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A B S T R A C T   

Single-cell RNA-sequencing (scRNAseq) experiments are becoming a standard tool for bench-scientists to explore 
the cellular diversity present in all tissues. Data produced by scRNAseq is technically complex and requires 
analytical workflows that are an active field of bioinformatics research, whereas a wealth of biological back
ground knowledge is needed to guide the investigation. Thus, there is an increasing need to develop applications 
geared towards bench-scientists to help them abstract the technical challenges of the analysis so that they can 
focus on the science at play. It is also expected that such applications should support closer collaboration be
tween bioinformaticians and bench-scientists by providing reproducible science tools. 

We present SCHNAPPs, a Graphical User Interface (GUI), designed to enable bench-scientists to autonomously 
explore and interpret scRNAseq data and associated annotations. The R/Shiny-based application allows 
following different steps of scRNAseq analysis workflows from Seurat or Scran packages: performing quality 
control on cells and genes, normalizing the expression matrix, integrating different samples, dimension reduc
tion, clustering, and differential gene expression analysis. Visualization tools for exploring each step of the 
process include violin plots, 2D projections, Box-plots, alluvial plots, and histograms. An R-markdown report can 
be generated that tracks modifications and selected visualizations. The modular design of the tool allows it to 
easily integrate new visualizations and analyses by bioinformaticians. We illustrate the main features of the tool 
by applying it to the characterization of T cells in a scRNAseq and Cellular Indexing of Transcriptomes and 
Epitopes by Sequencing (CITE-Seq) experiment of two healthy individuals.   

1. Introduction 

Successful and efficient data analysis of single-cell experiments re
quires comprehensive knowledge of bioinformatics and biology and thus 
often involves close interaction between bioinformaticians and bench- 
scientists. While the first feed the data through an analysis pipeline, 
the second interpret the results. Given the iterative nature of analyses, 
these interactions are usually frequent. In general, a pipeline must be 
rerun multiple times to remove/select cells or genes from the analysis. 
For example, damaged cells with highly expressing mitochondrial and 
ribosomal genes should be removed. As well, genes expressed by irrel
evant cell types or belonging to biological processes that are not relevant 

to the scientific question could be left out from the analysis. When 
comparing or visualizing specific cell types only a subset of cells can be 
used. 

Many tools are being developed to tackle this challenge (a compre
hensive selection is listed here: https://github.com/federicomarini/awe 
some-expression-browser), some of which have been covered in a recent 
review (Cakir et al., 2020). Among the most accomplished are iSEE 
(Rue-Albrecht et al., 2018), Cerebro (Hillje et al., 2020), ASAP (Gardeux 
et al., 2017), iS-CellR (Patel, 2018), and singleCellTK (Jenkins et al., 
2018). Recently, Hao et al. (Hao et al., 2021) made Azimuth available, 
an extensible web-based system that closely follows the Seurat-pipeline 
with the possibility of adding further functionality. It is also worth 

; scRNAseq, Single-cell RNA-sequencing; CITE-seq, Cellular Indexing of Transcriptomes and Epitopes by Sequencing; GUI, graphical user interface; ADT, Antibody 
Derived Tag; CSV, comma-separated values; TSV, tabulator-separated values; PBMC, peripheral blood mononuclear cell; pDC, plasmacytoid dendritic cell; GEO, Gene 
Expression Omnibus. 
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mentioning the SeuratV3Wizard (https://github.com/nasqar/seurat 
v3wizard), part of the NASQAR system (Yousif et al., 2020), which is 
also built around the Seurat pipeline. Since all these systems are 
developing rapidly and features are continuously added, a comparison 
of abilities that holds over time is not possible. 

Here, we present SCHNAPPs (Single Cell sHiNy APPlication(s)), a R/ 
Shiny application that aims at enabling bench-scientists to characterize 
individual cells and genes starting from the initial normalization steps of 
raw counts to differential expression analysis. The selection process is 
captured in a report that can be used by a bioinformatician to validate 
and optimize the results. The software architecture of the application 
makes it easy for bioinformaticians to integrate new visualizations and 
analyses. As such, SCHNAPPs streamlines the interaction of bench- 
scientists and bioinformaticians, thus speeding up analyses. 

A key concept of SCHNAPPs is that all single attributes of a cell (other 
than the count for a given gene) are treated equally. SCHNAPPs regards 
all properties that can be related to a single cell as a “projection”. Thus, 
tSNE (Donaldson, 2016) or UMAP (McInnes et al., 2020) coordinates, 
principal components, mitochondrial content, or expression of proteins 
from CITE-seq experiments are all considered equally projections as they 
can be all used to project the cells in a low dimensional space (2D or 3D). 
Cell-type assignments are added as new projections as well as time as
signments derived from a trajectory inference. The user can use these 
projections as x/y/z coordinates or to color cells. 

The different views in SCHNAPPs are “intelligent” in the sense that 
they render different types of graphs depending on the type of data 
shown (factorial, numerical, logical, cell identifiers). These concepts and 
features distinguish SCHNAPPs from most other tools. Another feature 
that we explore here in more depth is the possibility to work with 
multiple samples. SCHNAPPs has a unique combination of features that 
allows optimizing parameters for dimension reduction and clustering; 
visualization tools that allow to identify and characterize differential 
and common marker sets for manually selected cells and is extendable/ 
adaptable to the changing needs of researchers. 

