Interplay between Sublethal Aminoglycosides and Quorum Sensing: Consequences on Survival in V. cholerae André Carvalho, Evelyne Krin, Chloé Korlowski, Didier Mazel, Zeynep Baharoglu #### ▶ To cite this version: André Carvalho, Evelyne Krin, Chloé Korlowski, Didier Mazel, Zeynep Baharoglu. Interplay between Sublethal Aminoglycosides and Quorum Sensing: Consequences on Survival in V. cholerae. Cells, 2021, 10 (11), pp.3227. 10.3390/cells10113227. pasteur-03443810v1 ### HAL Id: pasteur-03443810 https://pasteur.hal.science/pasteur-03443810v1 Submitted on 23 Nov 2021 (v1), last revised 23 Nov 2021 (v2) **HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. 1 Interplay between sublethal aminoglycosides and quorum sensing: consequences on survival in 2 V. cholerae 3 André Carvalho^{1,2*}, Evelyne Krin^{1*}, Chloé Korlowski¹, Didier Mazel^{1**}, Zeynep Baharoglu^{1**} - ¹ Unité Plasticité du Génome Bactérien, Institut Pasteur, UMR3525 CNRS, Paris, France. - 6 2 Sorbonne Université, Collège doctoral, F-75005 Paris, France - 8 * authors contributed equally - ** corresponding authors, mazel@pasteur.fr, zeynep.baharoglu@pasteur.fr #### **ABSTRACT** Antibiotics are well known drugs which when present above certain concentrations are able to inhibit the growth of certain bacteria. However, a growing body of evidence has shown that even when present at lower doses, unable to inhibit or affect microbial growth, antibiotics work as signaling molecules, affect gene expression and trigger important bacterial stress responses. However, how subMIC antibiotic signaling interplays with other well-known signaling networks in bacteria (and the consequences of such interplay) is not well understood. In this work, through transcriptomic and genetic approaches, we have explored how quorum-sensing (QS) proficiency of *V. cholerae* affects this pathogen's response to subMIC doses of the aminoglycoside tobramycin. We show that the transcriptomic signature of *V. cholerae* in response to subMIC TOB highly depends on the presence of QS master regulator HapR. In parallel, we show that subMIC doses of tobramycin are able to negatively interfere with the AI-2/LuxS QS network of *V. cholerae*, which seems critical for survival to aminoglycoside treatment and tobramycin-mediated induction of SOS response in this species. This interplay between QS and aminoglycosides suggests that targeting QS signaling may be a strategy to enhance aminoglycoside efficacy in *V. cholerae*. #### **INTRODUCTION** Many bacterial species secrete small diffusible signaling molecules to synchronize multicellular behaviors which allow them to adapt and survive in natural environments [1,2]. The most studied intercellular communication mechanism is quorum-sensing (QS), which monitors local population density [3,4]. QS is achieved *via* the production and detection of extracellular small molecules called autoinducers. At low cell density autoinducers diffuse away but at high cell density their concentration increases and triggers synchronization of gene expression in bacterial populations. Gram-negative bacteria are able to produce and detect several classes of autoinducers. Autoinducer 1 (Al-1) is a species-specific signaling molecule while autoinducer 2 (Al-2), which is produced by Gram-negative and Gram-positive bacteria, is able to mediate both intra and interspecies QS communication [5,6]. Vibrio cholerae, the causative agent of cholera disease, produces both autoinducers. Al-1, called cholera Al-1 (CAl-1), is produced by the CqsA protein and sensed by CqsS, while Al-2 is produced by LuxS and sensed by LuxQ, via LuxP periplasmic protein. The QS regulatory network of V. cholerae relies on a well described phosphorylation cascade (Fig. 1). At low cell density, CqsS and LuxPQ work as kinases and phosphorylate LuxU which will then transfer the phosphate to the regulator LuxO. Phosphorylated LuxO will then trigger the expression of four small RNAs (qrr1-4) which in turn allow for translation of AphA (master regulator of low cell density), while inhibiting that of HapR, the LuxR family master regulator of high cell density in V. cholerae. By contrast, at high cell numbers, both CAl-1 and Al-2 accumulate and bind the cognate receptors CqsS and LuxPQ which will now act as phosphatases and inhibit the phosphorylation cascade described above. This leads to an absence of qrr1-4 sRNAs and, consequently, the absence of AphA. Concomitantly, HapR is produced, inducing the expression of several genes involved in group behavior [7,8]. Escherichia coli can also detect autoinducers produced by other bacteria and react to them via SdiA, a LuxR protein homologue [9,10]. E. coli Al-2 is produced by the LuxS protein and sensed by the proteins encoded by the *Isr* operon [11,12]. Interestingly, bacterial communication through small molecule signaling can induce antibiotic tolerant phenotypes [13–15]. In parallel, it is also known that antibiotics at low doses can work as signaling molecules [16]. While studying the bacterial response to antibiotics, we showed that antibiotics from different families induce stress responses in Gram-negative bacteria, at concentrations below the minimal inhibitory concentration (subMIC), namely the SOS response [17,18]. SOS induction reflects the presence of a genotoxic stress to which the bacterial cell responds by triggering mutagenic DNA repair and recombination pathways, as well as rearrangements in the Superintegron carried by the *V. cholerae*'s second chromosome, which carries antibiotic resistance and adaptation genes [19,20]. We have pursued with the study of the response to aminoglycosides (AGs), which is a class of antibiotics that target the ribosome and induce mistranslation [21]. The AG-mediated SOS induction that we observed in *V. cholerae* is conserved among distantly related Gram-negative pathogens, such as *Photorhabdus luminescens* and *Klebsiella pneumonia* [18]. This observation was puzzling because AGs do not directly target DNA synthesis or DNA molecules. Strikingly, we have observed that the induction of SOS by low doses of AGs appeared to be dependent on HapR [17], because SOS induction by the aminoglycoside tobramycin was prevented in the *V. cholerae* strain lacking *hapR*. This observation suggested that QS could play a significant role in the evolution of antibiotic resistance. We thus decided to study the impact of quorum sensing on the effect of sub-inhibitory concentrations of AGs in *V. cholerae*. We constructed mutants deriving from the N16961 HapR+ strain (referred to as wild-type), deleted for the genes *cqsA* (deficient for CAI intra-species signaling), *luxS* (deficient for AI-2 inter-species signaling), *luxPQ* (deficient for AI-2 sensing), *luxO* ("locked" in high cell density state) and *aphA* (the master regulator of low cell density). We asked which QS pathway(s) are involved in the response to sub-inhibitory concentrations of aminoglycosides, and how QS is involved in modulation of gene expression patterns by treatment with sub-inhibitory concentrations of AGs. RNA-seq performed on both QS proficient (HapR+) and QS deficient (HapR-) *V. cholerae* strains points to major differences on global gene expression in response to subMIC tobramycin (TOB) treatment. Moreover, transcriptomic data suggests that subMIC AG treatment may interfere with the quorum sensing pathways and lead to the activation of the AphA low cell density regulon. We find that supplementation of growth media with AI-2 alleviates SOS induction by subMIC TOB. We further show that deletion of *luxS* (and to a lesser degree *cqsA*) is strongly detrimental for growth in presence of sublethal AGs concentrations and also for survival to lethal doses of this antibiotic family. These observations strongly suggest that QS signaling plays an important role in the response to antibiotics. **Figure 1. Simplified QS network of** *V. cholerae.* Intra and Inter-species autoinducers activate a phosphorylation cascade through LuxU and LuxO, leading to the expression of Qrr1-4 sRNAs which in turn promote expression of the AphA while inhibiting expression of HapR. #### **MATERIALS AND METHODS** 113 Bacterial strains and plasmids. Strains and plasmids are described in Table 1. Primers used in this work are listed in Table S1. *V. cholerae* N16961 hapR+ derivatives were constructed by natural transformation as described [22]. Allelic replacements were performed using an assembly PCR fragment carrying 500 bp up and down regions of the gene to be deleted, and replaced by *aadA* spectinomycin resistance gene, using specified primers. Selection was done using spectinomycin 100µg/mL. #### Table 1. Strains and plasmids used in this study | Strains and plasmids | Strain # | construction | | |--------------------------------------|-----------|-----------------------|------------------------------| | E. coli MG1655 | | | Laboratory collection | | P. luminescens TT01 ΔuvrY | PL2105 | | [30] | | | | | | | V. cholerae N16961 hapR- | 7805 | | Laboratory collection | | V. cholerae N16961 hapR+ | 8637/F606 | | Laboratory collection | | V. cholerae N16961 hapR+ derivatives | | | | | luxO(VC1021):: | J419 | PCR assembly | ZIP413/414 and ZIP415/416 on | | spectinomycin | | and natural | gDNA. ZB47/48 on pAM34. | | | | transformation | Assembly ZIP413/416 | | cqsA(VCA0523):: | J422 | PCR assembly | ZIP81/82 and ZIP83/84 on | | spectinomycin | | and natural | gDNA. ZB47/48 on pAM34. | | | | transformation | Assembly ZIP81/84 | | luxS(VC0557)::spectinomycin | J439 | PCR assembly | ZIP87/88 and ZIP89/90 on | | | | and natural | gDNA. ZB47/48 on pAM34. | | | | transformation | Assembly ZIP87/90 | | luxPQ(VCA0736- | F562 | PCR assembly | ZIP191/192 and ZIP193/194 on | | VCA0737)::spectinomycin | | and natural | gDNA. ZB47/48 on pAM34. | | | | transformation | Assembly ZIP191/194 | | pTOPO-PintIA350-gfp | 9192 | 350bp region | [22] | | kanamycin | | upstream | | | | | of <i>intIA</i> was | | | | | fused to <i>gfp</i> . | | #### **Tolerance assays** Tolerance assays were performed on early stationary phase cultures. Overnight V. cholerae cultures were diluted 1000x in 10 mL fresh Mueller-Hinton (MH) medium and incubated at 37°C with shaking. When cultures reached an OD₆₀₀ 1.0, aliquots were serial diluted and spotted on MH plates. 3 ml of cultures were then collected into 14 mL Falcon tubes and treated with lethal doses of desired antibiotics (10 to 20 times the MIC: tobramycin 20 μ g/mL and gentamicin 10 μ g/mL), for 4 hours at 37°C with shaking in order to guarantee oxygenation. Serial dilutions were then spotted on MH agar without antibiotics. Experiments were performed 3 times. #### MIC determination using *Etests*. - Stationary phase cultures were diluted 20 times in PBS, and 300 μ L were plated on MH plates and dried for 10 minutes. *Etests* (Biomérieux) for Tobramycin and Gentamicin were placed on the plates which were then incubated overnight at 37°C. - 138 RNA-seq. - Overnight cultures of the O1 biovar El Tor N16961 *hapR+* or *hapR- V. cholerae* strain were diluted 140 100x and grown in triplicate in MH medium until an OD₆₀₀ of 0.4 with or without 0.02 µg/mL 141 tobramycin. Sample collection, total RNA extraction, library preparation, sequencing and analysis 142 were performed as previously described [23]. #### Growth curves. Overnight cultures were diluted 100x in fresh medium, on 96 well plates. Each well contained 200 µl. Plates were incubated with shaking on TECAN device at 37°C, OD₆₀₀ was measured every 15 minutes. #### SOS induction SOS induction measurements by flow cytometry was performed as previously described [17,18,24]. Briefly, overnight cultures were diluted 100 fold in MH or MH supplemented with subMIC tobramycin (0.02 μ g/mL), subMIC ciprofloxacin (0.005 μ g/mL) and/or