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STRUCTURAL VIROLOGY

Structural basis of synergistic neutralization of
Crimean-Congo hemorrhagic fever virus by
human antibodies
Akaash K. Mishra1†, Jan Hellert2†‡, Natalia Freitas3, Pablo Guardado-Calvo2, Ahmed Haouz4,
J. Maximilian Fels5§¶, Daniel P. Maurer6, Dafna M. Abelson7, Zachary A. Bornholdt7, Laura M. Walker6,
Kartik Chandran5, François-Loïc Cosset3, Jason S. McLellan1*, Felix A. Rey2*

Crimean-Congo hemorrhagic fever virus (CCHFV) is the most widespread tick-borne zoonotic virus,
with a 30% case fatality rate in humans. Structural information is lacking in regard to the CCHFV
membrane fusion glycoprotein Gc—the main target of the host neutralizing antibody response—as well
as antibody–mediated neutralization mechanisms. We describe the structure of prefusion Gc bound
to the antigen-binding fragments (Fabs) of two neutralizing antibodies that display synergy when
combined, as well as the structure of trimeric, postfusion Gc. The structures show the two Fabs acting
in concert to block membrane fusion, with one targeting the fusion loops and the other blocking Gc
trimer formation. The structures also revealed the neutralization mechanism of previously reported
antibodies against CCHFV, providing the molecular underpinnings essential for developing CCHFV–
specific medical countermeasures for epidemic preparedness.

C
rimean-Congo hemorrhagic fever virus
(CCHFV) is endemic to Africa, Asia, and
Europe and is transmitted by ticks and
contact with bodily fluids from viremic
animals or patients (1, 2). Although in-

fection is asymptomatic in most vertebrates,
it can cause severe disease in humans, with
hemorrhage, myalgia, and high fever, eventu-
ally leading to death in ~30% of diagnosed
cases (1, 3, 4). As a result, the World Health
Organization has shortlisted CCHFV as a
priority pathogen in its research and develop-
ment blueprint (5). The Balkan peninsula and
Turkey bear the highest burden; however, global
warming facilitates the spread of the tick vector
into new habitats through transport by migra-
tory birds, as exemplified by a recent outbreak
in Spain and the appearance of infected ticks
in Italy (6–8).
CCHFV is a member of the Orthonairovirus

genus in the Nairoviridae family of the
Bunyavirales order of viruseswith a segmented,

negative-strand RNA genome (9). New human
pathogens in theOrthonairovirus genus (termed
nairoviruses from here on) continue to be
identified (10), highlighting the need for high–
resolution structural information to guide anti-
viral strategies. The Bunyavirales order also
includes other pathogenic arthropod-borne
viruses (“arboviruses”) such as the Rift Valley
fever virus (RVFV, Phlebovirus genus, Phenui-
viridae family) and rodent-borne viruses such
as Andes virus (Orthohantavirus genus, Han-
taviridae family). CCHFV infects host cells
through its envelope glycoproteins Gn and
Gc, which form a locally ordered lattice of
heterodimers on the virus surface after they
are cleaved from a poly-glycoprotein precursor
by host proteases (Fig. 1A) (11–13). Entry into
target cells takes place by receptor-mediated
endocytosis (14), with the acidic environment
of the endosome triggering dissociation of the
Gn-Gc heterodimer and the surface lattice,
followed by a conformational change of Gc
into a trimer of hairpin structures to drive
membrane fusion (Fig. 1B). As with most
bunyaviruses, CCHFV Gc is predicted to be a
class IImembrane fusion protein (11, 12) and is
the only known target of CCHFV-neutralizing
antibodies (15).
We determined the x-ray structure of the

CCHFV Gc postfusion trimer using two con-
structs at resolutions of 2.2 and 3.0 Å (table
S1), as described in thematerials andmethods.
The trimer revealed a typical class II fold, with
each protomer adopting the characteristic
postfusion hairpin conformation (16). The
inner arm of this hairpin is composed of
domains I and II (red and yellow, respectively;
Fig. 1C) and forms a rodlike structure with the
distal tip of domain II exposing loops bc, cd,
and ij, also termed “fusion loops” as they form