SCHNAPPs should be regarded as an exploratory tool that allows 
bench-scientists to perform independent analyses including testing 
different parameters like, for example, different constellations of cells 
and genes. However, we strongly advise to validate any statistical 
findings with an expert. 

2. Material and methods 

Samples. The PBMC were extracted from the blood of two healthy 
individuals by gradient centrifugation. All participants gave written 
informed consent in the frame of the healthy volunteers CoSImmGEn 
cohort (Clinical trials NCT 03925272), after approval of the CPP Ile-de- 
France I Ethics Committee (2011, jan 18th)). 

PBMC were either stained with CITE-seq antibodies (Total-seq B 
antibodies by Biolegend see Supplementary Table 1) or sorted by FACS. 
We used 3′ single-cell gene expression V3.1 kit (10× Genomics) and 
Total-seq B antibodies (Biolegend), according to standard protocols. 

For the PBMC CITE-seq staining: 5 μl Human TruStain FcX were 
added to 1 × 106 of PBMC resuspended in 100 μl of Cell Staining Buffer 
(BioLegend, Cat# 420201) and incubated 10 min at 4 ◦C. 1uL of each 
antibody-oligonucleotide conjugate was used to prepare the antibody 
mix. The mix was centrifuged at 14,000 rcf for 10 min at 4 ◦C and the 
supernatant added to the cells and incubated 30 min at 4 ◦C in the dark. 
Cells were then washed 3 times with PBS/0.04% BSA. 

For the FACS sorted T cells: we used anti-CD56 BV510 (Cat# 318339 
Biolegend), CD14 APC-Cy7 (Cat# 325620 Biolegend) and DAPI (Cat# 
62248 Thermo Fisher) to exclude NK, monocytes and dead cells, 
respectively. We used anti-CD8a PerCP (Cat# 344708 Biolegend) and 
anti-CD4 FITC (Cat# 344604 Biolegend) to positively select CD4 and 
CD8 T cells. 

Both PBMC and sorted T cells were resuspended at 1 × 106/mL in 
PBS/0.04% BSA and 6000 cells were loaded on 10× Chromium 

controller using the Chromium NextGEM Single Cell 3’ Reagent Kit v3.1 
(CG000206_ChromiumNextGEMSingleCell3’v3.1_CellSurfacePro
tein_Rev D), assuming a recovery rate of 50%. GEM Generation & Bar
coding, Post GEM-RT Cleanup & cDNA Amplification, and 3’ Gene 
Expression Library Construction were performed as per manufacturer’s 
instructions. Libraries were mixed prior to sequencing on Illumina 
Novaseq 150PE at minimum 20 k paired reads per cell for the gene 
expression libraries and at 5 k paired reads per cell for the Antibody 
Derived Tag (ADT) libraries. 

Cellranger 4.0.0 was used with GRCh38-2020-A as reference to 
calculate count matrices. Filtered feature bc matrices were used as input 
to the script dataPrep.R (supplementary materials). 

3. Results 

3.1. Implementation 

Input to the application is either a simple count matrix of comma- 
separated values (CSV), with rows representing features/genes and 
columns representing cells, or a SingleCellExperiment object (Amez
quita et al., 2019) with a sparse matrix holding the counts and anno
tations for the cells (covariates) and annotation data for the features/ 
genes. The singleCellExperiment object must have the following gene 
information for each gene: “symbol”, the gene-symbol; “id”, a poten
tially different unique identifier; “Description”, descriptive information 
for the gene. Cell-specific information must include “sampleNames”, a 
string/factor to distinguish cells from different samples; and “barcode”, 
a unique barcode per sample. In practice, additional gene-specific an
notations like functional annotations from Ensembl (Yates et al., 2020), 
or cell-specific annotations like cell type predictions using from SingleR 
(Aran et al., 2019) or scLearn (Duan et al., 2020) are computed during 
data preparation on the command line and integrated into the single
CellExperiment object (see supplementary material, dataPrep.R). 
Generally, we encourage calculating all relevant features that are not 
dependent on the ensemble of cells/genes to be pre-computed and in
tegrated beforehand. (Cell phase, cell type prediction, mitochondrial 
content). 

Examples for generating these objects are given on GitHub 
(https://github.com/baj12/SCHNAPPsContributions#prepare-data-for 
-schnapps). 

The processed data can be exported as singleCellExperiment objects. 
This allows creating a SingleCellExperiment object from a CSV file that 
is usable with iSEE or other tools based on the SingleCellExperiment 
object. Multiple SingleCellExperiment files can be loaded and analyzed 
together. 

Reproducibility is achieved by the creation of a directory (the name 
of the directory contains the date and time SCHNAPPs was launched) 
that holds an R-markdown file (Xie et al., 2019) with associated data 
archiving all major data manipulations (removal of data, normalization, 
clustering) and plots that were saved from within the application. Thus, 
it is possible to reproduce the cell selection, validate the analysis steps 
and optimize the graph for final publication. 

The shiny framework (Chang et al., 2021) is used as the underlying 
framework with the dashboard design (Chang and Borges Ribeiro, 2018) 
for the graphical user interface (GUI). It can be run from within RStudio 
(RStudio Team, 2020) or as a stand-alone web application (docker, 
virtual machine). 

