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Background.  Artesunate-amodiaquine is a potential therapy for uncomplicated malaria in Cambodia.
Methods.  Between September 2016 and January 2017, artesunate-amodiaquine efficacy and safety were evaluated in a prospec-

tive, open-label, single-arm observational study at health centers in Mondulkiri, Pursat, and Siem Reap Provinces, Cambodia. Adults 
and children with microscopically confirmed Plasmodium falciparum malaria received oral artesunate-amodiaquine once daily for 
3 days plus single-dose primaquine, with follow-up on days 7, 14, 21, and 28. The primary outcome was day-28 polymerase chain 
reaction (PCR)-adjusted adequate clinical and parasitological response (ACPR). An amodiaquine parasite survival assay (AQSA) 
was developed and applied to whole genome sequencing results to evaluate potential amodiaquine resistance molecular markers.

Results.  In 63 patients, day-28 PCR-adjusted ACPR was 81.0% (95% confidence interval [CI], 68.9–88.7). Day 3 parasite pos-
itivity rate was 44.4% (28/63; 95% CI, 31.9–57.5). All 63 isolates had the K13(C580Y) marker for artemisinin resistance; 79.4% 
(50/63) had Pfpm2 amplification. The AQSA resistance phenotype (≥45% parasite survival) was expressed in 36.5% (23/63) of 
isolates and was significantly associated with treatment failure (P = .0020). Pfmdr1 mutant haplotypes were N86/184F/D1246, and 
Pfcrt was CVIET or CVIDT at positions 72–76. Additional Pfcrt mutations were not associated with amodiaquine resistance, but 
the G353V mutant allele was associated with ACPR compared to Pfmdr1 haplotypes harboring F1068L or S784L/R945P mutations 
(P = .030 and P = .0004, respectively).

Conclusions.  For uncomplicated falciparum malaria in Cambodia, artesunate-amodiaquine had inadequate efficacy owing to 
amodiaquine-resistant P. falciparum. Amodiaquine resistance was not associated with previously identified molecular markers.

Keywords.   artesunate-amodiaquine; artemisinin; Plasmodium falciparum; Cambodia; drug resistance.

Artemisinin-based combination therapy (ACT) includes a 
rapid-acting artemisinin with a longer-acting partner drug. 
ACTs support effective malaria treatment globally, contributing 
to recent declines in mortality [1]. In 2006, artemisinin-resistant 
Plasmodium falciparum was confirmed in Cambodia’s western 
provinces [2] and subsequently verified in multiple studies 
[3]. Artemisinin resistance delays parasite killing, but resist-
ance to the partner drug is required before treatment failure 
rates increase [4, 5]. Unfortunately, P.  falciparum resistant to 

artemisinins and partner drugs (piperaquine, mefloquine) cir-
culate in Cambodia and the Greater Mekong subregion, under-
mining clinical efficacy and limiting treatment options [1, 6–8].

Artesunate-amodiaquine was not deployed systematically in 
Cambodia and requires evaluation as a potential replacement for 
failing ACTs. In Africa, artesunate-amodiaquine is used exten-
sively with 98.5% clinical efficacy [1]. P. falciparum with multidrug 
resistance 1 (Pfmdr1) alleles N86Y/Y184/D1246Y (YYY haplo-
type) is associated with amodiaquine treatment failures in Africa 
[9] but has not been detected in Cambodia [10]. The most prev-
alent chloroquine resistance transporter gene (Pfcrt) haplotype 
in Cambodia is CVIET at positions 72–76 (wild-type CVMNT) 
[10], which is also prevalent in Africa [11, 12], and insufficient 
to confer amodiaquine resistance in vivo [13, 14]. In Viet Nam, 
2 artesunate-amodiaquine clinical trials showed encouraging re-
sults with 98% efficacy [15, 16]. However, there are no recent data 
from Southeast Asia on artesunate-amodiaquine efficacy.

