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Extrathymic T Cell Lymphopoiesis: Ontogeny and
Contribution to Gut Intraepithelial Lymphocytes
in Athymic and Euthymic Mice
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Michel C. Nussenzweig, Philippe Kourilsky,! and Pierre Vassalli®
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2Laboratory of Molecular Immunology, Howard Hughes Medical Institute, The Rockefeller University,
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3Département de Pathologie, Centre Médical Universitaire, CH-1211, Genéve 4, Switzerland

Abstract

In the absence of thymopoiesis, T lymphocytes are nevertheless present, mainly in the gut epi-
thelium. Ontogeny of the extrathymic pathway and the extent of its involvement in euthymic
mice are controversial. These questions have been addressed by assessing the expression of re-
combinase activating gene (RAG) through the use of green fluorescent protein RAG2 trans-
genic mouse models. In athymic mice, T lymphopoiesis occurs mainly in the mesenteric lymph
node and less in the Peyer’s patches. Ontogenic steps of this lymphopoiesis resemble those of
thymopoiesis, but with an apparent bias toward y8 T cell production and with a paucity of oli-
goclonal a3 T cells possibly resulting from a deficit in positive selection. Whether in athymic
or euthymic mice, neither T intraepithelial lymphocytes (IEL) nor cryptopatch cells (reported
to contain precursors of IEL) displayed fluorescence indicating recent RAG protein synthesis.
Newly made T cells migrate from the mesenteric node into the thoracic duct lymph to reach
the gut mucosa. In euthymic mice, this extrathymic pathway is totally repressed, except in con-
ditions of severe lymphocytic depletion. Thus, in normal animals, all gut T IEL, including
CD8aa™ cells, are of thymic origin, CD8aa™ TCRaf* IEL being the likely progeny of dou-

ble negative NK1-1~ thymocytes, which show polyclonal Va and V[3 repertoires.

Key words: T lymphocytes * extrathymic differentiation ¢ gut intraepithelial lymphocytes *
recombinase activating gene * mucosal immunity

Introduction

T cell lymphopoiesis can take place in the absence of a thy-
mus because nude mice have T cells. This extrathymic
lymphopoiesis, however, has special features. It populates
mainly the gut mucosa leading to the accumulation of T
intraepithelial lymphocytes (IEL).* It generates mostly y8*
T cells with a3 * T cells being scarce. In euthymic mice, on

The online version of this article contains supplemental material.
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*Abbreviations used in this paper: DN, double negative; DP, double posi-
tive; GFP, green fluorescent protein; IEL, intraepithelial lymphocytes; LP,
lamina propria; MLN, mesenteric lymph node; PP, Peyer’s patches; SP,
single positive; Tg, transgenic; TN, triple negative; Tx, thymectomized.

the other hand, T TEL are much more abundant and consist
of ¥y T cells (30-40%) and a* T cells, not only CD4* or
CD8aB " but also CD8aat, which are a variety of af*™ T
cells clearly identified only in the gut epithelium. The
TCRs of this last population have a special recognition
pattern directed mainly toward MHC I-like antigens (1-3)
and also contain superantigen-reactive TCR[3 chains (4),
suggesting that these cells have not been submitted to neg-
ative selection. Because they do not appear to belong to the
double positive (DP) main thymic pathway, we (4) and
others (5) have called them “thymus-independent.” How-
ever, experiments with grafts of fetal or neonatal thymus
have suggested that at least part of these cells might be of
thymus origin (6, 7). All of these observations have accred-
ited the notion that in normal mice T IEL may have a dual,
thymic and extrathymic, origin. It has been proposed that
gut cryptopatches, small aggregates of mucosal lymphocytes
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at close contact of the epithelium (8), are the extrathymic
source of lymphopoiesis contributing to y8* and aff* T
IEL in euthymic or athymic mice (9, 10).

To identify lymphopoietic sites and analyze ontogenic
pathways, occurrence of the cardinal event of B and T cell
lymphopoiesis, namely the initiation of gene rearrangements
allowed by synthesis of the RAG proteins, can be used as a
landmark (11-13). To this end, animals used in this study were
transgenic (Tg) and bore a green fluorescent protein (GFP)
gene placed under the control of the RAG2 promoter (14). In
such mice, high GFP-expressing cells (GFPH) are in the pro-
cess of rearranging Ig or TCR genes or will rearrange them
shortly later. Cells with low fluorescence (GFPY) represent
previously GFPH cells in which GFP synthesis has stopped
such that the GFP protein is decaying. This feature allows to
identify, among mature cells, those in which gene rearrange-
ment has occurred recently (14). Nonfluorescent cells (GFP™)
of the T or B lineages are either very immature at a stage be-
fore RAG synthesis, or mature but distant from RAG synthe-
sis. Observations made with this system allowed us to identify
the sites of extrathymic T lymphopoiesis, determine the onto-
genic pathways involved, and completely reassess thymic or
extrathymic contributions to gut IEL in various conditions.

Materials and Methods

Animals.  Euthymic Tg mice (FVB) were used (14) or bred
with nude mice (Swiss nu/nu or Swiss nu/+), TCR8 /" (15), or
TCRB ™/~ (16) mutant mice. Mice were maintained in sterile iso-
lators at the Centre Des Techniques Avancées pour ’Expérimen-
tation Animale, Orléans, France. Presence of the transgene was
detected by blood cell analysis.