AI-2 (10 μ M) and were incubated overnight at 37°C. Fluorescence was then measured in 100 000 cells on the Miltenyi MACSquant device. The fluorescence values in each condition were normalized to the fluorescence values obtained in MH. | Luminescence | measurements | in P | luminescens | |-----------------|--------------------|----------------|-----------------| | Lullillescelice | IIICasul CIIICIIIS | III <i>F</i> • | iuiiiiilesteiis | Overnight cultures in Schneider media supplemented with 10 μ M Na-borate, were diluted at OD₆₀₀ 0.15 at grown at 30°C. When cultures reached an OD₆₀₀ of 0.9, 0.5 μ g/mL tobramycin were added. After four hours, luminescence was measured as previously described [25]. Relative value was After four hours, luminescence was measured as previously described [25]. Relative value was calculated: luminescence/ OD₆₀₀. Experiment was performed at least three times. #### Statistical analysis. Student's t-test (unpaired) was performed using GraphPad Prism to determine the statistical differences between two groups. * indicates p<0.05. Number of replicates for each experiment was 3<n<6. Means were also calculated using GraphPad Prism. #### **RESULTS** #### Quorum sensing proficiency influences the response of V. cholerae to subMIC tobramycin In order to have a global view on the gene expression patterns and their alterations by treatment with sub-inhibitory concentrations of tobramycin, we undertook a global study using RNA-seq. Since TOB at 2% of the MIC was previously shown to differently impact stress responses of *V. cholerae* in a QS proficient *hapR*+ strain [17] and in the N16961 strain carrying a frameshift inactivating the *hapR* gene, we performed RNA-seq in exponential phase cultures of *V. cholerae* of both strains treated or not with TOB at 2% of the MIC. Strikingly, we observed that the number of significantly differentially regulated genes by TOB in the HapR proficient strain was nearly twice the number of those differentially regulated by TOB in the hapR- strain: 366 and 566 genes were at least 1.5-fold up- and down- regulated in hapR+ against 259 and 238 genes in hapR-, respectively (Fig. 2). Similarly, 70 genes with \geq 3-fold change were found to be affected in hapR+ strain, against 45 in hapR- (Fig. 2). Figure 2. Transcriptomic profiles of V. cholerae cells treated with subMIC TOB depend on HapR proficiency. Volcano plots depicting gene expression changes caused by subMIC TOB (2% MIC) in HapR deficient (left panel) or HapR proficient (right panel) V. cholerae cells. The names of the genes with the strongest fold changes are represented. The x-axis represents the log_2 of the fold change plotted against the log_{10} of the adjusted p-value. First, looking at general effects of subMIC TOB on both strains, our analysis reveals the upregulation of chaperones and protein degradation factors, usually involved in the response to heat shock and protein stress (e.g. GroEL-ES, IbpA, Lon), showing that, even at doses that do not affect growth (here 50-fold lower than the MIC), TOB still yields protein stress. However, such stress seems to be more important in the *hapR*+ strain, as the induction of the two *groEL-ES* operons is 11- and 13-fold in *hapR*+ versus 3- and 4-fold for *hapR*-. Similarly, *ibpA* is induced 22-fold in *hapR*+ against 3-fold in *hapR*- (Fig. S1A). Other categories of modulated gene expression are sugar metabolism and transport, as well as iron related genes. Markedly, sugar transport and metabolism genes are strongly downregulated by TOB in the *hapR*- strain (Fig. S1B). This effect is also found in the *hapR*+ strain but to a lesser degree, which may be explained by the fact that the level of these RNAs are already lower in the *hapR*+ strain compared to *hapR*-. Our second observation is that there are also dissimilarities between the two strains in pathways that are mobilized in response to TOB. Major differences are on translation (mostly downregulated by TOB in *hapR*+) (Fig. S1C) and iron related genes (mostly up in *hapR*-) (Fig. S1D). Strikingly, ribosomal protein expression is oppositely modulated in the two strains (Fig. S1C). Since AGs target translation, reduction of translation in response to low levels of TOB can be an adaptive response, especially in *hapR*+ strain. Importantly, the basal expression levels of ribosomal genes appear to be already higher in the absence of TOB in the *hapR*+ strain and TOB reduces their expression to the *hapR*- levels. Iron and energy related genes are markedly increased by TOB in *hapR*- with while no major change was observed in *hapR*+ (Fig. S1D). ## TOB influences QS response of *V. cholerae* and interferes with AI-2 signaling of *Photorhabdus luminescens* Regarding QS, we observed that genes known to be activated or inhibited by AphA [26,27] in V. cholerae are, respectively, up and downregulated by TOB in hapR+ strain (Fig. 3A), suggesting activation of the AphA low cell density regulon upon TOB treatment. In V. cholerae, the level of AphA protein is known to be negatively controlled by the concerted action of Al-2, CAI-1 and DPO (an autoinducer that is part of a third QS pathway in V. cholerae [28]), with AphA being barely detectable upon the simultaneous presence of these autoinducers [29]. However, eliminating Al-2 signaling is sufficient for AphA to be detected, even though at low levels [29]. Thus, in order to determine whether TOB has a positive or negative influence on AI-2 regulated phenotypes, we tested the effect of sublethal TOB treatment on bioluminescence in *Photorhabdus luminescens* [30], where natural luminescence is induced by elevated Al-2 levels [25]. We used an uvrY deficient strain as reference strain, as a previously shown decreased amount of AI-2 in this strain allows more sensitive measurements of Al-2 dependent luminescence, in comparison to the wild-type [25]. We found that subMIC TOB treatment significantly decreases luminescence in P. luminescens (Fig. 3B). In order to prove that the negative effect of tobramycin on bioluminescence production was indeed by targeting of the QS network of P. luminescens we performed the same experiment using a luxS deficient strain (Fig. S2). The results show that in absence of luxS, tobramycin no longer impacts bioluminescence production in P. luminescens (Fig. S2). Together with the activation of AphA regulon, these observations suggest that subMIC TOB interferes with AI-2 signaling and mimic a low cell density state. **Figure 3. subMIC TOB interferes with QS signalling. A.