Internally, the SingleCellExperiment object is used to store count 
matrices and user-supplied annotation. To take full advantage of the 
reactive concept with its dependency graph, individual computations 
(normalizations, projections/covariates) are stored in distinct objects. 
This approach avoids recalculating objects that do not depend on pa
rameters that have changed. Due to the low coverage and dropouts 
associated with most single-cell sequencing experiments, sparse 
matrices are used to represent raw and normalized read counts, reducing 
the memory footprint. Parallel implementations are used when 
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available, such as for tSNE, UMAP. Shiny modules allow reuse and 
standardization of visualizations. Violin plots, 2D plots, and tables are 
modularized and can be used by any other contributed functionality. 
The 2D plot module, for example, allows to select cells, re/define/name 
groups of cells, log transform data, or normalize it by e.g., gene count per 
cell, just for the given plot. Selected cell names can optionally be shown 
and thus copied and pasted. This provides the ability to refine the 
analysis by e.g., sub-clustering a set of cells within a given cluster and 
represents an important tool for identifying the phenotype and potential 
fate of cells. 

Contributions allow adding analyses or visualization tools; the end- 
user provides the directory where the contributions are located on the 
file system during the startup of the application. The application then 
looks for specific file names that contain sources for the GUI elements 
and reactive objects. Contributions for trajectory inference (SCORPIUS 
(Cannoodt et al., 2016), ElPiGraph.R (Albergante, 2021), Tempora 
(Tran and Bader, 2019)), for imputation (DCA (Eraslan et al., 2019), and 
per-cell gene signatures (Cell-ID (Cortal et al., 2021)) are already 
available. A dummy contribution is available that holds example code 
for key features (adding projections, normalizations/imputations, visu
alizations, and reports), which serves as an entry point for developers. 
New normalization and imputation methods can be integrated as well as 
differential expression methods. This concept allows restricting the 
functionality to only those tools that are useful for a given biological 
question, thus reducing the complexity of the application. 

A computer with substantial memory and CPUs is recommended for 
the use of SCHNAPPs (e.g., 64GB RAM allows working with ~80,000 
cells and ~ 20,000 genes). 

3.2. Example use case 

Single-cell RNA-Seq and its multi-modal variants (e.g. CITE-Seq, 
single-cell immune receptor profiling) have become the approaches of 
choice for an in-depth characterization of immune response phenotypes 
in the discovery of diagnostic, prognostic, and response biomarkers in 
vaccination, infection, and cancer studies (e.g. as reviewed in (Bode 
et al., 2021; Liu et al., 2021; Zielinski et al., 2021). SCHNAPPs is 
applicable for the analysis of data obtained by any of these approaches 
and can thus be integrated with most immunological studies today. 

We exemplify the functionality of SCHNAPPs by characterizing 
human T cell phenotypes. We have performed CITE-Seq of peripheral 
blood mononuclear cells (PBMC). This bi-modal single-cell analysis 
enables simultaneous quantification of the full transcriptomics and a 
selected surface protein-expression profile for each cell (Stoeckius et al., 
2017). The PBMC were extracted from the blood of two healthy in
dividuals. The protein expression values (normalized and raw) for the 
PBMC experiment were added as projections in the data preparation 
step. In addition, we have performed scRNAseq on sorted CD4+ and 
CD8+ cells (“isolated T-cells” later in the text) from the same individuals 
to allow comparing the RNA-Seq data of PBMC with those of targeted T 
cells. The samples of the two individuals are labeled d1_ADT and 
d2_ADT for the PBMC and s1 and s2 for the isolated T-cells. 

We have applied SCHNAPPs to identify major immune subsets in 
PBMC samples based on their transcriptional signatures. We have then 
correlated the RNA expression with the cell surface protein expression 
(ADT) to further characterize T cell subsets. We subsequently integrated 
T cells from PBMC with isolated T cells. This allowed us to infer the 
identity of T cell subsets in the isolated T-cells and to compare their gene 
expression profiles. Each step is accompanied by different visualizations. 

In the following, we describe a concise workflow that shows the key 
features available in SCHNAPPs, with a step-by-step guide in the sup
plementary material (“paper-walkthrough”). Additional options and 
some alternative routes of investigation are given in the supplementary 
document “paper-walkthrough with alternatives”. An in-depth walk
through and comparison to a scran workflow (https://bioconductor. 
org/packages/release/bioc/ vignettes/scran/inst/doc/scran.html) and 

a Seurat workflow (https://c3bi-pasteur-fr.github.io/UTechSCB-SCHNA 
PPs/articles/pkdown/SeuratWorkflow.html) are given in the supple
mentary material. 

3.3. Preparing input for SCHNAPPs (0. paper-walkthrough) 

As pointed out above, it consists of a SingleCellExperiment object in 
R with all available metadata saved in an “.RData” format. Alternatively, 
a simple count table either in a tab (.tsv) or comma (.csv) separated 
format can be used. 

Any value that is independent of the ensemble of cells should be 
precomputed. This includes in our case reads aligning to mitochondrial 
sequences, gene annotations, protein expression from CITE-seq (raw and 
normalized), cell cycle prediction, and cell type predictions. An example 
of how to set up the data is given in the supplementary material (data
Prep.R) along with the resulting file (pbmc2020.RData). 

3.4. Launching SCHNAPPs and loading input data (1. paper- 
walkthrough) 

SCHNAPPs is started from RStudio’s console using “schnapps(his
toryPath = ‘/Volumes/extDrive1/schnapps_history/PBMCExperi
ment’)”. The historyPath argument specifies the path to store major 
manipulations of the data and any plot that is requested to be stored. The 
date and time when the application is launched are recorded in the name 
of the subdirectory that holds all the files. 