For reconstitution experiments, euthymic mice or thymecto-
mized (Tx) mice 2 wk before transfer were 12 (FVB mice) or 6 Gy
(RAGyc™’7; reference 17) irradiated and intravenously injected on
the same day with 107 bone marrow cells of Tg nude mice.

Cell Isolation, Flow Cytometry, Sorting, PCR Analyses, and Stud-
ies of TCR Repertoire.  Cells from the gut and the thoracic duct
lymph were isolated as previously described (18). Lungs were
treated as lamina propria (LP). Peripheral lymph nodes were
pooled inguinal, brachial, and axillary lymph nodes. Isolated cells
were three-color stained (FL-1 channel being used for detection
of GFP) and analyzed with a FACSCalibur® (Becton Dickinson).
The mAbs used were allophycocyanin or Phycoerythrin labeled,
or were biotinylated and revealed with streptavidin PerCP (BD
Biosciences or Bioscience). Minor populations were electroni-
cally gated during the acquisition process after staining by a com-
bination of allophycocyanin-labeled mAbs (anti-CD3, anti-
CD19, with or without the addition of anti-CD4, anti-CD8a).

For single cell RT-PCR, lymphocytes were sorted using an
automatic cell deposition unit. Single cell RT-PCR was per-
formed as follows: after sorting, each cell sample was deposited in
5 wl PBS and kept frozen at —80°C. For RT-PCR, cells were
first disrupted by heating 2 for min at 70°C and 10 wl RT mix-
ture containing a final concentration of 0.01 M DTT, 1 mM
DNTP, 0.5 pg oligodT, 40 U RNase block, 200 U M-MLV (In-
vitrogen), and 3 pmoles of RAG1 antisense primer (GTGGATG-
GAGTCAACATCTGCCTT). 1X first strand buffer was added.
After 1 h of incubation at 37°C, enzyme was inactivated during
10 min at 70°C. Subsequently, CD3e, RAG1, and pre-Ta
cDNAs were coamplified by two steps of semi-nested PCR. In

the first round, 65 pl PCR mixture containing 3 pmoles of the
primers RAG1-S CAAGCTGCAGACATTCTAGCACTC,
CD3g-S GCCTCAGAAGCATGATAAGC, CD3s-AS1 CT-
TGGCCTTCCTATTCTTG, pre-Ta-S ATGGCTAGGA-
CATGGCTGCTG, and pre-Ta-AS1 TCAGGAGCACATC-
GAGCAGAA, as well as 1X buffer, 0.2 mM DNTP, and 1.5 U
AmpliTaq polymerase (Applied Biosystems) was added to the 15
wl RT reaction product. Touchdown PCR was performed in a
thermal cycle (Applied Biosystems) under these conditions: 5 min
denaturation at 94°C, 5 cycles consisting of 30 s denaturation at
94°C, 20 s at 68—60°C, 1 min at 72°C, and 25 cycles consisting of
10 s at 94°C, 20 s at 58°C, and 1 min at 72°C. PCR was com-
pleted by elongation at 72°C for 5 min. In a second round of
PCR, each gene was amplified separately. 2 ul of the first PCR
were added to 18 wl PCR mixture containing the same reagents
used for the first PCR and nested antisense primers (RAG1-R2
GTCGATCCGGAAAATCCTGGCAAT, CD3e-AS2 TGAC-
CATCAGCAAGCCCAGA, and pre-Ta-AS2 GCAGAAG-
CAGTTTGAAGAGGAGC). PCR products were obtained by 5
and 35 cycles and performed with the same conditions as the first
PCR. Reaction products were visualized by electrophoresis on a
1.5% agarose gel. Specificities of each primer amplification were
verified by sequencing (Abi Prism, 3700 Genetic Analyser; Ap-
plied Biosystems).

TCR and TCRa repertoires were analyzed using the immu-
noscope technique as previously described (18, 19).

Analysis of Lymphocytes on Tissue Sections. For analyses of
GFPH cells, tissues were fixed for 24 h with 4% paraformalde-
hyde, dehydrated for 24 h in 10 and 20% sucrose solutions, and
then embedded in Tissue Teck OCT (Sakuta Finetek) and frozen
in liquid nitrogen. Cryostat sections were examined under a con-
focal microscope (Zeiss LSM 510 and Microscope Axiovert 200
M). For determination of the relative percentage in various ani-
mals of IEL, pieces of duodenum were embedded in paraffin and
tissue sections were stained with periodic acid-Schiff. The num-
ber of IEL was expressed in percentage of villus epithelial cells.

Online Supplemental Material. A table including data from LP
and thoracic duct lymph, from very young mice and from
TCRB ™/~ mice, is available at http://www.jem.org/cgi/content/
full/jem.20021639/DC1.

