsumZ follows a chi-

squared distribution with 1 degree of freedom. Note that this approach shares similarities with

both standard fixed effect meta-analysis[14] and with dimensionality reduction methods (e.g.

principal component analysis[25]). One can also note that the Omnibus statistics can be

expressed as a combination of the sumZ statistics over all eigenvectors of Sr(S1 Text). We note

vi the ith eigen vector of Sr:

Tomni ¼
XK

i¼1

TsumZjw ¼ vi

We considered four weighting schemes for the sumZ tests: (i) in the SumZ1, w is equal to

the unit vector so all traits have the same weight; (ii) in the SumZr, w is equal to the first eigen

vector of Sr so its direction represents phenotypic correlation between traits, (iii) in the

SumZg, w is equal to the first eigen vector to Sg so its direction represents genetic correlation

between traits, (iii) in the SumZica w is computed by applying an Independent component
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analysis (ICA) to the complete matrix of Z-score. To compute the weight vector w of the Sum-

Zica, for a given phenotype set, the genome wide Z-score matrix was extracted and an indepen-

dent component analysis was performed with the scikit-learn python package. The component

yielding the most novel association was selected as loadings. We verified that this selection

procedure did not lead to an inflation under the null hypothesis by simulation (see S2 Fig).

Performing the omnibus test requires inverting the Z-score covariance matrix Sr. When

this matrix does not have a full rank, we use a pseudo inverse of the matrix based on the singu-

lar value decomposition (S1 Text). Briefly, as Sr is a variance-covariance matrix, it can be writ-

ten PDPt where D = diag((λk)k = 1. . .K), (λk)k = 1. . .K) are the eigenvalues of Sr and P is the

orthogonal matrix whose columns correspond to the eigenvectors of Sr. If it is not invertible,

only K’ eigenvalues are different from 0 (where K’ denotes the rank of Sr) and an inverse Σ� 1

r

of the matrix can be computed as Σ� 1

r ¼ PK0D
� 1

K0 P
t
K0 , where D� 1

K0 ¼ diagðð1=lkÞk¼1...K0 Þ and

PK0denotes the K×K0 matrix whose columns are the K0 eigenvectors corresponding to the

eigenvalues different from 0. Note that the Omnibus statistics computed with Σ� 1

r follows a χ2

distribution with K0 degree of freedom.

Robust estimation of Z-score covariance

The validity of the proposed multivariate tests mostly relies on the accurate estimation of Sr.

In practice, the covariance between Z-scores from null SNPs from two GWAS will deviate

from 0 when there is both sample overlap and correlation among the traits analyzed. When

combining results from two independent studies, or when the trait analyzed has negligible cor-

relation, Sr will be a diagonal matrix, so that the Omnibus test can be performed by summing

chi-squared statistics for each SNP to form a K degree of freedom chi-square, and the sumZ
test becomes a standard weighted meta-analysis of fixed effect. Yet, in the large-scale GWAS

era, this situation is unlikely as most of the large GWAS are conducted in the consortium set-

ting, where samples likely overlap across multiple GWAS. It follows that Sr can contain non-

zero off-diagonal terms. Under the complete null model, the expected Z-score covariance for

null SNPs between two traits equals sz ¼ rns=
ffiffiffiffiffiffiffiffiffin1n2

p
where n1 is the sample size of the first

study, n2 is the sample size of the second study and ρ is the phenotypic covariance among the

ns overlapping samples (see S1 Text and e.g. [3, 9]). In some specific cases, one can obtain

these parameters directly from the data (e.g. when analyzing multivariate omics data). Con-

versely, obtaining all four parameters (ρ, ns, n1, n2) from consortium GWAS based on dozen

or even hundreds of cohorts can be a practically daunting and risky task. Moreover, accurate

phenotypic covariance estimation would be particularly challenging when study-specific and

trait–specific covariates adjustment has been performed. Recent studies proposed to estimate

Sr using available SNPs from the GWAS in question using all available single SNPs Z-score

[75] or using a random subset of pruned variants[14], though some discussed removing

GWAS hits[15], focusing on a subset of SNPs in regions less likely to contain causal variants

[76], or using tetrachoric estimator[16]. The validity of these estimators mostly relies on the

assumption that the vast majority of the SNP effects in the genome are distributed under the

null hypothesis. While this is likely to be true in some cases, associated variants can potentially

lead to either upward or downward pairwise covariance between Z-scores. Instead, we leverage

recent work by Bulik-Sullivan et al[3, 9] that allows for estimation of this covariance (and the

diagonal variance terms) under a polygenic model and assuming multivariate normality of

effect sizes across traits (see S1 Text). The estimation of Sr was performed on Z-scores before

the imputation step described in the next section. For a few traits the estimated variance is

markedly inferior to 1. As indicated in the LDSC regression method, this phenomenon hap-

pens when the original GWAS was corrected with a genomic control factor.
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Simulation studies on test statistical power

To assess the statistical power of the Omnibus test and the SumZ tests, we designed the follow-

ing simulation scenarios. A 10 trait z-score vector was generated for each of the 5000 causal

SNPs as the sum of a genetic effect and a residual effect: Z = Zg + Zres. In the following, random

covariance matrices were generated using the randcorr R package[77]. Zres was sampled from a

normal multivariate distribution with covariance matrix (Sr) terms equal to sz ¼ rns=
ffiffiffiffiffiffiffiffiffin1n2

p

where n1 is the sample size of the first study, n2 is the sample size of the second study and ρ is

the phenotypic correlation among the ns overlapping samples. As demonstrated in[9], ρ =