Using the input panel, the file to be analyzed is selected on the file 
system (pbmc2020.subsampled.RData). For this demonstration and to 
reduce the hardware requirements, we used SCHNAPPs to subsample 
the data to 1000 cells per sample. This is done by checking the “sub
sample” check-box as described in “paper-walkthrough”. Thus, this 
example-analysis can be performed on a computer with 16GB of RAM. 

3.5. Quality control (2. paper-walkthrough) 

Several visualizations within SCHNAPPs are available for data 
quality control. The number of cells per sample (General QC - Sample 
histogram) allows identifying biases arising from different cell counts. 
Since we have subsampled the data this shows an even distribution of 
about 1000 cells per sample. In case of large differences of cell counts 
between the samples, one can sub-sample to a given maximum number 
of cells per sample (input - input options - sub-sample). When looking at 
the distribution of reads (General QC - UMI histogram, Fig. 1A) two dis
tributions/modes can be seen that correspond to the two experimental 
approaches used (PBMC vs. isolated T-cells). This indicates potential 
biases in the data set that should be kept in mind when performing the 
analysis. One possibility of dealing with this bias would be to separate 
the four populations and analyze them independently. This visualization 
is also used to estimate the lower and upper boundaries for UMIs per cell 
[300,5000]. Cells with a very high number of UMIs can be considered as 
potential doublets and may be removed. 

3.6. Identify cells with high mitochondrial content (3. paper- 
walkthrough) 

Next, we remove cells with high mitochondrial content, which has 
been precalculated and is stored in the projection called “percent.mito”. 
Cells with a high percentage of mitochondrial reads are most likely 
dying cells, where the cell membrane is already lyzed, leading to loss of 
the RNA and leaving mostly mitochondrial mRNA detectable in the cell 
(Ilicic et al., 2016; Islam et al., 2014). A value of 15% represents a 
relaxed threshold but corresponds visually with the distribution of the 
whole data set (Fig. 1B). This is done in the co-expression - selected tab by 
selecting the cells to be removed manually using the mouse and copying 
the cell identifiers to memory. 
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3.7. Remove cells and focus on PBMC (4. paper-walkthrough) 

To remove these cells from the active data set they must be pasted 
under Cell selection - cells to be removed. Low and upper UMI thresholds 
are applied here as well. To remove the isolated T-cells and only keep the 
PBMC, the regular expression “s1|s2” is entered under cells to be filtered 
out by pattern. This takes advantage of the sample preparation step that 
added the sample name to each cell barcode. 

We used this setup to show how one can start with a full data set, 
separate individual samples or groups of samples, analyze them sepa
rately, and then merge the results. This approach is often necessary to 
understand individual biases and to improve the biological interpret
ability of the data. 

3.8. Normalization, dimension reduction, and clustering 

Any single-cell analysis is very sensitive to the selection of variable 
features used for the PCA. Thus, different algorithms for calculating the 
PCA are implemented in SCHNAPPs to ensure that one can get the same 
results as with the Seurat or Scran pipelines. The intention of the next 
three steps is the following: normalization should render per-cell gene 
expression levels comparable; clustering should group cells in a 

biologically meaningful way; dimension reduction is used to visualize 
the expression and variance of the cells. These calculations must be 
activated on the input page by checking “calculate logcounts using 
SCHNAPPs”. More information on the parameters for these steps (Pa
rameters - Cluster Parameters) will be given later when data is integrated 
back with the scRNAseq data. For the analysis of PBMC in our example 
the standard options are sufficient. 

3.9. Cluster characterization (5. paper-walkthrough) 

Clustering and dimensionality reduction methods use different pa
rameters that are intertwined. Hence, it is important to optimize the 
parameters together and verify that the results concur and are biologi
cally meaningful. The 3D plot under Parameters - tSNE plot (Fig. 2A) 
allows for that. By changing the color from sampleNames to dbCluster it 
can be verified that the differences between samples are not dominating 
(color = sampleNames, not shown), i.e. the samples are not separated, but 
that clusters are visually separated in the dimensionality reduced space 
(color = sampleNames, x,y,z = tSNE1/2/3). Since clusters overlap and are 
often plotted on top of each other in two dimensions, the 3D view is 
important to better validate the calculations. 

Different visual representations are available in SCHNAPPs to aid in 

Fig. 1. Quality control figures of different steps in the quality control workflow. (A): Histogram of UMIs per sample (General QC - UMI histogram). PBMC (light (donor 
2)/dark blue (donor 1)) and isolated T-cells (light (donor 2)/dark red (donor 1)). (B): 2D - plot (Co-expression - selected). With barcode on the x-axis, SCHNAPPs sorts 
the cells by the values on the y-axis. This allows for easier thresholding, especially when zooming is used (not shown). Cells with more than 15% mitochondrial 
content are selected (red dots) to be removed from the downstream analysis. Dotted lines show the 99.7 (3*σ) confidence interval, and the dashed line represents the 
mean. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 2. Cluster validation. (A) 3D tSNE plot (Parameters - TSNE plot) showing PBMC cells in the 3D tSNE space colored by cluster identifier. All clusters are visually 
separated in the space. (B) Heatmap (Co-expression - All clusters) showing PBMC with marker genes that allow assigning biologically meaningful names (cell types) to 
clusters. The comparison between dbCluster and sampleNames in the top annotation shows that the samples are evenly distributed over the clusters. 
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characterizing clusters. Probably the most useful one is the heatmap 
(Fig. 2B). The comparison between dbCluster and sampleNames in the top 
annotation shows that the samples are evenly distributed over the 
clusters. This visualization also allows to visually compare the correla
tion of multiple markers of a given cell type with cluster assignments. 
Specifically, T cell marker CD3G correlates with clusters 0, 2, and 4; NK 
cells express no CD3G but NKG7 as in cluster 3, while plasmacytoid 
dendritic cell (pDC) markers TCF4, LILRA2 correlate with cluster 10, and 
cluster 6 expresses the B-cell gene markers CD79A and MS4A1. Clusters 
1, 5, and 7 represent monocytes as they express LYZ and MNDA. Cluster 
9 strongly expresses HBB, which indicates contamination by erythro
cytes. Cluster 8 is difficult to characterize with the selection of genes. 