This study investigated artesunate-amodiaquine clinical ef-
ficacy for uncomplicated falciparum malaria in Cambodia. In 
the event of clinical failures, molecular markers associated with 
amodiaquine resistance were to be investigated.
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METHODS

Study Design

This prospective, single-arm, open-label therapeutic efficacy 
trial of artesunate-amodiaquine plus single-dose primaquine 
was conducted between September 2016 and January 2017 at 
3 health centers in Cambodia: Koh Gnek (Koh Gnek district, 
Mondulkiri province), Promoy (Veal Veng district, Pursat prov-
ince), and Khvav (Chi Kraeng district, Siem Reap province) 
(Supplementary material Figure S1).

The study confirmed to Good Clinical Practice and the 
Declaration of Helsinki (2000). The protocol followed the 
standard World Health Organization protocol for the sur-
veillance of antimalarial treatment efficacy [17] and was ap-
proved by the National Cambodian Ethical Board and the 
World Health Organization Regional Office, Western Pacific 
Region. Owing to an administrative error, this study was reg-
istered retrospectively at https://www.anzctr.org.au (identi-
fier ACTRN12619001628134). All patients or their guardians 
provided written informed consent. Additionally, assent was 
obtained from children aged ≥12 years.

Patients

Eligible patients were aged 5–60  years with microscopically 
confirmed P.  falciparum monoinfection (1000–250 000  µL−1 
blood), fever or history of fever during the past 24 h, who could 
swallow oral medication. Unmarried girls and women aged 
12–18 years were excluded because a pregnancy test would be 
culturally unacceptable; pregnant and lactating women were 
also excluded. All other women of child-bearing potential were 
given a pregnancy test. Exclusion criteria were severe falcip-
arum malaria, severe malnutrition, febrile conditions other 
than malaria or other underlying chronic illness, medication 
that might interfere with antimalarial pharmacokinetics, or a 
history of hypersensitivity to artemisinin or amodiaquine.

Treatment

Artesunate-amodiaquine (ASAQ Winthrop®, Sanofi, Paris, 
France) was administered under supervision once-daily for 
3  days. Doses were determined by bodyweight to achieve 
4 mg/kg/day (range 2–10 mg/kg) artesunate and 10 mg/kg/day 
(range 7.5–15 mg/kg) amodiaquine. Primaquine was given as a 
single 15-mg dose (0.25 mg base/kg). All patients were treated 
as in-patients with out-patient follow-up visits on days 7, 14, 
21, and 28. Any recurrence during follow-up was treated with 
artesunate-mefloquine.

Procedures

At enrollment, a clinical examination was performed and a 
full medical history taken. Adverse events were recorded at all 
study visits. Parasitemia and Plasmodium species identification 
was assessed using Giemsa stained thick and thin blood films 
obtained at screening, every day following the first treatment 

dose until samples were parasite negative, at each weekly fol-
low-up visit, and if clinically indicated. Parasite counts were 
recorded as the average from 2 microscopists using standard 
methods [17]. Treatment failures were verified as recrudescence 
using polymerase chain reaction (PCR) genotyping by com-
paring P.  falciparum genes msp1, msp2, and glurp in pretreat-
ment blood samples versus those obtained at recurrence [18].

Molecular Surveillance

Using samples collected on day 0, the Kelch13 (K13) gene 
was sequenced to identify mutations associated with artemis-
inin resistance [19], and gene copy numbers for P.  falciparum 
plasmepsin 2/3 (Pfpm2) and Pfmdr1 were determined, as per 
published methods [20]. The threshold for gene amplification 
was defined as > 1.5 copies.

Amodiaquine Susceptibility in Vitro

Pretreatment blood samples were collected into acid-citrate-
dextrose tubes (Becton-Dickinson, Franklin Lakes, NJ, USA) 
and processed within 48  h at Institut Pasteur, Cambodia. 
Clinical isolates were culture adapted using standard methods 
[4]. P.  falciparum reference strains 3D7 (amodiaquine suscep-
tible, from MR4) and 7G8 (amodiaquine resistant, from the 
European Malaria Reagent Repository) were similarly main-
tained and used as controls. Molecular markers obtained from 
day 0 samples were confirmed as identical to those obtained 
from the corresponding culture-adapted parasites via whole 
genome sequencing except for 1 isolate that had Pfpm2 ampli-
fication at day 0, which reverted to a single gene copy under 
culture.