** Expression changes induced by subMIC TOB (2% MIC) of genes belonging to operons known to be regulated by AphA. **B.** Effect of subMIC TOB (50% MIC) on QS dependent luminescence of *P. luminescens*. Error bars indicate standard deviations. * p-value < 0.05 by Student's *t*-test. #### AI-2 signaling alleviates SOS response induction by subMIC TOB We have previously found that subMIC TOB induces SOS response in *V. cholerae*, but not in *E. coli* [17]. However, in *V.* cholerae, subMIC TOB only induces the SOS response in the *hapR+* but not in the *hapR-* strain, suggesting that QS is important for the effect of subMIC TOB ([17] and Fig. S2). Since bioluminescence data suggests modulation of *luxS* pathway by TOB, we asked whether the levels of AI-2 could have an effect on SOS response induction by TOB. We used GFP reporters of the SOS response regulated *intIA* promoter as previously described [17] and confirmed that TOB induces SOS in *V. cholerae hapR+* but not in *E. coli* (Fig. 4A). Interestingly, addition of exogenous AI-2 alleviates the SOS induction by TOB, suggesting that AI-2 counteracts the effect of TOB. In order to confirm that this effect was specifically due to sensing of AI-2 by the bacterial cells, we constructed a strain deleted for the AI-2 sensor *luxPQ* operon. We confirmed that SOS response is also induced in the strain lacking *luxPQ* but the negative effect of AI-2 on TOB mediated SOS was lost. This is consistent with the hypothesis that sensing of AI-2 by *V. cholerae* minimizes the toxic effect of subMIC TOB. We also tested the effect of AI-2 on ciprofloxacin (CIP) induced SOS response in both *V. cholerae* and *E. coli* (Fig. 4B). While both species induce SOS in response to CIP (as expected), we found no effect of AI-2. CIP induces SOS through direct DNA damage and our results show that AI-2 specifically interferes with subMIC TOB induced SOS, and does not prevent this induction by DNA damage. Furthermore, we constructed a *V. cholerae* strain deleted for *luxS*, and observed that SOS response induction by subMIC TOB was increased in this strain, and addition of AI-2 was sufficient to counteract this effect (Fig. 4A). Altogether, these data show that interspecies QS signaling interferes with the effect of subMIC TOB in *V. cholerae*. Figure 4. Aminoglycoside-mediated SOS induction in *V. cholerae* depends on LuxS/AI-2 signalling. SOS induction by **(A)** subMIC tobramycin (TOB, $0.02 \, \mu g/mL$) or **(B)** subMIC ciprofloxacin (CIP, $0.005 \, \mu g/mL$) in *V. cholerae* and *E. coli* cells. #### AI-2 signaling improves growth in subMIC TOB and tolerance to lethal TOB concentrations We next tested the impact of QS on the susceptibility to antibiotics. We first tested the ability of QS mutants to grow in the presence of subMIC of the aminoglycosides TOB and gentamicin (GEN) (Fig. 5). We used a higher subMIC (50% of the MIC) to assess growth of WT and different QS mutants: *cqsA* (deficient in CAI-1), *luxS* (deficient in AI-2 signaling) and *luxO* deletion mutant, which is "locked" in a high cell density state. In fact, the *luxO* deletion mutant mimics a state where CAI-1 and AI-2 levels are high. We measured growth in microtiter plates by following the OD₆₀₀ for 16 hours. We found that deletion of *luxS* highly impacts growth in subMIC TOB and GEN (Fig. 5B and C). As a corollary, deletion of *luxO* slightly improves growth in presence of both antibiotics. On the other hand, deletion of *cqsA* negatively impacts growth in presence of gentamicin but to a lesser extent when compared to the *luxS* mutant (Fig. 5C). This suggests a protective role of AI-2 signaling against aminoglycoside action in *V. cholerae* cells. Figure 5. Growth curves of *V. cholerae* QS mutants in (A) absence or (B) presence of sublethal concentrations of tobramycin (TOB, 0.5 μ g/mL) and (C) gentamicin (GEN, 0.5 μ g/mL). Error bars indicate standard deviation. We further asked whether deletion of *luxS* increases susceptibility to lethal doses of antibiotics (Fig. 6). We observed no difference in the MIC of neither tobramycin nor gentamicin when we compared different mutants to wild type (Table 2). We thus treated *V. cholerae* cultures grown in rich media at OD_{600} 1.0 with these antibiotics at 10 to 20x the MIC for 4 hours, and counted the proportion of surviving CFUs (Fig. 6). Strikingly, when compared to the WT, the number of surviving bacteria is highly decreased in the $\Delta luxS$ strain (\approx 2 and 4 logs difference in gentamicin and tobramycin, respectively) with $\Delta cqsA$ and $\Delta luxO$ mutants exhibiting equivalent survival to WT strain. Table 2. MIC measured by *E-test* (µg/mL) | Strain | Tobramycin | Gentamicin | |--------|------------|------------| | WT | 1 | 1 | | ΔluxS | 1 | 1 | | ΔcqsA | 1 | 1 | | ΔΙυχΟ | 1 | 1 | Figure 6. Tolerance of V. cholerae QS mutants to lethal concentrations of aminoglycosides. Bacterial populations were treated with lethal concentrations of tobramycin (20X MIC) and gentamicin (10X MIC) for 4 hours. Represented are 10 μL drops of the indicated dilutions prior treatment (T0) and post treatment (T4). This is a representative experiment of three independent experiments with similar results. #### DISCUSSION 