3.10. Unbiased cluster characterization (6. paper-walkthrough) 

Previously, prior knowledge about cell types was used to charac
terize the clusters. In cases where this is missing, SCHNAPPs calculates 
representative genes when the list of gene names is empty (using find
Markers from the scran package). This search can be restricted to genes 
that are differentially upregulated (direction = up) with a minimum log 
fold change of 2. The resulting list includes some of the genes used in 
Fig. 2B, highlighted in bold (MALAT1, BCL11B, ETS1, BTG1, NSA2, LYZ, 
CTSS, S100A9, S100A8, VCAN, CD52, IL32, NEAT1, TOMM7, GNLY, 
NKG7, HLA-B, TMSB10, HLA-DRA, CD74, GZMA, IGHM, EEF1A1, PSAP, 
LST1, SERPINA1, COTL1, B2M, GATA2, TMSB4X, HBB, HBA2, HBA1, 
SLC25A37, NPC2). These genes make biological sense and ensure the 
correctness of the cluster annotation. We can also infer that cluster 8 

highly expresses GATA2, a gene expressed in granulocytes. All genes 
used for the initial heatmap can be found when loosening the 
parameters. 

3.11. Apply knowledge to label clusters (7. paper-walkthrough) 

Once the cell types represented by the clusters have been identified, 
the clusters can be renamed accordingly. This is done using the Pa
rameters - projections - rename levels tab by creating a new projection 
(here, “manCellTypes”). 

3.12. Panel plot: project gene expression of selected genes on a 2D 
projection (8. a, b paper-walkthrough) 

The panel plot (Data exploration - panel plot) visualizes the expression 
of individual marker genes in a 2D projection. This allows comparing 
genes in the context of a projection like tSNE, PCA, or UMAP. For 
example, it is possible to focus on B- and T-cells only (Clusters/Factor to 
use = manCellTypes; Values to use = Bcell Tcell) and plot the expression of 
six genes (Comma separated gene names = CD3G, IGHM, CD74, BCL11B, 
IL32, NKG7) on the first two tSNE axes (Fig. 3A). The normalized 
expression values are scaled between zero and one to better visualize 
lower expressed genes when highly expressed genes are present (same 
scale = unselected). The values are also sorted to ensure that the highest 
expressing cells are shown. This sorting can lead to an artefact when 
there are a few highly expressing cells among most cells that don’t ex
press this gene. In this case, most cells would not be visible. A more 

Fig. 3. (A): panel plot (Data exploration - Panel plot) of the relative normalized expression for selected genes. Only cells belonging to B- and T-cell clusters are 
projected on the tSNE coordinates. By un-selecting same scale in Data exploration - Panel plot the expression values are scaled per gene to a range between zero and 
one. (B): Using the same data as in A, the normalized expression is plotted in a box-and-whisker plot per gene. This allows for a more quantitative visualization. (C): 
Alluvial plot (Co-expression - alluvialTab) comparing singleR predicted (left) with manually annotated (right) cell types. 
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quantitative view that avoids this problem can be achieved by using a 
factorial variable (e.g., manCellTypes) on the X-axis and UMI.count on the 
Y axis, which results in a box-and-whisker plot (Fig. 3B). The non-scaled 
values are shown, allowing a direct comparison of mRNA expression, 
which is not controlled for mRNA length. These plots are used to vali
date cluster assignments and investigate how genes are expressed across 
different regions of the data set. 

3.13. Alluvial plot (8.c paper-walkthrough) 

The alluvial plot (Co-expression - alluvialTab) visualizes the correla
tion between manually identified cell types (manCellTypes) and cell 
types predicted by SingleR (Aran et al., 2019) during the setup of the 
data (Fig. 3C). Annotations correspond, except for a proportion of NK 
cells. Since effector T cells and NK cells share high expression of effector 
genes, they may be mis-assigned to the NK cell cluster. 

3.14. Re-integrate isolated T-cells (9.-13. paper-walkthrough) 

The following steps are detailed in the supplementary material 
(paper-walkthrough). In short, to analyze T-cells from all four experi
ments together only cells expressing CD3 are used, also taking into ac
count previous annotation. Isolated T-cells are re-integrated by 
removing the filtering on barcode names, Seurat’s scTransform and 
anchor-based integration are applied, then visually validated and the 
new projections are copied by adding “sc” to the tSNE, UMAP, dbCluster 
variables, before restoring the standard log-transformed and UMI-count 
normalized expression values. This standard workflow follows Stuart 
et al. (Stuart et al., 2019) and allows visualizing the four data sets in 
common reduced dimensions. The most important parameters for each 
of these steps are tunable. It is not the purpose of this work to explain 
them. Optimizing the parameters is an iterative and project-specific 
process. 

