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Abstract

Carbon Storage Regulator A (CsrA) is a well-characterized post-transcriptional global

regulator that plays a critical role in response to environmental changes in many bacteria.

CsrA has been reported to regulate several metabolic pathways, motility, biofilm forma-

tion, and virulence-associated genes. The role of csrA in Leptospira spp., which are able

to survive in different environmental niches and infect a wide variety of reservoir hosts,

has not been characterized. To investigate the role of csrA as a gene regulator in Leptos-

pira, we generated a L. biflexa csrA deletion mutant (ΔcsrA) and csrA overexpressing Lep-

tospira strains. The ΔcsrA L. biflexa displayed poor growth under starvation conditions.

RNA sequencing revealed that in rich medium only a few genes, including the gene

encoding the flagellar filament protein FlaB3, were differentially expressed in the ΔcsrA

mutant. In contrast, 575 transcripts were differentially expressed when csrA was overex-

pressed in L. biflexa. Electrophoretic mobility shift assay (EMSA) confirmed the RNA-seq

data in the ΔcsrA mutant, showing direct binding of recombinant CsrA to flaB3 mRNA. In

the pathogen L. interrogans, we were not able to generate a csrA mutant. We therefore

decided to overexpress csrA in L. interrogans. In contrast to the overexpressing strain of

L. biflexa, the overexpressing L. interrogans strain had poor motility on soft agar. The

overexpressing strain of L. interrogans also showed significant upregulation of the flagellin

flaB1, flaB2, and flaB4. The interaction of L. interrogans rCsrA and flaB4 was confirmed

by EMSA. Our results demonstrated that CsrA may function as a global regulator in Lep-

tospira spp. under certain conditions that cause csrA overexpression. Interestingly, the

mechanisms of action and gene targets of CsrA may be different between non-pathogenic

and pathogenic Leptospira strains.
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Introduction

Leptospira spp. are gram-negative, spiral-shaped bacteria categorized into non-pathogenic and

pathogenic strains. Non-pathogenic Leptospira spend their entire life in the natural environ-

ment. Pathogenic Leptospira can survive in the environment and cause leptospirosis in suscep-

tible hosts. It is estimated that 1 million people suffer from severe leptospirosis each year and

there are approximately 60,000 deaths, mostly in developing tropical countries [1].

The ability to survive in a wide range of environments is crucial for both pathogenic and

non-pathogenic Leptospira spp. The pathogenic strains have to complete the zoonotic cycle to

live in distinct habitats, including survival in aqueous or terrestrial environment [2], kidneys

of their reservoir hosts [3], or target organs of their susceptible hosts [4]. Most transmission

occurs when people are exposed to water and soil contaminated by urine of reservoir animals.

Leptospira can then enter in the host through abraded skin or mucous membrane followed by

hematogenous spread to the target organs. The mechanism underlying the long-term survival

of pathogenic Leptospira under nutrient-poor conditions is not completely understood but

biofilm formation may play an important role [5, 6]. Furthermore, omics studies revealed the

changes in gene expression profiles in Leptospira in response to different environmental con-

ditions such as temperature shift [7], physiologic osmolarity [8], serum exposure [9], iron limi-

tation [10], in vivo cultivation on dialysis membrane chamber [11], and in the presence of

biofilm [12]. These transcriptome studies highlighted the role of global gene regulation which

is a crucial process employed by the bacteria to deal with the changes in the environment.

However, due to the lack of efficient genetic manipulation, knowledge of gene regulation is

not well understood in Leptospira spp. Some regulators have been characterized such as the

peroxidase stress regulator PerR [10], the KdpE sensor potassium transport activator [13],

DNA repair LexA [14], the sigma factor RpoN [15, 16] and, more recently, the pathogen-

specific two-component system LvrAB [17]. Besides these regulators, all leptospiral genomes

also possess a gene that encodes the putative CsrA [18–20].

Carbon Storage Regulator A (CsrA) (or its homolog RsmA) is one of the most studied RNA

binding proteins in bacteria [21]. This protein is widely conserved in more than 1,500 bacterial

species. A transposon mutant of csrA in Escherichia coli was first reported to display pleiotro-

pic phenotypes including alteration in glycogen accumulation, adhesion ability, and cell size

compared to the wild type strain [22]. Due to substantial pleiotropic effects, several omics stud-

ies have reported the effect of CsrA on global transcriptomic changes [23–33] (Table 1), show-

ing that CsrA is a global regulator in both gram-positive and gram-negative bacteria. CsrA

regulates gene expression at the post-transcriptional level by binding to mRNA targets, and

affects mRNA stability and translation [34]. This protein could negatively or positively regulate

mRNA expression. For negative regulation, CsrA binds to the Shine-Dalgarno region and pre-

vents ribosome access to the targeted mRNA thus blocks the translation process of the bacteria

[35–37]. In addition, CsrA may bind to mRNA targets that overlaps the start codon [38]. For

positive regulation, CsrA binds to mRNA target and prevents the target from being cleaved

by the RNase [39, 40]. In E. coli, the consensus sequence of the CsrA binding site is 5’RUA-
CARGGAUGU’3 where the GGA motif is located in a hairpin loop which is a critical binding

site for CsrA [41]. The involvement of CsrA in the regulation of various bacterial processes has

been reported including carbon metabolism [42], motility [40], biofilm formation [43], quo-

rum sensing [44], stress response [45], as well as virulence-associated traits such as iron acqui-

sition [46], invasion [47], and type III secretion [48].

Among the phylum of Spirochaetes, CsrA was extensively studied in Borrelia burgdorferi,
the causative agent of Lyme disease. The csrAmutant of B. burgdorferi showed that there was a

decrease in the expression of some virulent-associated proteins and attenuation in the mouse
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model [49], but these data were not confirmed by another study [50]. CsrA also acts as a

repressor of the flagellin protein FlaB [51]. RNA sequencing (RNA-seq) showed that 13% of

the genes were differentially expressed in the csrAmutant [23].

Our objective was to investigate the role of CsrA in Leptospira spp. We generated a csrA
deletion mutant and csrA overexpressing strains to answer this question. In non-pathogenic L.

biflexa, csrA was required for growth under starvation conditions. RNA-seq revealed that in

rich-nutrient conditions, deletion of csrA had minimal impact on global gene regulation. We

showed that CsrA is a repressor of flagellin transcripts but no alteration of motility phenotype

in both deletion mutant and overexpressing strains was observed. In the pathogen L. interro-
gans, overexpression of csrA resulted in motility defect and CsrA could bind to flagellin tran-

scripts. Our results demonstrated that the mechanisms of action and gene targets of CsrA

appear to be different between pathogenic and non-pathogenic Leptospira strains.

