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As with many pathogens, most dengue infections are subclinical and therefore 28 

unobserved. Coupled with limited understanding of the dynamical behavior of potential 29 

serological markers of infection, this observational problem has wide-ranging 30 

implications, including hampering our understanding of individual- and population-level 31 

correlates of infection and disease risk and how they change over time, assay 32 

interpretation and cohort design. We develop a framework that simultaneously 33 

characterizes antibody dynamics and identifies subclinical infections via Bayesian 34 

augmentation from detailed cohort data (3,451 individuals with blood draws every 91 35 

days, 143,548 hemagglutination inhibition assay titer measurements). We identify 1,149 36 

infections (95% CI: 1,135-1,163) that were not detected by active surveillance and 37 

estimate that 65% of infections are subclinical. Post infection, individuals develop a 38 

stable setpoint antibody load after 1y that places them within or outside a risk window. 39 

Individuals with pre-existing titers of ≤1:40 develop hemorrhagic fever 7.4 (95% CI: 2.5-40 

8.2) times as often as naïve individuals compared to 0.0 times for individuals with titers 41 

>1:40 (95% CI: 0.0-1.3). PRNT titers ≤1:100 were similarly associated with severe 42 

disease. Across the population, variability in the force of infection results in large-scale 43 

temporal changes in infection and disease risk that correlate poorly with age. 44 

45 
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Despite the large body of literature from observational and cohort studies describing 46 

dengue cases, we still have major difficulties in explaining individual- and population-47 

level differences in infection and disease risk. These difficulties largely come from a 48 

fundamental methodological issue in the research of many pathogens that individual 49 

histories of infection are difficult to capture. The four dengue virus serotypes (DENV1-50 

4), which are found across tropical and sub-tropical regions with an estimated 390 million 51 

infections each year, cause a range of disease manifestations, from asymptomatic 52 

infection to death
1,2

. High levels of subclinical infection mean that even in environments 53 

of thorough active surveillance, the majority of infections are missed
3
. This observational 54 

problem has wide ranging implications as it hampers our ability to estimate the 55 

underlying level of infection in the community, to characterize individual risk factors for 56 

infection and severity but also to assess correlates of protection, to dynamically monitor 57 

susceptibility at both the population and individual level, to define optimal thresholds for 58 

the interpretation of serological assays or to critically assess cohort design. 59 

 60 

Here, we develop an analytical framework that can address this challenge, leading to new 61 

insights on a broad range of questions. We use it to jointly characterize antibody changes 62 

following infection and identify infection events missed by surveillance from the analysis 63 

of longitudinal data from cohort studies. We apply it to data from a school-based cohort 64 

study in Thailand (N=3,451, mean age at recruitment of 9y, interquartile range 8-11) 65 

where blood was taken on average every 91 days for up to five years and when illnesses 66 

were detected through active surveillance
4
. Active fever and school absence surveillance 67 

was conducted during June to mid-November when DENV circulation is concentrated
4
. 68 
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Hemagglutination inhibition (HI) tests were used to measure antibody titers to each 69 

serotype in each sample (143,548 HI measurements in all). PRNT titers were also 70 

measured on a subset of 1,771 samples. HI titers correlate closely with PRNTs (Pearson 71 

correlation of 0.91) and with inhibition ELISAs, although titer values differ by laboratory 72 

and assay
5-8

. 73 

 74 

To track the evolution of an individual’s measured antibody titers (Figure 1A), we place 75 

titers on an adjusted log2 scale (titers of 1:10 are given a value of 1, 1:20 of value of 2 76 

etc.). There were 274 detected symptomatic DENV infections (Figure 1B); 62 were 77 

hospitalized (23%), 36 with dengue hemorrhagic fever (DHF) (13%). For those where the 78 

infecting serotype is known (79% of cases through PCR, Table S1), we observe a sharp 79 

rise and subsequent decay in log2-titers following symptom onset (Figure 1C-D). The 80 

mean log2-titer to the infecting serotype was 0.79 (95% CI: 0.74-0.84) times the log2-titer 81 

to the non-infecting serotype in the three months prior to symptom onset compared to 82 

0.94 (95% CI: 0.93-0.96) times in the six months after symptom onset (Figure 1E). As 83 

86% of symptomatic infections had detectable titers to at least one serotype prior to 84 

infection, the higher antibody titer to non-infecting serotypes likely captures responses to 85 

prior infections
9
. 86 

 87 

We reconstruct individuals’ antibody trajectories by assuming that infection leads to a 88 

rise in titers that subsequently decays exponentially
10

. We also explore biphasic responses 89 

(Figure S1). We allow for variability in antibody kinetics across individuals and 90 

infections, and for differential rises for the infecting versus the non-infecting serotypes 91 



 6 

for primary infections but undifferentiated responses for subsequent infections. We use 92 

data augmentation techniques to impute undetected infections (subclinical infections 93 

during active surveillance or unknown symptom status outside the surveillance windows) 94 

and to identify the serotype for undetected primary infections
11

. Instead of relying on 95 

fixed cutoffs to identify infections, data augmentation allows us to incorporate 96 

uncertainty in the existence, timing and serotype of unobserved infection events and 97 

therefore probabilistically assess whether differences in measured titers are due to 98 

infections or assay variability.  99 

 100 

We find that following post-primary infection there is a mean 5.8 (95% CI: 5.6-5.9) rise 101 

in log2-titers across serotypes, which declines by 76% after one year. For primary 102 

infections (i.e., individuals without detectable titers prior to infection) the mean log2-titer 103 

rise is 7.6 (95% CI: 7.4-7.8) for the infecting serotype and 6.6 for the non-infecting 104 

serotypes (95% CI: 6.4-6.7). The similarity of titers of infecting and non-infecting 105 

serotypes coupled with assay variability suggests that in a clinical setting individual HI 106 

measurements cannot reliably determine the infecting serotype. We find that titers largely 107 

stabilize one year after infection to a set-point (the ‘set-point antibody load’) (Figure 1D). 108 

There is significant variability between infections: the interquartile range of the log2-titer 109 

rise one year after infection is 0.7-2.2 across all infections (Figure S2A). We find that 110 

even after accounting for historic infection status, measured DENV-2 titers are 111 

systematically lower than other serotypes (0.85 lower than DENV1) (Figure S2B, Table 112 

S2), which could point to technical considerations of the DENV2 assay or inherent 113 

differences in immune responses to DENV2. We estimate the measurement error in the 114 
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HI assay (i.e., the standard deviation in any reading) as 0.49 (95% CI: 0.49-0.50), which 115 

is similar with that empirically estimated using repeated testing on the same serum and 116 

2.6 times error estimates for the plaque reduction neutralization test (PRNT) (Figure 117 

S2C)
12

. Despite the variability in individual readings, as we use many readings from four 118 

serotypes for each participant and titers appear to behave in a stable and predictable 119 

manner, we can nevertheless make robust inferences when considering the ensemble of 120 

the measurements. 121 

 122 

We probabilistically identify 1,149 undetected infections (95% range across model 123 

iterations: 1,135-1,163), of which 507 (494-520) occurred during active surveillance 124 

periods and were therefore subclinical (Figure 1B). Overall, we estimate 35% of 125 

infections are symptomatic (95% CI: 34-36). The temporal distribution of subclinical 126 

infections was correlated with that of symptomatic infections (Pearson correlation 0.78, 127 

95% CI: 0.70-0.84).  Using augmented primary infections where we could confidently 128 

assign the infecting serotype (same serotype implicated by >50% of iterations), we find 129 

that 34% of undetected primary infections (and 39% of subclinicial primary infections) 130 

were due to DENV-4, compared to only 3% of all symptomatic infections (none of which 131 

were primary infections) (Figures S3-S4). We find consistent results using a more 132 

stringent cutoff to assign the infecting serotype (Figure S5). These findings are consistent 133 

with a reduced risk of disease from DENV-4 compared to other serotypes resulting in a 134 

largely silent DENV-4 epidemic. This is supported by a phylogenetic analysis that found 135 

DENV-4 was widespread in Thailand throughout this period (Figure S4 in Salje et al.,
13

). 136 

This suggests the serotype distributions from hospital-based or community-based 137 
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surveillance may not be representative of infections in the population and supports 138 

previous evidence that the transmissibility of a serotype can be delinked from the 139 

propensity to cause symptomatic and/or severe disease
14,15

. Further they imply that 140 

factors that contribute to transmission potential (e.g., viral replication, peak titers or 141 

infection length) are not predictive of adverse outcomes
16

. 142 

 143 

We find that the underlying probability of infection and the probability of developing 144 

disease are strongly linked to the mean antibody titer at the time of exposure. Overall, an 145 

individual’s annual risk of infection was 17%, varying from 21% for individuals with 146 

mean measured log2-titers <2, to 16% for those with log2-titers of 2-3 and 11% for those 147 

with log2-titers of >3 (Figure 2A). Using logistic regression, we find that for log2-titers 148 

>2, each unit increase in log2-titers is associated with a 0.71 times relative risk of 149 

infection (95% CI: 0.67-0.76). The annual probability of having a symptomatic infection 150 

varies from 6.4% (95% CI: 4.9-8.4) for primary infections to 8.4% (95% CI: 7.8-9.1) for 151 

individuals with pre-existing log2-titers ≤3 (≤1:40 on a linear scale) and 4.0% (95% CI: 152 

3.0-5.0) for those with log2-titers >3 (Figure 2B). The annual probability of being 153 

hospitalized during a primary infection was 1.2% (95% CI: 0.5-2.1), compared to 2.4% 154 

(95% CI: 2.1-2.7) during a subsequent infection for those with pre-existing log2-titers ≤3 155 

and 0.3% for those with log2-titers >3 (95% CI: 0.09-0.6) (Figure 2C). Even more stark 156 

was the risk for developing DHF, which ranged from 0.2% (95% CI: 0.0-0.6) for primary 157 

infections compared to 1.5% (95% CI: 1.3-1.7) for subsequent infections in those with 158 

log2-titers ≤3 and 0.0% for log2-titers >3 (95% CI: 0.0-0.4) (Figure 2D). Within this study 159 

population, an average of 54% of the population had detectable log2-titers of ≤3 at any 160 
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time. Time-varying cox proportional hazards models that specifically account for the 161 

dependence of titer observations within individuals gave similar results (Figure S6)
17

. 162 

Using log2-titers to probabilistically identify the cohort participants with detectable titers 163 

that will develop DHF has an AUC of 0.66 (Figure S7). 164 

 165 

Considering only infected individuals, we observe no difference in the probability of 166 

subclinical infection by titer; however, the probability of hospitalization and DHF 167 

remains greatest in those with pre-existing log2-titers of ≤3 (Figure S8). Only one 168 

individual with pre-infection log2-titers >3 developed DHF during surveillance compared 169 

to 146 who did not but had titers at infection within the same range. This suggests that in 170 

the event that infection takes place, antibodies are not protective of developing symptoms 171 

per se but, conversely, are associated with the development of severe disease. We observe 172 

no difference in the risk of disease given infection across years (Table S3) or age (Table 173 