3.15. Working with integrated data (14. paper-walkthrough) 

Basic analyses of cell populations can be performed using histo
grams, violin plots, or heatmaps. Here, we take advantage of the added 
value of protein expression data (CITE-Seq) to illustrate three different 
types of visualization. While gene expression provides information 
about CD8 expression, and thus allows focusing the analysis on CD8+ T 
cells (see paper-walkthrough), protein expression is necessary to explore 
effector and naive subsets of T cells. Fig. 4A shows one way of visualizing 
the normalized protein expression of CD45RA and CD45RO under Data 
Exploration - Expression. It corresponds to the commonly used dot-plot 
representation of the flow cytometry protein expression data and al
lows for identification of effector vs. naive subsets of T cells. Here, only 
the manually assigned T-cells are plotted (Clusters/Factors to use =
manCellTypes; Values to use = Tcell). This view was also used to define 
the cell groups named “ROpos”, “RApos” that are stored in a new pro
jection called RaRoCells using the previously described process for 
combining and renaming projections. 

3.16. Counting cells (14.a paper-walkthrough) 

Fig. 4B shows a barplot that visualizes the fraction of naive 
(CD45RA+) and effector (CD45RO+) subsets in both PBMC samples. 
Individual fraction values are accessible using the hover functionality of 
plotly-R (Sievert, 2020). Fig. 4C visualizes the RO+ vs. RA+ subsets that 
were defined based on protein markers in the tSNE space that is defined 
by mRNA expression. The distinction between RA+ and RO+ using the 
tSNE visualization is less clear compared to the protein data (Fig. 4A). 
Nonetheless, there is a visible enrichment on both ends of sctSNE-1 for 
RO+ (negative values) and RA+ (positive values). Because the sctSNE 
projections are calculated using all four data sets and there was no 
obvious sample specific bias in the projections, we can test if transferring 
the knowledge about RA/RO positive cells to the isolated T-cell exper
iment is biologically meaningful. 

Fig. 4. (A): PBMC projected on the normalized protein expression of CD45RO and CD45RA. ROpos (red) and RApos (blue) have been manually assigned using the 
mouse. (B): Ratios of RO positive and RA positive cell counts are presented using a bar plot. Counts are normalized by the total number of cells per sample. (C): ROpos 
and RApos are highlighted in the integrated tSNE projection (sctSNE-1, sctSNE-2). The isolated T-cells have no RA/RO label and are marked as NA. They are un
selected in the plot to show only the PBMC data. (D): Same as C, only showing all data, including isolated T cells. 
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Fig. 4D shows the combined data set of all four samples in sctSNE 
space, which was used to manually select the regions using the mouse 
and naming them ROpos, RApos, and NA (intermediate region). These 
new variables are combined into a new projection called ro.ra.all (see 
paper-walkthrough for further details). 

3.17. Differential gene expression analysis (15. paper-walkthrough) 

To study the difference between these selections the ROpos labeled 
cells are selected on the left-hand side of Subcluster analysis - DGE 
analysis - Select data (Fig. 5A). The RApos labeled cells are selected on 
the right side (Fig. 5A). The selection can be done with any 2D repre
sentation by manually gating on interesting groups of cells. This com
pares only the selected cells using a t-test (Method to use seurat:t-test). 
The results can be represented as a Volcano plot (Fig. 5B) or in a table 
with p-values, log-fold changes, and gene descriptions. Genes can be 
manually selected in the volcano plot and the gene names can be copy/ 
pasted to any other visualization. CD45RO+ cluster contains memory 
and effectors T cells that downregulate CCR7 gene and upregulate 
effector-related genes such us the killer cell lectin like receptor G1 
(KLRG1), cytotoxic molecules like Granzymes (GZMB, GZMH, and 
GZMA, GZMK), Perforin (PRF1), Granulysin (GNLY), NK cell granule 
protein (NKG7), chemokines like CCL5 and CCL4 and exhaustion 
markers like LAYN. 

3.18. Co-expression (16. paper-walkthrough) 

Using the violin plot panel under Co-expression one can visualize the 
co-occurrence of a given set of genes. The example represented in Fig. 5C 
shows the co-expression of any combination of S100A4, CCL5, CCR7, 
and AIF1 for the ROpos and RApos labeled cells. This gives a unique way 
of visualizing the co-occurrence of multiple genes in relation to a 
factorial. 

4. Discussion 

In conclusion, we have applied the SCHNAPPs tool in characteriza
tion of immune cell subsets from human PBMC (CITE-Seq) and isolated T 
cells (scRNAseq) and showed how it allows a non-computer expert to 
gain valuable knowledge about single-cell RNA seq and multi-omics 
single cell experiments. 