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349350 351 352 353 354 355 356 We based this study on our previous findings that SOS is induced by subMICs of aminoglycosides in QS proficient (hapR+) but not in QS deficient (hapR-) V. cholerae ([17] and Figure S2). The observation that V. cholerae strain lacking HapR fails to trigger aminoglycoside-mediated SOS induction prompted us to investigate how the responses to subMIC aminoglycosides vary in different QS contexts in this species. The transcriptomic analysis of both HapR- or HapR+ cells treated with 2% MIC of tobramycin revealed substantially different gene expression profiles between the two strains, specifically regarding the expression of genes involved in translation, cell energy and sugar transport processes (Fig. S1), which are known to modulate the physiological activity of aminoglycosides in bacteria [14,31-34]. Aminoglycosides are antibiotics known to target the ribosome, generating mistranslation and protein stress [35]. In agreement with this, we observed the induction of several members of the heat-shock regulon by subMIC TOB in both strains, showing that even very low concentrations of these drugs are able to generate protein stress in V. cholerae. However, the extent of this induction seems to be dependent on the QS state of the cells as we noticed a greater induction of the heat-shock regulon in hapR+ cells, thus suggesting a link between QS and response to aminoglycoside treatment in V. cholerae. Moreover, when we treated the hapR+ strain of V. cholerae with subMIC TOB we observed the upregulation of several genes whose expression is positively controlled by AphA, and the downregulation of genes known to be repressed by AphA [26,27] (Fig 3A). This suggests that subMIC tobramycin treatment mimics a state of low cell density, which is characterized by the absence (or low concentration) of autoinducers and the lack of activation of the respective QS systems. How subMIC TOB leads to the activation of the low cell density regulon is not clear but it is possible that subMIC tobramycin interferes with one or several of these QS systems. In fact, we show that subMIC TOB seems to interfere with AI-2 QS signaling, as we observed that AI-2-dependent bioluminescence production in Photorhabdus luminescens is halted by subMIC TOB. Thus, by interfering with LuxS/AI-2 system, subMIC TOB could partially inhibit the LuxS - LuxO phosphorylation cascade and lead to an increase of AphA protein levels in the cell with the activation of AphA regulon. However, it has been suggested that the QS network of *V. cholerae* is quite robust and resilient to signal perturbations by relying on four functionally redundant QS circuits [8] and that full QS network activation requires the concerted action of AI-2, CAI-1 and DPO molecules, which act together to fully repress AphA [29]. Thus, it is possible that some other additional factors, together with low AI-2 signaling, can be involved in the AphA regulon activation by subMIC TOB. Given the lack of AG-mediated SOS induction in *V. cholerae hapR*- (Fig. S3), and the observation that AI-2 signaling seems to be affected by tobramycin (Fig. 3B), we also sought to determine whether AG-mediated SOS induction in *V. cholerae* relies on this interspecies QS system. We found that subMIC TOB generates higher levels of genotoxic stress in absence of AI-2 signaling, as we observed a greater induction of SOS response in the *luxS* mutant (Fig. 4). Moreover, deficiency of LuxS is highly detrimental for *V. cholerae* growth in subMIC aminoglycosides (Fig. 5) and survival to lethal doses of these antibiotics (Fig. 6). The results described here suggest an interplay between aminoglycoside activity and QS in *V. cholerae*: on one hand, we show that subMIC TOB affects AI-2 signaling. On the other, we demonstrate the QS state of the cells (specially mediated by the luxS/AI-2 system) seems to dictate the response of *V. cholerae* to aminoglycosides. Several studies have demonstrated that QS signaling in bacteria often controls a multitude of processes that promote tolerance and resistance to several antibiotics. For example, expression of the MexAB-OprM efflux pump is positively controlled by QS and promotes resistance to beta-lactams in *Pseudomonas aeruginosa* [36]. Also, biofilm formation, which is critical to aminoglycoside susceptibility of *P. aeruginosa* biofilms to aminoglycosides increases in presence of QS inhibitors of susceptibility [37], is known to be controlled by QS [38,39] and it has been shown that the the LasI/LasR and RhII/RIhR systems [40]. In addition, the AI-2/LuxS interspecies QS system has also been shown to modulate antibiotic resistance mechanisms in several species. Examples include the AI-2/LuxS – dependent upregulation of MDR efflux pumps which promotes fluoroquinolones resistance in *E. coli* [41] and *Streptococcus suis* [42] or the AI-2/LuxS dependent upregulation of a two-component system responsible for increasing vancomycin resistance in *Staphylococcus aureus* [43]. Other examples linking AI-2/LuxS QS system and drug resistance are reviewed in [44]. In *V. cholerae*, the molecular mechanisms behind Al-2-mediated protection against aminoglycosides remain to be elucidated. Nonetheless, such protection raises the interesting possibility that even small populations of *V. cholerae*, when in a high cell density multi-species context, can be less susceptible to aminoglycoside action. This may be of particular importance in the context of infections in the human gut where Al-2 producing communities may help low loads of *V. cholerae* to survive aminoglycoside treatment. In parallel, the fact that subMIC TOB interferes with QS signaling may have important consequences in the context of infection. In fact, AI-2 seems to be the necessary signal to repress biofilm formation and induce dispersal in *V. cholerae* [45]. Thus, by