Results

Localization of T Lineage GFPH Cells in Nude Mice: Mesen-
teric Lymph Nodes (MLNs) and Peyer’s Patches (PP). The
presence of GFPH cells of the T lineage was first studied on
cells obtained from nude mice between 18 d and 7 mo of
age and isolated from a variety of sites: MLNs and periph-
eral lymph nodes, gut mucosa LP, which includes cells
from PP and cryptopatches (8), gut epithelium, spleen,
liver, lung, bone marrow, and peritoneal cavity. Thy-1H
GFPH cells were consistently observed in MLN cells (in all
36 mice tested) and in gut LP cells (in all 10 mice tested),
very rarely in peripheral lymph node cells (very few cells in
3 out of 16 mice tested), and never elsewhere (Table I and
see Table S1, available at http://www.jem.org/cgi/content/
full/jem.20021639/DC1). No GFPH cells of the B lineage
were found, except for the bone marrow. Histologic sec-
tions of tissues showed clusters of GFPH cells in the medulla
of MLNs (Fig. 1 a) and rare single cells in interfollicular ar-
eas of PP (Fig. 1 b). Cryptopatches and gut epithelium did
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Table I.  Percentage of T Lymphocytes and GFP Expression

Percent DP TCRap* TCRaB™ TCRaB"DN or TCRYyd* DN or
Recovery  pro/pre-T GFPH  GFPH CD4* CD8af* CD8aat CD8aa™

Nude Mice (8—39 mice)

MLN?

<10 wk 9 X 10° 0.04 0.4 09 5.6 014 7.9 0 03 19.6

>10wk 33 X 10° 0.03 1.47 79 2 2.2 1.8 0 0.7 4.4

IEL¢ 5/100EC 0 0 28 1.6 1.3 1.7 2 52 0.4
Euthymic Mice Tx at Birth (6 mice)

MLN

<10 wk 6 X 10° not done 1 6.7 1.2 0 0 09 7

>10wk 31 X 10° 0.007 0.14 29.6 0.7 8.1 2.2 0 1.8 2.8

IEL 12/100EC 0 0 49 0.1 15.4 0.1 21 02 21 0.1
Euthymic Mice (12-15 mice)

MLN?

<10wk 22 X 10° 0 0 57.6 36 31.8 32 0.02 25¢ 0.8 27

>10 wk 23.5 X 10° 0 0 55.7 11 17.9 4.2 0.06 74 1 12

IEL¢ 22/100EC 0 0 1 2.4 32 1.8 11.7 0.1 36 0.5
TCR3 ™/~ Euthymic Mice Tx at Birth (11 mice)

MLN

<10 wk 9 X 10° 0.006 0.57 1 2.4 2 4 0 0

IEL 9/100EC 0 0 21 0.3 12 1.7 29 2 0
TCRS ™/~ Euthymic Mice (10 mice)

MLN

<10wk 28 X 10° 0 0 31 36 14 245 #0 0

>10wk 14 X 10° 0 0 29  10.7 155 4.8 #0 0

IEL 12/100EC 0 0 152 4.7 30.7 2.4 304 0.1 0

EC, epithelial cells.

“MLN in nude mice contained >90% CD19" B cells (~10% being GFP") and in euthymic mice, for a comparable cell recovery, only ~20% (with

a comparable fraction of GFP' cells).

bJtalics indicate the percentage of GFPL cells in the cell category tabulated.

“Results of IEL from mice before and after 10 wk of age are pooled because their GFP expression did not vary significantly with age. In nude mice,
up to 50% of IEL were CD3™ and in euthymic mice ~5-10% (absolute numbers of CD3~ IEL being comparable). Some of these cells were GFP*
and in this case were either CD19 B cells or belonged to a small population that could be made of pro-B cells (CD19 ™, Thy-1-, B220*, = CD4l,
without intracytoplasmic CD3e chains; reference 43). These cells were also detectable in the LP.

4These DN a3 lymphocytes were also studied in B6 mice in order to distinguish them from NK1.1* NKT cells. Note that the bone marrow (six
mice studied) did not contain Thy-1* DP or CD25" lymphocytes and that GFP' lymphocytes were CD3~ CD19™ and B220*. <2% TCRy3* lym-

phocytes were detectable, all GFP~.

not contain any GFPH cells (Fig. 1 c). Thus, in nude mice,
lymphopoiesis takes place in MLNs and to a much smaller
extent in PP.

Ontogeny of T Lineage GFPH Cells in Nude Mice: CD25H
Pro-Pre T Cells and DP CD4" CD8" Cells Resembling Their
Thymus Counterparts. The ontogenic steps of this lym-
phopoiesis were then explored by surface phenotypic anal-
ysis of GFPH cells on one hand and by GFP content assess-
ment of all cells of T lineage on the other, comparing each
of these steps with those of thymic lymphopoiesis (Fig. 2).
Quantitative analysis of these cells and other MLN cells is
shown in Table I as well as Table S1, available at http://
www.jem.org/cgi/content/full/jem.20021639/DC1.  All
GFPH cells were Thy-17 and fell into two categories:

