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ABSTRACT 42 

Background: Severe coronavirus disease 2019 (COVID-19) is characterized by impaired type I interferon activity 43 

and a state of hyperinflammation leading to acute respiratory distress syndrome. The complement system has 44 

recently emerged as a key player in triggering and maintaining the inflammatory state, but the role of this 45 

molecular cascade in severe COVID-19 is still poorly characterized. Objective: We aimed at assessing the 46 

contribution of complement pathways at both protein and transcriptomic levels. Methods: To this end, we 47 

systematically assessed RNA levels of 28 complement genes in circulating whole blood of COVID-19 patients 48 

and healthy controls, including genes of the alternative pathway, for which data remain scarce. Results: We 49 

found differential expression of genes involved in the complement system, yet with various expression 50 

patterns: while patients displaying moderate disease had elevated expression of classical pathway genes, 51 

severe disease was associated with increased lectin and alternative pathway activation, which correlated with 52 

inflammation and coagulopathy markers. Additionally, properdin, a pivotal positive regulator of the alternative 53 

pathway, showed high RNA expression but was found at low protein concentrations in severe and critical 54 

patients, suggesting its deposition at the sites of complement activation. Notably, low properdin levels were 55 

significantly associated with the use of mechanical ventilation (AUC = 0.82, p = 0.002). Conclusion: This study 56 

sheds light on the role of the alternative pathway in severe COVID-19 and provides additional rationale for the 57 

testing of drugs inhibiting the alternative pathway of the complement system.  58 
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KEY MESSAGES 59 

• The classical pathway is activated in all COVID-19 patients, while hyperactivation of the lectin and 60 

alternative pathways is associated with disease severity. 61 

• Properdin RNA expression is increased in severe patients, yet its protein levels are decreased, suggesting 62 

its deposition on activating surfaces. 63 

• Low properdin levels are associated with use of mechanical ventilation. 64 

 65 

CAPSULE SUMMARY 66 

We show that activation of the alternative complement pathway characterizes COVID-19 severity. Specifically, 67 

low properdin levels were associated with use of mechanical ventilation. This work provides a rationale for the 68 

specific inhibition of the alternative complement pathway. 69 

 70 

KEYWORDS 71 

Complement system, alternative pathway, COVID-19, SARS-CoV-2, immunology, hemostasis. 72 

 73 

ABBREVIATIONS 74 

ARDS (acute respiratory distress syndrome), C3G (C3 glomerulopathy), CRP (C-reactive protein), COVID-19 75 

(coronavirus disease 2019), DAF (decay acceleration factor), IFN (interferon), MAC (membrane attack 76 

complex), SARS-CoV-2 (severe acute respiratory syndrome coronavirus-2).  77 
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INTRODUCTION 78 

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the causative agent of coronavirus disease 79 

2019  (COVID-19), has to date caused over 4 million deaths worldwide (1). While the majority of patients remain 80 

asymptomatic or show mild-to-moderate symptoms, approximately 5% of patients display severe disease, 81 

characterized by acute respiratory distress syndrome (ARDS), which can result in multi-organ failure and death 82 

(2,3). We previously demonstrated that severe and critical patients displayed an imbalanced immune response 83 

with impaired type I interferon (IFN) activity coupled to excessive inflammation (4). Glucocorticoids have shown 84 

to reduce COVID-19 mortality, yet complementary therapies could more specifically target certain members of 85 

the immune response (5). In this context, the complement system has emerged as an attractive candidate.  86 

The complement system is a key player of innate immunity at the interface with the adaptive immune 87 

system (6). Activation of the complement cascade leads to the cleavage of C3 and the deposition of C3b on 88 

activating surfaces, triggering phagocytosis or cleavage of C5 into C5a and C5b, and subsequent formation of 89 

the membrane attack complex C5b9 (MAC), resulting in the perturbation of the cell membrane. Additionally, 90 