Materials and methods

Bacterial strains and growth conditions

Leptospira spp. were grown in liquid Ellinghausen-McCullough-Johnson-Harris (EMJH)

medium (Difco) at 30˚C or 1% agar of solid EMJH at 30˚C. The saprophyte Leptospira biflexa
serovar Patoc strain Patoc1 and the pathogen Leptospira interrogans serovar Manilae strain

L495 were obtained from the French National Reference Center (NRC) for Leptospirosis

(Institut Pasteur, Paris, France). Escherichia coli strains were grown in Luria-Bertani (LB)

medium at 37˚C. When needed, an appropriate antibiotic was added to the culture medium.

Bacterial strains are listed in Table 2.

For growth curves, the bacteria were grown in EMJH medium until the culture reached

exponential phase (OD420 ~ 0.1 to 0.2 or 2.5×108 cells/mL). Then, 2×106 bacteria were added

into 10 mL of EMJH medium. The cultures were incubated at 30˚C, at 30˚C with 100 rpm

shaking or at 37˚C with 200 rpm shaking. One mL of each culture was taken for OD420 mea-

surement every 24 h. In order to perform a growth curve in diluted EMJH, Leptospira cells

Table 1. Comparison of differentially expressed genes in csrA mutants.

Bacterial species Phylum Differentially

expressed genes

(DEGs)

Criteria for DEGs Reference

up down

Leptospira biflexa Spirochaetes 2 2 log2FC > 0.5 padj <0.05 This study

Borrelia burgdorferi Spirochaetes 86 153 log2FC > 1 and padj <0.05 [23]

Erwinia amylovora Proteobacteria 317 487 log2FC value� 1 and a corrected p-value < 0.05 [24]

Escherichia coli K12 MG1655 Proteobacteria 530 390 log2FC > 0.5 and padj <0.05 [25]

Escherichia coli (EHEC) O157:H7 Proteobacteria 641 703 FC� 3 and p-values <0.05 [26]

Enteropathogenic Escherichia coli (EPEC) Proteobacteria 97 36 log2FC� 2 and corrected p-value of �0.05 [27]

Salmonella enterica serovar Typhimurium1 Proteobacteria 132 283 log2FC > 0.8 and FDR < 0.05 [28]

Vibrio cholerae Proteobacteria 386 326 FC > 2 and padj value <0.05 [29]

Helicobacter pylori Proteobacteria 3 50 FC > 1.5 and p-values <0.05 [30]

Legionella pneumophila Proteobacteria 236 195 FC > 1.5 and p-values <0.05 [31]

Serratia sp. ATCC 39006 Proteobacteria 323 523 FDR threshold of 5% [33]

Clostridium acetobutylicum Firmicutes 240 312 FDR < 0.001 and |normalized fold_-change|� 2 [32]

1Significant change in protein coding RNA in LB medium.

FC, Fold change, FDR, False discovery rate.

https://doi.org/10.1371/journal.pone.0260981.t001
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were prepared as described above before inoculation into 1/5 EMJH medium diluted in sterile

water.

Allelic exchange mutagenesis of leptospiral csrA
A L. biflexa csrA deletion mutant was generated by allelic exchange. Briefly, a plasmid con-

taining a kanamycin resistance cassette was used to replace the coding sequence of csrA,

LEPBIa3210, and 0.8 kb sequences that flanked the target gene was synthesized by GeneArt

(Life Technologies, Grand Island, NY, USA), pretreated by UV, and used to transform L.

biflexa as previously described [52]. A similar strategy was performed for the csrA homolog,

LIMLP_17575, in L. interrogans serovar Manilae. The map of each suicide plasmid is shown

in S1 Fig.

To check for a double crossing-over event among the kanamycin-resistant colonies of L.

biflexa, genomic DNA was isolated from exponential phase cultures using a Maxwell 16 cell

DNA purification kit and a Maxwell instrument (Promega, Madison, WI), and PCR was per-

formed on DNA extracts with the following primer pairs: 1) Flk_L and Flk_R, and 2) ORF_L

and ORF_R.

Construction of the plasmids and E. coli β2163 conjugation with Leptospira
spp.

To construct the plasmids for complementation and overexpression, the L. biflexa and L. inter-
rogans csrA genes were cloned into 2 different vectors. We first cloned csrA in pMaGro [53] in

front of a strong promoter groES. We also synthesized a transcription fusion of csrA with a

promoter of operon flgN-flgK-flgL-fliW-csrA by GeneArt (Life Technologies, Grand Island,

NY, USA). This fusion was cloned into the SacI and XbaI sites of pMaORI [54]. All pMaORI

constructs are shown in S2 Fig.

Conjugation was performed as previously described [55]. Briefly, E. coli β2163 containing

plasmid of interest was incubated with log-phase Leptospira on a membrane filter and placed

on EMJH plate supplemented with 0.3 mM diaminopimelic acid and incubated for 16–20 h at

30˚C. The bacteria were then resuspended in EMJH and spread onto EMJH solid agar plates

supplemented with 50 μg/mL spectinomycin. The plates were incubated at 30˚C until

Table 2. Bacterial strains used in this study.

Strain Antibiotic Selection Description

WT L. biflexa serovar Patoc No Control strain

WT L. biflexa serovar Patoc + pMaORI Spectinomycin 50 mg/mL Control strain with empty replicative plasmid

WT L. biflexa serovar Patoc + pMaORI_PcsrAlb Spectinomycin 50 mg/mL Overexpressing strain with PromflgN-flgK-flgL-fliW-csrA csrA
ΔcsrA L. biflexa serovar Patoc No (for selection: Kanamycin 100 mg/mL) csrA deletion mutant

ΔcsrA L. biflexa serovar Patoc + pMaORI_PcsrAlb Spectinomycin 50 mg/mL Complemented strain with PromflgN-flgK-flgL-fliW-csrA csrA
ΔcsrA L. biflexa serovar Patoc + pMaORI Spectinomycin 50 mg/mL Control strain with empty replicative plasmid

L. interrogans serovar Manilae WT No Control strain

L. interrogans serovar Manilae WT + pMaORI_PcsrAli Spectinomycin 50 mg/mL Overexpressing strain with PromflgN-flgK-flgL-fliW-csrA csrA
L. interrogans serovar Manilae WT + pMaORI Spectinomycin 50 mg/mL Control strain with empty replicative plasmid

E. coli DH5α No Strain for cloning and plasmid amplification

E. coli TOP10 thermo No Strain for cloning and plasmid amplification

E. coli Bl-21(DE3) pLysS No Strain for recombinant protein production

E. coli β2163 No Donor strain for conjugation with Leptospira spp.

E. coli P1 No Strain for plasmid amplification

https://doi.org/10.1371/journal.pone.0260981.t002
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leptospiral colonies were observed, approximately 1 week for L. biflexa and 2 weeks for L.

interrogans.