S4). Other studies are needed to see if younger age groups than those included here 174 

nevertheless have increased risk. PRNTs form the basis of current discussions on immune 175 

correlates. Among those infected, individuals with detectable PRNT log2-titers of ≤4.5 176 

(equivalent to approximately ≤1:100) have 7.5 times (95%CI: 2.4-11.6) increased risk of 177 

DHF compared to previously naïve individuals, compared to 0.0 times for those with 178 

higher titers (Figure S9). Cross-reactive titers that result from exposure to non-DENV 179 

flaviviruses such as Japanese encephalitis and Zika may be included in these risk 180 

estimates. 181 

 182 
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Our findings suggest that post-infection set-point antibody loads appear important to 183 

determining individual infection and disease risk. Post infection, we estimate the daily 184 

probability of a subsequent infection and the development of DHF disease as a function 185 

of titer dynamics. We demonstrate that the probability of both infection and disease 186 

stabilizes after 1y (Figure 3). Based on our observation in Figure 2 that individuals with 187 

detectable titers of ≤3 had increased risk of infection and disease, we explored the 188 

temporal evolution of risk following infection for those with setpoint antibody loads (i.e., 189 

the titer at 1y following infection) above and below this threshold. At 1 year, we observe 190 

a 2.1 times increased risk of infection (irrespective of disease outcome) for those with 191 

setpoint antibody loads of ≤3 compared to those with greater antibody loads and an 8.9 192 

times increased risk of infection that leads to DHF. Overall, we find that three years 193 

following infection 34% of individuals with setpoint antibody loads of ≤3 suffer a 194 

subsequent infection, irrespective of severity (95% CI: 33%-35%) compared to 23% for 195 

those with greater loads (95%CI: 20%-26%). After this delay 3.5% of individuals with 196 

setpoint loads of ≤3 develop DHF disease (2.4%-4.4%) compared to none in those with 197 

higher loads. The apparent stability of setpoint antibody loads points to an ability to 198 

assess an individual's long-term risk. 199 

 200 

Our findings are consistent with low titers generated by some candidate vaccines in 201 

previously naïve individuals ‘priming’ individuals for severe disease upon their first 202 

exposure
18

. A hypothesis supported by previous evidence that primary infections in 203 

infants with maternal antibodies and secondary infections in older individuals are 204 

associated with severe disease
19,20

. Further, a Nicaraguan study found elevated risk of 205 
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severe disease for those with low iELISA titers at prior annual blood draws
8
. Previously 206 

naïve individuals given the Dengvaxia vaccine had mean PRNT titers within our risk 207 

window (Figure 4D)
21

. Further work is required to understand whether immunity 208 

acquired from vaccination and natural infection are qualitatively similar and whether the 209 

risk window described here is relevant for vaccine recipients. T-cell immunity, which is 210 

not captured by these assays, might compensate for antibody titers in this window. 211 

Vaccine studies should carefully assess the criteria used to define seroconversion, and 212 

how titers correlate with disease risk over time. Our work suggests that previously used 213 

criteria (PRNT titer >1:10) do not adequately correlate with reduction in disease risk and 214 

suggest that HI titers >1:40 or PRNT titers of >1:100 may provide a starting point for any 215 

vaccine in identifying a targeted neutralizing antibody response. Placebo arm data from 216 

the Dengvaxia vaccine trials also suggests higher PRNT titers are linked to protection 
22

. 217 

The targeted vaccination of individuals that have pre-existing antibody titers within our 218 

zone may be a viable approach to minimize the public health burden from dengue by 219 

moving individuals away from the risk window (Figure 4D). Even in an endemic setting 220 

such as our cohort, there is considerable temporal variability in the serological status of 221 

9y individuals (Figure S10) suggesting that the current WHO guidance surrounding 222 

Dengvaxia or similar guidance based on serostatus at vaccination will have to carefully 223 

consider this variation or specifically screen individuals.  224 

 225 

Our approach allows us to consider wider problems concerning drivers of dengue 226 

epidemiology. The assumption that population-wide immunity varies in time and dictates 227 

multi-annual dynamics of dengue pervades the literature and dominants current 228 
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hypotheses about what drives large outbreaks of dengue in particular settings
18,23-26

. More 229 

generally, the idea that temporally varying population immunity drives temporal 230 

dynamics of pathogens pervades infectious disease epidemiology
27-29

. However, 231 

quantitative evidence that any population varies in dengue immune status over time is 232 

largely lacking, as is a link between the immune status of a population and the risk of 233 

epidemics in empirical data. Here, though we have only a short time series, we show that 234 

underlying heterogeneity in the size of annual epidemics mean the risk of having titers 235 

within-the risk zone for different birth-cohorts are more correlated by epidemic time-236 

point (Figure 4A, mean correlation of 0.70) than by age (Figure 4B, mean correlation of 237 

0.23). While both the probabilities of being naïve and having log2-titers above the risk-238 

zone are correlated with age, there also exist strong birth-cohort effects (Figure S10-S11). 239 

For example, among 9 year olds, we observe up to a two-fold difference in the 240 

probability of being naive, depending on the year of the study.  241 

 242 

Finally, our results can guide the design of cohort studies aiming to characterize 243 

transmission. Studies typically use a four-fold rise in titers against any serotype as 244 

evidence of infection, regardless of the timing of sample collection. Using our titer 245 

trajectories, we find that if blood draws are every 90 days, a four-fold cut-point on 246 

measured titers has a specificity of >99% and a sensitivity of 87% (Figure 4C, Figure 247 

S12). The sensitivity is reduced to 77% when blood is taken every six months and 62% 248 

when blood is taken annually, although it may be higher in seasonal settings when 249 

samples are taken at the season’s end. Using an alternative approach that uses the mean 250 

titer across the four serotypes and a 1.6-fold cut-point, the sensitivity of the assay 251 



 13 

improves to 96% when samples are taken every six months and to 90% for annual bleeds 252 

(specificity >95%) (Figure S13). We provide the optimum cut-point and estimated 253 

sensitivity for these approaches and a theoretical one where titers are on a continuous 254 

scale (such as PRNT) (Figure S14) and where a minimum specificity of >99% is required 255 

(Figure S13). 256 

 257 

We demonstrate through simulation that our framework can recover the true number of 258 

subclinical infections and parameters when only 30% of infections are symptomatic 259 

(Table S5). Our approach is also robust to a scenario where there are differential rises in 260 

titers for symptomatic and non-symptomatic infections (Table S6) and where we 261 

incorporate school specific force of infection parameters (Table S7). In addition, we find 262 

the timing (Figure S15A) and the serotype (Figure S15B) of undetected infections cluster 263 

in the same locations as symptomatic infections. This provides strong support of our 264 

modeling framework by suggesting that the model can correctly identify spatio-temporal 265 

clustering of otherwise undetected infections. These findings also support focal 266 

transmission, irrespective of disease outcome
13,30,31

. The approach presented here will be 267 

applicable across disease systems where longitudinal titer data exists, allowing a wide 268 

range of insights into fundamental questions of disease ecology and risk.269 
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Figure 1 270 

 271 

Figure 1. (A) Measured (dots) and model fit (lines) for three example individuals. Each 272 

dot represents the mean titer across the four serotypes. The pink shaded regions are 273 

periods of active surveillance. The solid blue arrows represent confirmed symptomatic 274 

dengue infections. The open blue arrows represent estimates of timing of subclinical 275 

infections from an augmented dataset. During the active surveillance windows, these 276 

augmented infections represent subclinical infections whereas outside the surveillance 277 

window, it is unknown if the individual had symptoms. (B) Serotype distribution of PCR 278 

confirmed symptomatic infections (DENV1 – green, DENV2 - blue, DENV3 - maroon, 279 

DENV4 – orange, unknown serotype – black). The grey bars represent the estimated 280 

distribution of infections not detected from active surveillance. The periods of active 281 

surveillance are in pink (5.5 months per year). (C) Model fit (lines) and observed (dots) 282 

titers pre and post infection for primary infections (infecting serotype in blue, non-283 
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infecting serotypes in red) and post-primary infections (green). (D) Mean difference 284 

between observed log2-titer at different time points following infection with that at 1 year 285 

for all augmented and observed infections (average of 1,421 total infections across 100 286 

reconstructed datasets) with 95% confidence intervals. (E) Titer ratio of the infecting to 287 

the mean of the three non-infecting serotypes before and after symptom onset with 95% 288 

confidence intervals for the 217 individuals with symptomatic infections where infecting 289 

serotype detected (N=3,366 total titer measurements). 290 

291 
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Figure 2 292 

 293 

Figure 2. Annualized probability of (A) infection, (B) developing any symptoms, (C) 294 

being hospitalized and (D) developing DHF as a function of the mean measured antibody 295 

titer across all serotypes at the time of exposure across all study subjects (N=3,451). The 296 

open circles on the left represent primary infections (i.e., those with no detectable titers to 297 

any serotype prior to exposure). The shaded regions represent 95% bootstrap confidence 298 

intervals. 299 

300 
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Figure 3 301 

 302 

Figure 3. Risk of subsequent infection and disease following an infection event (from 303 

average of 1,420 infections across 100 reconstructed datasets). The probability of 304 

survival from subsequent infection (irrespective of disease outcome (A) and that lead to 305 

DHF (C)) as calculated from Kaplan-Meier for those with setpoint antibody titers of ≤3 306 

(red) and >3 (blue) with 95% confidence intervals. The annualized probability of a 307 

subsequent infection (irrespective of disease outcome (B) and that lead to DHF (D)) at 308 

different time points following infection for those with setpoint antibody titers of ≤3 (red) 309 

and >3 (blue). 310 

311 
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Figure 4 312 

 313 

Figure 4. (A) Proportion of study participants who have titers in risk zone (defined 314 

detectable log2-titers ≤3) over the study period for different birth-cohorts (colored lines) 315 

and overall (black). The epidemic curve of all infections is in grey. (B) Proportion of 316 

study participants with titers in risk-zone as a function of age for different birth-cohorts 317 

(colored lines) and overall (black). (C) Performance of current assay testing protocol 318 

where infection events are defined as a rise above a cut-point in any serotype across two 319 

blood draws. (D) Relationship between PRNT titer and HI titer where both assays were 320 

performed (N=1,771 samples). The boxplots show 2.5, 25, 75 and 97.5 quantiles as well 321 

as the mean. Superimposed are the results from the Denvaxia vaccine for previously 322 

seronaive (blue) and seropositive (red) prior (open symbols) and post (filled symbols) 323 

vaccination.  324 

325 



 19 

Methods 326 

1. Cohort study design 327 

Individuals attending 12 different schools in Kamphaeng Phet district, a rural region of 328 

Northern Thailand were recruited into a dengue cohort study that ran between 1998 and 329 

2003 as previously described
32

. All individuals were between seven and 13 years old. 330 

Blood samples were taken four times a year (in January, June, August and November) 331 

with an average of 91 days between blood draws. In addition, from the start of June to 332 

mid November each year, active surveillance was conducted through school-based 333 

surveillance. Children who missed school due to febrile illness had additional acute and 334 

convalescent blood draws. Dengue infection was confirmed using RT-PCR on the acute 335 

sample, with the infecting serotype also recorded or through antibody detection (IgM 336 