ρg+ρe where ρg is the genetic correlation and ρe the environmental residual correlation. We

generated the residual covariance matrix Sr according to two scenarios: (random) ρr was ran-

domly sampled with the only constraint that Sr remains a semi definite positive matrix,

(aligned) ρr was constructed as rr ¼ 0:4� rg þ 0:6� E with E sampled at random. Zg varied

depending on the simulation scenario: (eff ~ Random) Zg were sampled from a uniform distri-

bution with boundary [-6; 6], (eff ~ corG) Zg was sampled from a normal multivariate distribu-

tion with a random covariance matrix, (eff ~ wG) Zg was sampled along a straight line blurred

with a normal noise, (eff ~ high H), Zg was sampled from a normal multivariate distribution

simulating genetically uncorrelated traits with high heritability, (eff ~ het H), Zg was samples

from a normal multivariate distribution simulating genetically uncorrelated trait with only the

first having a high heritability.

Data preprocessing: an overview

The analysis of the 36 GWAS required substantial preprocessing, including the inference of

several parameters. First, for many publicly available GWAS, sample size per SNP was not

readily available and retrospectively collecting this information can be very challenging as it

implies requesting this information from each individual cohort. For such a situation, we pro-

pose inferring a proxy for missing sample size as 1=ðŝ2
bG
s2
GÞ, where ŝ2

bG
is the variance of b̂G,

the estimated SNP effect, and s2
G the variance of the SNP, derived from the coded allele fre-

quency which is either provided with the GWAS or extracted from a reference panel (see S1

Text). For linear regression this approximate Ns2
e , where N is the true sample size and s2

e is a

residual variance of the outcome in the regression model. For logistic regression our estimator

is a proxy for the term Np(1−p), where p is the in-sample proportion of cases, and it therefore

assumes that the proportion of cases is relatively stable across SNPs with different sample size.

Another challenging issue was the merging of multiple GWAS with different set of assayed

SNPs. Indeed, out of 10 million variants reported for some GWAS, fewer than 1,000 had com-

plete summary statistics for all 36 phenotypes analyzed. We performed an imputation of miss-

ing Z-scores in each study using the RAISS[27] method we recently developed. The approach

uses correlation between SNPs to predict Z-score at missing SNPs using available ones and

achieves a level of imputation accuracy suitable for multitrait analysis (S1 Text). Here we used

the European panels from the 1,000 Genomes project[78] as a reference for the estimation of

the correlation between SNPs. Overall, imputation did not lead to any observable inflation of

the omnibus statistic (S13 Fig). Nevertheless, as a supplementary quality control (QC), we

excluded significant SNPs that were not surrounded by SNPs in linkage disequilibrium with

significant or near significant p-values (P< 10−6).

These two parameter inferences were integrated along other preprocessing operations into

a pipeline that is fully described here[28]. Given a reference panel with no ambiguous strand,

it consists in the following steps (i) Extract, the coded and alternative alleles, signed statistics

(regression coefficient or odds ratio), standard error, p-value, and sample size; (ii) Remove all
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SNPs that are not in the reference panel; (iii) Derive Z-score for each SNP from signed statis-

tics and p-value; (iv) Infer sample size when not available; (v) Remove all SNPs whose sample

size is less than 70% of the maximum sample size; and (vi) Infer missing Z-scores statistics

based on the 1K genome reference panel. After applying our preprocessing pipeline to all 36

GWAS analyzed, there remained 6,978,319 SNPs with a missing rate of 45% (59% before

imputation).

Characterization of new loci

To determine new and existing trait-associated loci we used genome regions formed by linkage

disequilibrium (LD) blocks as defined in Berisa et al[79] using a reference panel of individuals

of European ancestry. It included a total of 1,704 independent regions ranging from 10 kb to

26 Mb in length, with an average size of 1.6 Mb. For each independent LD region, we extracted

the minimum p-value over all SNPs contained in the region, and a single univariate analysis p-

value defined as the minimum across all single phenotype GWAS and all SNPs in the region.

We consider that a region is newly detected by a multitrait test if the joint analysis p-value is

genome-wide significant while its univariate p-value is not (joint analysis p-value < 1x10-8 and

univariate p-value> 1x 10−8). We determined SNPs carrying the signal inside significant

region with the plink “clump” function using the following parameters:—clump-p1, 10−8;—

clump-r2, 0.2. We kept the lead SNP by clump for further analysis (gene mapping and

clustering).

To report associations exclusively detected in the current report (S4–S10 Tables), we

filtered out association present in the GWAS catalogue[1] at the date of the 14th of Sep-

tember 2020 (univariate p-value > 5x 10−8) for traits corresponding to our phenotype set.

The following trait labels were used to retrieve associations: (Metabolism set) ‘Fasting

blood glucose’, ‘Triglycerides’, ‘LDL cholesterol’, ‘LDL cholesterol levels’, ‘HDL choles-

terol’, ‘HDL cholesterol levels’, ‘Total cholesterol levels’, ‘HOMA-B’, ‘HOMA-IR’, ‘Hemo-

globin A1c levels’, ‘Type 2 diabetes’; (Psychiatric set) ‘Schizophrenia’, ‘Bipolar disorder’,

‘Major depressive disorder’, ‘Alzheimer’s disease’, ‘Educational attainment’; (Anthropom-

etry set) ‘Height’, ‘Waist circumference’, ‘Waist-hip ratio’, ‘Body mass index’, ‘Hip cir-

cumference’; (Immunity set) ‘Bone mineral density’, ‘Rheumatoid arthritis’, ‘Ulcerative

colitis’, ‘Inflammatory bowel disease’, ‘Crohn’s disease’, ‘Asthma’; (Cardiovascular set)

‘Coronary artery disease’, ‘Ischemic stroke’, ‘Large artery stroke’, ‘Stroke’, ‘Atrial fibrilla-

tion’, ‘Heart rate’, ‘Heart rate variability traits’; (Composite set) ‘Body mass index’, ‘Waist-

hip ratio’, ‘Triglycerides’, ‘LDL cholesterol’, ‘LDL cholesterol levels’, ‘HDL cholesterol’,

‘HDL cholesterol levels’, ‘Total cholesterol levels’.