a nonpolar host–membrane insertion surface
(HMIS) required to drive membrane fusion.
The domain I and II rods interact about the
threefold molecular axis along their entire
length to make an elongated trimeric core.
The outer arm of the hairpin is formed by
domain III (blue) followedby the stem (magenta)
running in an extended conformation to reach
the HMIS, thus completing the hairpin by
bringing the downstream C-terminal trans-
membrane segment (not included in our struc-
ture) next to the HMIS. The turn of the hairpin
at the opposite end of the rod is made of a
linker region connecting domains I and III
(Fig. 1C, cyan). Domain III and the stem toge-
ther fill the cleft between two neighboring
subunits of the core trimer, contributing to
the stability of the postfusion conformation
of Gc. The overall arrangement of domains I
and III is similar to that of the fusion proteins
of other arboviruses such as phleboviruses
(17, 18), flaviviruses (19, 20), and alphaviruses
(21). This organization is different, however, in
hantaviruses (22, 23) and rubella virus (24),
which do not infect arthropods. In the class II
fusion proteins of thesemammal-specific viruses,
domain III is exchanged between neighboring
protomers in the trimer (fig. S1).
Among themost potently neutralizinghuman

monoclonal antibodies (mAbs) targeting
CCHFV Gc, ADI-36121 and ADI-37801 were
synergistic in coneutralization experiments
(15). We determined the x-ray structure of
both antigen-binding fragments (Fabs) in a
ternary complex with monomeric Gc to 2.1-Å
resolution (table S1) as described in the mate-
rials and methods. The structure showed a Gc
monomer with the ADI-36121 Fab bound at
the domain II base and the ADI-37801 Fab
bound at the HMIS (Fig. 1D). The crystals
provided interpretable electron density only
for domains I and II, as well as part of the
linker between domains I and III, indicating
that the whole outer arm observed in the
postfusion hairpin is mobile in the monomer.
On the virion surface, however, the prefusion
conformation of Gc is likely further stabilized
by contact with Gn and neighboring Gn-Gc
heterodimers. Compared with the Gc post-
fusion trimer, the conformation of domain I
in the monomer is different. In particular,
the N- and C-terminal b strands, A0 and J0,
display an altered topology (fig. S1A). A similar
change in the conformation of domain I has
been observed between the pre- and post-
fusion structures of phlebovirus Gc (17, 18, 25)
(fig. S1B), indicating that the conformation of
domain I in the CCHFV Gc monomer indeed
corresponds to the prefusion form.
Unlike domain I, the conformation of the

domain II tip in the Fab-bound monomer is
similar to that seen in the postfusion trimer
(Fig. 2A). In the flavivirus, alphavirus, and
phlebovirus class II fusion proteins, the HMIS
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is formed exclusively by the cd loop (orange
in our figures) (16). In hantaviruses, however,
the HMIS is tripartite, with additional con-
tributions from two adjacent loops, bc and ij
(Fig. 2B) (22). CCHFV Gc has a similar tri-
partite configuration at its domain II tip,
sharing a pattern of conserved residues with
hantavirus Gc (Fig. 2C) despite an overall
sequence identity of only ~20% between the
two Gc orthologs. Fig. 2 compares the CCHFV
Gc to that of Maporal virus (MPRLV), for
which best-resolved pre- and postfusion han-
tavirus Gc structures are available (22, 23, 26).
The main-chain conformation of the bc, cd,
and ij loops is similar in the postfusion forms
of the CCHFV andMPRLV Gc (Fig. 2, A and B,
left panels), with a root-mean-square devia-
tion (RMSD) of 0.8 Å over 29 Ca atom pairs. In
both cases, four conserved disulfide bonds
(Fig. 2, A to C, green) stabilize the structure,
two of which cross-link the cd loop with the ij
and bc loops (Fig. 2C). In CCHFV, the HMIS
conformation is further supported by a hydro-
gen bond network that involves the buried
polar side chains of Asn1194 and Arg1189 of the
cd loop in both the pre- and postfusion forms