ELISA values >40 or HI rises of over four times between acute and convalescent blood 337 

draws), in which case the infecting serotype was not known. The date of symptom onset, 338 

whether or not the child was hospitalized and whether or not they developed DHF was 339 

also recorded. Note that the cohort study was conducted prior to 2009 when the WHO 340 

provided new guidance of the characterization of different levels of dengue severity.  341 

 342 

 343 

2. Antibody measurements 344 

For each individual’s blood draw, antibody titers to each of DENV1, DENV2, DENV3, 345 

and DENV4 were measured using a hemagglutination inhibition assay. The following 346 

two-fold dilutions were used: 1:10, 1:20, 1:40, 1:80, 1:160, 1:320, 1:640, 1:1280 and 347 

1:2560. We translated each titer onto a log2 scale such that 1:10 was given a value of 1, 348 
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1:20 of value of 2 and so on. Undetectable titers (those with a titer of <1:10) were given a 349 

value of 0. For a subset of 800 individuals, 1,771 samples were also tested using plaque 350 

reduction neutralization tests (PRNTs). These samples were either paired samples from 351 

individuals with symptomatic confirmed infection with one sample taken from a time 352 

point prior to symptom onset and one sample from post symptom onset (N=75 pairs) or 353 

randomly chosen sequential blood samples from individuals without a detected 354 

symptomatic infection between the blood draws.  355 

 356 

3. Characterizing how titers change following symptomatic infection 357 

We can understand how titers to both the infecting serotype and to non-infecting 358 

serotypes change over time prior to and following symptom onset. For all individuals that 359 

experienced a symptomatic illness where the infecting serotype was identified, we 360 

identify all titer measurements within each 10-day window from 100 days prior to 361 

symptom onset to 600 days post symptom onset. For each window, we calculate the mean 362 

titer to the infecting serotype and the average mean titer to the other three serotypes 363 

across all individuals that had a blood draw within that window. 364 

 365 

4. Modeling the dynamics of dengue antibody titers 366 

Previous efforts in malaria have used hidden Markov models to include undetected 367 

infections in estimates of the transmission intensity using presence/absence of specific 368 

antibodies in longitudinal data
33

. While these efforts are able to improve estimates on the 369 

force of infection within a community compared to using symptomatic individuals, they 370 

do not incorporate the changing dynamics of antibody titers over time. By specifically 371 
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including titer dynamics, we can help understand a wide range of issues, including assay 372 

error, measures of protection and risk and cohort design. 373 

 374 

4.1. Notation 375 

We consider an individual i. We denote   
     the number of times the individual was 376 

infected prior to time t. Each dengue infection of individual i is labeled by the index 377 

=1…  
    . We denote     

  the time of infection number  of individual i and      the 378 

infecting serotype of infection number  of individual i. The history of infection (i.e., the 379 

timing and serotype of all infections since birth) of individual i up to time t is labeled 380 

     . We denote   
  the total number of times the individual had blood taken during the 381 

study. Each blood draw of individual i is labeled by the index =1…  
 . We denote     

  382 

the time of blood draw  for individual i.  We denote        the true antibody titer (see 383 

Section 4.3) and       
  the measured antibody titer for individual i for serotype s at blood 384 

draw . i(t) represents the cumulative force of infection exerted on individual i prior to 385 

time t. The parameter vector is denoted by . 386 

 387 

4.2. Hierarchical structure of the model 388 

We can break down the probability of a measured antibody titer into three components: 389 
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The first part represents the ‘measurement model’, the second part the ‘antibody 390 

dynamics model’ and the third part the ‘infection model’. 391 

 392 

4.3. Measurement model 393 

We model the underlying antibody levels on a continuous scale, however, the 394 

hemagglutination inhibition assay is a discrete assay, such that in a situation of no 395 

measurement error or systematic biases, a true antibody titer between any two dilutions 396 

would be measured as the lower of the two dilutions. So for example, a true titer of 2.7 397 

would be measured as 2 (assuming there are dilutions performed at 0,1,2,3…). In 398 

addition, there is also likely to exist measurement error and there may be underlying 399 

differences by serotype (i.e., serotype-specific biases) in the assay that will impact all 400 

measurements of antibodies against a particular serotype. We consider a ‘true titer’ to 401 

represent the underlying (but unmeasured) titer on a continuous scale. A ‘measured titer’ 402 

is the value that is actually measured by the assay.  Conditional on an individual’s history 403 

of infection, we assume independence between the measurements of the different 404 

serotypes. This seems a reasonable assumption as assays are performed separately for 405 

each serotype. The probability of the measured titers,         
  is: 406 

        
             

      
   

      
 

     

where f(u) is the density for a normal distribution with mean           and a standard 407 

deviation parameter, . Where:  408 

     if s=DENV1 409 

      if s=DENV2 410 
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      if s=DENV3 411 

      if s=DENV4 412 

 413 

4.4. Antibody dynamics model 414 

If an individual i was never infected by dengue, we assume they will have titers of 0 415 

against the four serotypes (this assumes any maternal antibodies have disappeared and 416 

there is no impact of infections by other flaviviruses). At each time point that the 417 

individual becomes infected, their antibody titers will rise. We assume that the rise can be 418 

broken down into a permanent increase (representing antibodies that will continue to 419 

circulate, long after the infection has passed) and a temporary increase (representing the 420 

short-lived antibodies generated upon infection).  421 

  422 

4.4.1. Permanent rise in titers 423 

The permanent rise in titers        , for serotype s from infection number  in individual 424 

i is modeled as: 425 

                    

where      is a random effect that is gamma distributed with mean parameter    and 426 

variance parameter    and        allows differential antibody response by serotype for 427 

primary infections:          if it is a primary infection (i.e., =1) and s is the 428 

infecting serotype;          otherwise.  429 

 430 

4.4.2. Temporary rise in titers 431 

We assume that temporary antibody responses will decay exponentially over time: 432 
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where        
     is a random effect that captures the instantaneous rise in temporary 433 

antibody titers following the most recent infection (infection   
   )) prior to time t that 434 

comes from a gamma distribution with mean parameter    and variance parameter   ;  435 

       
     is the rate of decay of the temporary antibodies and comes from a gamma 436 

distribution with mean parameter    and variance parameter   . As with the permanent 437 

rise in titers,       
        allows differential antibody responses for primary 438 

infections:          if it is a primary infection (i.e., =1) and s is the infecting 439 

serotype;          otherwise. Additional work is needed to understand if alternative 440 

functional forms for the rise and decay in antibody titers may further refine how 441 

antibodies behave following infection. 442 

 443 

4.4.3. Overall trajectory of antibody titers 444 

Under these assumptions, and an additional linearity assumption that the temporary and 445 

permanent rises are additive, antibody titers at blood draw k for serotype s in individual i 446 

is: 447 

                              
          

   

              
             

                   
             

    

 448 

4.5. Infection history model 449 

We first assume that both the number of infections and the timing of infections are 450 

known. This assumption will subsequently be relaxed. We assume that each individual 451 
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can get infected up to four times (once by each serotype). An individual’s history of 452 

infection depends on seasonality in dengue transmission and differences in the force of 453 

infection across years. For a particular time t, the force of infection is assumed to be: 454 

                        
   

   
   

where    is a parameter that represents the mean daily force of infection in 1998 (the first 455 

year of the study) and      is the mean force of infection in year |t| as compared to that in 456 

1998. 457 

 458 

For an individual i, the contribution to the likelihood for periods prior to any infection the 459 

probability of their infection history can be broken down into periods of infection and 460 

periods without infection. Individuals only contribute to the likelihood during their time 461 

in the study. 462 

 463 

For each infection that occurs at time t, the contribution to the likelihood is: 464 

                   

For each individual, each day during which no infection occurs, the contribution to the 465 

likelihood in respect of serotype s is: 466 

             - where more than 90 days have passed since an infection by any 467 

serotype and the individual has not previously been infected by 468 

serotype s 469 

0 - otherwise, including periods when the individual is not part of the 470 

study 471 
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The presence of the 90-day window where no infection can take place avoids there being 472 

more than one infection event between two blood draws. This period is substantially 473 

shorter than the estimated period of cross-protection between serotypes of 2 years
34

. 474 

 475 

4.5.1. Context of full observation 476 

In the context of full observation, the probability of the history of infection for individual 477 

i can be given as: 478 

             
        

               
    

 

      
 

                
    

  
     

   

              
   

 
    

     

 
  

where     
  represents the time of birth and Ti the time point at which individual i leaves 479 

the study (defined as the day of their final blood draw). We assume the same (t) for all 480 

serotypes. 481 

 482 

4.6. Situation of imperfect observation 483 

In practice, we do not know the infection history of all individuals. Many infections will 484 

have occurred before individuals entered the study. In addition, there are likely to be 485 

many subclinical infections that would not have been detected through active 486 

surveillance. In addition, active surveillance only operated 5.5 months of every year. 487 

Infections outside these periods would also have been missed (irrespective of symptoms).  488 

 489 
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4.6.1. Unobserved infections prior to recruitment 490 

For the infection history of individuals before they enter into the study, we estimate a 491 

baseline titer          that represents the titer to serotype s one year prior to the first blood 492 

draw. As we assume linearity, such that the temporary and permanent titers of successive 493 

historic infections sum up to give the titer at a moment in time, this estimated baseline 494 

titer allows us to incorporate the impact of historic infection events up one year prior to 495 

enrollment but means we do not need to infer infection events before that time. 496 

Individuals that are naïve at baseline (defined as those with no measured titers to any 497 

serotype at the first blood draw) are given a baseline titer of 0. For an individual with no 498 

infection events during the study period,        =          for all t.  499 

 500 

4.6.2. Use of data augmentation for undetected infections or serotype during study 501 

In the context of full observation during the study period, each individual would have the 502 

serotype and time from each infection, {si,, i,}, known. In the setting of undetected 503 

infections or detected infections but infecting serotype is unknown (such as when 504 

symptomatic infections are only detected through IgM ELISA and therefore the serotype 505 

is unknown), we can use a Bayesian data augmentation framework. In this framework, 506 

the incompletely observed {si} pairs are incorporated and considered as nuisance 507 

parameters. The joint posterior distribution of the parameters and the augmented data is 508 

explored via reversible-jump MCMC sampling. 509 

 510 
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If we call        
      

  
               

      
 the observed data, 511 

             
                    

 the full data (made up of the observed data and the 512 

augmented data), the joint posterior is: 513 

                            

       represents the observation model,        is the titer model outlined above and 514 

     gives the prior distribution of the parameters. 515 

 516 

The observation model makes sure that the augmented datasets are consistent with the 517 

observed data by having a value of 1 (if consistent) or 0 (if inconsistent). Consistent 518 

augmented data have the following characteristics: 519 

(i) No individual is infected during the study period by the same serotype more 520 

than once 521 

(ii) No individual is infected more than once during a 90 day period 522 

 523 

Note that, as DENV-titer responses to non-DENV flaviviruses such as Zika and Japanese 524 

encephalitis are likely to be smaller that to DENV infections, such exposures are unlikely 525 

to be detected by our model and incorporated as measurement uncertainty instead. 526 