FUN-LDA tissue enrichment

We computed enrichment for SNPs belonging to regions of open chromatin (more likely to

contain expressed genes[80, 81]) in specific tissues in three cases: i) when comparing results

across phenotype sets, ii) when comparing univariate results, and iii) when comparing results

across clusters. For all analyses we used functional annotations on 127 Roadmap tissues and

cell lines defined by integrating activating histone marks (H3K4me1, H3K4me3, H3K9ac, and

H3K27ac) with a latent Dirichlet allocation model as implemented in FUN-LDA[82]. The

enrichment score for a tissue is based on the number significant SNPs compared with the total

number of SNPs in open chromatin region (see S1 Text). Enrichment results are reported in

S11–S13 Tables.
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Multitrait genetic association clustering and selection of the optimal

number of clusters

We performed a clustering of top associated SNPs for each phenotype set using a Gaussian

Mixture model (GMM). Briefly, the assumed generative model is as follows. Consider n inde-

pendent vectors Zi = (Zi1,. . .,Zij,. . .,Zid)t inRd, each arising from one of k distinct clusters.

Each vector represents one SNPs. The value Zij is the Z-score of SNP i on trait j. Let Iij = 1 if

the ith observation belongs to cluster j, and define the indicator vector Ii = (Ii1,. . .,Iij,. . .,Iik)t.
Conditional on membership to the jth cluster, Zi follows a multivariate normal distribution,

with cluster specific mean μj and covariance Sj. Let denote πj the marginal probability of mem-

bership to the jth cluster. The observations can be viewed as arising from the following hierar-

chical model:

Ii � Multinomialð1;pÞ

ZiðIij ¼ 1Þ ¼ Nðmj;SjÞ

One major difficulty in applying the GMM was to deal with incomplete data. Indeed, even

after imputation of some missing statistics, our datasets still contained some missing values.

To solve the clustering, we implemented the statistical framework described by Ghahramani

et al[83] which we recently implemented in a R package MGMM[40]. This method relies on

EM optimization techniques enabling the inference of unobserved variables from observed

variables and an assumed Gaussian mixture model. In classical GMM, the only variable

inferred is the posterior probability cluster membership. In the MGMM algorithm, missing Z-

scores are also inferred taking into account the observed Z-scores and the inferred probability

to belong to a cluster.

The model gives for each SNP the posterior probabilities to belong to each cluster, and was

therefore assigned to its most likely cluster, as long as its entropy was larger than 0.75. For a

given variant SNPi, the entropy was derived as follow:

SðSNPiÞ ¼
Xk

j¼1

PðSNPi 2 clusterjÞ � logðPðSNPi 2 clusterjÞÞ

where k is the total number of clusters and P(SNPi2clusterj) is the posterior probability of SNPi
to belong to cluster j. The higher the entropy the more the SNP attribution to one cluster is

ambiguous. SNPs with an entropy higher than 0.75 were filtered out of the clustering results.

Clustering was performed on all independent significant SNPs. For each SNP, we defined

three p-values on the phenotypic group traits: the minimum univariate p-value (Puniv), the Sum-
Zica p-value and the omnibus p-value. All SNPs with at least one of the three p-value under 10−8

were selected for further analysis. For theMetabolism univariate clustering, we only considered

the univariate p-value to perform the selection. We then applied the plink[84] clump function

to retrieve practically independent associations using the 0.2 as clump-r2 parameter and 10−8 as

clump-p1 parameter. For each clump we selected a representative SNPs as the one with the

smallest p-value across the three tests and having more than 60% of its values observed. Note

that for a negligible number of occurrences, the representative SNPs has a p-value above 10−8

(S15 and S16 Tables). We applied MGMM within each phenotype set and varied the pre-speci-

fied number of clusters between 2 and 10. To select the optimal number of clusters k, we per-

formed the clustering 100 times on a random subset of 80% of the SNPs for each k. For each

resulting clustering we computed the Bayesian Information Criteria and the Silhouette[85] (see

S23 and S24 Figs). Except for theMetabolism set, the silhouette appears conservative and the
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BIC criterion anticonservative, i.e. the latter criteria tends to select a larger number of clusters.

We decided to use the following ad hoc compounded criterion:

1. If the optimal number of clusters determined by the BIC criteria is higher than the one

determined by the silhouette criteria, starting from the silhouette optimal, increase the

number of clusters until one of these two conditions is met: 1) adding one cluster signifi-

cantly decrease the silhouette criterion, 2) the BIC optimal number is reached.

2. In other cases, set the optimal number of clusters to the one determined by silhouette.

Cluster genetic correlation

We defined pairwise genetic covariance per cluster for as rg;cluster¼b
t
1
b2=M where β1 and β2 are

the vector of genetic effects for the pair of phenotypes considered andM is the number of

SNPs in the cluster. To estimate properly this quantity from the observed b̂, we accounted for

the bias introduced by sample overlap and phenotypic correlation using the following estima-

tor (see S1 Text):

E β1
Tβ2

� �
¼
Eðβ̂1

T
β̂2Þ

M
�
nsρY
n1n2

where ρY is the phenotypic covariance, and ns, n1 and n2 are respectively the sample size shared

between the two traits, for the trait 1, and for the trait 2. To assess whether the estimated

genetic covariances are significantly different from zero, we performed for each pair of pheno-

types within each cluster, a t-test on the vector of random variables (X1, X2,. . .,XM), were Xj ¼

b̂ j;1b̂ j;2 �
nsr
n1n2

is the contribution of SNP j to the covariance. Note that we used only indepen-

dent SNPs selected using LD-clumping with squared-correlation parameter equals 0.2.