335 Guy-Grand et al.

~97% were CD4* CD8af3* (DP) and 2-3% were CD3~
CD4~ CD8™ (triple negative [TN]) and CD19~ CD25"
CD44" or CD447, i.e., comparable to thymocytes at the
double negative (DN) DN2 (CD25% CD44%) and DN3
(CD25H CD447) stages, which can be collectively referred
to as pro-pre T cells. Analysis of MLN DP cells (Fig. 2 a)
showed that they were similar to their thymic counterparts
(Fig. 2 ¢). All were GFPH with low levels of surface TCRf3
chains and were CD25~, HSA™*, c-Kit™, IL7-R~ (not de-
picted). Analysis of MLN TN cells (Fig. 2 b) showed
CD25H cells that were DN2 (CD44%) or DN3 (CD447).
Virtually all DN3 cells were GFPH as in the thymus. All
other TN cells that were not CD25" were GFP~. There
was a population of CD25% cells (3—15% of all TN cells)
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Figure 1. GFPHlymphocytes in tissue sections from nude or euthymic mice. (a) MLN, nude mouse: clusters of fluorescent GFPH cells located in some
medullary cords (empty spaces are lymphatic vessels of the medulla). (b) PP, nude mouse: rare GFP! cells located in an interfollicular T area near lymphatic
vessels. (c) Cryptopatch, nude mouse: lack of GFPH cells in the patch and adjacent epithelium (~10 cryptopatches were explored in various mice). (d) MLN,

euthymic mouse: absence of GFPH cells in the medulla. X70.

not found in TN thymocytes (Fig. 2, compare b with d).
These cells belonged to a distinct lineage because they were
Thy-17/7, c-Kit*, IL7-R™*, and by RT-PCR on 22 indi-
vidual cells, found not to express RAG1, pre-Ta, and
CD3e chain mRNAs (not depicted). This is the phenotype
of cryptopatch cells (8, 20) to which these cells could be re-
lated. Finally, ~60% of CD25~ CD44" cells (DN1) bore
markers of NK cells (not depicted).

More precise comparison of MLN TN CD25H cells with
thymocytes at the DN2 and DIN3 stages revealed differ-
ences between thymus and MLNs. The following data sug-
gested that the maturation process was different, probably
slower in extrathymic T lymphopoiesis, and somewhat bi-
ased toward yd chain synthesis (21-22). The ratio of DN2
to DN3 cells was much higher in MLNs than in thymus
(1:1 vs. 1:5) and GFPH cells were fewer in the DN2 MLN
cells than in DN2 thymocytes (Fig. 2, b and d, middle pan-
els; comparable results in six comparative studies). Thus,
there was an increased proportion of less differentiated
cells, less commonly showing GFP accumulation in ex-
trathymic lymphopoiesis. CD25 cells contained four times
more c-Kit" or IL7-R ™ cells (“transitional pro-T cells”) in

b MLN nude

a MLN nude

MLNs (c-Kit*/42%, IL7-R*/25%) than in thymus (c-
Kit*/9%, IL7-R*/6%; Fig. 2, b and d, right panels; five
comparative studies), consistent with an increased accumu-
lation of less differentiated cells in extrathymic T lym-
phopoiesis. The possibility that this form of T lymphopoie-
sis was somewhat biased toward y8 chain synthesis was
suggested by single cell RT-PCR analysis of DN2-DN3
cells isolated from MLNs and thymus for expression of
RAG1 and pre-Ta transcripts: of RAG1-expressing cells,
fewer coexpressed pre-Ta (i.e., were likely to become af3*
cells) in MLN cells (25 cells out of 62 studied, 40%) than in
thymocytes (50 cells out of 72, 70%; P < 0.001 test X?2).
Similar analysis of gut LP cells gave closely comparable
results, except that the numbers of DP and CD25" pro-pre
T cells, almost all GFPH, were very small (Fig. 2, f and g,
and Table S1, available at http://www jem.org/cgi/content/
full/jem.20021639/DC1). A point of special interest was
that cryptopatch cells, identified among LP cells by their
Thylt/~ CD44" c-Kit* IL7R*" CD25"~ phenotype (8,
20), were all GFP~ (Fig. 2 h). This indicates that crypto-
patches are not lymphopoietic sites. They may, however,
contain very early progenitors before synthesis of RAG

gated on TN CD25* Figure 2. Analysis of GFP ex-
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cells were GFP~ and most of the MLN CD25" cells had the phenotype of cryptopatch cells (reference 8). Lack or rarity of DN4 cells (CD44~
CD257) results from gating out CD3 and coreceptors bearing cells with potent antibodies binding even cells with trace amounts of these mole-
cules, as is the case of most DN4 cells. The percentages of ¢-Kit* and IL7-Ra* in CD25 TN MLN cells and thymocytes are shown in the right
panels. (¢) Thymus: y8" cells analyzed for GFP content. (f~h) LP lymphocytes analyzed for GFP content. (f) DP cells are GFP" and (g) TN
CD25" cells (after gating out of cells as described above) are GFPH. (h) TN c-Kit* CD25%/~ cells, belonging to a population of CD44* Thy-1*/~
IL7-R* CD4*/~ cells (not depicted), i.e., with the phenotype of cryptopatch cells (references 8 and 20), are GFP~.
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Figure 3. Exploration of the
memory phenotype and of the
TCRP repertoire of MLN af3*

. CD4* cells ud elthymid CD47 cells of nude and euthymic
mice. (a) MLN CD4* cells from a
CD45 RB levels nude mouse express the pheno-

type of memory cells, in contrast

b .
BVZBC  BVR1-BC  BVI6-BC with comparable cells from an eu-

DP ‘ Nude mouse thymic mouse. Cells were triply
‘ ‘ \ labeled with ant-TCR, anti-

CD4, and anti-CD45RB mAbs.
SP TCRa'CD4* o o (b) The TCR repertoire of MLIN

DP cells from a nude mouse shows

the gaussian-like profile character-

istic  of polyclonal populations

(top), whereas that of SP CD4*
Euthymic mouse  cclls is oligoclonal (middle), in

T contrast with that of comparable
| cells from an euthymic mouse

(bottom).