RNA purification and RT-qPCR

RNA isolation was performed as previously described [56]. Briefly, Leptospira spp. were grown

until the growth reached exponential phase, OD420 ~ 0.1 to 0.2 or ~ 2.5 × 108 cells/mL. The

cells were harvested and RNA was extracted using TRIZOL reagent (Thermo Fisher Scientific,

Vantaa, Finland) as previously described [56]. RNA pellets were resuspended in UltraPure

Dnase/Rnase Free Distilled Water (Thermo Fisher Scientific). Genomic DNA was removed by

DNase treatment using the RNase-free Turbo DNA-free turbo kit (Thermo Fisher Scientific)

following the manufacturer’s instructions. The 500 ng of RNA were used for cDNA synthesis

using iScript™ Advanced cDNA Synthesis Kit for RT-qPCR (Bio-Rad Laboratories, Hercules,

CA). Quantitative reverse transcription-PCR (RT-qPCR) was performed using SYBR1 Green

Master Mix (Bio-Rad). The results were expressed as the normalized difference of the thresh-

old cycle (ΔΔCT), using cysK and lipL32 as a reference gene for L. biflexa and L. interrogans,
respectively. All primers are listed in S1 Table.

RNA-sequencing

As previously described [57], RNA integrity was examined using the RNA 6000 Nano kit with

the Agilent 2100 bioanalyzer (Agilent Technologies, Wilmington, DE) and all samples used for

constructing the library had RNA Integrity Number (RIN) scores>8.

The QIAseq FastSelect -5S/16S/23S kit (QIAGEN) was used to deplete ribosomal RNA

according to the manufacturer’s instructions. The libraries were built using the TruSeq

Stranded mRNA library Preparation Kit (Illumina, USA) following the QIAseq Fastselect -5S/

16S/23S protocol recommendations. Quality control of the libraries was made on the Frag-

ment Analyzer. The sequencing of the libraries was performed on the Illumina NextSeq 500

platform using single-end 150bp format. The RNA-seq analysis was performed with Sequana

(version 0.9.6) [58]. In particular, we used the RNA-seq pipeline (version 0.9.20, https://

github.com/sequana/sequana_rnaseq). The differential expression analysis testing included

normalization conducted with DESeq2 [59, 60]. For each comparison, a p-value adjustment

(padj) was performed to take into account multiple testing indicating the significance (Benja-

mini-Hochberg adjusted p-values [61], FDR< 0.05) and the effect size (fold-change) for each

comparison. Genes with an adjusted p-value (padj) lower than 0.05 and a log2FC higher or

lower than 0.5 were considered differentially expressed. These datasets were deposited into the

ArrayExpress database at EMBL-EBI (www.ebi.ac.uk/arrayexpress) under the accession num-

ber E-MTAB-10396.

Measurement of motility, cell length, and velocity

The motility was checked on 0.6% semisolid EMJH medium. Exponential-phase Leptospira
were diluted in EMJH to obtain OD420 = 0.1 as a starter culture. A small divot was gouged into

the agar surface into which 2μL or 5μL of the inoculum was pipetted. The plates were incu-

bated for 1 week for L. biflexa and 2 weeks for L. interrogans. The diameter of the zone for each

colony was measured to the nearest millimeter.

For cell length and velocity measurement, late exponential-phase cultures (OD420 ~ 0.5)

were diluted in EMJH broth to obtain an appropriate number of cells per field for visualization

under a dark-field microscope. For cell length, approximately 100 cells per strain were mea-

sured in randomly selected fields by using cellSens software (Olympus, Hamburg, Germany).

Velocity measurement was performed by video microscopy as described previously [6].
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Approximately 70 cells per strain were recorded over 60 s. Trajectory analysis and speed dis-

placement were calculated using Olympus CellSens software. Statistical analysis of motility,

cell length, and velocity was performed using an Unpaired T-Test (Prism 5.03, GraphPad Soft-

ware). A p-value < 0.05 was defined as statistically significant.

Recombinant protein production

PCR products of full sequences of csrA amplified from L. biflexa serovar Patoc or L. interro-
gans serovar Manilae genomic DNA were cloned into pRSET-C (Invitrogen). The recom-

binant plasmids were transformed into E. coli DH5α and verified by DNA sequencing

(Macrogen., South Korea). Recombinant proteins with N-terminus 6× His tag was induced

in E. coli BL21 (DE3) pLysS by 1 mM IPTG at 37˚C for 4 h. The pelleted bacteria were

resuspended in phosphate buffered saline (PBS) pH 7.4 and disrupted using a high-pres-

sure homogenizer (Constant System Ltd., Northants, UK). The soluble fraction was iso-

lated by centrifugation at 15000 ×g at 4˚C for 30 min. Protein samples were purified using

Ni Sepharose columns (GE Healthcare, Buckinghamshire, UK) and dialyzed with PBS pH

7.4. To check for the purity of the purified recombinant proteins, the proteins were sub-

jected to 15% Sodium Dodecyl Sulfate polyacrylamide gel electrophoresis (SDS-PAGE)

and transferred to nitrocellulose membranes. The membranes were blocked with blocking

buffer (1% BSA in PBS pH 7.4 plus 0.05% Tween 20, PBST) before the anti-6× His tag

monoclonal antibody (1:5000; KPL, MD, USA) was added. The membranes were further

incubated with the horseradish peroxidase (HRP)-conjugated goat anti-mouse IgG (sec-

ondary antibody). All incubations were performed at room temperature for 1 h. After incu-

bation, washing step was performed with PBST three times for 5 min each. Amersham ECL

(GE Healthcare), an HRP substrate, was added and incubated for 1 min at room tempera-

ture before the membrane was exposed to a CCD camera (Bio-Rad) for chemiluminescent

signal reading.

Electrophoretic mobility shift assay (EMSA)

All RNA probes were synthesized (Thermo Fisher Scientific) as follows, LEPBIa_1872 WT

5’UGGACACACAGGAGGGUGUGAC’3, LEPBIA_1872 Mut 5’UGGACACACAAAAGGGUGU-
GAC’3, and LIMLP_07475 5’AUCGGAUUCAAGGAGGAACCGA’3.

EMSA was performed according to the manual of LightShift™ EMSA Chemiluminescent

RNA Kit (Thermo Fisher Scientific). Briefly, the binding reaction was prepared. Each binding

reaction consisted of 1X binding buffer (10mM HEPES pH 7.3, 20 mM KCL, 1 mM MgCl2,

and 1 mM DTT) 1 nM of biotinylated-RNA (LEPBIa_1872 WT, LEPBIa_1872 Mut, or

LIMLP_07475), 7.5% glycerol, 10 mM DTT, 0.2 μg/μL Yeast tRNA, and various concentra-

tions of rCsrA in a total volume of 20 μL. The binding reaction was incubated at 37˚C for 30

min. After incubation, loading buffer was added into each reaction and separated on 10%

native PAGE for 1 h at 100V. The reaction was transferred onto a nylon membrane, cross-

linked with UV for 1 min, blocked for 15 min with a blocking buffer, and washed once with

washing buffer. A 1:300 stabilized Streptavidin-HRP in a blocking buffer was added and incu-

bated for 15 min. The membrane was washed 5 times with washing buffer and incubated for 5

min with a substrate equilibration buffer. The membrane was incubated for 5 min in HRP sub-

strate before chemiluminescent signal reading. For competitive EMSA assay, the binding reac-

tion was prepared as described above except rCsrA concentration was fixed at 800 nM while

unlabeled RNA (LIMLP_07475) was added to the solution at the final concentrations ranged

from 0.8 nM to 8 μM (10-fold serial dilution).
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Results