Functional enrichment of metabolism clusters

We used FUMA[86] SNP2GENE function to associate SNPs with genes based on two criteria,

the physical position (in 30kb radius of a protein coding gene) and eQTLs (all significant cis-

eQTL from GTEx up to a distance of 1Mb). Note that we restrained the eQTLs to the one that

were found in relevant tissue for the Immunity and Metabolism set: immune cells for Immu-

nity and adipose, intestine, liver and brain tissues for Metabolism (see S1 Data for complete

parameters). After chaining genes to clusters based on SNPs, we performed a functional

enrichment for pathways defined in KEGG[87] and GO[88] databases and derived report p-

values using FUMA GENE2FUNC function. Here, cluster’s gene were compared against a

background of protein coding genes. Finally, we used the R package pathview[89] to project

genes onto KEGG pathways maps.

Disease-clusters association

For themetabolism phenotype set, to provide an indicator of the relative contribution of

genetic variants to phenotypes in each cluster from theMetabolism set, we performed a princi-

pal component analysis (PCA) of the SNP-by-phenotype association matrix within each clus-

ter. For this analysis, we used scaled beta coefficients, i.e. Z-scores divided by the square root

of the phenotype GWAS sample size. To avoid bias due to the arbitrary choice of the coded

allele, we randomly shuffled 20 times the coded allele, and repeated the PCA after each shuf-

fling. We report in Fig 5, the average of the loadings of the first PC over all shuffling. Note that

the first PC only provides the multidimensional direction explaining the largest variance and
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therefore do not fully capture the distribution of genetic effect within each cluster. Neverthe-

less, those first PCs explained a substantial amount of the total variance, equal to 75%, 38%,

53%, 64%, 80% and 93% of the variance in betas for cluster 1 to 6, respectively.

Then, we assessed the association between SNPs within the inferred cluster and three traits

(none of which being included in theMetabolism set): cardiovascular diseases, any stokes and

BMI. SNP alleles were aligned according to the first principal by clusters determined in the last

section. We applied a sign test to assess the concordance of the sign of the projection on PC1

and the sign of Z-score for on the three tested additional traits. For this analysis we used more

stringent criteria to ensure the SNPs independence. We selected the subset ofMetabolism
SNPs for which linkage disequilibrium does not exceed 0.2 (clump-r2 set to 0.05), which

diminishes the number of SNPs considered from 391 to 285. Concerning the association of

SNPs to drug target, we associated drug target to a representative SNPs by selecting the SNP

with the lowest entropy and having a positive silhouette.

URL Resources

We developed the following R and python packages to perform our study:

JASS_Preprocessing: https://gitlab.pasteur.fr/statistical-genetics/jass_preprocessing

JASS: https://gitlab.pasteur.fr/statistical-genetics/jass

RAISS: https://gitlab.pasteur.fr/statistical-genetics/raiss

MGMM: https://cran.r-project.org/web/packages/MGMM/index.html

Figs 3–5 have been generated using the following R packages:

https://cran.r-project.org/web/packages/UpSetR/index.html

https://cran.r-project.org/web/packages/radarchart/README.html

https://cran.r-project.org/web/packages/ggalluvial/vignettes/ggalluvial.html

https://cran.r-project.org/web/packages/gplots/index.html

https://cran.r-project.org/web/packages/igraph/index.html

Supporting information

S1 Text. Supplementary Note.

(DOCX)

S1 Fig. Distribution of the proposed statistics under the null. We simulated series of 10,000

replicates, each including z-score statistics for 5 (panels a-c) and 100 (panels d-f) phenotypes

and 100K SNPs. For each replicate we applied the Omnibus test (panels a and d), the sumZ test

using weights of 1 (panels c and f) and test sumZ test using weights equals to loading of the

first principal component of the phenotypic correlation matrix. Left panels show the observed

chi-square distribution in blue against the expected one in red. Right panels show the corre-

sponding p-value histograms.

(TIF)

S2 Fig. Solving singular covariance matrices. We simulated series of replicates, each includ-

ing 20,000 individuals, 10,000 SNPs additively coded with frequencies ranging from 0.01 to

0.99, and 100 phenotypes. The phenotypes were drawn from a multivariate normal distribu-

tion with mean 0 and a variance-covariance Sr of rank 50. For each SNP, we computed the z-

score of association with each phenotype using linear regressions and then derived p-values

from the Omnibus test using three strategies to derive the inverse of Sr: i) considering only

eigenvalues greater than a specified threshold � (left column), ii) replacing eigenvalues below a

threshold � by � (middle column), and iii) adding a small value � to the diagonal terms of Sr

(right column). For each strategy we considered three different � values: 10−3(first line),
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10−6(second line), and 10−9(last line). The plots show the histogram of p-value distribution.

(TIF)

S3 Fig. ICA component selection inflation control. We simulated 1000 z-score vectors under

the null hypothesis for each of the 7 GWAS set. The z-score vectors under the null hypothesis

follow a multivariate Gaussian of null mean and of covariance given by the intercept of the

LDSC regression. The ICA was applied on the 1000 simulated z-scores. For each component,

the sumZ test using the component as weight vector. We then selected the component yielding

the most association as final component. We computed the p-value for the 1000 point for the

optimal component. The y-axis represents the observed p-value quantiles with respect to the

theoretical p-value quantiles.