In vitro susceptibility to mono-desethyl-amodiaquine (from 
the WorldWide Antimalarial Resistance Network) was assessed 
using the [3H]-hypoxanthine assay, according to published 
methods [4]. Half-maximal inhibitory concentration values 
(IC50) were determined using ICEstimator software (http://
www.antimalarial-icestimator.net).

The amodiaquine survival assay (AQSA) was based on a sim-
ilar assay for piperaquine [21]. Tightly synchronized ring-stage 
parasites (0–3 h postinvasion) were exposed to 200 nM mono-
desethyl-amodiaquine for 48  h and maintained for a further 
24 h in drug-free medium. Live parasites were then enumerated 
microscopically from Giemsa-stained thin blood films on ex-
amination of ≥ 10 000 erythrocytes. Parasite survival following 
exposure to mono-desethyl-amodiaquine was determined as a 
percentage relative to untreated controls.

Amodiaquine Resistance and Association With Molecular Markers

Investigation of potential molecular markers associated with 
amodiaquine resistance used an expanded data set including 
culture-adapted P.  falciparum isolates from this study plus 34 
culture-adapted clinical isolates collected from sentinel sites 
between February 2017 and February 2018 (n = 10 Kampong 
Speu, n = 13 Mondulkiri, n = 3 Pursat, n = 8 Ratanakiri).

http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciaa628#supplementary-data
https://www.anzctr.org.au
http://www.antimalarial-icestimator.net
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Pfcrt and Pfmdr1 were sequenced using whole genome 
sequencing with Illumina paired-reads sequencing, according 
to published protocols [19, 20]. After processing, data were in-
tegrated into the Whole-genome Data Manager (version 2.0) 
[19, 20]. Single-nucleotide polymorphisms (SNPs) were investi-
gated using Phen2gen software [20].

Outcomes

The primary efficacy outcome was day-28 adequate clinical and 
parasitological response (ACPR) adjusted for reinfection using 
PCR genotyping. Day-3 parasite positivity rate was the sec-
ondary efficacy outcome. Safety outcomes were the frequency 
of adverse events, serious and severe adverse events.

Statistical Analysis

Data were analyzed with Excel StatX and Graphpad Prism (ver-
sion 8.3.0). ACPR was evaluated using Kaplan-Meier survival 
curves and associated 95% confidence intervals (95% CI) and 
compared using the log-rank test (Mantel-Cox). IC50 and AQSA 
values versus clinical outcome were compared using the Mann-
Whitney test. Resistance thresholds for IC50 and AQSA parasite 
survival were determined with receiver operating characteristic 
(ROC) analysis. Kruskal-Wallis tests were used to identify sig-
nificant differences in Pfcrt–Pfmdr1 haplotype AQSA parasite 
survival results. Significant P values were <.05.

RESULTS

Patients

Most patients were adult males (87.3%, 55/63) (Table 1). There 
were no withdrawals or patients lost to follow-up; all 63 patients 
were included in the analysis. Thirty-one patients were from 
Mondulkiri, 29 from Pursat, and 3 from Siem Reap.

Therapeutic Efficacy and Molecular Surveillance

Day-28 ACPR was 81.0% (51/63). All recurrences were late 
clinical failures (days 21–28) and PCR-confirmed as recrudes-
cence—9 in adults (18−52 years) and 3 in children (8−15 years). 
The Kaplan-Meier day-28 ACPR estimate was 81.0% (95% 
CI, 68.9–88.7) (Figure  1); 77.4% (95% CI, 58.4–88.5) for 
Mondulkiri, 86.2% (95% CI, 67.3–94.6) for Pursat, and 66.7% 

(95% CI, 5.4–94.5) for Siem Reap. No severe or serious adverse 
events were reported during the study. 