Genetic organization of the csrA locus in L. interrogans and L. biflexa
The csrA locus is conserved in the pathogen L. interrogans serovar Manilae and the saprophyte

L. biflexa serovar Patoc; the csrA forms with the flagellar genes to develop an operon-like struc-

ture (Fig 1A). This operon consists of 5 consecutive genes: flgN, flgK, flgL, fliW and csrA. The

genes flgK and flgL encode putative flagellar hook-associated proteins, and flgN encodes a puta-

tive chaperone for FlgK and FlgL. The gene fliW encodes a putative post-transcriptional regu-

lator of flagellin. There is a 200-bp intergenic region located upstream of flgN, the first gene of

the operon, suggesting that there is a putative promoter region. The CsrA of L. biflexa and L.

interrogans share >88% sequence identity, while both share ~50–60% similarity compared

with CsrA from other bacteria. The amino acid alignment of leptospiral CsrA shows conserved

sequences (highlighted in yellow) and 2 domains (in square boxes) reported as critical for

RNA binding in E. coli [62] (Fig 1B). In addition, leptospiral CsrA is slightly longer than that

of other bacteria due to additional C-terminal amino acid residues.

Allelic exchange mutagenesis and complementation of csrA in L. biflexa
In this study, the suicide plasmids containing the L. biflexa csrA and L. interrogans csrA were

disrupted by a kanamycin-resistance cassette (KmR) and transformed in saprophyte L. biflexa
and the pathogen L. interrogans, respectively. Transformant colonies were only obtained in L.

biflexa. We were unable to get transformant colonies from L. interrogans after 5 attempts.

Among the 16 randomly selected kanamycin-resistant colonies of L. biflexa, 5 (31%) produced

a ~2.6 kb PCR product with Flk primers which indicated that csrA was successfully replaced

with kanamycin-cassette by a double crossing-over event; for the other colonies, the kanamy-

cin-cassette was successfully replaced by a single cross-over event (Fig 2A and S3A Fig). To

further confirm the deletion of csrA in the double-crossover mutants, primers ORF-R and

ORF-L were also used. While the WT produced the expected size of 199-bp PCR product,

approximately 1-kb PCR products were obtained from the transformants with allelic exchange

(S3B Fig). These results indicated that there was a successful allelic exchange of csrA in L.

biflexa which was designated as ΔcsrA.

In order to complement the ΔcsrA, our first attempt was to express the wild-type csrA
under a strong promoter of Leptospira, PgroES, but no transconjugant was obtained. We

Fig 1. csrA operon in Leptospira spp. (A) A genetic organization of csrA in Leptospira spp. The arrangement of the

genes in the csrA operon in L. interrogans, L. biflexa, and L. biflexa ΔcsrA are shown. (B) The alignment of the amino

acid sequences of CsrA in L. biflexa serovar Patoc and L. interrogans serovar Manilae strains used in this study was

performed in comparison with CsrA from other bacteria. (�) represents conserved amino acid and the square boxes

indicate conserved residues that are important for RNA binding in E. coli [62]. Sequences highlighted in yellow

indicate the conserved residues.

https://doi.org/10.1371/journal.pone.0260981.g001
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hypothesized that the excess level of CsrA may be toxic to Leptospira. Therefore, we expressed

csrA under the control of its native promoter, which is the promoter of the operon containing

flgN, flgK, flgL, fliW, and csrA (Fig 1A). The resulting plasmid was used for complementation

in ΔcsrA. RT-qPCR revealed that the relative fold change of csrA in the complemented strain

(ΔcsrA+pMaORI_PcsrAlb) was 3.33-fold higher compared with WT+pMaORI (Fig 2B), indi-

cating overexpression of csrA. In addition, RT-qPCR was unable to detect the expression of

csrA in the ΔcsrA+pMaORI, confirming the successful deletion of csrA in L. biflexa.

Phenotype analysis of the ΔcsrA L. biflexa
Effects of csrA on growth and motility. The growth curve of WT, ΔcsrA, and ΔcsrA

+pMaORI_PcsrAlb in regular EMJH were comparable (Fig 3A), suggesting that csrA was not

essential for growth in L. biflexa. However, we found that ΔcsrA displayed poor growth in

5-fold diluted EMJH compared to the WT (Fig 3B). Complementation of the ΔcsrA partially

restored the wild-type phenotype under starvation conditions (Fig 3B).

We performed soft agar assays to determine the motility of ΔcsrA, but we did not find any

differences between WT and ΔcsrA (Fig 3C). Consistent with soft agar results, we did not find

any difference in cell length or velocity in liquid EMJH between WT and ΔcsrA (Fig 3D and

Fig 2. Allelic exchange of csrA in L. biflexa. (A) Schematic representation of homologous recombination. To generate

a csrAmutant, L. biflexa serovar Patoc was electroporated with a suicide vector containing the csrA locus where csrA
was replaced by a kanamycin resistance cassette (KmR). Genes and non-coding regions with their sizes (bp) are

indicated. The flanking regions of csrA used for homologous recombination are indicated by the dashed line square.

Arrows indicate primers used for the confirmation of double crossing-over events. (B) csrA expression in L. biflexa
strains was determined by RT-qPCR. Results obtained from 3 independent cultures were presented as relative fold

changes ±SEM using cysK gene for normalization. (���) indicates p-value<0.001.

https://doi.org/10.1371/journal.pone.0260981.g002
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3E). In addition, the motility behavior of ΔcsrA observed under the dark-field microscope was

similar to WT (data not shown).

RNA-sequencing. To investigate the role of csrA as a global gene regulator in L. biflexa,

RNA-seq was performed on exponential-phase cultures of WT, ΔcsrA, and ΔcsrA+-

pMaORI_PcsrAlb. With log2FC> ±0.5 and padj<0.05 as the criteria for differentially

expressed gene (DEG), only 3 genes, not including csrA, were differentially expressed in ΔcsrA
compared with the WT strain which is accounting for less than 0.1% of total ORF (3 in 3730)

(Fig 4A, Table 3 and S2 Table). Two genes were significantly upregulated in ΔcsrA; LEP-
BIa_1872 (encodes a flagellin protein FlaB3), and LEPBIa_0812 (encodes putative acyltransfer-

ase) by 2.331-, and 1.423-fold, respectively, while LEPBIa0979 (encodes oligopeptidase A) was

0.668-fold downregulated (Table 3). Furthermore, the level of LEPBIa_1872 was restored to

WT level of ΔcsrA+pMaORI_PcsrAlb, suggesting that LEPBIa_1872 should be a specific gene

Fig 3. Phenotype analysis of the ΔcsrA L. biflexa. To investigate the effect of csrA on growth, 2×106 cells of each

bacterial strain were grown in 10 mL of (A) regular EMJH and (B) 5-fold diluted EMJH. OD420 measurement for

growth was performed every 24 h. Results obtained from 3 independent experiments are expressed as Mean ± SEM.