(TIF)

S4 Fig. Summary statistics versus individual-level data tests under the null. We simulated

replicates of 10,000 predictors for 500 (left column), 5,000 (middle column) and 10,000 indi-

viduals (right column). Predictors were drawn from a binomial with n = 2 and probability

varying in [0.01–0.99] to mimic genotype data, and further normalized to have mean 0 and

variance 1. We then simulated a) 5, b) 20 and c) 100 correlated outcomes independent from

the genotypes. To assess the impact of non-normal outcomes on the relationship between the

summary-statistics based test and the individual-level data test, the outcomes were first drawn

from a multivariate normal distribution with pairwise correlation ranging in [-0.7; 0.7] and

then transform to non-normal distributions based on their quantiles, so that on average, 33%

of them follow a uniform distribution, 33% a Laplace distribution, and 33% an exponential dis-

tribution. For each SNP, we first applied a Multivariate ANOVA (MANOVA, blue line). We

then conducted association screenings for each single phenotype separately, and applied the

proposed Omnibus test (purple line) and the Wilk’s approximation (orange line) on the result-

ing summary statistics. The plots show the observed -log10(p-value) of each test against the

expected value under the null.

(TIF)

S5 Fig. Summary statistics versus individual-level data tests under the alternative. We sim-

ulated replicates of 10,000 predictors for 500 (left column), 5,000 (middle column) and 10,000

individuals (right column). Predictors were drawn from a binomial with n = 2 and probability

varying in [0.01–0.99] to mimic genotype data, and further normalized to have mean 0 and

variance 1. We then simulated a) 5, b) 20 and c) 100 correlated outcomes. We assumed that

10% of the predictors were causal, each causal predictor being randomly chosen and associated

with up to 50% outcomes, randomly chosen with equal probability. Effect sizes for each causal

predictor were drawn from a normal distribution with mean 0 and variance 0.0025 (i.e. the

total phenotypic variance explained by the predictors). To assess the impact of non-normal

outcomes on the relationship between the summary-statistics based test and the individual-

level data test, the outcomes were first drawn from a multivariate normal distribution with

pairwise correlation ranging in [-0.7; 0.7] and then transform to non-normal distributions

based on their quantiles, so that on average, 33% of them follow a uniform distribution, 33% a

Laplace distribution, and 33% an exponential distribution. For each SNP, we first applied a

Multivariate ANOVA (MANOVA, blue line). We then conducted association screenings for

each single phenotype separately, and applied the proposed Omnibus test (purple line) and the

Wilk’s approximation (orange line) on the resulting summary statistics. The plots show the

observed -log10(p-value) of each test against the expected value under the null.

(TIF)
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S6 Fig. Validation of the summary-statistics approach in UK Biobank individuals. Multi-

trait GWAS was performed in real data from the UK Biobank using five traits, 336,347 unre-

lated individuals, and 14,718 genotyped SNPs on Chromosome 20. We used two methods:

MANOVA as implemented in PLINK, and the Omnibus test from JASS. The plot shows the

-log10(p-values) of the Omnibus approach as a function of the -log10(p-values) derived with

the MANOVA.

(TIF)

S7 Fig. Impact of covariance bias on multivariate tests. We simulated three correlated vec-

tors of z-scores for 10,000 SNPs. We derived the multivariate test for each SNP using either the

true covariance matrix (Strue), an upward-bias covariance matrix (SupBias, left panels) or a

downward-bias covariance matrix (SdownBias, right panels). For both scenarios we derived the

Omnibusmultivariate test using either the true or biased covariance matrix. Invalidity of the

test based on the biased covariance matrix is illustrated in the resulting QQplots and genomic

inflation factor λGC (bottom panels).

(TIF)

S8 Fig. Impact of causal variants on the covariance estimation. We simulated series of corre-

lated z-scores for 100,000 SNPs from two outcomes Y1 and Y2. For each simulation we gener-

ated a matrix of true genetic effect b = (β1 β2) ofm standardized and independent genotypes

for two phenotypes Y1 and Y2 from a multivariate normal with means of 0 variance h21=m, and

h22=m, respectively, and covariance σg, where h21 ¼ 0:3 and h22 ¼ 0:6 are the heritability of Y1

and Y2. We then generated b̂ defined as b̂ ¼ bþ ε where ε was also drawn from a multivariate

normal with means 0, variance 1/N1 and 1/N2, respectively, and covariance reNs=
ffiffiffiffiffiffiffiffiffiffiffi
N1N2
p

,

where N1, N2 = N1/2 and Ns = N2/2 are the sample sizes for Y1 and Y2, and the number of

shared samples, respectively, and re = 0.4 is the correlation between Y1 and Y2 across overlap-

ping samples. Finally, we derived the expected z-score for each genotype

z ¼ ðβ̂1
ffiffiffiffiffiffi
N1
p

β̂2
ffiffiffiffiffiffi
N2
p
Þ ¼ ðz1 z2Þ, and σz = cov(z1, z2), the covariance between z1 and z2. The

left panel (a) show the covariance between z-score for null variants in red, and the observed

covariance between all z-scores except those harboring a p-value below a given threshold (0

(i.e. no SNP removed), 5x10-8, 5x10-5, 5x10-4, 5x10-3, 1x10-2, and 5x10-8). The right panel (b)

shows the same results while assuming only 10% of the variants are causal, while all remaining

have b = 0.