C3a and C5a are anaphylatoxins able to recruit and activate leukocytes, thereby bridging the gap between 91 

innate and adaptive immunity and promoting inflammation. The complement cascade can be activated 92 

through three different pathways, all converging to the cleavage of C3: (i) the classical pathway detects bound 93 

antibodies or other acute phase proteins via C1q; (ii) the lectin pathway recognizes carbohydrate structures in 94 

pathogens and damaged membranes; (iii) the alternative pathway is in a constant state of activation unless 95 

complement inhibitory proteins are presented, a process known as “tick over”, and can amplify C3b formation. 96 

Complement activation has been associated with disease severity in bacterial and viral pneumonia, ARDS and 97 

multiorgan failure (7). As for SARS-CoV-2, the complement system was one of the most highly induced 98 

intracellular pathway in infected lung epithelial cells, driven by the transcription of C1r, C1s, factor B and C3 (8). 99 

Additionally, multiple products of the complement system, including sC5b9, C5a, C3bc, C3bBbP and C4d were 100 

found in COVID-19 patient sera (9).  Accordingly, COVID-19 patients with severe disease displayed elevated 101 

C5a, C3a and sC5b9 plasma concentrations (9–13), and genetic defects in complement regulatory genes such 102 

as CD55 and factor H were associated with disease severity (14). Additionally, anti-C5aR1 antibodies inhibited 103 

lung injury in human C5aR1 knock-in mice, indicating that targeting complement could reduce disease severity 104 

(10). 105 
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 What links the complement pathway to COVID-19 severity is still poorly understood, but one 106 

hypothesis lies in its association with coagulopathy (15). Severe COVID-19 has been shown to trigger 107 

thrombosis (16,17), and markers of coagulation have been associated with critical disease. Beyond identified 108 

connections between inflammation and coagulopathy, evidence suggests a crosstalk between the complement 109 

and coagulation cascades (18). Although studies showed association of complement activation with severe 110 

COVID-19, an integrative approach assessing the contribution of complement pathways at both protein and 111 

transcriptomic levels is lacking. To address this issue, we analyzed RNA and protein levels of components of 112 

the three complement pathways in COVID-19 patients and healthy controls.   113 
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RESULTS & DISCUSSION 114 

We previously analyzed whole-blood transcriptomic data from 32 COVID-19 patients with various disease 115 

severity and 13 healthy controls  (4). The main characteristics of these patients are described in Table I. To 116 

uncover the role of complement in disease severity, we determined the RNA levels of 28 complement genes 117 

with expression above the lower limit of quantification (Figure E1). Of those, 19 were differentially expressed 118 

depending on disease stage (Figure 1a). Hierarchical clustering identified two main gene groups (showing high 119 

intra-group correlation and including 17 of the 19 genes) displaying distinct patterns of expression: group 1 120 

contained genes whose expressions peaked in moderate disease, whereas group 2 genes showed increased 121 

expression in severe and to a greater extent in critical patients, while patients with moderate disease had 122 

expression levels that were comparable to that of healthy controls (Figure 1b). Group 1 included genes 123 

belonging to the classical pathway (C1QA and C1QB) and both classical and lectin pathway (C2 and SERPING, 124 

coding for C1 inhibitor), as well as the terminal phase (C5) (Figure 1c). In contrast, group 2 contained genes 125 

belonging to the lectin (MBL2, MASP2 and C4, the latter also belonging to the classical pathway) and the 126 

alternative pathways (C3, its stabilizer CFP, coding for properdin, C3 receptors ITGAM and ITGAX, and C3 127 

regulators CR1, CD46, CD55, CD59) (Figure 1c).   128 

We next studied the correlation between complement gene expression and circulating CRP and IL-6 129 

proteins on the one hand, and PPBP (encoding for platelet chemokine CXCL7) and SELPLG (encoding for PSGL-130 

1) gene expression on the other hand, two markers of coagulopathy that we previously described as predictive 131 

of intubation and death (19) (Figure 2a, b). Additionally, we determined the 20 genes (among the 574-gene 132 

nCounter panel) showing highest correlation with group 1 or group 2 genes, respectively (bar graphs). Genes 133 

from group 1 moderately correlated with markers of inflammation, while they showed no correlation with 134 

coagulopathy markers. They most correlated with genes of the anti-viral response (e.g. IFIH1, encoding for 135 