(C) Soft agar assay of WT and ΔcsrA. Leptospira were inoculated onto 0.6% semisolid EMJH plate and incubated at

30˚C for one week before measuring the diameter of each colony. The late exponential phase of Leptospira grown in

EMJH medium were measured for (E) cell length and (D) velocity under a dark-field microscope using cellSens

software (OLYMPUS).

https://doi.org/10.1371/journal.pone.0260981.g003

Fig 4. RNA-sequencing. The up- and downregulated genes in ΔcsrA or ΔcsrA+pMaORI_PcsrAlb compared with WT

are shown in the Volcano analysis. (A) Comparison between ΔcsrA and WT and (B) Comparison between ΔcsrA
+pMaORI_PcsrAlb and WT. Red dots indicated up- or downregulated genes with log2FC> ± 0.5 and adjusted p-value

(padj)< 0.05. Representative genes are labeled. Blue and yellow dots indicate non-differentially expressed genes and

scRNA, respectively.

https://doi.org/10.1371/journal.pone.0260981.g004
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target of L. biflexa CsrA. In contrast, the complementation of ΔcsrA could not restore wild-

type expression of LEPBIa_0812 and LEPBIa0979, suggesting that these genes are not putative

gene targets of CsrA (Table 3).

While a few differentially expressed genes were found in ΔcsrA, 575 transcripts consisting

of 569 genes (15% of total ORF), 4 ncRNA, and 2 23S rRNA were differentially expressed in

the ΔcsrA complemented strain compared with WT transcriptome (Fig 4B, S4 Fig and S2

Table). The gene csrA (LEPBIa_3210) was significantly up-regulated (1.84-fold), further con-

firming the upregulation of csrA observed by RT-qPCR (Fig 2B and Table 3). Among the 569

genes, clpB (LEPBIa_2449) and groL (LEPBIa2344), known genes involved in general stress

response, are one of the most strongly downregulated genes (Table 3 and S2 Table), indicating

that overexpression of csrAmay induce stress conditions in L. biflexa. Complete set of ORF

expression is shown in S2 Table.

RT-qPCR was performed to validate the RNA-seq results. As shown in Table 3, the signifi-

cant upregulation of LEPBIa_0812 and LEPBIa_1872 was confirmed in ΔcsrA, while LEP-
BIa_0979 was not differentially expressed by RT-qPCR. The restoration of LEPBIa_1872 in

complemented strain was confirmed by RT-qPCR, further confirming this gene as a specific

target of CsrA.

FlaB gene as a potential target of CsrA in L. Biflexa. Because L. biflexa has 4 flaB genes,

the effect of csrA on the relative expression of these flaB genes was determined (Fig 5A). RT-

qPCR confirmed an upregulation of flaB3 in ΔcsrA and the expression level of flaB3 was

restored in the complemented strain. We also found that flaB2 (LEPBIa_2132) was signifi-

cantly upregulated in ΔcsrA and its expression was restored in the complemented strain (Fig

5A). These results indicated that flaB2 and flaB3 are potential CsrA targets. The upregulation

of both genes was correlated with RNA-seq of ΔcsrA, of which only flaB3, not flaB2 was differ-

entially expressed (S2 Table).

CsrA regulates its targets by binding to their upstream sequences overlapping the Shine

Dalgarno sequence [63]. The consensus sequence of the CsrA binding site is 5’RUACARG-
GAUGU’3 [41]. The upstream sequence analysis of flaB2 and flaB3 showed potential CsrA

binding sites with 4 nucleotide mismatches compared with the consensus sequence (Fig 5B

and S3 Table). The putative binding sites were similar in terms of nucleotide composition and

sequence order, 5’ACACAAAGGAGT’3 for flaB2 and 5’ACACAGGAGGGT’3 for flaB3. The

Shine Dalgarno sequence (5’AGGAGG’3) was present in the upstream region of flaB3, but

not flaB2, suggesting that flaB3might be more promising to be a CsrA target. Secondary

Fig 5. FlaB genes expression of L. biflexa. (A) Expression of L. biflexa flaB genes by RT-qPCR, RNAs were prepared

from 3 independent cultures of each leptospiral strains. Results are presented as relative fold changes ±SEM using cysK
for normalization. (�), (��), and (���) indicate p-value<0.05,<0.01 and<0.001, respectively. For statistical analysis,

ΔcsrA was compared to WT; ΔcsrA+pMaORI or ΔcsrA+pMaORI_PcsrAlb was compared to WT+pMaORI. (B)

Analysis of flaB 5’ untranslated regions of L. biflexa serovar Patoc. The gene and distances to the start codon are

indicated. Underlined letters represent mismatched nucleotides compared with the consensus sequence.

https://doi.org/10.1371/journal.pone.0260981.g005
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structure prediction of 120 nucleotides upstream of flaB3 revealed that the possible binding

site formed a GGA motif-containing hexaloop and localized 7 nucleotides before the start

codon (Fig 6A). These findings strongly suggest that flaB3 is a specific CsrA target in L. biflexa.

Therefore, only the putative CsrA binding site of flaB3 was selected for further verification.

To confirm the interaction of L. biflexa CsrA and flaB3 transcripts in vitro, N-terminal 6×
His-tag recombinant CsrA protein (rCsrA) of L. biflexa, with an approximate molecular

weight of 14 kDa, was produced in E. coli (S5 Fig). Electrophoretic mobility shift assay

(EMSA) was performed to investigate the interaction between L. biflexa rCsrA and synthesized

22-nucleotide RNA probe upstream of flaB3. Because GGA is a known critical binding site of

CsrA, the interaction between rCrsA and GGA motif-containing LEPBIa_1872 WT probe was

compared to AAA-containing LEPBIa_1872 Mut probe (Fig 6A). The rCsrA could bind to the

WT probe in a dose dependent manner whereas no interaction was observed between rCsrA

and the Mut probe (Fig 6B), indicating that GGA motif was critical for L. biflexa CsrA binding.

Therefore, CsrA regulates flaB3 by binding to its upstream sequence at the GGA motif.

Overexpression of csrA in Leptospira spp.