10 10 10

proteins, with TCR rearrangements occurring after the en-
trance of these cells in the adjacent epithelium (10). This
hypothesis is not consistent with the lack of GFP expres-
sion in IEL described below.

Mature T Cells in MLNs of Nude Mice. In nude mice,
MLNs and LP also contained small numbers of mature
CD3" T cells (Table I and Table S1, available at http://
www.jem.org/cgi/content/full/jem.20021639/DC1).

Their GFP content was compared with that of thy-
mocytes with the same phenotype. Among MLN 87 cells,
~30% were GFPin young mice (see Fig. 5 a) whereas in
the thymus, about half of the GFP* y8* cells were GFPH
(compare Fig. 5 a with Fig. 2 e), which suggests that y&*
cells produced leave the thymus more rapidly (explaining
the predominance of very young cells in this location). The
proportion of GFPFy8* in MLNs declined with age (Table
I), which is consistent with observations described below
that GFPL vy cells leave MLNs to accumulate in the gut as
GFP~ IEL. Regarding TCRaB" single positive (SP) cells,
either CD47 (by far the most numerous) or CD8af*, a
much lower number were GFP* than their thymic coun-
terparts (Fig. 2, compare a and f to c¢). With age, the popu-

a MLN atbirth Tx b MLN euthymic

lations of SP cells increased but their content in GFPF cells
still decreased (Table I). This increasing paucity of GFPL SP
cells did not correspond to a weakening lymphopoiesis
with decrease of RAG synthesis. On the contrary, it was
accompanied by an increased percentage of GFPH DP cells
(Table I). This suggested a severe impairment in the matu-
ration of DP precursors into GFPE SP cells. The progressive
accumulation of SP GFP~ cells might represent, in this
light, the expansion of restricted populations of GFP~
memory cells. Large expansion of a few memory cells is in-
deed known to occur in lymphopenic mice (for review see
reference 23). Two observations strongly support this in-
terpretation. First, most of these CD4" T cells had the
CD45RB" phenotype of memory cell (24), which is in
contrast with comparable MLN cells of euthymic mice
(Fig. 3 a). Second, the exploration of the TCR[3 chain rep-
ertoire of MLN DP and CD4* cells showed that DP cells
expressed a polyclonal repertoire, but CD4" cells only
showed a very limited oligoclonal repertoire. Furthermore,
comparable T cells in euthymic mice had a polyclonal rep-
ertoire (Fig. 3 b and reference 18). These contrasting reper-
toires can best be explained by a markedly decreased posi-
tive selection in MLN lymphopoiesis of nude mice. MLNs
indeed lack the thymus cortical epithelial cells that appear
to play a major role in positive selection of DP thymocytes
(25). Along this line, the percentage of DP CD4CD8a3*
and CD4" MLN cells expressing CD69, a marker of ongo-
ing MHC selection (26), was half that of the equivalent
population of thymocytes (not depicted).

Lack of Extrathymic T Lymphopoiesis in Euthymic Mice,
Except in Case of Severe Lymphocyte Depletion. In euthymic
mice Tx at birth (including TCR-y8 ™/~ mutant mice, de-
scribed later), GFPH DP (Fig. 4 a) and DN2-3 pro-pre T
cells were identified in MLNs (Table I). However, MLNs
also contained a markedly higher proportion of af3* CD4*
cells than found in nude mice (compare Fig. 4 a to Fig. 2
a), progressively increasing with age (Table I). Because
these last cells were all GFP™ (Fig. 4 a), they probably ex-
panded from of population of cells released from the thy-
mus before thymectomy.

Figure 4. Analysis of lymphopoiesis in various Tx or euthy-
mic mice. (a) MLN cells, mouse Tx at birth (compare with Fig.

Dema cpa| R
SP ¥

DpP

2 a). (b) MLN cells, 7-wk-old euthymic mouse, sham Tx
D4 (match of mouse with adult Tx shown in c¢). Presence of some
sp DP with GFP and TCRf expression similar to that of SP

TTTCRRT GFP

d MLN adult Tx p--

€ MLN adult sham Tx B--

CD4" cells (right panels). Note that many CD4" cells are GFP.
(c) MLN, 7-wk-old mouse 2 wk after thymectomy. All DP and
SP cells are GFP™ (compare with b). (d and e¢) MLN cells from

TCRA

D3

8-wk-old Tg TCRB ™/~ mice, Tx (d) or sham Tx (e) 2 wk ear-
lier, used for easy study of y87 cells. GFP cells are absent in the
Tx mouse. (f) MLN cells of lethally irradiated non-Tg mouse
reconstituted 18 d earlier with bone marrow cells from a nude