MDA5, IRF7, an IFN regulator factor, and BST2, encoding for tetherin), consistent with the IFN response being 136 

a marker of moderate, but not severe, disease (4) (Figure 2a). Genes from group 2 showed moderate-to-high 137 

correlation with both inflammation and coagulopathy, and were most correlated to genes of inflammation 138 

(Figure 2b). 139 

 To more precisely characterize systemic complement activation in COVID-19, we measured 140 

complement protein levels from 33 COVID-19 patients with available sera (including 16 patients with both RNA 141 
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and protein data) (Figure 3). Levels of C1q, C1 inhibitor and sC5b9 were upregulated in all COVID-19 patients, 142 

regardless of severity grade, similarly to what was observed at the transcriptional level. C3 protein levels were 143 

upregulated in moderate and severe patients, while some critical patients showed lower levels of circulating 144 

C3. The lack of a significant decrease in C3 protein may be explained by higher C3 RNA levels and subsequent 145 

protein synthesis in critical patients, and as a result, C3 consumption is counterbalanced by C3 production. C4 146 

remained within normal laboratory ranges. We found that properdin levels significantly decreased with disease 147 

severity, whereas its RNA levels inversely significantly increased (Figure 1c, group 2, CFP), suggesting the 148 

deposition of properdin to complement activating surface and the triggering of the alternative pathway. We 149 

confirmed this finding using plasma samples of an independent COVID intensive care unit cohort (13) (Figure 150 

3b).  151 

 Finally, we analyzed the association of complement component with use of mechanical ventilation. 152 

ROC curve analysis demonstrated that decreased properdin levels were associated with use of mechanical 153 

ventilation (Figure 4, AUC = 0.82, p = 0.002, q = 0.01), with 83% positive predictive value and 73% negative 154 

predictive value using an optimal threshold of 25.5 μg/mL. 155 

 This work constitutes the first study to our knowledge to simultaneously analyze the three 156 

complement pathways in COVID-19 patients at both the RNA and protein levels, unraveling properdin 157 

consumption as a feature of severe COVID-19. Lower properdin concentration in severe and critical COVID-19 158 

patients cannot be explained by congenital properdin deficiency, a rare X-linked disorder associated with 159 

vulnerability for Nessieria meningitidis–driven meningitis (20), since these patients showed increased properdin 160 

RNA levels. Reduced properdin levels were found in various disease conditions, such as C3 glomerulopathy 161 

(C3G) and lupus nephritis, and was correlated with C5 convertase dysregulation in C3G (21,22). Complement 162 

alternative pathway activation in the context of severe COVID-19 may explain the excess soluble C5a and sC5b9 163 

previously described (9,10). We confirmed increased sC5b9 in COVID-19 patients, albeit sC5B19 did not 164 

discriminate severity grades as potently as properdin. Accordingly, Ma et al. found only a weak association 165 

between sC5b9 levels and disease severity (12). 166 

This study has limitations: it is a monocentric, cross-sectional analysis, with limited sample size, and 167 

longitudinal data will be needed to better characterize the sequential activation of complement during COVID-168 

19. Additionally, most complement components in circulation are synthesized by the liver, therefore whole 169 

blood RNA quantification may offer a limited view of the  complement transcriptional regulation. However, 170 
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several complement proteins are produced by a wide variety of cell types (23) and others mainly by leukocytes, 171 

such as C1q and properdin, the latter playing a key role in our data.  An additional limitation is the substantial 172 

overlap in properdin levels between severity groups, suggesting that the impact of properdin may be driven by 173 

a subgroup of patients. While ROC analysis highlighted interesting positive and negative predictive values, 174 

future work specifically designed to evaluate the predictive potential of properdin are warranted. It will be 175 