To generate csrA overexpressing strains of L. biflexa and L. interrogans, we first overexpressed

csrA of each strain under the control of the promoter of L. interrogans groES, which previously

showed to be a strong promoter [53]. Consistent with the results observed in the complemen-

tation experiment, no colony was obtained for both L. interrogans and L. biflexa. In contrast,

Fig 6. FlaB gene as a potential target of CsrA in L. biflexa. (A) Secondary structure of 120-nucleotide 5’ untranslated

region of LEPBIa1872 (flaB3) was predicted using MFOLD [64]. The putative CsrA binding site is shown and the start

codon (ATG) is indicated in bold letters. The sequences of the synthesized 5’ biotinylated RNAs of LEPBIa_1872WT

and LEPBIa_1872Mut probes for flaB3 are shown. (B) Electrophoretic mobility shift assay (EMSA), 1 nM biotinylated

RNA of either LEPBIa_1872WT or LEPBIa_1872Mut probes were incubated with different concentrations of rCsrA

of L. biflexa. The reaction solution was subjected to 10% native PAGE, transferred to a nylon membrane, probed with

HRP-conjugated streptavidin, and detected for chemiluminescent signal after the detection reagent was added.

https://doi.org/10.1371/journal.pone.0260981.g006
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conjugation with the empty replicative plasmid resulted in hundreds of colonies for both L.

interrogans and L. biflexa. We therefore overexpressed csrA under its native promoter, the pro-

moter of the operon flgN-flgK-flgL-fliW-csrA. Numerous spectinomycin resistant colonies

were then obtained from both leptospiral strains. RT-qPCR showed that the relative fold

change of csrA was 3.70-fold higher in L. interrogans (Fig 7A) and 18.77-fold higher in L.

biflexa (S6A Fig) compared to its parental WT strain.

The csrA overexpressing strain of both L. interrogans (WT+pMaORI_PcsrAli) and L. biflexa
(WT+pMaORI_PcsrAlb) had a growth rate similar to WT in regular and 5-fold diluted EMJH

(Fig 7B and S6B and S6C Fig). These results suggested that overexpression of csrA did not

affect the growth of Leptospira.

To investigate the effect of csrA overexpression on motility, the soft agar assay and measure-

ment of cell length and motility were performed. We found that the motility of the WT+-

pMaORI_PcsrAlb was not deficient (S6D–S6F Fig), which was consistent with the results

observed in ΔcsrA. In contrast, overexpression of csrA in L. interrogans had poor motility on

soft agar (Fig 7C); however, the cell length and velocity were not significantly different from

WT (Fig 7D and 7E).

Overexpression of csrA had a distinct effect on flaB expression

The relative expression levels of the 4 flaB genes in csrA overexpressing strains of both L.

biflexa and L. interrogans were investigated. In WT+pMaORI_PcsrAlb, flaB2 and flaB3 were

significantly downregulated by 0.433- and 0.439-fold change (Fig 8A), respectively, which is in

agreement with the data in ΔcsrA showing that CsrA acts as a repressor in L. biflexa. In con-

trast, the overexpressing strain of L. interrogans showed poor motility on soft agar plates and

had a significant upregulation of flaB1, flaB2, and flaB4 by 3.02-, 2.10-, and 1.57-fold change,

Fig 7. Overexpression of csrA in L. interrogans. (A) Overexpression of csrA in L. interrogans. To confirm

overexpression of csrA, RNA was extracted from each Leptospira strain and then subjected to RT-qPCR. Results

obtained from 3 independent cultures were presented as relative fold changes ± SEM. LipL32 was used for

normalization. (���) indicates p-value< 0.001. (B) Growth curve of L. interrogans. The 2×106 cells of each bacterial

strain were grown in 10 mL of regular EMJH. OD420 measurement for growth was performed every 24 h. Results

obtained from 3 independent experiments are expressed as Mean ± SEM. (C) Soft agar assay of L. interrogans.
Leptospira at OD420 = 0.1 were inoculated onto 0.6% semisolid EMJH plates and incubated at 30˚C. (D) Measurement

of cell length of L. interrogans (E) Measurement of velocity of L. interrogans. Late exponential phase of Leptospira
grown in EMJH medium were measured for cell length and velocity under a dark-field microscope using cellSens

software (OLYMPUS).

https://doi.org/10.1371/journal.pone.0260981.g007
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respectively (Fig 8B), suggesting that CsrA might be involved in transcriptional activation of

flagellin genes in L. interrogans.
Analysis of 5’ untranslated region of L. interrogans flaBs revealed putative CsrA binding

sites in flaB1, flaB2, flaB3, and flaB4 (Fig 9A). Among 3 upregulated flaB genes, flaB4 is more

likely a CsrA target because of the highest match of its upstream region to the consensus

sequence (Fig 9B and S3 Table). Secondary structure prediction of 120 nucleotides upstream

of flaB4 (LIMLP_07475) revealed a GGA motif-containing hexaloop locating 6 nucleotides

before the start codon (Fig 9B). Therefore, flaB4 was selected for further binding studies.

Recombinant CsrA protein of L. interrogans was produced (S5 Fig) and used for EMSA. As

expected, rCsrA bound to flaB4 upstream in a dose-dependent manner (Fig 9C). The specific-

ity was further confirmed by competitive EMSA (Fig 9D). Our results not only demonstrated

that CsrA of L. interrogans is an RNA-binding protein but also showed flaB4 as a specific

target.

Discussion

Leptospira spp. are ubiquitous bacteria found as free-living saprophytes in environmental water

and soil or as pathogens excreted in the urine of asymptomatic hosts to cause disseminated

infections in both humans and animals. Global gene regulators are required for their rapid

adaptation to environmental changes. However, the knowledge of gene regulation in Leptospira
remains limited. We found that csrA homolog, a well-characterized post-transcriptional global

regulator, is present in all available leptospiral genomes. The leptospiral csrA is located inside

an operon of genes involved in the flagellum biosynthesis (Fig 1A) like other bacteria [65].

Moreover, the csrA operon of both L. biflexa and L. interrogans are in synteny with csrA oper-

ons of other spirochete bacteria including B. burgdorferi and T. pallidum [66]. In gamma-

proteobacteria, non-coding RNA (ncRNA), such as csrB [67] and csrC [68], modulates CsrA

function. In epsilon-proteobacteria and firmicutes that have no gene encoding ncRNA antago-

nist, FliW was reported as the protein antagonist of CsrA [69, 70]. The Leptospira genomes do

not possess csrB and csrC homologs but fliW is located adjacent to csrA (Fig 1A). Thus, FliW

may function as the leptospiral CsrA antagonist. A CsrA-like ncRNA, which could regulate lep-

tospiral CsrA activity, was also identified in L. biflexa [12].

While generation of csrA deletion was feasible in L. biflexa, we were unable to delete csrA in

L. interrogans. Because targeted mutation particularly in pathogenic Leptospira is difficult and

inefficient, a limited number of virulence genes have been confirmed [71]. Likewise, the pres-

ent study could not successfully generate a deletion mutant in L. interrogans. Alternatively,

Fig 8. Effect of overexpressed CsrA on flaB expression. Expression of 4 flaB genes in Leptospira strains by RT-qPCR.