TaEp TCRyd
g LPL Tx Xr g:"recipicnt
M

f MLN Xr recipient
M

h MLN 14 mo old

with Tg nude B with Tg nude
1 v ¥

03% 36%, RITA

TGEP Tg mouse. DP cells are GFPH. Note that MLN cell recovery
was 10-fold less than that from normal mice. (g) Lymphocytes
isolated from the LP of a Tx RAGyc™/~ mutant mouse recon-
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stituted 36 d earlier with nude Tg mouse bone marrow cells
(note that some CD4* GFP~ cells, originating from the graft,
are detectable). (h) MLN cells from a 14-mo-old mouse (cell
recovery was ~20-fold less than in younger mice). DP cells
GFP with GFP expression comparable to that of DP thymocytes.
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b TDL nude

¢ IEL nude
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15 Figure 5. GFPLy3" T cells in nude mice; comparison
between MLN, circulating cells, and IEL. y8* T from
MLN (a), thoracic duct lymphocytes (TDL; b), and IEL
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In sharp contrast, in non-Tx mice (15 mice studied be-
tween 23 d and 5 mo), GFPH cells, either DP or pro-pre T,
were never observed in MLNs (Table I) nor PP (Table S1,
available at http://www . jem.org/cgi/content/full/jem.
20021639/DC1), nor were they detected in tissue sections
of MLNs (Fig. 1 d) and gut. Some DP cells were found in
MLNs, but they had the features of mature T cells, in
TCR expression and in low GFP content (Fig. 4 b). On
the other hand, GFP! cells were observed at all times
among Yo" and aff*, CD4" or CD8af* mature cells, in
higher percentages in the first 10 wk of life (for some mice,
up to 50% of each of the three populations) than later (Ta-
ble I and Table S1, available at http://www jem.org/cgi/
content/full/jem.20021639/DC1). Because local GFPH
precursors were absent, these GFPY T cells appeared to re-
sult from recent thymic emigration. To assess this point,
adult mice were Tx or sham-operated between 7 and 11
wk of age (seven pairs), and their MLN cells studied be-
tween 8 d and 3 mo later. GFPE T cells, both a8 and yd
(studied in mutant TCRB ™/~ mice, see legend of Fig. 4)
disappeared in Tx mice (Fig. 4, c—d) and not in sham-oper-
ated controls (Fig. 4, b—e), demonstrating a continued con-
tribution of recent GFP! thymus-derived cells to MLN T
cells. Pro-pre T and DP GFP" cells remained undetectable
under both conditions. This indicates that the lack of ex-
trathymic T lymphopoiesis in euthymic mice does not re-
sult from the presence of a thymus per se. It appears to re-
sult from the presence of af* T cells because extrathymic
lymphopoiesis was not found in mutant TCR8™/~ mice,
which have only a* T cells whereas euthymic mutant
TCRB ™/~ mice, which have only y8* T cells, had GFPH
pro-pre T cells in MLNs and PP (see Table I and Table S1,
available at http://www.jem.org/cgi/content/full/jem.
20021639/DC1). This suggests that the accumulation,
starting very early in life, of thymus-derived afs T cells in
MLNs and PP may inhibit local lymphopoiesis. The possi-
bility of an inhibitory effect was first explored by reconsti-
tuting non-Tg recipient mice lacking lymphocytes, either
as the result of lethal irradiation or because of a RAGyc™/~
mutation (17), with bone marrow cells of GFP Tg nude
mice. Some of these recipients had been Tx 2 wk before
transfer to prevent thymopoiesis. In all four mice of each
group killed 3—4 wk after transfer, GFPH pro-pre T and DP
cells were found in the MLNs (Fig. 4 f) and/or LP
(RAGyc™/~; Fig. 4 g), providing conclusive evidence that
extrathymic T lymphopoiesis may take place even in eu-
thymic adult mice, but in pathological conditions. Second,
it was explored whether in aged euthymic mice with
marked thymic atrophy, some extrathymic T lymphopoie-
sis may be detected. In three out of six 14-mo-old mice
(thymus and MLN cell recovery ~10 and 2% of young

GFP . (c) analyzed for GFP expression.

mice, respectively), GFPH DP cells were found, in two
cases in MLNs (Fig. 4 h and see pattern resemblance with
young thymus in Fig. 2 ¢), and in one case in PP (very
atrophic; not depicted).

Contribution of Thymic and Extrathymic Lymphopoiesis to
Gut T IEL. In nude mice, some mature T cells are found
in small amounts in all lymphoid organs and in liver, but
the only site where they accumulate is the gut epithelium,
as IEL. Euthymic mice, on the other hand, have four to
five times more IEL than nude mice (27), all of thymic ori-
gin because extrathymic lymphopoiesis is lacking or its
contribution is insignificant. These different origins of IEL
under these two conditions raise interesting questions. Do
T cells maturing in MLNs and PP reach the gut epithelium
by different routes than thymus-derived cells? Why do T
IEL of nude and euthymic mice widely differ in subpopu-
lation composition?