important to assess the target population and better evaluate the contributions of potential confounding 176 

factors, such as comorbidities. Moreover, we do not provide mechanistic evidence of properdin consumption 177 

at local sites of infection, and studies that include analysis of pathological tissue samples are warranted to 178 

address this issue. Lastly, despite in vitro evidence that SARS-CoV-2 spike protein can inhibit factor H and 179 

prevent the decay of the alternative pathway C3 convertase (24), other mechanisms may be at play, such as 180 

inhibition or activation of other regulatory proteins, or non-specific inflammation-mediated hyperactivation, 181 

and this phenomenon could be observed in other infectious conditions with excess inflammation. Further work 182 

in other disease models will help delineate the specificity of this observation and dissect its underlying 183 

mechanism.   184 

In summary, we showed that severe COVID-19 is characterized by increased activation of the 185 

complement alternative pathway, which correlated with inflammation and coagulopathy markers. Specific 186 

targeting of the alternative pathway rather than the classical pathway may prove useful to control disease 187 

severity without hampering essential anti-viral responses.  188 
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TABLES 254 

Table I | Patients’ characteristics. Continuous variables are represented as median (interquartile range), and categorical data are shown as absolute numbers (%). 255 

Significance between severity groups was determined using the Kruskal–Wallis test (continuous variables) or Fisher’s exact test or the χ2 test of independence where 256 

applicable (categorical data). Percentages may not total 100 due to rounding. COPD, chronic obstructive pulmonary disease; CRP, C-reactive protein; MV, mechanical 257 

ventilation; NA, not assessed. 258 

Characteristics 

Healthy controls All patients Disease severity p-value 

n = 13 n = 32 Moderate Severe Critical   

    n = 11 n = 10 n = 11   

Age (years) 59.2 (45.2–60.0) 55.6 (51.2–64.8) 55.9 (44.7–65.1) 53.5 (48.02–61) 60.2 (54.8–71.65) 0.23 

Male 10 (77) 24 (75) 8 (72.7) 9 (90) 7 (63.6)  0.37 

Interval from first symptoms to 

admission (days) 
- 10 (9-11) 9 (9-11) 10.5 (10-12) 9 (8-11) 

0.06 

Coexisting disorder             

Any 0 (0) 14 (44) 2 (18) 3 (30) 9 (82) 0.006 

COPD 0 (0) 1 (3) 0 (0) 0 (0) 1 (9) 0.37 

Diabetes 0 (0) 5 (16) 0 (0) 1 (10) 4 (36) 0.053 

Hypertension 0 (0) 10 (31) 2 (18) 2 (20) 6 (55) 0.12 

Cardiovascular disease 0 (0) 3 (9) 0 (0) 0 (0) 3 (27) 0.042 

Cancer or hemopathy 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) – 

Chronic renal disease 0 (0) 1 (3) 0 (0) 0 (0) 1 (9) 0.37 

Overweight 0 (0) 2 (6) 1 (9) 1 (10) 0 (0) 0.5 

Fever on admission             

Median temperature (°C) NA 38.9 (38.5–39.4) 38.8 (38.2–39.5) 38.6 (38.5–39.7) 39.0 (38.5–39.4) – 
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Symptoms on admission             

Fever NA 32 (100) 11 (100) 10 (100) 11 (100) – 

Dyspnea NA 32 (100) 11 (100) 10 (100) 11 (100) – 

Cough NA 31 (97) 10 (91) 10 (100) 11 (100) 0.37 

Fatigue NA 31 (97) 10 (91) 10 (100) 11 (100) 0.37 

Myalgia NA 20 (63) 8 (73) 8 (10) 4 (36) 0.082 

Diarrhea NA 11 (34) 4 (36) 5 (50) 1 (9) 0.091 

Oxygen requirement (L/min) NA — 1.5 (1–3) 5 (4–6) MV – 

Clinical outcomes             

Thrombotic events  NA 3 (9) 0 (0) 1 (10) 2 (18) 0.34 

MV NA – 0 (0) 5 (50) – – 

Death   NA 5 (15.6) 0 (0)  0 (0)  5 (45.5)  <0.001 

Laboratory findings on admission           

Leukocytes (× 109/L) NA  6.7 (4.31–8.82) 4.71 (3.78–5.68) 7.78 (6.46–8.43) 9.38 (5.48—10.49) 0.038 