RNAs were prepared from 3 independent cultures of each leptospiral strain and used for RT-qPCR. Results are

presented as relative fold changes ± SEM using cysK and lipL32 for normalization in L. biflexa and L. interrogans,
respectively. (�), (��) and (���) indicate p-value< 0.05,< 0.01 and< 0.001, respectively.

https://doi.org/10.1371/journal.pone.0260981.g008
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csrAmay have an essential role in the viability of L. interrogans but not in L. biflexa. The csrA
mutant of Salmonella Typhimurium showed severe growth defect compared to its parental

strain [47]. Moreover, CsrA might be toxic to Leptospira because we were unable to obtain any

transconjugant in both L. biflexa and L. interrogans when csrA was fused to a strong promoter.

Metabolism is one of the common phenotypes regulated by CsrA in many bacteria [72–76].

For instance, E. coli CsrA regulates the carbon starvation gene, cstA, which plays a role in pep-

tide transport during carbon starvation [76]. Another study reported a strong activity of CsrA

during iron-limited condition [46]. In regular EMJH, growth curves of ΔcsrA and WT+-

pMaORI_PcsrAlb were not different from those of their parental strains (Fig 3A and S6B Fig),

suggesting that csrA was not essential for growth in L. biflexa in rich medium. However, the

growth of ΔcsrA was defective under starvation condition compared to its parental WT strain.

There was a relatively slow lag phase before reaching a similar growth rate as that in WT in the

stationary phase, indicating that csrA is required in the early phase of growth when nutrients

are limited. However, the complemented strain was unable to fully restore the phenotype. This

is probably due to the overexpression (3-fold increase) of csrA in trans in ΔcsrA compared to

the wild-type which may result in massive gene deregulation as shown by RNA-seq which had

more than 500 differentially expressed genes (Fig 4B). Our data suggested that CsrA is required

for growth of L. biflexa under starvation so that they can survive in the environment where

nutrients are limited.

Several reports showed that there was an alteration of transcriptomic profile in csrAmutant

strains and those strains support CsrA as a global gene regulator (Table 1). In csrAmutant of

enterohemorrhagic Escherichia coliO157:H7, 641 genes were upregulated, and 703 transcripts

(~15% of total genes) were downregulated compared to its parental WT strain [26]. A total of

239 genes (13.4% of total genes) showed different expression in csrAmutant of B. burgdorferi
compared to its parental WT [23]. Surprisingly, only 3 genes (<1% of total genes) were

Fig 9. L. interrogans CsrA regulated flaB expression. (A) Analysis of flaB 5’ untranslated regions of L. interrogans
serovar Manilae. The genes and distances to the start codon are indicated. Underlined letters represent mismatched

nucleotides compared to the consensus sequence. (B) Secondary structure of 120-nucleotide 5’ untranslated region of

LIMLP07475 (FlaB4) was predicted using MFOLD [64]. The putative CsrA binding site is shown and the start codon

(ATG) is indicated in bold letters. The sequences of the synthesized 5’ biotinylated RNA of LIMLP_07475 is shown.

(C) Electrophoretic mobility shift assay (EMSA), 1 nM biotinylated RNA of LIMLP_07475 was incubated with

different concentrations of L. interrogans rCsrA. The reaction solution was subjected to 10% native PAGE, transferred

to a nylon membrane, probed with HRP-conjugated streptavidin, and detected for chemiluminescent signal after the

detection reagent was added. (D) Competitive EMSA, biotinylated RNA of LIMLP_07475 and rCsrA concentration

were fixed at 1 nM and 800 nM, respectively. Unlabeled LIMLP_07475 was added in the reaction concentration range

from 0.8 nM to 8 μM.

https://doi.org/10.1371/journal.pone.0260981.g009
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differentially expressed in ΔcsrA of L. biflexa, but only 1, LEPBIa1872 (flaB3), was significantly

upregulated more than 1.5-fold change and its expression level could be restored in the com-

plemented strain indicating that csrA is a repressor of flaB3. A small number of genes were

detected by RNA-seq probably because of different mechanisms employed by CsrA to regulate

its gene targets [63]. For example, CsrA post-transcriptionally regulates its gene targets by

affecting their mRNA stability [35, 36, 77] or it can regulate its targets without any change in

the number of target transcripts [76, 78]. As a result, such post-transcriptional control might

not be detected by RNA-seq. Proteomic profiling may be necessary to investigate post-

translational effects of CsrA as well as to identify its targets. In addition, we found that ΔcsrA
of L. biflexa grew slower than WT strain under starvation conditions. Thus, transcriptomic

profiling of ΔcsrA under starvation may yield more information on the target genes.

In contrast to ΔcsrA, a higher number of genes were differentially expressed in the ΔcsrA+-

pMaORI_PcsrAlb overexpressing CsrA in L. biflexa (Fig 4B). This finding might be a result of

deregulation of other regulators as reported in some bacteria [63]. Presumably, CsrA exerts

global regulation in L. biflexa when its expression reaches a substantial level. RNA-seq of WT

demonstrated low csrA expression in rich medium (low total read/sample of csrA in S2 Table),

therefore deletion of csrAmight not result in major transcriptomic changes. In addition, other

unknown factors might inhibit csrA expression at its native locus because the expression of

csrA under its native promoter was significantly higher than WT (Fig 2B). Accordingly, we

cannot exclude the possibility that CsrA is a global regulator in L. biflexa especially under the

conditions that upregulate csrA. The impact of CsrA on expression of other genes under such

conditions require further investigation.

Motility is one of the common traits regulated by CsrA. The alteration in motility affected

by CsrA as well as the molecular mechanisms of CsrA that act on motility genes have been

well documented in many bacteria [40, 79–84]. Flagellin genes have been reported as targets of

CsrA in many bacteria. For example, CsrA bound to 5’untranslated regions of borrelial flaB at

the consensus sequences overlapping the Shine Dalgarno sequence resulted in the translational

block [51]. Hag protein, which shares ~47% amino acid identical to leptospiral flaB3, is regu-

lated by CsrA using the same mechanism as Borrelia [78]. Our transcriptome analysis showed

that flaB3 is a potential target of CsrA. This was further confirmed by the presence of putative

CsrA binding site in the promoter and gel shift assays which showed that there was a specific

binding of rCsrA to the WT flaB3 5’untranslated region through the GGA conserved residues,

which is consistent with a previous report [41]. In contrast, this finding is inconsistent with

the results from the RNA-seq and EMSA results which showed that there were no differences

in motility on soft agar, cell length, and velocity (Fig 3C–3E). While most bacteria harbor one

flagellin component [85], Leptospira have 4 homologs of the flagellin FlaB in their genome

[86]. The numbers of each FlaB in L. interrogans are approximately 14000, 2000, 300, and 3500

copies for FlaB1, FlaB2, FlaB3, and FlaB4, respectively [86]. Our RNA-seq results revealed that

flaB4 (LEPBIa1589) was the most transcribed flaB, more than 3-fold compared to other flaB
transcripts (S2 Table). Apparently, FlaB3 (LEPBIa_1872), which is regulated by CsrA, is not a

major FlaB protein, which could explain the absence of change in the motility phenotype. It

is possible that flaB2 is a target of L. biflexa CsrA because it was significantly upregulated in

ΔcsrA and its expression was restored in the complemented strain (Fig 5A), but the interaction

was not investigated in this study. The putative CsrA binding site of flaB2 shares high similar-

ity to the flaB3 binding site and harbors GGA motif (Fig 5B and S3 Table). However, although

flaB1 and flaB4 genes contain a possible CsrA binding site (Fig 5B and S3 Table), no transcrip-

tional change was observed. Other cooperating factors might be required for gene regulation.