In athymic or euthymic mice, T IEL were GFP~, what-
ever their phenotype, even in young adult mice, when the
corresponding MLN populations, y8* or af*, were
~30% GFP! (Table I and Fig. 5, a and ¢). This suggests that
recent GFPE T cells do not rapidly enter the gut epithelium
but become IEL after some delay during which their resid-
ual GFP disappears. In euthymic mice, it is well docu-
mented that af* [EL can result from seeding of the gut ep-
ithelium by blood-borne cells of MLN and PP origin,
which reach the blood through their release from these
lymphoid structures into the thoracic duct lymph. In addi-
tion to gut epithelium, these cells also return to MLNs and
PP and can circulate for several rounds before becoming
[EL (18). To explore if recent GFP* T cells may follow
such a traffic, the thoracic duct of 7-wk-old nude and eu-
thymic mice were canulated overnight and lymph cells
were analyzed for the presence of y8* or af3* GFP* cells.
In nude mice, TCRy8* lymph cells (1% of collected cells,
Fig. 5 b compared with MLN in a and IEL in ¢) and in eu-
thymic mice TCRaf* lymph cells as well, CD4*, CDS8",
or DN (discussed below) contained 15-30% of GFP™ cells,
these percentages decreasing with age (Table S1, available
at  http://www jem.org/cgi/content/full/jem.20021639/
DC1). This is consistent with the hypothesis that recent T
cells of the gut lymphoid system, whether locally produced
by extrathymic lymphopoiesis or of thymic origin, follow a
lymph-blood circuit before becoming IEL. This also argues
strongly against the idea that some IEL may result from
rapid crossing of the gut mucosal basement membrane by
early GFP* T cells or precursors emerging from mucosal
lymphoid structures, such as cryptopatches (10) or PP.

Judged from quantitative and qualitative analysis of T
IEL in euthymic and athymic mice (Table I), extrathymic
T lymphopoiesis is approximately ~4 times less efficient
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Figure 6. Analyses of DN af3* thymocytes. Studies of (a) GFP content
and (b) NK1-1 expression (in this last case, cells were from a B6 mouse
because the Tg mice do not express NK1.1). (¢) TCRa and 3 repertoires
of DN NK1.17 thymocytes: polyclonal repertoires expressing chains differ-
ent from that peculiar to NKT cells.

than thymopoiesis at populating the gut epithelium with
vd* IEL, but 30—40 times less efficient for a3 IEL. In
euthymic mice, however, afg*™ IEL not only consist of
CD8af3* and CD4* cells but also of DN and CD8aa™
populations (here collectively referred to as CD8aat).
CD8aa™ IEL are at least as severely depleted as ofp™
CD8af3* and CD4 IEL in athymic mice. This was most
clearly seen here with IEL from TCR3~/~ mutant mice, in
which, in the absence ¥8* IEL, a* CD8aa™ IEL may
represent as much as 30% of all IEL. After neonatal
thymectomy, this population was by far the most strongly
decreased (more than 10 times in absolute numbers) of the
a3 IEL populations (Table I). This is compelling evidence
that most of the af™ CD8aa™ IEL observed in euthymic
mice derive from the thymus (for review see reference 28),
as was also recently suggested by studies performed with
mice bearing Tg oy TCRs (29, 30).

What could be the thymic precursors of af ¥ CD8aa™ IEL,
and why is extrathymic T lymphopoiesis so inefficient at gen-
erating these IEL? There is a small population of DN a3 * thy-
mocytes, mostly GFPH (Fig. 6 a), which consists of classical
NKT cells (NK1.1" expressing canonical Va4 chains to-
gether with some polyclonal but restricted VB chains; for re-
view see reference 31) and of NK1.17 cells (Fig. 6 b, right)
with a polyclonal o and B chain repertoire (Fig. 6 ¢). These
last cells are likely precursors of the CD8ax™ IEL, which dis-
play diverse, though oligoclonal, TCR « and 3 chain reper-
toires (32 and unpublished data). If ligands to their peculiar a8
receptors were expressed mainly in the thymus and on the gut
epithelium and not elsewhere, as appears to be the case for
some MHC I-like antigens, these cells could not be effectively
selected during extrathymic T lymphopoiesis, explaining their
rarity in nude mice. In euthymic mice, DN of3* cells of thy-
mic origin would not accumulate significantly in MLNs, ex-
plaining their paucity in this location (Table I), but rapidly
leave in the thoracic duct lymph (which contained 0.2-0.6%
of cells with this phenotype; Table S1, available at http://
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www jem.org/cgi/content/full/jem.20021639/DC1) to reach
the gut epithelium and acquire CD8oax dimers.

Discussion

The use of a RAG-GFP transgene introduced into mice of
different genetic backgrounds allowed us to identify cells of
the T lineage at three different steps of their ontogeny and life
history: close to the time of RAG proteins synthesis (GFPH
cells), recently matured virgin T cells (GFPL cells), and older
virgin or memory T cells (GFP~ cells). This interpretation was
validated by the study of thymocytes and MLN T cells in eu-
thymic mice. Among these last cells, GFP' T cells interpreted
as resulting from recent ongoing thymus emigration indeed
disappeared rapidly and selectively after adult thymectomy.