 527 

4.6.3. Date of symptom onset, date of infection and date of titer rise 528 

For all detected (symptomatic) infections, we only detect the date of symptom onset and 529 

not the date of infection. To obtain the day of infection for symptomatic cases we subtract 530 

a fixed period of 7 days from the day of symptom onset, representing the median 531 

incubation period for dengue
35

. Titers may also not rise on the day of symptom onset (due 532 
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to recall bias in when symptoms started or individual level variability). For symptomatic 533 

infections, we approximate the true, unobserved day of titer rise using augmentation, 534 

where we define consistent augmented data for which the day of titer rise is within ten 535 

days of the reported date of symptom onset. For augmented (undetected) infections, we 536 

assume that the day of titer rise following infection always occurs 11 days after the day of 537 

infection, which represents an approximate estimate of the time between infection and 538 

day of titer rise: calculated as the sum of the median incubation period for dengue (seven 539 

days) and the median time between symptom onset and titer rise for the detected 540 

infections (four days).  541 

 542 

4.6.4. Impact of uneven data collection through time 543 

This cohort used a rolling recruitment approach, which maintained an approximately 544 

constant sized population and constitutes an important strength compared to cohorts 545 

whose size may be strongly affected by participant dropout. As individuals only 546 

contributed to the likelihood for their period of inclusion in the cohort and dropout is not 547 

expected to depend on the history of infection, we do not expect that the turnover of 548 

participants in the cohort will bias parameter estimates. This was demonstrated in a 549 

simulation study where we were able to recover true parameters for a simulated cohort 550 

with a similar design (see Section 4.8). 551 

 552 

4.6.5. Prior distributions 553 

We use a log-normal distribution with log-mean 0 and log-variance of 1 for the 554 

parameters: mean and variance in the permanent rise in log2-titers (ωm, ωv), mean and 555 
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variance in the temporary rise in log2-titers (γm, γv), mean and variance in the decay in 556 

log2-titers per day (δm, δv), difference in rise for infecting vs. non infecting serotype 557 

(primary infection only) (η), measurement error (σ), DENV2-4 bias (χ2, χ3, χ4), daily force 558 

of infection in 1998 per serotype (λ), relative force of infections versus 1998 for 1997 559 

(β0) and 1999-2002 (β2-β5) and the two seasonality parameters (δ and ζ). 560 

 561 

4.7. Estimation using MCMC 562 

We develop a Markov chain Monte Carlo approach to explore the joint posterior 563 

distribution of parameters and the augmented data with the following steps: 564 

(i) Metropolis-Hastings update for the model parameters  in turn with the 565 

updates performed on a logarithmic scale. The step size of the proposals was 566 

adjusted to obtain an acceptance probability of 20-30%. As the vast majority 567 

of infections are undetected, when updating the six parameters that determine 568 

the rise and decay of antibodies (namely                  ), we calculate 569 

the likelihood using only the titers from one month prior to and year post the 570 

symptomatic (and therefore detected) infections. This approach assumes that 571 

the rise and fall in titers from all infections come from the same distributions, 572 

irrespective of symptom status. More work is needed to understand if whether 573 

or not an infection leads to symptoms changes the titer dynamics following 574 

that infection. 575 

(ii) For the symptomatic cases, as the day of titer rise may not fall exactly at the 576 

recorded day of symptom onset we use an independence sampler to update the 577 

day of titer rise. At each iteration, the day of the titer rise was updated for 100 578 
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randomly chosen symptomatic infections. Candidate values were chosen using 579 

a uniform distribution between 10 days prior to and 10 days post the recorded 580 

date of symptom onset. 581 

(iii) Independence sampler for the identity of the infecting serotype for the 62 582 

symptomatic infections where the serotype was not identified. At each 583 

iteration, the serotype for each of these infections is updated with equal 584 

probability across the four serotypes. 585 

(iv) Independence sampler for the identity of the infecting serotype for the 586 

undetected infections. At each iteration, the serotype for 500 randomly chosen 587 

undetected infections is updated with equal probability across the four 588 

serotypes. 589 

(v) Independence sampler for the dates of titer rise for undetected infections. At 590 

each iteration, the day of infection is updated for 1000 randomly chosen 591 

undetected infections. For each infection, the proposal is a uniform 592 

distribution between one year prior to entry into the study and the day of the 593 

final blood draw. 594 

(vi) Independence sampler for the baseline titers for each individual. At each 595 

iteration, the baseline titer for one serotype is updated for 1000 randomly 596 

chosen individuals. The proposal distribution is a random uniform distribution 597 

between 0 and 10. All individuals that are naïve at baseline (i.e., those with no 598 

titers to any serotype at the first blood draw) are forced to have a baseline titer 599 

to 0 for all four serotypes. 600 
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(vii) Reversible jump –MCMC to add/remove unobserved infection events. As 601 

       is unobserved, we use a Bayesian data augmentation approach that 602 

treats it as a nuisance parameter. Rather than attempting to definitively 603 

identify whether an infection occurred or not, these approaches allow us to 604 

incorporate the uncertainty of the presence and timing of these events. We use 605 

reversible jump MCMC (RJ-MCMC) to add and remove infection events. 606 

Each step to add undetected infections proceeds as follows: 607 

a. Randomly draw individual. 608 

b. Draw a candidate date for the infection event using a uniform distribution 609 

from 1 year prior to their first blood draw to the day of their final blood 610 

draw. 611 

c. Draw a candidate serotype of infection with the probability of each 612 

serotype being 0.25. 613 

d. Update the number, date and serotype of infections for that individual. 614 

For the removal of undetected infections, we use a similar approach: 615 

a. Randomly draw individual. 616 

b. If that individual has undetected infections, randomly select one of their 617 

infections with equal probability (if they have no infections move to the 618 

next individual). 619 

c. Update the number, date and serotype of infections for that individual by 620 

removing that infection. 621 

 622 

4.8. Evaluation of model using simulated data 623 
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In order to evaluate the ability of the model to accurately estimate the parameters in a 624 

scenario when only a minority of infections are observed, we use the same modelling 625 

framework on a random subset of 1,000 individuals from the study with subsequent 626 

changes in titers, We include the actual start date and the end date for these individuals 627 

(i.e., when they entered and left the cohort). We simulate infections in these individuals 628 

based on known parameters. We then randomly ‘unobserve’ 70% of infections to reflect 629 

undetected infections. We then estimate the parameters using our framework and 630 

compare them to the underlying true parameters. 631 

 632 

4.9. Sensitivity analysis using school-specific force of infection parameters 633 

The force of infection exerted on individuals may differ across schools, resulting in non-634 

independence between individuals attending the same school. To assess the impact of any 635 

such correlation on our parameters, we performed a sensitivity analysis where we 636 

included a separate force of infection parameter for each school. In this model the force 637 

of infection exerted on an individual that attends school sch is: 638 

                                   
   

   
   

where    is a parameter that represents the mean daily force of infection in 1998 in school 639 

1,      is the mean force of infection in year |t| as compared to that in 1998 and        is 640 

the mean force of infection for school sch as compared to school 1.  641 

 642 

4.10. Alternative functional forms for the decay in titers 643 

Alternative functional forms for the decay in antibody titers exist. In particular, biphasic 644 

models that model both short-term antibody decay and longer-term antibody decay with 645 
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different exponential decay rates have been shown to work well in other systems, such as 646 

malaria
36

. The biphiasic form is captured by:  647 

                                          

where   ,   ,    and    capture the decay of the titers. To explore whether this biphasic 648 

form may further refine how antibodies behave following infection here, we fitted both 649 

exponential decay and biphasic models to the observed infections using the observed 650 

titers following detected PCR-confirmed infections and the dates of symptom onset. We 651 

found largely consistent results in the two models (Figure S1). As exponential decay is 652 

the more parsimonious model, we retained this form for the final analysis. Nevertheless, 653 

structural uncertainty in the model used for the analysis remains, which will not be 654 

represented within the confidence intervals for the parameters. 655 

 656 

4.10. Estimation of impact on titers on infection and disease 657 

4.10.1. Estimation of impact of mean titers on infection 658 

We use the augmented times and serotypes of infection from 100 model iterations to 659 

reconstruct the antibody titer trajectories for each individual. For each augmented dataset 660 

we extract the mean titer across all four serotypes for each day and whether they got 661 

infected in the following day or not. Person-time in individuals who were considered not 662 

susceptible (i.e., had been infected in the prior 90 days) was excluded. To explore the 663 

relationship between mean titer and the probability of infection we conducted logistic 664 

regression where we used a polynomial spline of order 2 for the mean titer (determined as 665 

the optimal model through comparison of different polynomial models by AIC). To 666 

account for sampling uncertainty, in each reconstructed dataset we use a bootstrap 667 
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approach to sample all individuals with replacement and then re-perform the logistic 668 

regression each time. We present the mean and 95% confidence intervals from the 669 

resultant distribution of the logistic model estimates of the probability of infection for 670 

each titer obtained from across the model iterations.  671 

 672 

4.10.2. Estimation of impact of mean titers on disease outcome 673 

We explore the relationship between mean titer and the probability of having different 674 

disease outcomes. We consider three different outcomes: symptomatic infection 675 

(irrespective of severity), hospitalization and DHF. We use the same approach as in 676 

Section 4.9.1. but only consider titers during the active surveillance windows and 677 

whether or not individuals had an infection the following day that led to the outcome of 678 

interest. For each outcome, we conduct logistic regression where we use a polynomial 679 

spline of order 2 for the mean titer (consistently determined as the optimal model through 680 

comparison of different polynomial models by AIC). We use a bootstrap approach to 681 

sample all individuals with replacement and then re-perform the logistic regression each 682 

time and identified the mean and 95% confidence intervals from the resultant distribution 683 

for the estimates of the probability of having an infection that led to the outcome of 684 

interest for each titer obtained from across the model iterations. 685 

 686 

4.10.3. Estimation of impact of mean titers on disease outcome, conditional on being 687 

infected 688 

For those that became infected during the active surveillance windows, we fit logistic 689 

models to the mean titers and whether or not the disease outcome occurred. We looked at 690 
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three outcomes: any symptomatic illness, hospitalization and DHF. For each of the three 691 

outcomes, we compare an intercept only model with models with a polynomial spline up 692 

to order 2. To account for sampling uncertainty, in each reconstructed dataset we use a 693 

bootstrap approach to sample all individuals who had an infection during the surveillance 694 

windows with replacement and then re-perform the logistic regression each time. We 695 

present the mean and 95% confidence intervals from the resultant distribution of the 696 

logistic model estimates of the probability of infection for each titer obtained from across 697 

the model iterations.  698 

 699 

4.10.4. Estimation of impact of mean PRNT titers on disease outcome, conditional on 700 

being infected 701 

PRNT titers are available for a subset of 1,771 blood draws. For those that became 702 

infected during the active surveillance windows and PRNT titers are available in the six 703 

months window prior to infection, we fit logistic models to these mean PRNT titers from 704 

that six-month time frame and whether or not the disease outcome occurred. We looked 705 

at three outcomes: any symptomatic illness, hospitalization and DHF. For each of the 706 

three outcomes of interest, we compare an intercept only model with models with a 707 

polynomial spline up to order 2. To account for sampling uncertainty, in each 708 

reconstructed dataset we use a bootstrap approach to sample all individuals who had an 709 

infection during the surveillance windows with replacement and then re-perform the 710 

logistic regression each time. To account for the fact that individuals and serum samples 711 

may not have been completely selected at random for PRNT testing (e.g., preferential 712 
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testing of those with symptomatic disease), we adjusted our estimate for the probability 713 

of sampling conditional on the outcome of interest. 714 

 715 

From the logistic regression described above, we can extract the probability of the 716 

outcome of interest given a particular PRNT titer and that a PRNT was conducted. Using 717 