interfering with this QS system, low doses of aminoglycosides may enhance biofilm formation and virulence of *V. cholerae*. Further work is necessary to uncover the mechanism by which low doses of tobramycin (and potentially aminoglycosides in general) disrupt the interspecies QS system. Given that we do not observe any effect of TOB on the transcription of QS genes in our RNAseq data, one hypothesis may be that aminoglycosides affect the correct synthesis of specific proteins involved in this system. Alternatively, aminoglycoside molecules may directly interfere with AI-2 receptors. In fact, subMIC aminoglycosides attenuate QS-mediated virulence phenotypes in *P. aeruginosa* and they were found to possess strong binding properties to the QS receptor of *P. aeruginosa*, LasR [46]. Overall, the results obtained here contribute to the notion that QS communication and antibiotic resistance/tolerance mechanisms are linked. A link between bacterial signaling and antibiotic tolerance was also previously shown for a different signaling system, through indole secretion [13,15]. Manipulation of cell to cell signaling may thus be a potential way to fight antimicrobial resistance. of publication. #### **ACKNOWLEDGEMENTS** AC is part of the Pasteur - Paris University (PPU) International PhD Program, which has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 665807. We thank Hugo Varet and Odile Sismeiro, Biomics Platform, C2RT, Institut Pasteur, Paris, France, supported by France Génomique (ANR-10-INBS-09-09) and IBISA; for RNA-sequencing and analysis. This work was supported by the Institut Pasteur, the Centre National de la Recherche Scientifique (CNRS-UMR 3525), the Fondation pour la Recherche Médicale (FRM Grant No. DBF20160635736), ANR Unibac (ANR-17-CE13-0010-01) and Institut Pasteur grant PTR 245-19. Accession numbers for RNAseq: the data for the RNAseq of the hapR- strain has been submitted in the GenBank Sequence Read Archive (SRA) under project number: PRJNA506714. For hapR+ strain, the RNAseq data have been deposited at GEO: GSE182561 and are publicly available as of the date #### 421 **REFERENCES** | - 1 | า | า | |-----|---|---| | 4 | , | , | - 423 1. Rutherford, S.T.; Bassler, B.L. Bacterial Quorum Sensing: Its Role in Virulence and - 424 Possibilities for Its Control. *Cold Spring Harbor perspectives in medicine* 2012, 2. - 425 2. Bandara, H.M.H.N.; Lam, O.L.T.; Jin, L.J.; Samaranayake, L. Microbial Chemical Signaling: A - 426 Current Perspective. Critical Reviews in Microbiology 2012, - 427 doi:10.3109/1040841X.2011.652065 - 428 3. Waters, C.M.; Bassler, B.L. Quorum Sensing: Cell-to-Cell Communication in Bacteria. *Annual* - review of cell and developmental biology **2005**, 21, 319–346, - 430 doi:10.1146/annurev.cellbio.21.012704.131001. - 431 4. Schauder, S.; Bassler, B.L. The Languages of Bacteria. *Genes and Development* 2001, 15, - 432 1468–1480, doi:10.1101/gad.899601 - 433 5. Papenfort, K.; Bassler, B.L. Quorum Sensing Signal-Response Systems in Gram-Negative - Bacteria. *Nature Reviews Microbiology* 2016, doi: 10.1038/nrmicro.2016.89 - 435 6. Pereira, C.S.; Thompson, J.A.; Xavier, K.B. Al-2-Mediated Signalling in Bacteria. FEMS - 436 *Microbiology Reviews* 2013, doi: 10.1111/j.1574-6976.2012.00345.x - 437 7. Miller, M.B.; Skorupski, K.; Lenz, D.H.; Taylor, R.K.; Bassler, B.L. Parallel Quorum Sensing - 438 Systems Converge to Regulate Virulence in Vibrio Cholerae. *Cell* **2002**, doi:10.1016/S0092- - 439 8674(02)00829-2. - 440 8. Jung, S.A.; Chapman, C.A.; Ng, W.-L. Quadruple Quorum-Sensing Inputs Control Vibrio - 441 Cholerae Virulence and Maintain System Robustness. PLoS pathogens 2015, 11, e1004837, - 442 doi:10.1371/journal.ppat.1004837. - 443 9. Yao, Y.; Martinez-Yamout, M.A.; Dickerson, T.J.; Brogan, A.P.; Wright, P.E.; Dyson, H.J. - 444 Structure of the Escherichia Coli Quorum Sensing Protein SdiA: Activation of the Folding - Switch by Acyl Homoserine Lactones. *Journal of Molecular Biology* **2006**, - 446 doi:10.1016/j.jmb.2005.10.041. - 447 10. Lindsay, A.; Ahmer, B.M.M. Effect of SdiA on Biosensors of N-Acylhomoserine Lactones. - 448 *Journal of Bacteriology* **2005**, doi:10.1128/JB.187.14.5054-5058.2005. - 449 11. Xavier, K.B.; Bassler, B.L. Regulation of Uptake and Processing of the Quorum-Sensing - 450 Autoinducer Al-2 in Escherichia Coli. *Journal of Bacteriology* **2005**, - 451 doi:10.1128/JB.187.1.238-248.2005. - 452 12. Surette, M.G.; Miller, M.B.; Bassler, B.L. Quorum Sensing in Escherichia Coli, Salmonella - 453 Typhimurium, and Vibrio Harveyi: A New Family of Genes Responsible for Autoinducer - 454 Production. Proceedings of the National Academy of Sciences of the United States of - 455 *America* **1999**, doi:10.1073/pnas.96.4.1639. - 456 13. Vega, N.M.; Allison, K.R.; Khalil, A.S.; Collins, J.J. Signaling-Mediated Bacterial Persister - 457 Formation. *Nature Chemical Biology* **2012**, doi:10.1038/nchembio.915. - 458 14. Allison, K.R.; Brynildsen, M.P.; Collins, J.J. Metabolite-Enabled Eradication of Bacterial - 459 Persisters by Aminoglycosides. *Nature* **2011**, doi:10.1038/nature10069. - 460 15. Lang, M.; Krin, E.; Korlowski, C.; Sismeiro, O.; Varet, H.; Coppée, J.