We have illustrated some of the main features that would be used 
first when analyzing scRNAseq data. The 2D plot alone, with its poten
tial to show any combination of projections, meta-data, and groupings, 
allows for many quality-control and cell selection opportunities. In 
addition to the “contributions” discussed above, there are tools for 
investigating subsets of cells on what they have in common by calcu
lating the coefficient of variance or correlation coefficients and 
weighted indexes for clustering evaluation (Wu and Wu, 2020). The 
heatmap also enables selecting cells, adjust the color pallets, create 

Fig. 5. (A): Cell selection for differential gene expression analysis (DGE, Subcluster analysis - DGE analysis). Cells are selected using the mouse. The comparison is 
done between the ROpos (left panel) and RApos subsets (right panel) of the integrated data set. (B): Volcano plot showing the result from the DGE in (A). Seurat’s 
implementation of the t-test was selected when calculating the DGE. Genes can be selected using the mouse and are then displayed separately, which allows copying 
them to be used in other plots. (C): Violin plot (Co-expression - Violin plot) showing how many cells express a gene or combination of genes for the individual samples. 
Violins are scaled to have the same area. 
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dendrograms, use different scaling, and sort cells by expression of spe
cific genes. Several advanced features of the SCHNAPPs, such as the 
option to define ‘when a gene is being expressed’ using thresholds for the 
lower and upper expression values in some visualizations, or the history 
functionality that ensures documenting a workflow and saving inter
mediate steps and visualizations, have not been detailed. To guide the 
user through basic and advanced functionalities, there are several vi
gnettes, FAQs, and other information on GitHub (https://c3bi-paste 
ur-fr.github.io/UTechSCB-SCHNAPPs/article 
s/pkdown/SCHNAPPs_usage.html#co-expression). 

SCHNAPPs has been successfully applied to validate a human “in a 
dish” model for a valvular disease (Neri et al., 2019) and to show that 
epicardium activation during a cardiomyopathy gives rise to both adi
pocytes and fibroblasts (Suffee et al., 2020). It is a standard tool for the 
analysis of scRNAseq data at the core facility Cytometry and Biomarkers 
UTechS at the Institut Pasteur. 

The SCHNAPPs application is constantly evolving to integrate pipe
lines for other multi-omics data and its ongoing development is guided 
by individual use cases. In the near future, we plan to extend SCHNAPPs 
for the use of ATAC-seq (Buenrostro et al., 2015) data and optimize some 
of the visualizations. 

We have also developed the function schnappsLite to enable pub
lishing precomputed results. In this version of the tool, the compute- 
intensive components (normalization, dimension reduction, and clus
tering) have been removed and the number of cells can be limited to 
render publication results easily available to the general public. See http 
://hub05.hosting.pasteur.fr/scProjects/ for examples. 

In summary, SCHNAPPs provides a framework for reproducible, 
methodologically sound exploration of scRNAseq datasets with inter
active visualizations. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.jim.2021.113176. 

Funding 

This work has been supported by the Institut Pasteur. 

Availability 

The SCHNAPPs application is available as an R-package (htt 
ps://github.com/C3BI-pasteur-fr/UTechSCB-SCHNAPPs), docker file 
(https://hub.docker.com/r/pf2dock/schnapps), and virtual machine 
(doi:https://doi.org/10.5281/zenodo.5535294). Extensive documenta
tion including videos, walkthroughs, and frequently asked questions are 
available on GitHub (https://c3bi-pasteur-fr.github.io/UTechSCB- 
SCHNAPPs/) and youtube: https://tinyurl.com/schnappsYT. Example 
contributions are available at the following GitHub site: github.com/C 
3BI-pasteur-fr/SCHNAPPsContributions. All raw sequencing data are 
available from the National Center for Biotechnology Information’s 
Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih. 
gov/geo/query/acc.cgi?acc=GSE185712). 

Bode, D., Cull, A.H., Rubio-Lara, J.A., Kent, D.G., 2021. Exploiting 
Single-Cell Tools in Gene and Cell Therapy. Front Immunol 12, 702636. 
doi:https://doi.org/10.3389/fimmu.2021.702636 

Declaration of Competing Interest 

SCHNAPPs has been patented under: IDDN1.FR2 0.0013 0.3600164 
0.0005.S6.P7 0.20208 0.0009 0.3123510. 

Acknowledgments 

We would like to thank the members of Single-cell working group 
Pasteur/Paris for helpful discussions: Anna Barcons, Eric Tartour, 
Antonin Saldmann, Mandar Patgaonkar, Lisa Chakrabarti, and James Di 
Santo for testing and working with scShinyHub and SCHNAPPs. Kenneth 

Smith and Christian Vosshenrich for careful reading of the manuscript. 
We thank the ICAReB platform of the Institut Pasteur for providing 
blood samples from healthy individuals. 

References 

Albergante, L., 2021. ElPiGraph.R: Elastic Principal Graph Construction. 
Amezquita, R.A., Carey, V.J., Carpp, L.N., Geistlinger, L., Lun, A.T.L., Marini, F., Rue- 

Albrecht, K., Risso, D., Soneson, C., Waldron, L., Pagès, H., Smith, M., Huber, W., 
Morgan, M., Gottardo, R., Hicks, S.C., 2019. Orchestrating Single-Cell Analysis with 
Bioconductor. https://doi.org/10.1101/590562. http://web.archive.org/web/20 
200503103403/https://www.biorxiv.org/content/10.1101/590562v1. 

Aran, D., Looney, A.P., Liu, L., Wu, E., Fong, V., Hsu, A., Chak, S., Naikawadi, R.P., 
Wolters, P.J., Abate, A.R., Butte, A.J., Bhattacharya, M., 2019. Reference-based 
analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. 
Nat. Immunol. 20, 163–172. https://doi.org/10.1038/s41590-018-0276-y. 