Day-3 parasite positivity rate was 44.4% (28/63; 95% CI, 
31.9–57.5); 22.6% (7/31; 95% CI, 9.6–41.1) for Mondulkiri, 
69.0% (20/29; 95% CI, 49.2–84.7) for Pursat, and 33.3 (1/3, 95% 
CI, .8–90.6) for Siem Reap. All 63 isolates had the K13(C580Y) 
marker for artemisinin resistance. None had increased Pfmdr1 
copy number, but 85.7% (54/63) had Pfpm2 amplification.

In Vitro Amodiaquine Resistance

In the [3H]-hypoxanthine assay, the mono-desethyl-
amodiaquine median IC50 for the 63 clinical isolates was 
174.5  nM (interquartile range [IQR], 90.7–213.1). Isolates 
from patients with recrudescence (n = 12) had a median IC50 
of 193.8 nM (IQR, 156.6–240.3) versus 165.0 nM (IQR, 88.3–
212.0) for patients with day-28 ACPR (n = 51) (P = .084, Mann-
Whitney) (Figure 2A). ROC analysis indicated an IC50 threshold 
value most strongly correlated with day-28 ACPR of <181 nM 
(Supplementary material Figure S2); sensitivity was 61% (95% 
CI, 47–73) at a specificity of 75% (95% CI, 47–91). Area under 
the curve (AUC) was 0.66 (95% CI, .49–.83; P =  .083). Thus, 
IC50 had inadequate discriminatory value for predicting clinical 
outcome.

Amodiaquine Survival Assay (AQSA)

In the 63 clinical isolates, AQSA median parasite survival was 
23.5% (IQR, 1.6–65.5). Quality control values were 72.8% par-
asite survival for the amodiaquine-resistant 7G8 strain and 
0% for the susceptible 3D7 strain. There was a strong pos-
itive correlation between IC50 and AQSA parasite survival 
(Pearson r value 0.75 [95% CI, .62–.84] P < .0001) (Figure 3A). 
Recrudescent isolates had a significantly higher median survival 
(64.0% [IQR, 29.1–77.0]) versus those from patients with day-
28 ACPR (13.3% [IQR, 0.9–48.1]) (P = .0054, Mann-Whitney) 
(Figure 3B). ROC analysis indicated an AQSA threshold pre-
dictive of day-28 ACPR of <45% survival, with 75% sensitivity 
(95% CI, 47–91) and 73% specificity (95% CI, 59–83). AUC 
was 0.75 (95% CI, .60–.91; P = .0063) (Supplementary material 
Figure S3). ACPR occurred with 92.5% (37/40) of isolates with 
<45% AQSA parasite survival but decreased significantly to 
60.9% (14/23) for those with ≥45% survival (P = .0020, log-rank 
Mantel-Cox) (Figure 3C). Therefore, ≥45% parasite survival in 
the AQSA was a clinically relevant resistance phenotype.

Molecular Signature Associated With Amodiaquine Resistance

In the expanded data set of 97 clinical isolates, median AQSA par-
asite survival was 8.0% (IQR, 1.0−50.2), and 28.9% (28/97) had 
≥45% parasite survival. Ninety-six isolates were K13(C580Y) and 
1 was K13(Y493H). One isolate had Pfmdr1 amplification, whereas 
78.4% (76/97) had Pfpm2 amplification. There was no significant 
difference in the median AQSA value of strains with single-copy 

Table 1.  Baseline Characteristics of the Safety and Efficacy Population

Characteristic Study Population (N = 63)

Males/females, n 61/2

Adults aged > 15 years, n 56

Children aged 5–15 years, n 7

Mean age (SD) [range], years 28.2 (11.9) [5–56]

Mean weight (SD) [range], kg 53.7 (10.5) [23–78]

Geometric mean parasitemia  
(range) µL−1 blood

22 695 (1756–248 000)

Abbreviation: SD, standard deviation.

http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciaa628#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciaa628#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciaa628#supplementary-data
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Pfpm2 (6.3% [IQR, 1.1–56.4]) versus those with multiple copies 
(12.3% [IQR, 0.91–47.6]) (P = .74, Mann-Whitney).