(Fig. 2, A to C). The equivalent residues in
MPRLV, Asn769 and Asn764, recapitulate the
same interactions in the postfusion form
(26) but are solvent-exposed in the prefusion
Gn-Gc heterodimer, where nonpolar side
chains such as MPRLV Trp766, corresponding
to CCHFV Trp1191, are instead buried (Fig. 2B).
It is likely that Gn locks the domain II tip in
the conformation shown in the MPRLV pre-
fusion Gn-Gc complex, and that release of Gn
results in the HMIS conformation seen in
the pre- and postfusion forms of CCHFV. This
suggests that the Gcmonomer observed in the
ternary complex corresponds to an activated
prefusion form of CCHFV capable of insertion
into the host membrane.
To experimentally test the role of residues

suggested by the structure to be important for
Gc function in membrane fusion, we estab-
lished an assay to follow syncytia formation of
cells expressing the CCHFV glycoproteins at
their surface upon low-pH treatment.We used
this assay to test single point mutations at the
interface between domains I and III (at the
turn of the postfusion hairpin) to explore their
functional effect. Alanine substitutions of

two conserved residues abrogated low-pH–
triggered cell-cell fusion: His1479 on domain
III, which makes a salt bridge with Glu1113 of
domain I, and Trp1068 in the N-terminal tail,
which projects into a pocket at the domain I/II
boundary (Fig. 2, D to E). Gc-derived linear
peptides spanning the N-terminal tail (amino
acids 1041 to 1060 and 1061 to 1080) around
the functionally important Trp1068 residue
robustly react with CCHFV-positive human
sera (27), suggesting this site as a potential
target for neutralizing antibodies. On the con-
trary, we saw no effect resulting from alanine
substitution of His1398 at the binding pocket
for theN-terminal tail and only amild effect by
alanine substitution of the glycosylation site
Asn1563 on the stem (28) (Fig. 2, D to E).
We also tested the role of HMIS nonpolar

side chains. Mutation to alanine of the highly
conserved Trp1191, Trp1197, and Trp1199 exposed
by the cd loop, as well as Trp1365 and Met1362

exposed by the ij loop (see Fig. 2C), strongly
impaired low-pH–triggered syncytia forma-
tion relative to wild-type Gc when substituted
individually (Fig. 2D). This result is in line
with the functional effect of the corresponding
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Fig. 1. Structures of CCHFV
Gc. (A) Organization of the
CCHFV glycoprotein precursor
(B) Mechanism of bunyavirus
class II membrane fusion
proteins. (C) X-ray structure of
the CCHFV Gc ectodomain in the
postfusion conformation. The
front protomer is colored
according to domain, and the
trimer axis is shown in light blue.
Secondary structure elements
and disulfide bonds (green
numbers) are labeled. An ortho-
nairovirus-specific insertions
cluster (IC) is depicted in brown.
(D) X-ray structure of the CCHFV
Gc monomer in complex with the
ADI-37801 and ADI-36121 Fabs. HC,
heavy chain; LC, light chain.
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residues of hantavirus Gc (Fig. 2B), which have
been shown to be functionally required for
target membrane insertion (22).
The residues exposed at the HMIS make up

the epitope of mAb ADI-37801, which covers
627 Å2 of surface area on Gc. Two-thirds of the

epitope is buried by the three complementarity-
determining regions (CDRs) H1, H2, and H3
of the heavy chain, and the remainder by the
light-chain CDRs L1 and L3 (Fig. 2F). There are
four hydrogen bonds at the epitope-paratope
interface (table S2). The core of the epitope is

formed by the cd loop, which contributes 10
amino acids, whereas the bc loop contributes
an additional two. The residues critical for
membrane fusion—Trp1191, Trp1197, and Trp1199

of the cd loop—are an integral part of the ADI-
37801 epitope (Fig. 2, A and F). Our structure
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Fig. 2. ADI-37801 binds HMIS residues required for Gc-driven syncytia
formation. (A) The CCHFV HMIS of the postfusion trimer (left) and in complex
with ADI-37801 (right). In the left panel, W1191, W1197, and W1199, which were
mutated to obtain the crystals, have been modeled for clarity. (B) Hantavirus
fusion loops in the postfusion trimer forming the HMIS (left; PDB ID: 6y68, MPRLV
structure) and in the prefusion Gn-Gc heterodimer, where the HMIS is not formed
(right; PDB ID: 6y62) (15). (C) Fusion loop sequences of CCHFV Gc with consensus
sequence logo for the Orthonairovirus (top) and Orthohantavirus (bottom) genera.
The bar chart shows the exposed surface area per residue in pre- (hantavirus Gc)
and postfusion (CCHFV and hantavirus Gc) structures. The accessible and buried
surface per residue are represented in gray and black, respectively. Nonpolar
residues, black; acidic, red; basic, blue; cysteines, green. (D) CCHFV Gc-induced
syncytia formation by wild-type and indicated mutant Gc at neutral and acidic pH.
The transfected cell surface expression is shown for each mutant below. (E) Details