It is noteworthy to mention that the flagellar expression and motility phenotype observed here

occurred in a nutrient-rich culture medium.
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Because we were unable to generate a csrAmutant strain of L. interrogans, an overexpres-

sing csrA strain was constructed. A 4-fold increase of csrA in L. interrogans resulted in poor

motility on soft agar (Fig 7C), suggesting that csrAmay regulate the motility of L. interrogans.
Due to no alteration in cell length or velocity, other pathways regulated by CsrA may be

responsible for this phenotype. These results indicated the crucial function of csrA in the path-

ogenic strain because motility is known to be a virulence factor of Leptospira [87–89].

The upregulation of flaB in csrA overexpressing strain of L. interrogans is in contrast to the

downregulation in csrA overexpressing strain of L. biflexa, suggesting the distinct mechanisms

of csrA among leptospiral strains. As previously reported, the mechanism of CsrA on motility

regulation can be distinct in different bacteria. For example, the csrAmutants in E. coli and S.

Typhimurium were non-motile and CsrA positively regulated the master operon in flagellum

biosynthesis, flhDC [40, 90]. In contrast, RsmA, a CsrA homolog of Erwinia carotovora, nega-

tively regulated flhDC, and the rsmAmutant was hypermotile [82]. In addition, CsrA in Salmo-
nella regulated different motility genes compared to E. coli [38]. These results indicated that

CsrA in different bacteria may have distinct effects on motility. For example, the same gene in

different bacteria may have different mechanisms or control of different gene targets. Compar-

ative transcriptomic and proteomic profiles of csrA-overexpressing L. biflexa and L. interro-
gansmight give useful information on the global role of CsrA as well as different mechanisms

of CsrA between these 2 species.

In conclusion, we characterized the role of CsrA in Leptospira spp. We found that csrA of

the saprophyte L. biflexa is required for starvation response and repressed the expression of

flaB3 (LEPBIa_1872) without any change in motility phenotype. L. biflexa CsrA may exert a

global effect under certain conditions that upregulate csrA expression. In contrast, overexpres-

sion of CsrA in pathogenic L. interrogans resulted in poor motility and CsrA may be an activa-

tor of flaB1, flaB2, and flaB4 genes. This study suggested that pathways of gene regulation by

CsrA may be different in bacteria belonging to the same genus, i.e., pathogenic and non-

pathogenic Leptospira spp.

Supporting information

S1 Fig. Map of suicide vectors. Map of suicide vectors, L. interrogans serovar Manilae and L.

biflexa serovar Patoc. These vectors have KmR located between the flanking sequences of csrA.

(TIF)

S2 Fig. Map of pMaORI used for complementation and overexpression. pMaORI contain-

ing csrA of L. interrogans serovar Manilae and L. biflexa serovar Patoc with its native promoter.

(TIF)

S3 Fig. PCR confirmation of csrA mutant strain in L. biflexa serovar Patoc. (A) Genomic

DNA of wild type and 16 selected transformants were prepared and amplified by PCR using

specific primers that flanked sequences of csrA (Flk-L and Flk-R). (B) To confirm the absence

of csrA, we amplified 2 transformants which were positive for double crossing over event using

PCR with specific primers to the coding sequence of csrA (ORF-L and ORF-R).

(TIF)

S4 Fig. GO term enrichment analyses on DEGs identified from WT and ΔcsrA+pMaOR-

I_PcsrAlb. The significant enriched biological process for downregulated genes in the comple-

mented strain are shown. No enriched GO terms were found in the upregulated genes in the

complemented strain.

(TIF)

PLOS ONE Investigating the role of CsrA in Leptospira spp.

PLOS ONE | https://doi.org/10.1371/journal.pone.0260981 December 13, 2021 17 / 24

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0260981.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0260981.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0260981.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0260981.s004
https://doi.org/10.1371/journal.pone.0260981


S5 Fig. Recombinant CsrA production. PCR products of complete sequences of csrA either

from L. interrogans or L. biflexa were cloned into pRSET-C expression vector, transformed in

E. coli BL21 (DE3) pLysS, and induced the expression IPTG. Purified N-terminal 6x His tag

recombinant CsrA was subjected to 15% SDS-PAGE and stained with Coomassie Brilliant

Blue R-250. Separated recombinant proteins were blotted onto a nitrocellulose membrane,

detected with mouse monoclonal antibody against 6×His tag (primary antibody) and HRP-

conjugated anti-mouse IgG (secondary antibody) using Amersham ECL Western Blotting

Detection Reagent.

(TIF)

S6 Fig. Overexpression of csrA in L. biflexa. (A) Overexpression of csrA in L. biflexa. To con-

firm overexpression of csrA, RNAs were extracted from each Leptospira strain and subjected

to RT-qPCR. Results obtained from 3 independent cultures were presented as relative fold

changes ± SEM. cysK was used for normalization. (���) indicated p-value <0.001. The growth

curve of L. biflexa. The 2×106 cells of each bacterial strain were grown in 10 mL of regular

EMJH or 5-fold diluted EMJH in water, (B) represented growth in regular EMJH and (C)

growth in 5-fold diluted EMJH. OD420 measurement for growth was performed every 24 h.

Results obtained from 3 independent experiments are expressed as Mean ± SEM. (D) Soft

agar assay of L. biflexa. LeptospiraOD420 = 0.1 were inoculated onto 0.6% semisolid EMJH

plate and incubated at 30˚C. (E) Measurement of cell length of L. biflexa (F) Measurement of

velocity of L. biflexa. Late exponential phase of Leptospira grown in EMJH medium were mea-

sured for cell length and velocity under a dark-field microscope using cellSens software

(OLYMPUS).

(TIF)

S1 File.

(PDF)

S1 Table. Primers used in this study.

(XLSX)

S2 Table. Significantly deregulated genes in the ΔcsrA and ΔcsrA+pMaORI_PcsrAlb with

log2FC > ± 0.5 cut-off and adjusted p-value of <0.05.

(XLSX)

S3 Table. Analysis of flaB 5’ untranslated region. a Gene, ORF ID, Product, and Distance to

the start codon are according to Leptospira biflexa serovar Patoc Patoc 1 and L. interrogans ser-

ovar Manilae strains. UP-MMC-NIID LP was obtained from MicroScope Microbial Genome

Annotation & Analysis Platform; https://mage.genoscope.cns.fr/microscope/home/index.php.

Underlined letters represented mismatch nucleotide compared to the consensus sequence.

Bold letters represented the Shine-Dalgarno sequence.

(XLSX)
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