The frequency of SNPs for the key P.  falciparum resistance 
genes Pfcrt and Pfmdr1 are shown in Supplementary material 
Figure S4. For isolates with complete Pfcrt haplotypes (N = 94), 
12 different haplotypes were identified, of which 97.9% (92/94) 
were either Dd2 or on the Dd2 background (Table  2). For 
Pfmdr1, 6 different haplotypes were found, with 51.1% (48/94) 
having Y148F plus at least 1 other mutation (Table 2).

AQSA results for isolates with complete Pfcrt–Pfmdr1 
sequences (N  =  92) indicated significant differences in sur-
vival between 4 haplotypes: Dd2–Y184F/S784L/R945P versus 
Dd2 F145I–Y184F and versus Dd2 G353V–Y184F (P =  .0075 
and P = .0003, respectively; Kruskal-Wallis); and between Dd2 
T93S–Y184F/F1068L versus Dd2 F145I–Y184F and versus Dd2 
G353V–Y184F (P = .0003 and P < .0001, respectively; Kruskal-
Wallis) (Figure  4A). When examining clinical outcomes, al-
though the data set was smaller (N  =  60), there was still a 
significant difference between Dd2 G353V–Y184F versus Dd2–
Y184F/S784L/R945P or Dd2 T93S–Y184F/F1068L (P  =  .0004 
and P = .0304, respectively; log-rank Mantel-Cox) (Figure 4B).

DISCUSSION

Antimalarial drug resistance curtails ACT efficacy for uncompli-
cated malaria in Cambodia, with the emergence of triple mutants 
(artemisinin, piperaquine, and mefloquine resistant) underlining 

the need for new therapeutic options [22–24]. High artesunate-
amodiaquine efficacy in Africa and Viet Nam, and the absence of 
known amodiaquine resistance markers in Cambodia, suggested 
that this ACT would be efficacious. Surprisingly, 19.0% of patients 
had recrudescence, sufficient to exclude artesunate-amodiaquine 
as an uncomplicated malaria treatment in Cambodia.

The K13(C580Y) artemisinin resistance marker was ubiq-
uitous in this study and is the predominant K13 mutant in 
Cambodia [25]. Consistent with this, the day-3 parasite posi-
tivity rate was 44.4%. However, artemisinin resistance increases 
recrudescence probability only if there is also partner drug 
resistance [4, 5]. Thus, the high treatment failure rate is most 
likely explained by amodiaquine resistance.

Previous studies in Africa indicated a mono-desethyl-
amodiaquine IC50 resistance threshold of >60  nM with 
amodiaquine monotherapy [26], compared with >180  nM 
for artesunate-amodiaquine in the current study. This could 
be because artemisinin resistance is partial, and a higher de-
gree of amodiaquine resistance is necessary to support para-
site recrudescence following artesunate-amodiaquine versus 
amodiaquine monotherapy.

In the current study, IC50 lacked sufficient discriminatory 
power to differentiate between ACPR and recrudescence. This 
lack of correlation between IC50 and clinical outcome was 
observed previously for artemisinin and piperaquine, pro-
moting the development of parasite survival assays measuring 
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in the [3H]-hypoxanthine uptake inhibition assay and clinical outcome at day 28 
following treatment with artesunate-amodiaquine for 63 P. falciparum clinical iso-
lates. Open circles represent P. falciparum isolates and black horizontal bars and Ι 
bars indicate the median and interquartile range, statistical comparison used the 
Mann-Whitney test. Abbreviations: ACPR, adequate clinical and parasitological re-
sponse; IC50, half-maximal inhibitory concentration.
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cytocidal activity [4, 21, 27]. This study validated the AQSA, 
a novel amodiaquine parasite survival assay, which correlated 
well with clinical outcome, and was sufficiently sensitive and 
specific to use as a resistance phenotype to investigate potential 
amodiaquine resistance molecular markers. Consequently, we 
propose AQSA ≥45% parasite survival as a novel definition for 
amodiaquine resistance.