of two alternative conformations of the N-tail and a pH-sensitive salt bridge
between domains I and III. The helical conformation (top) is dominant, whereas
the b-hairpin (bottom) is well defined in only two of the six polypeptide chains in the
asymmetric unit of the monoclinic crystals obtained at pH 7.5. The view is the
same as in Fig. 1C. (F) Interface between the ADI-37801 CDRs and the Gc fusion
loops. The antibody heavy and light chain CDRs are colored blue and gray,
respectively. CCHFV Gc is colored orange (cd loop) and yellow (bc loop). Polar
interactions are denoted by dashed lines. (G) Biolayer interferometry (BLI)
sensorgrams showing binding kinetics of CCHFV Gc1579 to ADI-37801 at pH 7.5
(top) or pH 5.5 (bottom). WT, wild-type; KD, dissociation constant; kon, on rate
constant; koff, off rate constant. ns, not significant. (P > 0.05); **, P < 0.01; ***, P <
0.001; and ****, P < 0.0001). Single-letter abbreviations for the amino acid residues are
as follows: A, Ala; C, Cys; D, Asp; E, Glu; F, Phe; G, Gly; H, His; I, Ile; K, Lys; L, Leu;
M, Met; N, Asn; P, Pro; Q, Gln; R, Arg; S, Ser; T, Thr; V, Val; W, Trp; and Y, Tyr.
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is thus consistent with yeast-display–based
epitope mapping, which identified Trp1199 as
critical for ADI-37801 binding (15).
Our ternary complex crystals grew at pH 5.6,

suggesting that the complex of Gc and ADI-
37801 remains stable in the endosome during
viral entry. Through biolayer interferometry
(BLI) we confirmed that ADI-37801 binding
is insensitive to mildly acidic conditions (Fig.
2G). Taken together, the cell-cell fusion, struc-
tural, and kinetic data suggest that ADI-37801
inhibits endosomal membrane insertion of
Gc by masking its fusion loops.
The x-ray structure showed that ADI-36121

binds laterally to the domain II base adjacent
to the Asn1345 glycan and covers 943 Å2 of sur-
face area onGc, 63 and 37%ofwhich are buried
by the heavy and light chains, respectively,
involving all six CDRs (Fig. 3, A to B). The
epitope is composed of 22 residues featuring
13 hydrogen bonds and one salt bridge at the
interface (table S2). The structure is consistent
with the yeast-display–based mutagenesis
screen that identified Leu1307 and Ile1229 as
important for ADI-36121 binding (Fig. 3B) (15).
Structural comparison shows that the ADI-

36121 epitope becomes entirely buried at the
trimer interface upon formation of the post-
fusion trimer of Gc (Fig. 3, C to D). To expe-
rimentally confirm that the ADI-36121 epitope
is inaccessible in the postfusion trimer, we
used BLI to compare antibody binding with
both monomeric and trimeric fractions of
recombinant soluble Gc. The affinity of ADI-
36121 for the monomeric fraction was ~200
times higher than that for the trimeric fraction
(Fig. 3E). The observed residual ADI-36121
binding to the trimeric fraction suggests
contamination of the sample with Gc mono-
mers, as trimeric and monomeric fractions
eluted in partially overlapping peaks in size-
exclusion chromatography (fig. S2). Never-
theless, antibody binding likely outcompetes
the trimerization process during viral infec-
tion, because the dissociation constant (KD)
of ADI-36121 for the Gc monomer is in the
picomolar range at pH 7.5 and 5.5 (Fig. 3F).
These data suggest that ADI-36121 neutralizes
CCHFVby blockingGc homotrimerization in the
endosome and preventing membrane fusion.
The CCHFV-neutralizing human antibodies