The search for Thy-1* GFPH cells in athymic mice (nude
or Tx at birth) led to identify MLNs as the major site of ex-
trathymic T lymphopoiesis and PP as a minor site, with on-
togenic steps of pro-pre T cell and DP cells corresponding,
perhaps not so surprisingly, to those found in the thymus but
with two distinctive features: some apparent bias of pro-pre
T cells toward v chain synthesis, perhaps resulting from a
different local exposure to some critical cytokines (e.g., IL-
7), and a marked oligoclonality of mature af3 T cells as
judged by their TCR repertoire, contrasting with the poly-
clonality of the repertoire of comparable cells in euthymic
mice and best explained by a decreased process of positive
selection of DP cells. This may reflect the lack of local cells
especially effective for this process, such as the thymus corti-
cal epithelial cells. On the other hand, cryptopatches in situ
and cells isolated from LP cells with the phenotype of cryp-
topatch cells were all GFP~, as were gut T IEL, providing no
evidence for a lymphopoietic process involving cryptopatch
cells migrating into the gut epithelium to undergo gene rear-
rangement and maturation into T IEL (9).

Because extrathymic lymphopoiesis in nude mice contrib-
utes mainly to gut IEL, and because in euthymic mice some
afy* subpopulations of T IEL do not appear to originate
from the main DP thymic pathway, one is generally inclined
to believe that the peculiar complexity of gut T IEL reflects a
dual origin from thymus-derived cells and from an extrathy-
mic, locally adapted, form of lymphopoiesis. Thus, it came as
a surprise to observe that extrathymic T lymphopoiesis is
shut off in normal euthymic mice and can resume or be un-
masked only in conditions of severe lymphocytic depletion
(as the result of irradiation or genetic defect), total lack of
ot T cells (in TCRB™/~ mice), or marked thymic atrophy
(in old mice). This raised interesting questions.

Why is extrathymic lymphopoiesis inhibited whereas
MLNs contain large amounts of thymus-derived cells,
many, especially in young mice, recently released from the
thymus as indicated by their GFP! content? Inhibition ap-
pears to result from the presence of af™ T cells because it
was complete in mutant TCR&™/~ mice, which contain
only a* T cells (where it was relieved, as in normal mice,
by neonatal thymectomy). Inhibition of extrathymic lym-
phopoiesis may result from competition for some local cy-
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tokines (23) between af3* T cells of thymic origin and ex-
trathymic T cell progenitors. It is striking in this respect to
note that when euthymic mice are exposed to increased lev-
els of oncostatin M, a massive extrathymic T lymphopoiesis
develops in MLNs accompanied by thymic atrophy (33, 34).

What is the ontogeny of the CD8aa™ ap* T IEL? Be-
cause, in normal euthymic mice, all T IEL including y8* and
CD8aa™ ap* IEL are of thymic origin, it follows that the
complexity of gut T IEL populations in normal conditions re-
flects a complexity of thymic lymphopoiesis that had been de-
scribed so far only for Va14* NKT cells, which are not signif-
icantly found among IEL (31). There also exists a small
population of DN a3 " NK1.1~ thymocytes with a polyclonal
TCR 3 and a repertoire (Fig. 6), and these cells contain likely
precursors of the gut CD8aart a3+ IEL. It is of interest that
the two subpopulations of CD8aa™ IEL, y8" and o3 %, share
special features absent in CD4" and CD8a3* IEL. They dis-
play NK cytotoxic abilities and a3* IEL bear Ly49 NK recep-
tors (we have proposed that they be considered as “gut NK-T
cells”; reference 35). In addition, they use both { and yFceRI
chains as CD3-associated signal transmitting module (36, 37).
By intracellular staining, we have recently observed that DN
NK1.17 TCRaB" and y8* thymocytes all contain { chains,
with a small minority of cells also containing yFce-R1 chains.
In IEL, in contrast, virtually all cells of the two CD8aa™ pop-
ulations contain both chains whereas CD4" and CD8a3* cells
contain only { chains (unpublished data). Thus, it appears that
it is in the gut epithelium that cells of DN thymus origin ac-
quire full expression of yFceRI chains. Stimulation by cyto-
kines released from the gut epithelium (e.g., IL-15 and IL-7;
reference 38) might be necessary for the survival of these
CD8aa™ populations because they are severely and selectively
depleted in IL157/~ or IL2-RB ™/~ mutant mice (39, 40). All
of these features would now appear as hallmarks of an origin
from a DN pathway of differentiation, perhaps with recogni-
tion of peculiar ligands, rather than from an extrathymic site of
lymphopoiesis as we previously postulated (41).

Finally, why are all T IEL GFP~, whereas GFPF T cells are
present in MLNs? This indicates that colonization of the gut
epithelium is not occurring early after T cell maturation.
Presence of GPLI' T cells of various phenotypes circulating in
the thoracic duct lymph, which drains MLNs, suggests that it
is during lymph-blood circuits (known to be a step in the
colonization of the gut epithelium by T cells; reference 18)
that GFP disappears from recently generated T cells released
from MLNg, including in nude mice.

In conclusion, extrathymic lymphopoiesis is a minor path-
way of T cell differentiation, taking place mostly in the MLNs
and operative only in conditions of defective thymopoiesis but
with comparable ontogenic steps. This explains why in nude
mice antigenic stimulation may lead to the production of small
numbers of specific T cells displaying MHC restriction (42).
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