Bayes rule we can write down: 718 

                            
                                          

                  
 

as the PRNT titer (or the HI titer) was not taken into account in the section process for 719 

choosing whether or not a PRNT was done, this becomes: 720 

                            
                                    

            
 

As we are interested in                     , we can reorder this equation to: 721 

                     
                                       

                
 

We therefore multiply our logistic model outcomes by the following adjustment factor: 722 

           
            

                    
 

P(PRNT done) is calculated as the proportion of all infection events where a PRNT was 723 

conducted in the prior 6 months from the infection and P(PRNT done|outcome) is 724 

calculated as the proportion with the outcome of interest where PRNTs were conducted 725 

in the prior 6 months. We present the mean and 95% confidence intervals from the 726 

resultant distribution of the logistic model estimates of the probability of infection for 727 

each titer obtained from across the model iterations.  728 

 729 
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4.10.5. Estimation of impact of year and age on mean titers on disease outcome 730 

We used a logistic regression approach to explore the impact of year of infection and the 731 

age at the time of infection. To explore the impact of year, we take each augmented 732 

dataset in turn and sample all the individuals with replacement to incorporate sampling 733 

uncertainty. We then regress the year of infection (as a categorical variable) on whether 734 

the outcome      occurred:  735 

                          

where         is the year (1998, 1999, 2000, 2001 or 2002) within which day t occurred 736 

for individual i. We conducted separate regression where the outcome was an infection 737 

event (irrespective of whether the infection led to symptoms), symptomatic infection 738 

events (irrespective of disease severity), hospitalization and development of dengue 739 

hemorrhagic fever. For the last three models we only considered data during the active 740 

surveillance windows, as we do not know the symptom status of infections outside these 741 

windows. To explore the impact of age, we dichotomized the age of individuals as being 742 

less than or greater than 9 (the Sanofi Pasteur vaccine is not recommended for individuals 743 

under 9). We then performed the regression: 744 

                         

where separate models for the same four outcomes,     , were peformed.  Finally, we built 745 

multivariable models that also accounted for mean titer using a polynomial of order 2: 746 

                                                
  

 747 

4.11. Impact of titer on outcome using cox proportional hazard models 748 
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In the context of small probabilities of an event occurring and short time intervals 749 

between readings, logistic regression will give consistent results with that from cox 750 

proportional hazards models that specifically takes the non-independence of titer 751 

observations from the same individuals into account
17

. To demonstrate the consistency of 752 

the two approaches we estimate the impact of titer on our four outcomes (infection, 753 

symptomatic infection, hospitalized infection and DHF infection) using a time-varying 754 

cox proportional hazards model, specifically incorporating clustering of observations by 755 

individual
37

. We used 100 augmented datasets. For each augmented dataset we extract the 756 

mean titer across all four serotypes for each day and whether they got the outcome of 757 

interest in the following day or not. For the disease specific outcomes (any symptomatic 758 

disease, hospitalized infection and DHF infection), we only used time points during the 759 

surveillance windows. We then calculated the impact of the mean titer (polynomial of 760 

order 2) on the relative hazard of infection, incorporating a clustering id per individual 761 

using the survival package in R
37

. We then calculate the mean effect of titer on the 762 

outcome of interest by averaging the estimates across the reconstructed datasets. 763 

 764 

To compare our results using logistic regression, we multiply the annualized estimate of a 765 

titer x on the risk of the outcome (calculated as 1-exp(-365x)) by the estimated baseline 766 

hazard for those with a measured titer of 0 (calculated as the proportion of infections in 767 

time points with a measured titer of 0). We find that the results are almost identical 768 

(Figure S6). As the logistic model approaches allow us to directly estimate the underlying 769 

probability of the outcome, it is preferred.  770 

 771 
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5. Survival analysis 772 

5.1. Annualized probability of infection using titer data only 773 

Over 100 reconstructed datasets, we initially identify all individuals who experienced an 774 

infection (irrespective of disease severity). We then identify the setpoint antibody load 775 

for that infection as the mean titer 1 year following infection as predicted by our model. 776 

Individuals were divided into two groups, those with a setpoint antibody load ≤3 and 777 

those with a load >3. For each individual in each titer group, we use the logistic model 778 

from 4.9.1 to predict the daily probability of a subsequent infection based on the mean 779 

titers each day following the initial infection. We also calculated the daily probability of 780 

experiencing an infection that leads to DHF using the logistic model from 4.9.2. We 781 

annualize the predicted probabilities of subsequent infection by using the conversion 1-782 

exp(-365x) where x is the daily probability of infection. We present the mean annualized 783 

probabilities across all individuals and over all the reconstructed datasets. 784 

 785 

5.2. Kaplan-Meier analysis 786 

For individuals who experienced an infection, we calculate Kaplan-Meier survival curves 787 

for experiencing a subsequent infection (both irrespective of disease outcome and for 788 

DHF only). Over 100 reconstructed datasets, we identify all individuals who experienced 789 

an infection event. We then identify the setpoint antibody load for that infection as the 790 

mean titer 1 year following infection as predicted by our model. Individuals were divided 791 

into two groups, those with a setpoint antibody load ≤3 and those with a load >3. To 792 

incorporate sampling uncertainty we resample all individuals with replacement. For each 793 
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group we then calculate Kaplan-Meier survival curves. We present the mean and 2.5 and 794 

97.5 quantiles from the resultant distribution. 795 

 796 

6. Prediction of DHF outcome using mean titer 797 

We assess the ability of our logistic model to discriminate between those who developed 798 

DHF and those who did not using leave one out cross validation. 799 

 800 

6.1. DHF outcome among all cohort participants 801 

For each reconstructed dataset, taking each DHF case in turn, we initially identified all 802 

individuals who were in the cohort at the same time as the DHF infection with detectable 803 

titers who did themselves not have a DHF infection within a 1-year period. We then 804 

randomly selected one of those individuals and used the titer from that day. Once we had 805 

selected a matched control for each DHF case, we calculated the ROC using leave one 806 

out cross validation. To do this we removed each individual in turn from the dataset 807 

(including both the cases and the controls) and recalculated the relationship between 808 

mean HI titer and DHF infection using all the remaining titer readings. We then predicted 809 

the probability that the held-out case had a DHF infection. The ROC was calculated using 810 

these probabilities across individuals. We present the mean ROC from across 100 811 

reconstructed datasets.  812 

 813 

6.2. DHF outcome among all infections 814 

We assessed the ability of our model to discriminate between those who did and did not 815 

develop DHF following infection. For a reconstructed dataset, we identified all 816 
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individuals with detectable titers prior to infection who had a DHF infection and those 817 

that did not have a DHF infection (i.e., those with an infection during the surveillance 818 

windows that did not develop DHF). For each infection event, we identified the mean 819 

titer the day before infection. We then used leave one cross validation as described above 820 

to assess our ability to identify those that went on to develop DHF from those that did 821 

not. We present the mean ROC from across 100 reconstructed datasets. 822 

 823 

7. Clustering of infections by school 824 

For additional model validation, we explore whether augmented infections occurred in 825 

the same schools at around the same time as observed cases, despite no information on 826 

location being provided to the model. 827 

 828 

7.1. Clustering of subclinical infections within schools 829 

To explore the clustering of subclinical with symptomatic infections in schools, we use 830 

the tau clustering statistic 
31,38

 to calculate the odds of observing an subclinical infection 831 

(irrespective of serotype and infection parity) within a set time period (t1, t2) of a 832 

symptomatic infection within the same school relative to the odds of observing an 833 

subclinical infection in a different school within the same time window.  834 

           
         

     
 

where: 835 
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where Nsymp and Nasymp are the number of symptomatic and subclinical infections within 836 

any model iteration, schij is equal to one if individuals i and j go to the same school and 0 837 

otherwise, sij is the time between infections. We varied the time window between 0-90 838 

days, 90-180 days and greater than 180 days. 839 

 840 

7.2. Clustering of serotypes within schools 841 

We explore whether the augmented serotypes that were assigned to subclinical primary 842 

infections (serotypes could not reliably be assigned in post primary infections due to 843 

cross reaction) were consistent with the serotypes of the symptomatic infections of 844 

individuals within the same school for different periods of time. 845 

 846 

For augmented primary infections that are consistently of the same serotype (defined as 847 

>50% of augmented datasets have a primary infection in the same individual caused by 848 

the same serotype in the same six-month time window), we calculated the odds that an 849 

augmented primary infection that occurs in the same school and within a fixed time 850 

window of a PCR-confirmed case is of the same serotype relative to the odds that an 851 

augmented primary infection that occurs within the same time window in a different 852 

school is of the same serotype.  853 

 854 

            
          

          
 

where: 855 
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 856 

where serij is equal to 1 if i and j go to the same school and 0 otherwise.  We varied the 857 

time window between 0-90 days, 90-180 days and greater than 180 days. 858 

 859 

7.3 Uncertainty 860 

To incorporate sampling uncertainty into our estimates, for each model iteration we 861 

randomly selected all infection events with replacement before calculating the tau 862 

estimates. Ninety-five percent confidence intervals were calculated from the 2.5% and 863 

the 97.5% quantiles of the resultant distribution across all model iterations. 864 