described previously had been tentatively as-
signed to six different antigenic sites by using
a homologymodel for Gc based on theMPRLV
Gc structure (15). Our experimental structures
confirm the proposed distribution of the epi-
topes among the three Gc domains and also
reveal the neutralization mechanisms by show-
ing that they map to the HMIS or other sur-
faces buried during Gc-drivenmembrane fusion
(Fig. 4A). The dominant antigenic site 1 maps
to the cd loop (Fig. 4A), which is conserved
across CCHFV strains as well as across mem-
bers of the Orthonairovirus genus (Fig. 4, B
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Fig. 3. The ADI-36121 epitope is buried at the trimer interface of the postfusion hairpin. (A) The CCHFV
Gc monomer in a complex with the ADI-36121 Fab. (B) CDRs interacting with the Gc domain II base. Green
and gray indicate heavy and light chains, respectively, and yellow indicates Gc domain II. Polar interactions are
shown by dashes. (C) Superposition of the ADI-36121 complex with the Gc postfusion trimer. The trimer’s front
protomer is shown in ribbons colored according to domain, and the flanking protomers are shown as a white
surface. (D) One protomer of the trimer shown as a surface colored according to domain, with the trimer interface
outlined in black and the ADI-36121 footprint superposed in green, illustrating that the epitope is occluded in the
trimer. (E) BLI sensograms showing binding kinetics of the monomeric fraction (top) or the trimeric fraction (bottom)
of CCHFV Gc1572 W3 to ADI-36121 at pH 7.5. (F) BLI sensograms showing binding kinetics of CCHFV Gc1579 to
ADI-36121 at pH 7.5 (top) or pH 5.5 (bottom). See materials and methods for details of the constructs used.
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to C, and figs. S3 and S4). Antigenic sites 2 to
4 map to the domain II base, with sites 2 and
3 at the trimer core interface of postfusion
Gc (Fig. 4A). The most potently neutralizing
antibodies—including ADI-36121—target site
3. Consistent with the high degree of conserva-
tion of its epitope across CCHFV strains (Fig.
4B), ADI-36121 displays highly potent cross-
clade neutralization (15), which makes it a
viable candidate for clinical development. It
remains to be investigated whether thismAb
would be effective against nairoviruses from
other serogroups, such as the veterinary patho-
gens Dugbe virus or Nairobi sheep disease virus,
which can potentially spill over to humans (29),
as Gc from these viruses carries several point
mutations in the epitope (figs. S4 and S5). Site
4 maps to the opposite face of domain II, near
the interface with domain III and the stem in
the postfusion structure (Fig. 4A), suggesting
that antibody binding would inhibit hairpin
formation. Similar to sites 2 and 3, site 5 over-
laps with the Gc trimer interface but lies
within domain I (Fig. 4A). Moreover, antibody
binding to site 5 likely restrains the conforma-
tional change of domain I during fusion (fig.
S1A). Finally, site 6 maps to domain III, where
antibody binding may sterically inhibit its
translocation for postfusion hairpin formation
(Fig. 4A). In addition to human antibodies,
this site is likely also targeted by the broadly
neutralizing murine antibody 11E7, which has
been mapped to a Gc fragment encompassing
both domain III and the stem (amino acids
1443 to 1566) (30). Because the epitope was
sensitive to chemical reduction, it can now be
assigned to the disulfide-stabilized domain III.
Because domain III contains more sequence
polymorphisms across CCHFV strains than the
other Gc domains (Fig. 4B), cross-clade neu-
tralization by site 6 antibodies may be more

limited compared with the other sites. Although
inhibition of binding to the currently unknown
entry receptor for CCHFVmay also play a role
in neutralization, our findings are consistent
with a neutralization mechanism that inhib-
its membrane fusion by blocking insertion of
the HMIS into targetmembranes, by interfer-
ing with Gc trimerization, or by inhibiting
postfusion hairpin formation.
Our structural data revealed that the HMIS

of CCHFV Gc is at least transiently accessible
on virus particles, as mAb ADI-37801 efficiently
neutralizes the virus. However, the current
paradigm is that the HMIS is protected from
premature exposure by the companion pro-
tein Gn. The only available high-resolution
structures of a bunyavirus Gn-Gc complex come
from hantaviruses, and they indeed show that
the conformation of the Gc domain II tip in
interaction with Gn is such that the HMIS is
not formed. Recent studies on Andes hanta-
virus have, however, shown a substantial
degree of breathing, transiently exposing the
HMIS at physiological temperatures (31). The
strong structural similarity between their do-
main II tips (Fig. 2, A and C) suggests that
comparable breathing dynamics can also be
expected from CCHFV Gc. Because ADI-37801
neutralization was strain dependent (15) de-
spite almost perfect conservation of the HMIS
sequence across CCHFV strains (fig. S3), the
breathing dynamics of the HMIS are likely
controlled by sequences outside the fusion
loops. Notably, strain-dependent breathing
is also known to affect the neutralization
potency of fusion loop antibodies in flavivi-
ruses (32, 33).
Unlike the fusion loop antibody ADI-37801,