In Africa, Pfmdr1 N86 and D1246 selection following 
artemether-lumefantrine improves clinical outcomes with 
artesunate-amodiaquine in P.  falciparum malaria [28]. This 
suggests that an artemether-lumefantrine-amodiaquine triple 
therapy could counterselect for resistance, with ongoing initia-
tives to develop the combination [29]. However, the rationale for 
artemether-lumefantrine-amodiaquine in Cambodia has not 
been demonstrated. Our data show that amodiaquine resistance 
in Cambodia exists in the absence of the African amodiaquine-
resistant haplotype Pfmdr1 86Y/Y184/1246Y [10], as all mutant 
Pfmdr1 haplotypes were N86/184F/D1246. Also, mutations 
common in South American P.  falciparum Pfmdr1 (S1034C, 
N1042D and D1246Y) were absent. Molecular markers for 
lumefantrine resistance are not validated for Southeast Asia, 
and our data do not support counter selection for amodiaquine 
susceptibility. Rather, resistance to both amodiaquine and 
lumefantrine appears possible in Cambodian P. falciparum.
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inhibition assay. B, Relationship between AQSA parasite survival and clinical outcome 
at day 28 following treatment with artesunate-amodiaquine. Open circles represent 
P. falciparum isolates and black horizontal bars and Ι bars indicate the median and inter-
quartile range, statistical comparison used the Mann-Whitney U test. C, Kaplan-Meier 
estimates of ACPR for parasites with the AQSA resistance phenotype (≥45% survival) 
versus those with the susceptible phenotype (<45% survival), statistical comparison 
used the log-rank test (Mantel-Cox). Abbreviations: ACPR, adequate clinical and parasi-
tological response; IC50, half-maximal inhibitory concentration.

Table 2.  Pfcrt or Pfmdr1 Haplotype and Parasite Survival in the 
Amodiaquine Survival Assay (AQSA)

Haplotype n (%)
Median Parasite  
Survival, % (IQR)

Pfcrt N = 94  

Dd2a 13 (13.8) 48.1 (1.5–77.2)

Dd2 F145I 7 (7.4) 0.0 (0–1.8)

Dd2 G353V 13 (13.8) 0.4 (0–1.0)

Dd2 G367C 1 (1.1) 0.4

Dd2 H97Y 14 (14.9) 15.9 (4.5–46.8)

Dd2 I210F 13 (13.8) 8.0 (3.8–31.5)

Dd2 I218F 1 (1.1) 0.0

Dd2 M343I 2 (2.1) 1.6 (0.2–3.0)

Dd2 N88K 1 (1.1) 0.7

Dd2 T93S 27 (28.7) 57.8 (22.6–71.7)

Cam734a 1 (1.1) 11.1

GB4a 1 (1.1) 0.0

Pfmdr1 N = 94  

Wild type 3 (3.2) 4.8 (1.4–11.1)

Y184F 43 (45.7) 1.3 (0–6.3)

P72S/Y184F 3 (3.2) 24.7 (0.6–32.9)

Y184F/F1068L 19 (20.2) 64.2 (46.0–74.7)

Y184F/G1314D 18 (19.1) 13.7 (3.6–42.8)

Y184F/S784L/R945P 8 (8.5) 67.8 (48.1–81.6)

Abbreviations: IQR, interquartile range; Pfcrt, P.  falciparum chloroquine resistance trans-
porter; Pfmdr1, P. falciparum multidrug resistance 1.
aMutations for Pfcrt D2d: M74I/N75E/K76T/A220S/Q271E/N326S/I356T/R371I; Pfcrt 
Cam734: M74I/N75D/K76T/A220S/Q271E/T333S; Pfcrt GB4: 74I/75E/76T/A220S/Q271E/
R371I.
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In the expanded parasite data set, all except 2 Pfcrt haplo-
types were on the Dd2 background (ie, C72/V73/74I/75E/76T/
220S/271E/326S/356T/371I). The amodiaquine-resistant 72–76 
SVMNT haplotype reported in South American parasites was 
absent, consistent with previous data [10].