(TIF)

S9 Fig. Validation of the LDSC covariance estimate accuracy in UK Biobank. We compared

LDSC estimates of covariance between summary statistics against its expected value, which

equals ρNs=
ffiffiffiffiffiffiffiffiffiffiffi
N1N2
p

, where ρ is the phenotypic correlation among overlapping sample and Ns,
N1 and N2 are the sample overlap, the sample size for phenotype 1 and the sample size for phe-

notype 2, respectively. We used individual-level data for five anthropometric traits and

619,017 SNPS measured in 336,347 individuals from the UK Biobank cohort. We first consid-

ered scenarios with complete sample overlap (i.e. Ns = N1 = N2, panels a-d), so that LDSC esti-

mate is expected to equal the phenotypic correlation. We compared estimates while using

100% (a), 50% (b), 10% (c) and 1% (ds) of the total sample size respectively. The lower matrix

triangle in pale red are estimated phenotypic correlation from individual-level data, while the

upper triangle in pale blue shades are estimated correlation derived using the LDSC. We then

considered scenario where sample overlap is only partial by sub-sampling individuals only for

BMI, using 100% (e),50% (f), 10% (g) and 1% (h) of the total sample for that phenotype. The

first row, in red, is the expected GWAS covariance knowing ρ, Ns, N1 and N2. The second row,
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in blue, is the estimate derived using LDSC.

(TIF)

S10 Fig. Bias due to sample size heterogeneity in the GLG consortium GWAS data. We per-

formed the Omnibus test to the four traits from the GLG consortium: high density lipoprotein

(HDL), low density lipoprotein (LDL), total cholesterol (TC), and total triglyceride (TG) using

all available SNP with complete summary statistics. We plotted the median chi-squared of the

resulting test across bin of SNPs defined based the per-SNP standard deviation in sample size

across the four traits (σsample size) for SNPs with a minor allele frequency (MAF) below 5% (a),

and above 5% (b). The red dashed line indicates the expected 4 degree of freedom chi-square

under the null. The shade of blue is proportional to the number of SNPs in each bin.

(TIF)

S11 Fig. Impact of allele frequency error on sample size inference. We simulated 1,000 repli-

cates including 20,000 individuals were a phenotype Y is simulated independently of a geno-

type G with frequency randomly sampled in [0.001, 0.999]. For each replicate we tested for

association between G and Y and we inferred w the weights, which equals the sample size

times a constant, using the standard error of the effect estimate and either the in-sample allele

frequency or the in-sample allele plus a noise term sample from a uniform with min and max

in [0.01, 0.05, 0.10]. When allele frequency plus noise was larger or smaller than 0 or 1, the

value was set to 0.001 and 0.999, respectively. Upper and lower panels show the inferred sam-

ple size as a function of the true allele frequency when using the identity and logit link func-

tions for modelling and testing for association, respectively. Note that for the later, for each

replicate, we simulated 50,000 individuals and considered a disease prevalence of 25%. We

then randomly sampled 10,000 cases and 10,000 controls to form replicates of 20,000 individu-

als. Also, for the sake of comparison, we scaled w by a constant in the logit model so that the

target is the true sample size.

(TIF)

S12 Fig. Impact of case/control ratio misspecification on sample size inference. We simu-

lated 1,000 replicates including 50,000 individuals. For each individual we generated a disease

status assuming a prevalence of 25% and an independent genotype G with frequency randomly

sampled in [0.001, 0.999]. For each replicate we randomly sampled 5,000 cases and 20,000 con-

trols and tested for association between G and Y using these samples and after sub-sampling

cases (i.e. using a sub-sample of the 5,000 cases and the 20,000 controls, top panel) or controls

(i.e. using the 5,000 cases and a sub-sample of the 20,000 controls, bottom panel), in order to

mimic situation where either cases or controls would be missing for some SNPs. For each

experiment we inferredWlog = Np(1−p), where N is the sample size and p is the case-control

ratio, using the standard error of the effect estimate and the in-sample allele frequency. In both

situations (sub-sampling cases or sub-sampling controls),Wlog is decreasing with increasing

percentage of missingness.

(TIF)

S13 Fig. Effect of imputation of missing z-scores on the Omnibus test statistic. Each line

corresponds to a GWAS set. The left column is the empirical quantile of the Omnibus statistic

versus the theoretical quantile before imputation. The middle column is the same after imputa-

tion. The right column is the empirical quantile of the Omnibus statistic before imputation ver-

sus the same quantity after imputation.

(TIF)
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S14 Fig. Bivariate Significance boundary for each test. We simulated series of N = 100K indi-

viduals with two correlated outcomes Y1 and Y2 as a function ofm = 1000 independent SNPs.

The genetic effect of them variants on Y1 and Y1, denoted b = (β1 β2), were drawn from a

bivariate normal with means 0, variance h21=m, and h22=m, and correlation σg, where

h21 ¼ 0:4; h22 ¼ 0:25, and σg = 0.8. The vectors of residual ε = (ε1, ε2) were drawn from a mul-

tivariate normal with means 0, variance 1 � h21 and 1 � h22, respectively, and covariance re =

0.5. For each simulation, we derived the z-score for each of them genotypes z ¼
ðβ̂1

ffiffiffiffi
N
p

β̂2

ffiffiffiffi
N
p
Þ ¼ ðz1 z2Þ and plotted z1 as a function of z2. We applied the five tests: Omni-

bus, sumZr, sumZg, sumZica and sumZ1 and highlighted for each of them whether variants had

significant p-value (red, p<5x10-5) or not (blue, p>5x10-5). In the results from the upper pan-

els, b was drawn from a bivariate normal distribution with the σg parameter was set to 0.24.