 865 

8. Different approaches to identify infections using simple cut-points 866 

To assess the sensitivity and specificity of the current approach to identify infections 867 

based on titer differences across two blood draws, we simulated titer trajectories where 868 

infections did and did not take place. 869 

 870 

8.1. Simulated titers where infections did take place 871 

We used the following algorithm: 872 

(i) Randomly draw MCMC iteration 873 

(ii) Randomly divide the population of individuals who had at least one infection 874 

in two: ‘model fit’ individuals and ‘held out’ individuals.  875 

(iii) Of the model fit individuals, randomly draw an individual i  876 
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(iv) Identify the parameters for the antibody dynamics for the first infection for 877 

that individual (i.e.,                     ) and the baseline titer Ai,s(t0) from 878 

that MCMC iteration. The true titer for each serotype will be Ai,s(t0). 879 

(v) Calculate the measured titer for each serotype using a random draw from a 880 

normal distribution with mean Ai,s(t0) and standard deviation , where  881 

represents the measurement error for the assay. Under scenarios of a discrete 882 

assay, the measured titer is also rounded down to the nearest integer. 883 

(vi) Draw an infection time point using a uniform distribution between 0 and tmax 884 

where tmax represents the time of the second blood draw. 885 

(vii) Calculate the true titer at tmax for each serotype, Ai,s(tmax) 886 

(viii) Calculate the measured titer using a random draw from a normal distribution 887 

with mean Ai,s(tmax) and standard deviation . Under scenarios of a discrete 888 

assay, the measured titer is also rounded down to the nearest integer. 889 

 890 

8.2. Simulated titers where infections did not take place 891 

(i) Randomly draw MCMC iteration 892 

(ii) Randomly divide the population of individuals who had at least one infection 893 

in two: ‘model fit’ individuals and ‘held out’ individuals.  894 

(iii) Of the model fit individuals, randomly draw an individual i  895 

(iv) Identify the baseline titer Ai,s(t0) from that MCMC iteration. The true titer for 896 

each serotype will be Ai,s(t0). 897 

(v) Calculate the measured titer for each serotype using a random draw from a 898 

normal distribution with mean Ai,s(t0) and standard deviation , where  899 
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represents the measurement error for the assay. Under scenarios of a discrete 900 

assay, the measured titer is also rounded down to the nearest integer. 901 

(vi) Calculate a second measured titer using a random draw from a normal 902 

distribution with mean Ai,s(t0) and standard deviation . Under scenarios of a 903 

discrete assay, the measured titer is also rounded down to the nearest integer. 904 

 905 

8.3. Different assays 906 

8.3.1. Current approach 907 

The current approach is to see whether there is a four-fold rise between blood draws in 908 

any of the four serotypes using the discrete HI assay. 909 

 910 

8.3.2. ‘Mean’ approach 911 

This approach is to first calculate the mean across the four serotypes at each time point 912 

and then compare the mean titers across two time points to identify whether infections 913 

have occurred or not.  914 

 915 

8.3.3. ‘Continuous assay’ approach 916 

Some assays give titers on a continuous scale (and not discretized like the HAI assay). In 917 

this approach, as with the ‘Mean’ approach, we initially calculate the mean titer across 918 

the four serotypes at each time point and then compare the mean titers across two time 919 

points to identify whether infections have occurred or not. 920 

 921 

8.4. Assessment of the different assays by time between blood draws and error in assay. 922 
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Using the simulation approaches set out above we obtained 10,000 individuals with pairs 923 

of measured titers (with one titer for each serotype) where an infection did take place in 924 

between the titer measurements and a further 10,000 individuals with pairs of 925 

measurements where no infection took place. We varied the time between blood draws 926 

(tmax) between 10 days and 400 days and the error in the assay () between 0.1 and 1. For 927 

each resultant dataset we used the held-out dataset (i.e., those individuals not included in 928 

the model fitiing) to calculate the sensitivity and specificity under each of the approaches 929 

in 6.3. Each time, we also identified the cutpoint that maximized the sensitivity while 930 

maintaining at least 95% specificity. We performed a separate analysis where we identify 931 

cutpoints to maximize sensitivity while maintaining 99% specificity.  932 

 933 

9. Comparison between PRNT and HI titers 934 

For 1,771 blood draws, both plaque reduction neutralization tests and HIs were 935 

conducted. We compare the mean PRNT log titer across the four serotypes with the mean 936 

HI log titer from the four serotypes and fit a line through the two using linear regression. 937 

We compared different polynomial models up to order 2 and used the best fitting one as 938 

determined by AIC. 939 

 940 

10. Comparison with Sanofi Pasteur vaccine titers 941 

To explore the potential impact of the Sanofi vaccine we extracted the geometric mean 942 

PRNT titers following vaccination for both seronegative and seropositive individuals who 943 

were vaccinated in Latin America
21

. The extracted values for PRNT titer, 28 days after 944 

the second injection are (see Table S8 in 
21

) are shown below: 945 
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 946 

 Seronegative at baseline Seropositive at baseline 

 Pre vaccination Post vaccination  Pre vaccination Post vaccination 

DENV1 5 26 278 912 

DENV2 5 69 306 1050 

DENV3 5 71 261 907 

DENV4 5 73 73 353 

Mean 5 60 228 806 

 947 

The values 28 days after the third injection are also available and are 81 for those 948 

seronegative prior to vaccination and 658 for those seropositive prior to vaccination
21

. 949 

We plot these values on a plot of the relationship between HI titer and PRNT titer from 950 

our assays (Figure 4D). 951 

 952 

11. Ethical approval 953 

The cohort protocol was approved by the institutional review boards of the Thai Ministry 954 

of Public Health, the Office of the US Army Surgeon General, and the University of 955 

Massachusetts Medical School. Informed consent was obtained from participants and 956 

their parents/guardians. No personally identifiable information was available to the 957 

researchers for the presented analysis. 958 

 959 

12. Code availability statement 960 

c++ code is available from the corresponding author on request. 961 

962 



 49 

References 963 

1. Bhatt, S. et al. The global distribution and burden of dengue. Nature 496, 504–507 964 

(2013). 965 

2. Halstead, S. B. Dengue. (Imperial College Press, London, 2008). 966 

3. Undurraga, E. A., Halasa, Y. A. & Shepard, D. S. Use of expansion factors to 967 

estimate the burden of dengue in Southeast Asia: a systematic analysis. PLoS Negl 968 

Trop Dis 7, e2056 (2013). 969 

4. Endy, T. P. et al. Epidemiology of inapparent and symptomatic acute dengue virus 970 

infection: a prospective study of primary school children in Kamphaeng Phet, 971 

Thailand. American Journal of Epidemiology 156, 40–51 (2002). 972 

5. Vaughn, D. W. et al. Dengue in the early febrile phase: viremia and antibody 973 

responses. J. Infect. Dis. 176, 322–330 (1997). 974 

6. Harris, E. et al. Clinical, epidemiologic, and virologic features of dengue in the 975 

1998 epidemic in Nicaragua. The American Journal of Tropical Medicine and 976 

Hygiene 63, 5–11 (2000). 977 

7. Venturi, G. et al. Humoral immunity and correlation between ELISA, 978 

hemagglutination inhibition, and neutralization tests after vaccination against tick-979 

borne encephalitis virus in children. J. Virol. Methods 134, 136–139 (2006). 980 

8. Katzelnick, L. C. et al. Antibody-dependent enhancement of severe dengue disease 981 

in humans. Science 358, 929–932 (2017). 982 

9. Halstead, S. B., Rojanasuphot, S. & Sangkawibha, N. Original antigenic sin in 983 

dengue. The American Journal of Tropical Medicine and Hygiene 32, 154–156 984 

(1983). 985 

10. Clapham, H. E. et al. Dengue Virus (DENV) Neutralizing Antibody Kinetics in 986 

Children After Symptomatic Primary and Postprimary DENV Infection. J. Infect. 987 

Dis. 213, 1428–1435 (2016). 988 

11. Cauchemez, S. & Ferguson, N. M. Methods to infer transmission risk factors in 989 

complex outbreak data. J R Soc Interface 9, 456–469 (2012). 990 

12. Salje, H. et al. Variability in dengue titer estimates from plaque reduction 991 

neutralization tests poses a challenge to epidemiological studies and vaccine 992 

development. PLoS Negl Trop Dis 8, e2952 (2014). 993 

13. Salje, H. et al. Dengue diversity across spatial and temporal scales: local structure 994 

and the impact of host population size. Science (2017). 995 

14. Rodriguez-Barraquer, I. et al. Revisiting rayong: shifting seroprofiles of dengue in 996 

Thailand and their implications for transmission and control. American Journal of 997 

Epidemiology 179, 353–360 (2014). 998 

15. Serotype-specific differences in the risk of dengue hemorrhagic fever: an analysis 999 

of data collected in Bangkok, Thailand from 1994 to 2006. 4, e617 (2010). 1000 

16. Duong, V. et al. Asymptomatic humans transmit dengue virus to mosquitoes. 1001 

Proc. Natl. Acad. Sci. U.S.A. 112, 14688–14693 (2015). 1002 

17. D'Agostino, R. B. et al. Relation of pooled logistic regression to time dependent 1003 

Cox regression analysis: the Framingham Heart Study. Stat Med 9, 1501–1515 1004 

(1990). 1005 

18. Ferguson, N. M. et al. Benefits and risks of the Sanofi-Pasteur dengue vaccine: 1006 

Modeling optimal deployment. Science 353, 1033–1036 (2016). 1007 



 50 

19. Kliks, S. C., Nimmanitya, S., Nisalak, A. & Burke, D. S. Evidence that maternal 1008 

dengue antibodies are important in the development of dengue hemorrhagic fever 1009 

in infants. The American Journal of Tropical Medicine and Hygiene 38, 411–419 1010 

(1988). 1011 

20. Guzmán, M. G., Alvarez, M. & Halstead, S. B. Secondary infection as a risk factor 1012 

for dengue hemorrhagic fever/dengue shock syndrome: an historical perspective 1013 

and role of antibody-dependent enhancement of infection. Arch. Virol. 158, 1445–1014 

1459 (2013). 1015 

21. Villar, L. et al. Efficacy of a tetravalent dengue vaccine in children in Latin 1016 

America. N. Engl. J. Med. 372, 113–123 (2015). 1017 

22. Moodie, Z. et al. Neutralizing Antibody Correlates Analysis of Tetravalent 1018 

Dengue Vaccine Efficacy Trials in Asia and Latin America. J. Infect. Dis. 217, 1019 

742–753 (2018). 1020 

23. Cummings, D. A. T., Schwartz, I. B., Billings, L., Shaw, L. B. & Burke, D. S. 1021 

Dynamic effects of antibody-dependent enhancement on the fitness of viruses. 1022 

Proc. Natl. Acad. Sci. U.S.A. 102, 15259–15264 (2005). 1023 

24. Wearing, H. J. & Rohani, P. Ecological and immunological determinants of 1024 

dengue epidemics. Proc. Natl. Acad. Sci. U.S.A. 103, 11802–11807 (2006). 1025 

25. Flasche, S. et al. The Long-Term Safety, Public Health Impact, and Cost-1026 

Effectiveness of Routine Vaccination with a Recombinant, Live-Attenuated 1027 

Dengue Vaccine (Dengvaxia): A Model Comparison Study. PLoS Med. 13, 1028 

e1002181 (2016). 1029 

26. Adams, B. et al. Cross-protective immunity can account for the alternating 1030 

epidemic pattern of dengue virus serotypes circulating in Bangkok. Proc. Natl. 1031 