-Y.; Mazel, D.; Baharoglu, - 461 Z. Sleeping Ribosomes: Bacterial Signaling Triggers RaiA Mediated Persistence to - 462 Aminoglycosides. *iScience* **2021**, *24*, 103128, doi:10.1016/j.isci.2021.103128. - 463 16. Goh, E.B.; Yim, G.; Tsui, W.; McClure, J.A.; Surette, M.G.; Davies, J. Transcriptional - 464 Modulation of Bacterial Gene Expression by Subinhibitory Concentrations of Antibiotics. - 465 Proceedings of the National Academy of Sciences of the United States of America 2002, - 466 doi:10.1073/pnas.252607699. - 467 17. Baharoglu, Z.; Mazel, D. Vibrio Cholerae Triggers SOS and Mutagenesis in Response to a - 468 Wide Range of Antibiotics: A Route towards Multiresistance. Antimicrobial Agents and - 469 *Chemotherapy* **2011**, doi:10.1128/AAC.01549-10. - 470 18. Baharoglu, Z.; Krin, E.; Mazel, D. RpoS Plays a Central Role in the SOS Induction by Sub- - 471 Lethal Aminoglycoside Concentrations in Vibrio Cholerae. *PLoS Genetics* **2013**, - 472 doi:10.1371/journal.pgen.1003421. - 473 19. Mazel, D. Integrons: Agents of Bacterial Evolution. *Nature Reviews Microbiology* 2006, doi: - 474 10.1038/nrmicro1462 - 475 20. Baharoglu, Z.; Bikard, D.; Mazel, D. Conjugative {DNA} Transfer Induces the Bacterial {SOS} - 476 Response and Promotes Antibiotic Resistance Development through Integron Activation. - 477 {PLoS} Genet. **2010**, 6, e1001165, doi:10.1371/journal.pgen.1001165. - 478 21. Davis, B.D. Mechanism of Bactericidal Action of Aminoglycosides. *Microbiological Reviews* - 479 1987, 10.1128/mmbr.51.3.341-350.1987. - 480 22. Baharoglu, Z.; Krin, E.; Mazel, D. Connecting Environment and Genome Plasticity in the - 481 Characterization of Transformation-Induced (SOS) Regulation and Carbon Catabolite - 482 Control of the Vibrio Cholerae Integron Integrase. J. Bacteriol. 2012, 194, 1659–1667, - 483 doi:10.1128/JB.05982-11. - 484 23. Krin, E.; Pierlé, S.A.; Sismeiro, O.; Jagla, B.; Dillies, M.A.; Varet, H.; Irazoki, O.; Campoy, S.; - 485 Rouy, Z.; Cruveiller, S.; et al. Expansion of the SOS Regulon of Vibrio Cholerae through - 486 Extensive Transcriptome Analysis and Experimental Validation. BMC Genomics 2018, - 487 doi:10.1186/s12864-018-4716-8. - 488 24. Baharoglu, Z.; Babosan, A.; Mazel, D. Identification of Genes Involved in Low - 489 Aminoglycoside-Induced (SOS) Response in Vibrio Cholerae: A Role for Transcription - 490 Stalling and Mfd Helicase. *Nucleic Acids Res.* **2014**, *42*, 2366–2379, - 491 doi:10.1093/nar/gkt1259. - 492 25. Krin, E.; Chakroun, N.; Turlin, E.; Givaudan, A.; Gaboriau, F.; Bonne, I.; Rousselle, J.C.; - 493 Frangeul, L.; Lacroix, C.; Hullo, M.F.; et al. Pleiotropic Role of Quorum-Sensing Autoinducer - 494 2 in Photorhabdus Luminescens. Applied and Environmental Microbiology 2006, - 495 doi:10.1128/AEM.00398-06. - 496 26. Haycocks, J.R.J.; Warren, G.Z.L.; Walker, L.M.; Chlebek, J.L.; Dalia, T.N.; Dalia, A.B.; Grainger, - 497 D.C. The Quorum Sensing Transcription Factor AphA Directly Regulates Natural - 498 Competence in Vibrio Cholerae. *PLoS Genetics* **2019**, doi:10.1371/journal.pgen.1008362. - 499 27. Rutherford, S.T.; Van Kessel, J.C.; Shao, Y.; Bassler, B.L. AphA and LuxR/HapR Reciprocally - 500 Control Quorum Sensing in Vibrios. *Genes and Development* **2011**, - 501 doi:10.1101/gad.2015011. - 502 28. Papenfort, K.; Silpe, J.E.; Schramma, K.R.; Cong, J.P.; Seyedsayamdost, M.R.; Bassler, B.L. A - Vibrio Cholerae Autoinducer-Receptor Pair That Controls Biofilm Formation. *Nature* - 504 *Chemical Biology* **2017**, doi:10.1038/nchembio.2336. - 505 29. Herzog, R.; Peschek, N.; Fröhlich, K.S.; Schumacher, K.; Papenfort, K. Three Autoinducer - Molecules Act in Concert to Control Virulence Gene Expression in Vibrio Cholerae. *Nucleic* - 507 Acids Research **2019**, doi:10.1093/nar/gky1320. - 508 30. Krin, E.; Derzelle, S.; Bedard, K.; Adib-Conquy, M.; Turlin, E.; Lenormand, P.; Hullo, M.F.; - Bonne, I.; Chakroun, N.; Lacroix, C.; et al. Regulatory Role of UvrY in Adaptation of - 510 Photorhabdus Luminescens Growth inside the Insect. Environmental Microbiology 2008, - 511 doi:10.1111/j.1462-2920.2007.01528.x. - 512 31. Li, H.; Cheng, Z.; Zhang, T.; Zhu, J.; Li, M.; Ye, J.; Du, C.; Zhang, S.; Yang, M.; Peng, X. - 513 Correction: Pyruvate Cycle Increases Aminoglycoside Efficacy and Provides Respiratory - 514 Energy in Bacteria (Proceedings of the National Academy of Sciences of the United States of - 515 America (2018) 115 (E1578-E1587) DOI: 10.1073/Pnas.1714645115). *Proceedings of the* - National Academy of Sciences of the United States of America **2019**, 116, 2774–2775, - 517 doi:10.1073/pnas.1816299115. - 518 32. Kohanski, M.A.; Dwyer, D.J.; Wierzbowski, J.; Cottarel, G.; Collins, J.J. Mistranslation of - 519 Membrane Proteins and Two-Component System Activation Trigger Antibiotic-Mediated - 520 Cell Death. *Cell* **2008**, *135*, 679–690, doi:10.1016/j.cell.2008.09.038. - 33. Hinz, A.; Lee, S.; Jacoby, K.; Manoil, C. Membrane Proteases and Aminoglycoside Antibiotic - Fig. 3. Resistance. *Journal of Bacteriology* **2011**, doi:10.1128/JB.05133-11. - 523 34. Carvalho, A.; Mazel, D.; Baharoglu, Z. Deficiency in Cytosine DNA Methylation Leads to High - 524 Chaperonin Expression and Tolerance to Aminoglycosides in Vibrio Cholerae. *PLOS Genetics* - 525 **2021**, *17*, doi:10.1371/journal.pgen.1009748. - 526 35. Magnet, S.; Blanchard, J.S. Molecular Insights into Aminoglycoside Action and Resistance. - 527 *Chemical Reviews* **2005**, *105*, 477–497, doi:10.1021/cr0301088. - 528 36. Maseda, H.; Sawada, I.; Saito, K.; Uchiyama, H.; Nakae, T.; Nomura, N. Enhancement of the - MexAB-OprM Efflux Pump Expression by a Quorum-Sensing Autoinducer and Its - 530 Cancellation by a Regulator, MexT, of the MexEF-OprN Efflux Pump Operon in - Pseudomonas Aeruginosa. Antimicrobial Agents and Chemotherapy 2004, - 532 doi:10.1128/AAC.48.4.1320-1328.2004. - 533 37. Wilton, M.; Charron-Mazenod, L.; Moore, R.; Lewenza, S. Extracellular DNA Acidifies - Biofilms and Induces Aminoglycoside Resistance in Pseudomonas Aeruginosa. *Antimicrobial* - 535 *Agents and Chemotherapy* **2016**, doi:10.1128/AAC.01650-15. - 536 38. Davies, D.G.; Parsek, M.R.; Pearson, J.P.; Iglewski, B.H.; Costerton, J.W.; Greenberg, E.P. The - 537 Involvement of Cell-to-Cell Signals in the Development of a Bacterial Biofilm. Science 1998, - 538 doi:10.1126/science.280.5361.295. - 539 39. Hardie, K.R.; Heurlier, K. Establishing Bacterial Communities by "Word of Mouth": LuxS and - Autoinducer 2 in Biofilm Development. *Nature Reviews Microbiology* **2008**, - 541 doi:10.1038/nrmicro1916. - 542 40. Brackman, G.; Cos, P.; Maes, L.; Nelis, H.J.; Coenye, T. Quorum