For the lower panel, b was drawn from a mixture of two normal distributions both centered

on zero and both with variance equal to h21=m, and h22=m. However, the covariance σg was set

to 0.8 for the first one and -0.65 for the second one.

(TIF)

S15 Fig. Signal comparison for all phenotypes. The upper panel shows independent variants

detected across phenotype groups and across approaches represented as an UpSetR visualiza-

tion. Matrix lines correspond to a test, each column to a set of significant variants. For each

set, the test for which variants are significant are represented with a black dot on the test line.

The barplot on the left of the matrix represents the number of significant independent signals

detected by each approach. The barplot on the top of the matrix represents the cardinality of

the sets. The sets are ordered by cardinality from the largest to the leftmost to the smallest to

the rightmost. The bottom panels show quadrant plots, i.e. the -log10(p-value) for the most sig-

nificant SNP per region for the Omnibus test as a function of the -log10(p-value) for the most

significant SNP per region across all univariate GWAS. Complete results are presented in the

left panel, and a zoom around the genome-wide significance threshold is presented on the

right panel.

(TIF)

S16 Fig. Signal comparison for anthropometric traits. The upper panel shows independent

variants detected across phenotype groups and across approaches represented as an UpSetR
visualization. Matrix lines correspond to a test, each column to a set of significant variants. For

each set, the test for which variants are significant are represented with a black dot on the test

line. The barplot on the left of the matrix represents the number of significant independent sig-

nals detected by each approach. The barplot on the top of the matrix represents the cardinality

of the sets. The sets are ordered by cardinality from the largest to the leftmost to the smallest to

the rightmost. The bottom panels show quadrant plots, i.e. the -log10(p-value) for the most sig-

nificant SNP per region for the Omnibus test as a function of the -log10(p-value) for the most

significant SNP per region across all univariate GWAS. Complete results are presented in the

left panel, and a zoom around the genome-wide significance threshold is presented on the

right panel.

(TIF)

S17 Fig. Signal comparison for cardiovascular phenotypes. The upper panel shows indepen-

dent variants detected across phenotype groups and across approaches represented as an

UpSetR visualization. Matrix lines correspond to a test, each column to a set of significant vari-

ants. For each set, the test for which variants are significant are represented with a black dot on

the test line. The barplot on the left of the matrix represents the number of significant
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independent signals detected by each approach. The barplot on the top of the matrix repre-

sents the cardinality of the sets. The sets are ordered by cardinality from the largest to the left-

most to the smallest to the rightmost. The bottom panels show quadrant plots, i.e. the -log10

(p-value) for the most significant SNP per region for the Omnibus test as a function of the

-log10(p-value) for the most significant SNP per region across all univariate GWAS. Complete

results are presented in the left panel, and a zoom around the genome-wide significance

threshold is presented on the right panel.

(TIF)

S18 Fig. Signal comparison for composite phenotypes set. The upper panel shows indepen-

dent variants detected across phenotype groups and across approaches represented as an

UpSetR visualization. Matrix lines correspond to a test, each column to a set of significant vari-

ants. For each set, the test for which variants are significant are represented with a black dot on

the test line. The barplot on the left of the matrix represents the number of significant indepen-

dent signals detected by each approach. The barplot on the top of the matrix represents the

cardinality of the sets. The sets are ordered by cardinality from the largest to the leftmost to the

smallest to the rightmost. The bottom panels show quadrant plots, i.e. the -log10(p-value) for

the most significant SNP per region for the Omnibus test as a function of the -log10(p-value)

for the most significant SNP per region across all univariate GWAS. Complete results are pre-

sented in the left panel, and a zoom around the genome-wide significance threshold is pre-

sented on the right panel.

(TIF)

S19 Fig. Signal comparison for immunity phenotypes. The upper panel shows independent

variants detected across phenotype groups and across approaches represented as an UpSetR
visualization. Matrix lines correspond to a test, each column to a set of significant variants. For

each set, the test for which variants are significant are represented with a black dot on the test

line. The barplot on the left of the matrix represents the number of significant independent sig-

nals detected by each approach. The barplot on the top of the matrix represents the cardinality

of the sets. The sets are ordered by cardinality from the largest to the leftmost to the smallest to

the rightmost. The bottom panels show quadrant plots, i.e. the -log10(p-value) for the most sig-

nificant SNP per region for the Omnibus test as a function of the -log10(p-value) for the most

significant SNP per region across all univariate GWAS. Complete results are presented in the

left panel, and a zoom around the genome-wide significance threshold is presented on the

right panel.

(TIF)

S20 Fig. Signal comparison for metabolism phenotypes. The upper panel shows indepen-

dent variants detected across phenotype groups and across approaches represented as an

UpSetR visualization. Matrix lines correspond to a test, each column to a set of significant vari-

ants. For each set, the test for which variants are significant are represented with a black dot on

the test line. The barplot on the left of the matrix represents the number of significant indepen-

dent signals detected by each approach. The barplot on the top of the matrix represents the

cardinality of the sets. The sets are ordered by cardinality from the largest to the leftmost to the

smallest to the rightmost. The bottom panels show quadrant plots, i.e. the -log10(p-value) for

the most significant SNP per region for the Omnibus test as a function of the -log10(p-value)

for the most significant SNP per region across all univariate GWAS. Complete results are pre-

sented in the left panel, and a zoom around the genome-wide significance threshold is pre-

sented on the right panel.