the trimerization-inhibiting antibody ADI-36121
shows potent neutralization across CCHFV
strains (15), indicating that accessibility of its

epitope is not restricted by strain-dependent
structural dynamics within the envelope. The
ADI-36121 epitope on CCHFV Gc lies in the
same position as the P-4G2 epitope on han-
tavirus Gc (fig. S6). Both antibodies bind to
the same secondary structure elements on their
respectiveGc targets (fig. S6C), at a surface patch
that is involved in lateral interspike contacts
on the hantavirus glycoprotein lattice (fig. S6,
A and D). This surface patch becomes buried
in the Gc postfusion trimer in both cases.
Low-resolution studies of Hazara virus, a non-
pathogenic nairovirus, showed tetrameric spikes
arranged in a square surface lattice (34), simi-
lar to that of hantaviruses. The hantavirus sur-
face lattice was visualized at a higher resolution
(26) and was very different from the icosa-
hedral T = 12 Gn-Gc lattice of the phlebovirus
RVFV, forwhich relatively high-resolution struc-
tures are also available (35). Considering the
similar square surface lattices of nairoviruses
and hantaviruses and the structural similarity
between the corresponding fusion proteins, it
is reasonable to expect that comparable sur-
faces in CCHFVGc are involved in lateral spike-
spike contacts (fig. S6, B and E). It is possible,
therefore, that ADI-36121 perturbs the long-
range order of the CCHFV envelope in a similar
way as was shown for P-4G2 (36). Higher-
resolution cryo–electron tomography data on
the nairovirus surface glycoprotein lattice are
needed to identify the precise lateral spike-
spike contacts and confirm the predictions il-
lustrated in fig. S6. Our study nevertheless
raises notable parallels between these two
zoonotic viruses despite their different lifestyles
and reservoirs—one arthropod-borne and the
other transmitted by small mammals—thus
highlighting the power of comparative struc-
tural studies in understanding common fea-
tures of emerging viruses.

Mishra et al., Science 375, 104–109 (2022) 7 January 2022 5 of 6

A

Sequence variability
arcoss CCHFV strains

0% 100%

Site 5

Site 6

Site 4

Site 3

Site 1

Site 2

Antigenic Sites

K1393K1393

E1500E1500

I1229I1229
D1504D1504

S1128S1128

W1199W1199

S1309S1309
V1314

D1352D1352

G1353G1353

W1199W1199

W1185

W1090W1090

V1093V1093
V1124V1124

St

L1307L1307K1297K1297

N1386N1386

DII

DI

DIII

IC

180°

St
DII

DI

DIII

IC

180°

St

DII

DI

DIII

IC

180°

Sequence variability
arcoss Orthonairoviruses

0% 100%

CB
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The combination of antibodies ADI-37801
and ADI-36121 displayed synergy in a neutral-
ization assay (15). Moreover, a single dose of
a bispecific antibody containing the variable
domains of both ADI-36121 and ADI-37801
protected mice against CCHFV even when
administered 24 hours after exposure, whereas
the individual mAbs protected only in a pro-
phylactic setting (15). To explain these findings,
our structural analysis suggests that ADI-36121
binding indirectly influences the Gc fusion loop
breathing dynamics by perturbation of the
glycoprotein surface lattice in such a way that
the HMIS becomes more exposed, allowing
ADI-37801 to more easily recognize its epitope
(fig. S6, E to F). Combination with ADI-36121
should therefore also broaden the reactivity
of ADI-37801 with the various CCHFV strains,
making these two antibodies strong candi-
dates for therapeutic antibody cocktails. Des-
cribing CCHFV neutralization at the mechanistic
level, our data guide the design of future thera-
peutic antibodies andwill likewise support the
design of protective CCHFV vaccines.
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A block to viral cell entry
Crimean-Congo hemorrhagic fever virus is a tickborne virus that can cause severe disease and even death in humans.
Disease occurrence is linked to the geographic range of the tick vector, and climate change may increase this range.
Infection of host cells requires the fusion glycoprotein Gc, which is the main target of neutralizing antibodies. Mishra
et al. build on previous work that identified a combination of two Gc-targeting antibodies that gave postexposure
protection in an animal model. The authors determined the structure of the antigen-binding fragments of the two
antibodies bound to a prefusion form of Gc and also the structure of Gc after the conformational change into the
trimeric postfusion form. The structures show how the antibodies work together to block membrane fusion. —VV
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