Buenrostro, J.D., Wu, B., Chang, H.Y., Greenleaf, W.J., 2015. ATAC-seq: a method for 
assaying chromatin accessibility genome-wide. Curr. Prot. Mol. Biol. 109 https:// 
doi.org/10.1002/0471142727.mb2129s109, 21.29.1-21.29.9.  

Cakir, B., Prete, M., Huang, N., van Dongen, S., Pir, P., Kiselev, V.Y., 2020. Comparison 
of visualization tools for single-cell RNAseq data. NAR Gen. Bioinformat. 2 https:// 
doi.org/10.1093/nargab/lqaa052. 

Cannoodt, R., Saelens, W., Sichien, D., Tavernier, S., Janssens, S., Guilliams, M., 
Lambrecht, B., Preter, K.D., Saeys, Y., 2016. SCORPIUS improves trajectory inference 
and identifies novel modules in dendritic cell development (preprint). 
Bioinformatics. https://doi.org/10.1101/079509. 

Chang, W., Borges Ribeiro, B., 2018. shinydashboard: Create Dashboards with “Shiny”. 
Chang, W., Cheng, J., Allaire, J., Sievert, C., Schloerke, B., Xie, Y., Allen, J., 

McPherson, J., Dipert, A., Borges, B., 2021. shiny: Web Application Framework for 
R. 

Cortal, A., Martignetti, L., Six, E., Rausell, A., 2021. Gene signature extraction and cell 
identity recognition at the single-cell level with Cell-ID. Nat. Biotechnol. 39, 
1095–1102. https://doi.org/10.1038/s41587-021-00896-6. 

Donaldson, J., 2016. tsne: T-Distributed Stochastic Neighbor Embedding for R (t-SNE). 
Duan, B., Zhu, C., Chuai, G., Tang, C., Chen, X., Chen, S., Fu, S., Li, G., Liu, Q., 2020. 

Learning for single-cell assignment. Sci. Adv. 6, eabd0855. https://doi.org/10.1126/ 
sciadv.abd0855. 

Eraslan, G., Simon, L.M., Mircea, M., Mueller, N.S., Theis, F.J., 2019. Single-cell RNA-seq 
denoising using a deep count autoencoder. Nat. Commun. 10, 390. https://doi.org/ 
10.1038/s41467-018-07931-2. 

Gardeux, V., David, F.P.A., Shajkofci, A., Schwalie, P.C., Deplancke, B., 2017. ASAP: a 
web-based platform for the analysis and interactive visualization of single-cell RNA- 
seq data. Bioinformatics 33, 3123–3125. https://doi.org/10.1093/bioinformatics/ 
btx337. 

Hao, Y., Hao, S., Andersen-Nissen, E., Mauck, W.M., Zheng, S., Butler, A., Lee, M.J., 
Wilk, A.J., Darby, C., Zager, M., Hoffman, P., Stoeckius, M., Papalexi, E., Mimitou, E. 
P., Jain, J., Srivastava, A., Stuart, T., Fleming, L.M., Yeung, B., Rogers, A.J., 
McElrath, J.M., Blish, C.A., Gottardo, R., Smibert, P., Satija, R., 2021. Integrated 
analysis of multimodal single-cell data. Cell 184, 3573–3587.e29. https://doi.org/ 
10.1016/j.cell.2021.04.048. 

Hillje, R., Pelicci, P.G., Luzi, L., 2020. Cerebro: interactive visualization of scRNA-seq 
data. Bioinformatics 36, 2311–2313. https://doi.org/10.1093/bioinformatics/ 
btz877. 

Ilicic, T., Kim, J.K., Kolodziejczyk, A.A., Bagger, F.O., McCarthy, D.J., Marioni, J.C., 
Teichmann, S.A., 2016. Classification of low quality cells from single-cell RNA-seq 
data. Genome Biol. 17, 29. https://doi.org/10.1186/s13059-016-0888-1. 

Islam, S., Zeisel, A., Joost, S., La Manno, G., Zajac, P., Kasper, M., Lönnerberg, P., 
Linnarsson, S., 2014. Quantitative single-cell RNA-seq with unique molecular 
identifiers. Nat. Methods 11, 163–166. https://doi.org/10.1038/nmeth.2772. 

Jenkins, D.F., Faits, T., Briars, E., Pro, S.C., Cunningham, S., Campbell, J.D., Yajima, M., 
Johnson, W.E., 2018. Interactive single cell RNA-Seq analysis with the Single Cell 
Toolkit (SCTK). https://doi.org/10.1101/329755. 

Liu, J., Qu, S., Zhang, T., Gao, Y., Shi, H., Song, K., Chen, W., Yin, W., 2021. Applications 
of single-cell omics in tumor immunology. Front. Immunol. 12, 697412 https://doi. 
org/10.3389/fimmu.2021.697412. 

McInnes, L., Healy, J., Melville, J., 2020. UMAP: Uniform Manifold Approximation and 
Projection for Dimension Reduction. arXiv:1802.03426 [cs, stat].  

Neri, T., Hiriart, E., van Vliet, P.P., Faure, E., Norris, R.A., Farhat, B., Jagla, B., 
Lefrancois, J., Sugi, Y., Moore-Morris, T., Zaffran, S., Faustino, R.S., Zambon, A.C., 
Desvignes, J.-P., Salgado, D., Levine, R.A., de la Pompa, J.L., Terzic, A., Evans, S.M., 
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