Acad. Sci. U.S.A. 103, 14234–14239 (2006). 1032 

27. Grenfell, B. T., Bjørnstad, O. N. & Kappey, J. Travelling waves and spatial 1033 

hierarchies in measles epidemics. Nature 414, 716–723 (2001). 1034 

28. Earn, D. J., Rohani, P., Bolker, B. M. & Grenfell, B. T. A simple model for 1035 

complex dynamical transitions in epidemics. Science 287, 667–670 (2000). 1036 

29. Cobey, S. & Lipsitch, M. Niche and neutral effects of acquired immunity permit 1037 

coexistence of pneumococcal serotypes. Science 335, 1376–1380 (2012). 1038 

30. Mammen, M. P. et al. Spatial and temporal clustering of dengue virus transmission 1039 

in Thai villages. PLoS Med. 5, e205–e205 (2008). 1040 

31. Salje, H. et al. Revealing the microscale spatial signature of dengue transmission 1041 

and immunity in an urban population. Proc. Natl. Acad. Sci. U.S.A. 109, 9535–1042 

9538 (2012). 1043 

32. Endy, T. P. Spatial and Temporal Circulation of Dengue Virus Serotypes: A 1044 

Prospective Study of Primary School Children in Kamphaeng Phet, Thailand. 1045 

American Journal of Epidemiology 156, 52–59 (2002). 1046 

33. Smith, T. & Vounatsou, P. Estimation of infection and recovery rates for highly 1047 

polymorphic parasites when detectability is imperfect, using hidden Markov 1048 

models. Stat Med 22, 1709–1724 (2003). 1049 

34. Reich, N. G. et al. Interactions between serotypes of dengue highlight 1050 

epidemiological impact of cross-immunity. J R Soc Interface 10, 20130414–1051 

20130414 (2013). 1052 

35. Rudolph, K. E., Lessler, J., Moloney, R. M., Kmush, B. & Cummings, D. A. T. 1053 



 51 

Incubation periods of mosquito-borne viral infections: a systematic review. J Trop 1054 

Med Hyg 90, 882–891 (2014). 1055 

36. White, M. T. et al. A combined analysis of immunogenicity, antibody kinetics and 1056 

vaccine efficacy from phase 2 trials of the RTS,S malaria vaccine. BMC Med 12, 1057 

117 (2014). 1058 

37. Therneau, T., Crowson, C. & Atkinson, E. Using time dependent covariates and 1059 

time dependent coefficients in the cox model. Survival Vignettes (2017). 1060 

38. Lessler, J., Salje, H., Grabowski, M. K. & Cummings, D. A. T. Measuring Spatial 1061 

Dependence for Infectious Disease Epidemiology. PLoS ONE 11, e0155249–1062 

e0155249 (2015). 1063 

 1064 

1065 



 52 

Extended data is linked to the online version of the paper at www.nature.com/nature 1066 

 1067 

Acknowledgements: H.S and D.C acknowledge funding form the National Institutes of 1068 

Health (R01AI114703-01). 1069 

 1070 

Author Contributions: H.S., D.C., and S.C. developed the methods, performed analyses 1071 

and co-wrote the paper, T.E. conceived the cohort study, T.E., C.K., B.T., A.N., A.W., 1072 

D.E., L.M., I-K.Y., R.J., S.T., A.R., ran, collected and stored the cohort study results, I.R-1073 

B., J.L. and L.K. aided in interpreting results. All authors commented on and edited the 1074 

paper. 1075 

 1076 

Author Information: Reprints and permissions information is available at 1077 

www.nature.com/reprints. The authors declare no competing financial interests. 1078 

Correspondence and requests for materials should be addressed to 1079 

henrik.salje@pasteur.fr. De-identified data used in this project is available as part of this 1080 

submission. This requires the removal of all date information. Individuals interested in 1081 

accessing a full dataset with identifying information should contact the first author to 1082 

obtain the necessary IRB approval. 1083 

 1084 

Disclaimer: Material has been reviewed by the Walter Reed Army Institute of Research.  1085 

There is no objection to its presentation and/or publication. The opinions or assertions 1086 

contained herein are the private views of the author, and are not to be construed as 1087 

official, or as reflecting true views of the Department of the Army or the Department of 1088 



 53 

Defense.  The investigators have adhered to the policies for protection of human subjects 1089 

as prescribed in AR 70–25. 1090 

1091 



 54 

Extended data 1092 

Table S1. Serotype distribution 1093 

Serotype N (%) 

DENV1 39 (14) 

DENV2 100 (37) 

DENV3 72 (26) 

DENV4 6 (2) 

Serotype unknown 55 (20) 

Total 272 (100) 

Table S1. Serotype distribution (by PCR) of detected symptomatic cases.1094 
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Table S2. Parameter estimates from model fit to all study subjects (N=3,451) 1095 

Parameter Estimate (95% CI) 

Mean permanent rise in log2-titers (  ) 1.33 (1.18-1.48) 

Variance permanent rise in log2-titers (  ) 1.85 (1.42-2.47) 

Mean temporary rise in log2-titers (  ) 5.39 (5.14-5.64) 

Variance temporary rise in log2-titers (  ) 4.54 (3.72-5.64) 

Mean decay in log2-titers per day (  ) 0.017 (0.015-0.019) 

Variance decay in log2-titers (  ) 0.00020 (0.00015-0.00028) 

Difference in rise for infecting vs. non infecting serotype 

(primary infection only) ( ) 

1.16 (1.15-1.18) 

Measurement error ( -  standard deviation of log2-titers) 0.49 (0.49-0.50) 

DENV2 bias (  ) (log2-titers) -0.85 (-0.88 - -0.81) 

DENV3 bias (  ) (log2-titers) -0.19 (-0.22- -0.16) 

DENV4 bias (  ) (log2-titers) 0.06 (0.04-0.09) 

Daily force of infection in 1998 per serotype (  ) 0.00018 (0.00016-0.00019) 

1997 FOI vs 1998 (  ) 1.11 (0.97-1.27) 

1999 FOI vs 1998 (  ) 0.88 (0.76-1.00) 

2000 FOI vs 1998 (  ) 0.29 (0.23-0.35) 

2001 FOI vs 1998 (  ) 1.01 (0.88-1.17) 

2002 FOI vs 1998 (  ) 0.43 (0.34-0.53) 

Seasonality parameter 1 ( ) 0.32 (0.24-0.39) 

Seasonality parameter 2 ( ) 4.0 (3.7-4.2) 

1096 
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Table S3. Log-odds of symptoms, hospitalization and DHF for those infected during 1097 

the surveillance windows (N=781) as a function of year of infection. 1098 

 1099 

 Any symptoms Hospitalization DHF 

Intercept -0.65 

(-0.95- -0.37) 

-2.09 

(-2.68- -1.63) 

-2.66 

(-3.26- -2.09) 

1998 Ref Ref Ref 

1999 0.02 

(-0.40-0.42) 

0.02 

(-1.08-0.84) 

-0.01 

(-0.96 – 0.76) 

2000 0.04 

(-0.58-0.66) 

0.03 

(-1.32-0.88) 

0.03 

(-15.71-1.10) 

2001 0.04 

(-0.36-0.36) 

-0.05 

(-0.73-0.67) 

-0.05 

(-0.81-0.85) 

2002 0.03 

(-0.53-0.57) 

-0.02 

(-1.20-0.89) 

-0.04 

(-1.39-1.04) 

 1100 

Table S3. Exponentiated coefficients from logistic regression models with 95% 1101 

confidence intervals in parantheses.1102 
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Table S4. Regression for log-odds of symptoms, hospitalization and DHF as a 1103 

function of with age and titer 1104 

 1105 

 Any symptoms Hospitalization DHF 

 Simple Multivariable Simple Multivariable Simple Multivariable 

Intercept -0.62 

(-0.80- -0.47) 

-0.67 

(-1.00- -0.31) 

-2.59 

(-2.95- -2.30) 

-3.17 

(-4.11- -2.48) 

-3.11 

(-3.56- -2.76) 

-4.65 

(-7.21- -3.38) 

Age 8-9 -0.03 

(-0.36 – 0.31) 

-0.02 

(-0.36- 0.31) 

0.43 

(-0.15-1.00) 

0.48 

(-0.10-1.08) 

0.21 

(-0.58-0.94) 

0.33 

(-0.52-1.10) 

Age >9 Ref Ref Ref Ref Ref Ref 

Titer - 0.43 

(-0.70-1.63) 

- 4.03 

(1.67-7.43) 

- 7.39 

(3.11-14.99) 

Titer
2
 - -0.69 

(-2.30- 0.73) 

- -7.22 

(-13.40- -2.56) 

- -10.53 

(-19.11- -3.81) 

 1106 

Table S4. Exponentiated coefficients from logistic regression models with 95% 1107 

confidence intervals in parantheses.1108 
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Table S5. Simulated results 1109 

Parameter True value Estimated (95% 

confidence intervals) 

Mean permanent rise in titers (  ) 1.4 1.3 (1.1-1.5) 

Variance permanent rise in titers (  ) 2.0 1.5 (1.0-2.3) 

Mean temporary rise in titers (  ) 5.5 5.2 (5.0-5.5) 

Variance temporary rise in titers (  ) 2.0 1.4 (1.0-2.0) 

Mean decay in titers (  ) 0.02 0.02 (0.02-0.03) 

Variance decay in titers (  ) 0.0002 0.0005 (0.0002-0.0009) 

Difference in rise for infecting vs. non infecting 

serotype (primary infection only) ( ) 

1.20 1.18 (1.16-1.20) 

Measurement error 0.50 0.49 (0.49-0.50) 

DENV2 bias (  ) -0.8 -0.8 (-0.7- -0.9) 

DENV3 bias (  ) -0.2 -0.2 (-0.1-0.3) 

DENV4 bias (  ) 0.05 0.04 (-0.02-0.11) 

Daily force of infection in 1998 (  ) 0.0009 0.0011 (0.0009-0.0014) 

Year 2 FOI vs Y1 (  ) 1.0 0.9 (0.7-1.1) 

Year 3 FOI vs Y1 (  ) 0.2 0.2 (0.1-0.2) 

Year 4 FOI vs Y1 (  ) 1.0 1.0 (0.8-1.3) 

Year 5 FOI vs Y1 (  ) 0.4 0.2 (0.1-0.5) 

Seasonality parameter 1 ( ) 0.4  0.4 (0.3-0.5) 

Seasonality parameter 2 ( ) 4.0 3.8 (3.5-4.1) 
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Number of subclinical infections 370 360 (350-370) 

 1110 

1111 
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Table S6. Simulated results in scenario with different rises for symptomatic and non-1112 

symptomatic infections 1113 

Parameter True value Estimated (95% 

confidence intervals) 

Mean permanent rise in titers (  ) 1.4 1.4 (1.2-1.6) 

Variance permanent rise in titers (  ) 2.0 1.3 (0.9-2.0) 

Mean temporary rise in titers (  ) 5.5 for 

symptomatic 

4.5 for 

subclinical 

5.2 (4.9-5.5) 

Variance temporary rise in titers (  ) 2.0 2.0 (1.4-2.8) 

Mean decay in titers (  ) 0.02 0.024 (0.019-0.032) 

Variance decay in titers (  ) 0.0002 0.0005 (0.0002-0.0011) 

Difference in rise for infecting vs. non infecting 

serotype (primary infection only) ( ) 

1.20 1.17 (1.16-1.20) 

Measurement error 0.50 0.50 (0.49-0.50) 

DENV2 bias (  ) -0.8 -0.76 (-0.69- -0.83) 