In Asia, novel Pfcrt mutations have emerged on the Dd2 
chloroquine-resistant allelic background, in contrast to Africa 
where 3D7, GB4, and Cam783 haplotypes predominate [30]. In 
clinical isolates and gene edited parasites, Pfcrt Dd2 decreases in 
vitro susceptibility to amodiaquine relative to Pfcrt 3D7 and thus 
can be considered an amodiaquine-tolerant background [30, 
31]. In the current study, 85.9% (79/92) of the Dd2-based haplo-
types had additional mutations. The Pfcrt mutations G353V and 
F145I were significantly associated with amodiaquine sensitivity 
in the AQSA, and G353V was associated with ACPR. These find-
ings are consistent with data in gene-edited parasites showing 
that these mutations confer resistance to piperaquine but sensi-
tize parasites to amodiaquine, chloroquine, and quinine [32, 33]. 
Notably, in gene-edited parasites neither G353V nor F145I had 
any impact on lumefantrine susceptibility, and counterselection 
between lumefantrine and amodiaquine appears unlikely 
[32]. In previous studies, Pfcrt T93S has been associated with 
piperaquine resistance, and its prevalence has been increasing 
in Cambodia [33–35]. In the current study, Pfcrt T93S was the 
most common Pfcrt haplotype and was associated with both 
amodiaquine-susceptible and amodiaquine-resistant haplo-
types. Thus, elevated AQSA values were not associated with an 
identified polymorphism in Pfcrt. Rather, key mutations in this 
gene appear to be associated with sensitization to amodiaquine.

Pfmdr1 showed 6 haplotypes in this study, and 51.1% (48/94) 
were Y184F plus another mutation. Of these, S784L/R945P and 
F1068L were associated with clinical and in vitro resistance. 
Pfmdr1 S784L has previously been noted from several locations 
in Cambodia at frequencies between 0.5 and 29.8% but was not 
associated with R945P [10]. Pfmdr1 F1068L was reported from 
Pailin at a low frequency (4.2%) [10], versus 20.2% (19/94) in 
the current study. This study is the first report to our knowledge 
associating these Pfmdr1 haplotypes with amodiaquine resist-
ance. However, our data set is insufficient to show causality or 
to perform multivariate analysis. Thus, extended genome-wide 
association studies and genome editing are required to vali-
date our findings. The single amodiaquine-susceptible Pfmdr1 
S784L/R945P mutant in the AQSA was the only isolate with 
Pfmdr1 amplification. Conclusions cannot be drawn from one 
isolate, but additional investigations may be valuable.

The origin of amodiaquine resistance in Cambodia is un-
clear. This drug was not used recently and saw only limited 
implementation in the 1990s. Piperaquine resistance selection 
is unlikely to be associated with amodiaquine resistance emer-
gence, as the associated genotype, that is, Pfpm2 amplification 
and Pfcrt mutations have either no effect or sensitize parasites to 
amodiaquine [32]. We could thus hypothesize that amodiaquine 

resistance emerged in Cambodia in the past consecutively to ex-
tensive chloroquine use and since then has been perpetuated by 
an unidentified mechanism.

While confirming artesunate-amodiaquine resistance in 
Cambodia, this was a small study conducted in a limited ge-
ographical region. Although significant relationships between 
SNPs in key resistance genes and amodiaquine resistance 
phenotypes were observed, causality cannot be determined. 
For example, the associations could result from the close relat-
edness of parasites in this study. Further investigations are re-
quired to confirm the putative amodiaquine resistance markers 
and assess their relevance to other malaria endemic areas. In 
the absence of molecular markers, the AQSA provides a novel 
methodology to assess clinically relevant amodiaquine resist-
ance. However, AQSA specificity and sensitivity were deter-
mined according to the limited study size and location, and 
the ≥ 45% parasite survival AQSA resistance phenotype may 
require revision with additional data.

This study highlights the need for careful assessment of ther-
apeutic outcomes and molecular markers before introducing 
a new antimalarial treatment in Cambodia. Resistance to 
amodiaquine was unexpected and was not associated with any 
known resistance genotype from other malaria endemic areas. 
Our findings indicate that clinical resistance was linked to the 
acquisition of high-level resistance against an amodiaquine-
tolerant background. Thus, any amodiaquine-based combina-
tion would place partner compounds under a high selective 
pressure and be inappropriate in Cambodia.
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