(TIF)
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S21 Fig. Signal comparison for psychiatric phenotypes. The upper panel shows independent

variants detected across phenotype groups and across approaches represented as an UpSetR
visualization. Matrix lines correspond to a test, each column to a set of significant variants. For

each set, the test for which variants are significant are represented with a black dot on the test

line. The barplot on the left of the matrix represents the number of significant independent sig-

nals detected by each approach. The barplot on the top of the matrix represents the cardinality

of the sets. The sets are ordered by cardinality from the largest to the leftmost to the smallest to

the rightmost. The bottom panels show quadrant plots, i.e. the -log10(p-value) for the most sig-

nificant SNP per region for the Omnibus test as a function of the -log10(p-value) for the most

significant SNP per region across all univariate GWAS. Complete results are presented in the

left panel, and a zoom around the genome-wide significance threshold is presented on the

right panel.

(TIF)

S22 Fig. Proportion of tissue type enriched by phenotype group. The union of enriched tis-

sue by phenotype set were mapped to their larger anatomical category (Tissue type) in GTEx.

To simplify the visualization, anatomical categories that did not explain at least 5% of any of

the phenotype group were regrouped under the “Other” category. In each group, anatomical

category representing less than 1% were approximated to 0. a) results obtained with variants

detected with univariate test and b) results with variants detected with multivariate tests.

(TIF)

S23 Fig. Clustering criterion by number of clusters and phenotype set. In all panels, the x-

axis is the number of clusters derived using the union of significant SNPs in the Omnibus,
SumZgenet and univariate tests. On the left column, the y-axis represents the BIC (Bayesian

Information Criteria). On the right column, the y-axis is the Silhouette criteria (see Methods).

Each line corresponds to a different group of phenotypes.

(TIF)

S24 Fig. Clustering for theMetabolism set using SNPs detected by univariate analysis only.

The x-axis is the number of clusters derived using the significant SNPs univariate tests. On the

left column, the y-axis represents the BIC (Bayesian Information Criteria). On the right col-

umn, the y-axis is the Silhouette criteria (see Methods).

(TIF)

S25 Fig. Alluvial plot and heatmaps for the Anthropometry GWAS set. On the left panel,

the alluvial plot represents the re-assignment of SNPs from univariate analysis to clusters. To

emphasize the relative genetic contribution to phenotypes, SNPs from each phenotype block

were weighted by their variance explained to that phenotype. On the right panel, the heatmap

represents the multi-trait signatures. Each line is a SNPs, each column, a trait. The gradient of

color represents the strength of the Z-scores.

(TIF)

S26 Fig. Alluvial plot and heatmap for the Cardiovascular GWAS set. On the left panel, the

alluvial plot represents the re-assignment of SNPs from univariate analysis to clusters. To

emphasize the relative genetic contribution to phenotypes, SNPs from each phenotype block

were weighted by their variance explained to that phenotype. On the right panel, the heatmap

represents the multi-trait signatures. Each line is a SNP, each column, a trait. The gradient of

color represents the strength of the Z-scores.

(TIF)
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S27 Fig. Alluvial plot and heatmap for the Immunity GWAS set. On the left panel, the allu-

vial plot represents the re-assignment of SNPs from univariate analysis to clusters. To empha-

size the relative genetic contribution to phenotypes, SNPs from each phenotype block were

weighted by their variance explained to that phenotype. On the right panel, the heatmap repre-

sents the multi-trait signatures. Each line is a SNP, each column, a trait. The gradient of color

represents the strength of the Z-scores.

(TIF)

S28 Fig. Alluvial plot and heatmap for the Composite GWAS set. On the left panel, the allu-

vial plot represents the re-assignment of SNPs from univariate analysis to clusters. To empha-

size the relative genetic contribution to phenotypes, SNPs from each phenotype block were

weighted by their variance explained to that phenotype. On the right panel, the heatmap repre-

sents the multi-trait signatures. Each line is a SNP, each column, a trait. The gradient of color

represents the strength of the Z-scores.

(TIF)

S29 Fig. Alluvial plot and heatmap for the Psychiatric GWAS set. On the left panel, the allu-

vial plot represents the re-assignment of SNPs from univariate analysis to clusters. To empha-

size the relative genetic contribution to phenotypes, SNPs from each phenotype block were

weighted by their variance explained to that phenotype. On the right panel, the heatmap repre-

sents the multi-trait signatures. Each line is a SNP, each column, a trait. The gradient of color

represents the strength of the Z-scores.

(TIF)

S30 Fig. Alluvial plot and heatmap for the Metabolism GWAS set. On the left panel, the

alluvial plot represents the re-assignment of SNPs from univariate analysis to clusters. To

emphasize the relative genetic contribution to phenotypes, SNPs from each phenotype block

were weighted by their variance explained to that phenotype. On the right panel, the heatmap

represents the multi-trait signatures. Each line is a SNP, each column, a trait. The gradient of

color represents the strength of the Z-scores.

(TIF)

S31 Fig. Alluvial plot and heatmap for all GWAS combined. On the left panel, the alluvial

plot represents the re-assignment of SNPs from univariate analysis to clusters. To emphasize

the relative genetic contribution to phenotypes, SNPs from each phenotype block were

weighted by their variance explained to that phenotype. On the right panel, the heatmap repre-

sents the multi-trait signatures. Each line is a SNP, each column, a trait. The gradient of color

represents the strength of the Z-scores.

(TIF)

S32 Fig. Heatmap for theMetabolism SNPs for cardiovascular traits and Alzheimer dis-

ease. the heatmap represents the impact multi-trait signatures detected on the METABOLISM

set on disease that have been linked to hyperlipidemia and diabetes. Each line is a SNP, each

column, a trait. The gradient of color represents the strength of the Z-scores.

(TIF)
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