Neutrophils (× 109/L) NA 5.08 (3.12–7.37) 3.25 (2.07–3.44) 5.81 (4.74–6.36) 7.69 (4.32–9.13) 0.022 

Lymphocytes (× 109/L) NA 0.84 (0.56–1.13) 1.00 (0.84–1.40) 0.88 (0.57–1.12) 0.65 (0.45–0.84) 0.031 

Monocytes (× 109/L) NA 0.41 (0.23–0.52) 0.40 (0.26–0.52) 0.42 (0.27–0.51) 0.33 (0.12–1.05) 0.95 

Platelets (× 109/L) NA 249 (159–298) 166 (112–251) 229 (170–282) 313 (199–352) 0.007 

CRP (mg/L) 0.7 (0.0–0.8) 118 (55–242) 30 (14–76) 169 (136–249) 159 (109–308) <0.001 

Lactate dehydrogenase (U/L) 169 (155–224) 424 (346–574) 262 (196–454) 411 (396–623) 504 (426–614) 0.10 

259 
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FIGURES LEGENDS 260 

Figure 1 | Complement genes show distinct patterns of RNA expression in whole blood. 261 

a | Heatmap representation of RNA levels of the complement genes with differential expression in at least one 262 

severity group, measured by the Nanostring nCounter technology. 263 

b | Main two gene groups, as determined by hierarchical clustering, and their expression pattern (determined 264 

as their mean expression across all individuals from a severity group). c | Individual dot plots showing 265 

normalized counts for each patient and gene of interest. Significance was determined using the Kruskal–Wallis 266 

test (comparing the four groups); p denotes uncorrected p-values, while q corresponds to false-discovery rates 267 

(corrected p-values). Groups: healthy controls, n = 13; moderate, n = 11; severe, n = 10; critical, n = 11. 268 

 269 

Figure 2 | Correlations of complement RNA expression with inflammation and coagulopathy markers. a 270 

| Correlation matrix (with coefficients determined by Spearman’s correlation, left), and 20 genes with highest 271 

mean correlation with group 1 genes, among the 574-gene dataset. b | As in a, for group 2 genes. Asterisks 272 

denote significant results (corrected p < 0.05), determined by the multiple testing procedure for correlation 273 

developped by Cai and Liu (25). 274 

 275 

Figure 3 | Complement protein levels in circulating blood. a | Protein concentrations of C1q, C1inh, C3, and 276 

C4 in the same samples, measured by ELISA. b | Serum concentration of sC5b9 and properdin in the same 277 

samples, as well as samples from an independent cohort of critical COVID-19, and healthy controls. Significance 278 

was determined using the Kruskal–Wallis test (comparing the three groups); p denotes uncorrected p-values, 279 

while q corresponds to false-discovery rates (corrected p-values). NS, not significant. Groups: healthy controls, 280 

n = 73; moderate, n = 5–8; severe, n = 4–8; critical, n = 13–17; critical (repetition), n = 46. Laboratory norms are 281 

indicated with a grey bar. 282 

 283 

Figure 4 | Properdin is associated with use of mechanical ventilation. a | Protein levels of non-severe patients 284 

at admission depending on future use of mechanical ventilation. Dashed lines represent optimal threshold 285 

obtained by maximization of Youden’s index for the significant area under the curve (AUC) (properdin). b 286 

| Associated ROC curves, with AUC and p-values; q corresponds to false-discovery rates (corrected p-values). c 287 
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| Bar graphs indicating the number of patients in each group depending on normalized RNA levels of a single 288 

gene with respect to the optimal threshold (properdin only). Groups: no intubation (n = 10–14) and intubation 289 

(n = 13–19). 290 
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