DENV3 bias (  ) -0.2 -0.22 (-0.0.15- -0.28) 

DENV4 bias (  ) 0.05 0.08 (0.01 – 0.15) 

Daily force of infection in 1998 (  ) 0.0009 0.001 (0.0009-0.0013) 

Year 2 FOI vs Y1 (  ) 1.0 0.9 (0.8-1.2) 

Year 3 FOI vs Y1 (  ) 0.2 0.2 (0.1-0.3) 
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Year 4 FOI vs Y1 (  ) 1.0 1.2 (0.9-1.6) 

Year 5 FOI vs Y1 (  ) 0.4 (0.4 (0.2-0.7) 

Seasonality parameter 1 ( ) 0.4 0.4 (0.2-0.5) 

Seasonality parameter 2 ( ) 4.0 3.8 (3.4-4.2) 

Number of subclinical infections 340 320 (310-330) 

 1114 

1115 
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Table S7. Parameter estimates when incorporating school-specific force of infection 1116 

parameters across all study subjects (N=3,451) 1117 

Parameter Base model  

(95% CI) 

Extra school-specific 

parameters (95%CI) 

Mean permanent rise in log2-titers 

(  ) 

1.33 (1.18-1.48) 1.33 (1.19-1.48) 

Variance permanent rise in log2-titers 

(  ) 

1.85 (1.42-2.47) 1.90 (1.46-2.54) 

Mean temporary rise in log2-titers (  ) 5.39 (5.14-5.64) 5.42 (5.19-5.65) 

Variance temporary rise in log2-titers 

(  ) 

4.54 (3.72-5.64) 4.07 (3.35-5.12) 

Mean decay in log2-titers per day (  ) 0.017 (0.015-0.019) 0.016 (0.015-0.018) 

Variance decay in log2-titers (  ) 0.00020 (0.00015-

0.00028) 

0.00020 (0.00015-

0.00028) 

Difference in rise for infecting vs. non 

infecting serotype (primary infection 

only) ( ) 

1.16 (1.15-1.18) 1.16 (1.15-1.17) 

Measurement error ( -  standard 

deviation of log2-titers) 

0.49 (0.49-0.50) 0.49 (0.49-0.50) 

DENV2 bias (  ) (log2-titers) -0.85 (-0.88 - -0.81) -0.85 (-0.87 - -0.83) 

DENV3 bias (  ) (log2-titers) -0.19 (-0.22- -0.16) -0.19 (-0.22- -0.18) 

DENV4 bias (  ) (log2-titers) 0.06 (0.04-0.09) 0.06 (0.04-0.07) 
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Seasonality parameter 1 ( ) 0.32 (0.24-0.39) 0.32 (0.25-0.39) 

Seasonality parameter 2 ( ) 4.0 (3.7-4.2) 4.0 (3.8-4.3) 

Number of augmented infections 1,149 (1,135-1,163) 1,151 (1,137-1,165) 

 1118 

 1119 

1120 
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Figure S1 1121 

 1122 

Figure S1. Biphasic and exponential decay curves fitted to HI antibody measurements 1123 

following observed symptomatic infections. 1124 

1125 
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Figure S2 1126 

 1127 

Figure S2. (A) Variability in titer responses. Violin plots showing median (black square), 1128 

25% and 75% quantiles (thick black line) and 95% distribution (in grey) of net titer rise at 1129 

different time points following infection (N=1,420) (B) Estimated underlying differences 1130 

across serotypes in the measurement of antibody levels by hemagglutination inhibition 1131 

assay over and above that attributable to infection (DENV1 is reference) with 95% 1132 

credible intervals (fitted to data from 140,612 titer measurements). (C) Mean estimated 1133 

error in the hemagglutination inhibition assay estimated with 95% credible intervals 1134 

using our model results (grey) and empirically derived (blue) from 795 repeated 1135 

measurements on the same serum compared to that previously empirically derived 1136 

estimated for plaque reduction neutralization tests (PRNTs) (blue). 1137 

1138 
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Figure S3. Serotype distribution for primary infections 1139 

 1140 

Figure S3. Distribution of serotypes by year comparing the detected symptomatic 1141 

infections by PCR and the augmented primary infections where we could confidently 1142 

assign the serotype (>50% of model iterations inferring the same serotype). We could 1143 

confidently assign the serotype in 60% of instances.  1144 

1145 
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Figure S4 1146 

 1147 

Figure S4. Serotype distribution for detected symptomatic primary infections and 1148 

augmented subclinical primary infections where the infecting serotype could be 1149 

confidently assigned (>50% of model iterations inferring the same serotype). 1150 

1151 
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Figure S5 1152 

 1153 

Figure S5. Distribution of serotypes by year comparing the detected symptomatic 1154 

infections by PCR and the augmented primary infections using a more stringent cutoff 1155 

that >75% of model iterations infer the same serotype. In this scenario we could 1156 

confidently assign the serotype in 32% of instances. 1157 
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Figure S6 1158 

 1159 

Figure S6. Comparison of results using time varying cox proportional hazards model 1160 

(dashed line) with that from logistic regression (solid line) for the annualized probability 1161 

of (A) infection, (B) developing any symptoms, (C) being hospitalized and (D) 1162 

developing DHF as a function of the mean measured antibody titer across all serotypes at 1163 

the time of exposure using titer data from all study subjects (N-3,451). The open circles 1164 

on the left represent primary infections (i.e., those with no detectable titers to any 1165 

serotype prior to exposure). The shaded regions represent 95% bootstrap confidence 1166 

intervals. To calculate probabilities, the relative hazards from the cox model are 1167 

multiplied by the baseline hazard for those with measured titers of 0 (calculated as 1168 

proportion of person-time with an infection time among those with measured titers of 0). 1169 

 1170 
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Figure S7 1171 

 1172 

Figure S7. Ability of modelled relationship between measured HI titer and risk of DHF 1173 

to identify those with DHF using those with DHF compared to randomly selected 1174 

matched controls from individuals in the cohort who had detectable titers at the same 1175 

time (N=36 with DHF with the same number of matched controls).  1176 

1177 
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Figure S8 1178 

 1179 

 1180 

Figure S8. Probability of infection and disease as a function of mean titer across the four 1181 

types at the time of infection. (A) Annualized probability of infection by mean antibody 1182 

titer across all types at the time of infection (N=3,451). (B) For those infected during the 1183 

surveillance windows, the probability of developing any symptoms as a function of mean 1184 

titer (N=781). (C) For those infected during the surveillance windows, the probability of 1185 

being hospitalized (N=781). (D) For those infected during the surveillance windows, the 1186 

probability of developing DHF as a function of mean titer (N=781). The open circles on 1187 

the left represent primary infections. 1188 
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Figure S9 1189 

 1190 

Figure S9. Among those infected, relationship between PRNT titer and probability of 1191 

outcome. For those infected during the surveillance windows (N=781), the probability of 1192 

developing any symptoms as a function of mean PRNT titer. (C) For those infected, the 1193 

probability of being hospitalized. (D) For those infected, the probability of developing 1194 

DHF as a function of mean PRNT titer. The open circles on the left represent primary 1195 

infections. The shaded region represents 95% confidence intervals. 1196 
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Figure S10 1202 

 1203 

Figure S10. (A) Proportion of cohort who are naïve as a function of time. (B) Proportion 1204 

of cohort who are naïve as a function of age. 1205 

1206 
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Figure S11 1207 

 1208 

Figure S11. Proportion of cohort with titers above risk zone (i.e., greater than 3) as a 1209 

function of time (A) and age (B). 1210 

 1211 

1212 
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Figure S12. ROC 1213 

 1214 

Figure S12. The ROC for different assay approaches and time between blood draws 1215 

calculated from 100,000 simulated titer responses. (A) Single serotype assay – if HIs are 1216 

conducted for just a single serotype at two time points. (B) HIs conducted against all four 1217 

serotypes. Infections are considered to occur if the ratio of any of the four titers at time 1218 

point 2 versus time point 1 is greater than the threshold value. (C) HIs conducted against 1219 

all four serotypes. Infections are considered to occur if the ratio of the mean of the four 1220 

titers at time point 2 versus the mean at time point 1 is greater than the threshold value. 1221 

1222 
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Figure S13 1223 

 1224 

Figure S13. Optimization of assays in detection of events where specificity is maintained 1225 

at >95%. We explore the performance of three different assay testing protocols: current 1226 

practice where infection events are defined as a rise above a cut-point in any serotype 1227 

across two blood draws (A), ‘mean approach’ where the mean across all serotypes is first 1228 

calculated before comparing across time points (B), ‘mean approach’ where titers are 1229 

available on a continuous scale (C). For each protocol, we identify the optimal cut-point 1230 

for a range of assay measurement errors from 100,000 simulated titers based on the fitted 1231 

titer responses from infections in our study population, that maintains a specificity of 1232 

>95% (top row). We then calculate the sensitivity of the approach for different time 1233 

intervals between blood draws using 50% held out data (bottom row). 1234 

1235 
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Figure S14 1236 

 1237 

 Figure S14. Optimization of assays in detection of events where specificity is 1238 

maintained at >99%. We explore the performance of three different assay testing 1239 

protocols: current practice where infection events are defined as a rise above a cut-point 1240 

in any serotype across two blood draws (A), ‘mean approach’ where the mean across all 1241 

serotypes is first calculated before comparing across time points (B), ‘mean approach’ 1242 

where titers are available on a continuous scale(C). For each protocol, we identify the 1243 

optimal cut-point for a range of assay measurement errors from 100,000 simulated titers 1244 

based on the fitted titer responses from infections in our study population, that maintains 1245 

a specificity of >99% (top row). We then calculate the sensitivity of the approach for 1246 

different time intervals between blood draws using 50% held out data (bottom row). 1247 

1248 
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Figure S15 1249 

 1250 

Figure S15. Clustering of symptomatic (N=274) and subclinical cases (mean N=507 1251 

across 100 reconstructed datasets) by school by time and serotype. (A) Probability of 1252 

observing an augmented subclinical infection (irrespective of serotype) occurs at different 1253 

time intervals within the same school of a detected symptomatic case relative to the 1254 

probability of observing an augmented subclinical infection occurring in a different 1255 

school in that same time interval. (B) For augmented primary infections that are 1256 

consistently of the same serotype (defined as >50% of augmented datasets have a primary 1257 

infection in the same individual caused by the same serotype in the same six-month time 1258 

window). Probability that an augmented primary infection that occurs within a fixed time 1259 

window of a PCR-confirmed case and in the same is of the same serotype relative to the 1260 

probability that an augmented primary infection that occurs within the same time window 1261 

in a different school is of the same serotype. Note that the modelling framework can only 1262 

allow differentiation of serotypes for primary infections. Cross-reaction prevents 1263 

differentiation in post-primary infections. Overall, 60% of primary infections have a 1264 

consistent serotype for a primary infection across augmented datasets. Each boxplot 1265 
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presents the 2.5%, 25%, 75% and the 97.5% quantiles of the distribution as well as the 1266 

mean. 1267 

 1268 