Sensing Inhibitors Increase - the Susceptibility of Bacterial Biofilms to Antibiotics in Vitro and in Vivo. Antimicrobial - 544 *Agents and Chemotherapy* **2011**, doi:10.1128/AAC.00045-11. - 545 41. Yang, S.; Lopez, C.R.; Zechiedrich, E.L. Quorum Sensing and Multidrug Transporters in - 546 Escherichia Coli. Proceedings of the National Academy of Sciences of the United States of - 547 *America* **2006**, doi:10.1073/pnas.0502890102. - 42. Wang, Y.; Liu, B.; Li, J.; Gong, S.; Dong, X.; Mao, C.; Yi, L. LuxS/AI-2 System Is Involved in - 549 Fluoroquinolones Susceptibility in Streptococcus Suis through Overexpression of Efflux - Pump SatAB. Veterinary Microbiology 2019, doi:10.1016/j.vetmic.2019.05.006. - 43. Xue, T.; Zhao, L.; Sun, B. LuxS/Al-2 System Is Involved in Antibiotic Susceptibility and - 552 Autolysis in Staphylococcus Aureus NCTC 8325. International Journal of Antimicrobial - 553 *Agents* **2013**, doi:10.1016/j.ijantimicag.2012.08.016. - 554 44. Wang, Y.; Liu, B.; Grenier, D.; Yi, L. Regulatory Mechanisms of the LuxS/AI-2 System and - Bacterial Resistance. *Antimicrobial Agents and Chemotherapy* 2019, doi: - 556 10.1128/AAC.01186-19 - 557 45. Bridges, A.A.; Bassler, B.L. The Intragenus and Interspecies Quorum-Sensing Autoinducers - 558 Exert Distinct Control over Vibrio Cholerae Biofilm Formation and Dispersal. *PLoS Biology* - **2019**, doi:10.1371/journal.pbio.3000429. - 560 46. Khan, F.; Lee, J.; Javaid, A.; Park, S.; Kim, Y. Inhibition of Biofilm and Virulence Properties of - Pseudomonas Aeruginosa by Sub-Inhibitory Concentrations of Aminoglycosides. *Microbial* - 562 *Pthogenesis* **2020**, *146*, 104249, doi:10.1016/j.micpath.2020.104249. | 564 | FIGURE LEGENDS | |------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 565
566 | Figure 1. Simplified QS network of <i>V. cholerae</i> . Intra and Inter-species autoinducers activate a phosphorylation cascade through LuxU and LuxO, leading to the expression of Qrr1-4 sRNAs which | | 567 | in turn promote expression of the AphA while inhibiting expression of HapR. | | 568 | Figure 2. Transcriptomic profiles of <i>V. cholerae</i> cells treated with subMIC TOB depend on HapR | | 569 | proficiency. Volcano plots depicting gene expression changes caused by subMIC TOB (2% MIC) in | | 570 | HapR deficient (left panel) or HapR proficient (right panel) V. cholerae cells. The names of the genes | | 571 | with the strongest fold changes are represented. The x-axis represents the log2 of the fold change | | 572 | plotted against the log10 of the adjusted p-value. | | 573 | Figure 3. subMIC TOB interferes with QS signalling. A. Expression changes induced by subMIC TOB | | 574 | (2% MIC) of genes belonging to operons known to be regulated by AphA. B. Effect of subMIC TOE | | 575 | (50% MIC) on QS dependent luminescence of P. luminescens. Error bars indicate standard | | 576 | deviations. * p-value < 0.05 by Student's t-test. | | 577 | Figure 4. Aminoglycoside-mediated SOS induction in <i>V. cholerae</i> depends on LuxS/AI-2 signalling. | | 578 | SOS induction by (A) subMIC tobramycin (TOB, 0.02 μg/mL) or (B) subMIC ciprofloxacin (CIP, 0.005 | | 579 | μg/mL) in <i>V. cholerae</i> and <i>E. coli</i> cells. | | 580 | Figure 5. Growth curves of V. cholerae QS mutants in (A) absence or (B) presence of sublethal | | 581 | concentrations of tobramycin (TOB, 0.5 $\mu g/mL$) and (C) gentamicin (GEN, 0.5 $\mu g/mL$). Error bars | | 582 | indicate standard deviation. | | 583 | Figure 6. Tolerance of V. cholerae QS mutants to lethal concentrations of aminoglycosides. | | 584 | Bacterial populations were treated with lethal concentrations of tobramycin (20X MIC) and | | 585 | gentamicin (10X MIC) for 4 hours. Represented are 10 μ l drops of the indicated dilutions prior | | 586 | treatment (T0) and post treatment (T4). This is a representative experiment of three independent | | 587 | experiments with similar results. | | 588 | | | 589 | | | 590 | | | 591 | | **Figure S1. A.** Fold change values of several members of the heat-shock regulon induced by subMIC TOB in the different QS background contexts. **B-D**. subMIC TOB — induced fold change of several genes belonging to the specified categories in both hapR- and hapR+ background contexts. All represented fold change values are statistically significant with p<0.01, as calculated for transcriptomics analysis. **Figure S2.** subMIC TOB (50% MIC) fails to affect luminescence of a *P. luminescens* $\Delta luxS$ strain. Error bars indicate standard deviations; n=3. **Figure S3.** SOS induction in both hapR- and hapR+ context of *V. cholerae* by sub inhibitory concentrations of tobramycin (TOB) or mitomycin C (MMC). Error bars indicate standard deviations. *, p-value < 0.05 by Student's *t*-test. #### 619 Table S1. Primers used in this study | Name | Sequence | |--------|--| | ZB47 | CCCGTTCCATACAGAAGCTGGGCGAACAAACGATGCTCGC | | ZB48 | GACATTATTTGCCGACTACCTTGGTGATCTCGCCTTTCACG | | ZIP413 | AAACGTGATGAAATTCATCAGTTGCG | | ZIP414 | GCGAGCATCGTTTGTTCGCCCAGCTTCTGTATGGAACGGGCACCGACGCCGTGTCTTCTACC | | ZIP415 | CGTGAAAGGCGAGATCACCAAGGTAGTCGGCAAATAATGTCGCGATGAGAGAATGGATCAACC | | | | | ZIP416 | GAATATGGACCTGCAGGACGAATGAGC | | ZIP81 | GCCAACGATGGTAGTGAAGTGCTCAAGC | | ZIP82 | GCGAGCATCGTTTGTTCGCCCAGCTTCTGTATGGAACGGGATGCATAAATAA | | ZIP83 | CGTGAAAGGCGAGATCACCAAGGTAGTCGGCAAATAATGTCCGCAATATATCCTAGTTATAAAAAAATTTAACG | | ZIP84 | TGACAGGGGCTTTAGCGGGCATTGCC | | ZIP87 | AAGTGGTACTGGAAGGTCGCAAGC | | ZIP88 | GCGAGCATCGTTTGTTCGCCCAGCTTCTGTATGGAACGGGTTCCTTTCTCCCCTTTCTGGCTCGC | | ZIP89 | CGTGAAAGGCGAGATCACCAAGGTAGTCGGCAAATAATGTCGTCGGTTCTGTAAACGTTAAAAATACAAAAGC | | ZIP90 | GGTACACCGCTTAACGTTCAGCTGC | | ZIP191 | CGTGACTGGAGATAAAACGCAGATCTGG | | ZIP192 | GCGAGCATCGTTTGTTCGCCCAGCTTCTGTATGGAACGGGAACAAGATTCAGCAGCACGTATTGC | | ZIP193 | CGTGAAAGGCGAGATCACCAAGGTAGTCGGCAAATAATGTCCTATCAGAAACAGCGGAGATATTAGC | | ZIP194 | TCACCAAACAGCGCCGATTCAACGG |