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Abstract

Background: Zika virus (ZIKV) emerged in Latin America and the Caribbean (LAC) region in 2013, with serious
implications for population health in the region. In 2016, the World Health Organization declared the ZIKV outbreak
a Public Health Emergency of International Concern following a cluster of associated neurological disorders and
neonatal malformations. In 2017, Zika cases declined, but future incidence in LAC remains uncertain due to gaps in
our understanding, considerable variation in surveillance and the lack of a comprehensive collation of data from
affected countries.

Methods: Our analysis combines information on confirmed and suspected Zika cases across LAC countries and a
spatio-temporal dynamic transmission model for ZIKV infection to determine key transmission parameters and
projected incidence in 90 major cities within 35 countries. Seasonality was determined by spatio-temporal estimates
of Aedes aegypti vectorial capacity. We used country and state-level data from 2015 to mid-2017 to infer key model
parameters, country-specific disease reporting rates, and the 2018 projected incidence. A 10-fold cross-validation
approach was used to validate parameter estimates to out-of-sample epidemic trajectories.

Results: There was limited transmission in 2015, but in 2016 and 2017 there was sufficient opportunity for wide-spread
ZIKV transmission in most cities, resulting in the depletion of susceptible individuals. We predict that the highest
number of cases in 2018 would present within some Brazilian States (Sao Paulo and Rio de Janeiro), Colombia and
French Guiana, but the estimated number of cases were no more than a few hundred. Model estimates of the timing
of the peak in incidence were correlated (p < 0.05) with the reported peak in incidence. The reporting rate varied
across countries, with lower reporting rates for those with only confirmed cases compared to those who reported both
confirmed and suspected cases.

Conclusions: The findings suggest that the ZIKV epidemic is by and large over within LAC, with incidence projected to
be low in most cities in 2018. Local low levels of transmission are probable, but the estimated rate of infection suggests
that most cities have a population with high levels of herd immunity.
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Background

Starting as early as 2013 [1, 2], the Zika virus (ZIKV) in-
vaded northeast Brazil and began to spread in the Latin
America and Caribbean (LAC) region. The subsequent
discovery of a cluster of Guillain-Barré syndrome cases
and the emergence of severe birth defects led the World
Health Organization to declare the outbreak a Public
Health Emergency of International Concern in early
2016. The virus has since spread to 49 countries and ter-
ritories across the Americas where autochthonous trans-
mission has been confirmed [3].

However, 2017 saw a marked decline in reported Zika
cases and its severe disease manifestations [4]. This de-
cline has been widely attributed to the build-up of im-
munity against ZIKV in the wider human population [5],
although it remains unknown how many people have
been infected. To date, there has been limited use of
population-based surveys to determine the circulation
and seroprevalence of ZIKV in LAC, owing to challenges
in interpretation of serological tests that cross-react with
other flaviviruses (e.g. dengue) [6, 7]. In addition to the
reduction in Zika cases, there has also been a marked re-
duction in incidence of reported dengue and chikungunya
cases in Brazil, meaning that the role of climatic and other
factors affecting mosquito density or cross-immunity be-
tween arboviruses cannot be ruled out.

Whilst the decline in ZIKV incidence is undoubtedly a
positive development, it exposes clear gaps in our under-
standing of its natural history and epidemiology, which
limit our ability to plan for, detect and respond to future
epidemics. The short duration of the epidemic and the
long lead time needed to investigate comparatively rare
congenital impacts has meant maternal cohort studies,
in particular, may be statistically underpowered to assess
relative risk and factors associated with ZIKV-related ad-
verse infant outcomes [8]. The evaluation of the safety
and efficacy of ZIKV vaccine candidates [9] is now also
faced with an increasingly scarce number of sites with
sufficient ZIKV incidence [10, 11].

There is an urgent need to predict which areas in LAC
remain at risk of transmission in the near future and to
estimate the trajectory of the epidemic. Projections can
help public health policymakers plan surveillance and
control activities, particularly in areas where disease per-
sists. They can also be used by researchers, especially
those in vaccine and drug development, to update sam-
ple size calculations for ongoing studies to reflect pre-
dicted incidence within the time-window of planned
trials. The findings identified from a continental analysis
of ZIKV in LAC may be useful should ZIKV emerge in
other settings, such as quantifying the spatial patterns of
spread and impact of seasonality on incidence.

Several mathematical and computational modelling ap-
proaches have been developed to forecast continental-level
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ZIKV transmission [5, 11-14]. The focus has largely been
on estimating which areas are likely to experience epidemic
growth. It is apparent from the incidence in 2017 that many
countries no longer report an increasing incidence of cases.
Due to either data unavailability or inaccuracies in the re-
ported number of Zika cases in each country at the time of
analysis, such approaches have either not used incidence
data at all [15—17], they have fit models to data on other ar-
boviruses [14] or have used selected Zika-related incidence
data from particular countries [5, 12, 13, 18-21] to calibrate
their models. Additionally, only a small number of studies
have validated their model findings, either through com-
parison to serological surveys or comparing model outputs
to incidence data not used within model fitting [13, 19-21].
Considerably more data are now available across LAC and
spanning multiple arboviral transmission seasons. This pro-
vides a valuable opportunity to examine the nature of ZIKV
transmission and the importance of connectivity and sea-
sonality in assessing ZIKV persistence in specific locations
throughout LAC.

In this article, we apply a dynamic spatial model of
ZIKV transmission in 90 major cities across LAC and fit
the model to the latest data from 35 countries. We test
several models to account for human mobility to better
understand the impact of human movements on the
emergence of ZIKV. The model was validated using a
10-fold cross-validation comparison to the data. We use
the fitted model to quantify the expected number of
cases likely to be observed in 2018 and identify cities
likely to remain at greatest risk.

Methods

Zika case data from LAC

The weekly number of confirmed and suspected Zika cases
within each country is reported to the Pan American
Health Organization. This analysis makes use of the weekly
incidence of Zika cases in 35 countries, from January 2015
to August 2017 (Additional file 1: S1). State-level ZIKV
incidence data was available for Brazil and Mexico [22].
Confirmed cases are typically identified through a positive,
real-time reverse polymerase chain reaction blood test
using ZIKV-specific RNA primers. Suspected cases are
based on the presence of pruritic (itchy) maculopapular
rash together with two or more symptoms, including fever,
polyarthralgia (multiple joint pains), periarticular oedema
(joint swelling), or conjunctival hyperaemia (eye blood ves-
sel dilation) without secretion and itch [23, 24]. Confirmed
and suspected cases were included in this analysis because
ZIKV detection may have low sensitivity due to a narrow
window of viraemia and many samples, particularly from
the earlier phase of the epidemic, remain untested due to
laboratory overload during the epidemic [24]. Inclusion of
suspected cases in the analysis may reduce specificity due
to the non-specific clinical manifestations of ZIKV and
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similar circulating arboviruses, including dengue. The
reporting of ZIKV cases will vary considerably between
settings and is thought to depend on the arbovirus sur-
veillance system already in place, additional surveillance
specifically established for ZIKV and other viruses, and
the likelihood of an individual self-reporting with symp-
toms consistent with ZIKV infection.

A mathematical model of ZIKV infection

A deterministic meta-population model was used for
ZIKV transmission between major cities in the LAC re-
gion. Cities with a population larger than 750,000 and
large Caribbean islands were included in the model. In
total, we considered 90 locations consisting of large cities
and islands. We extracted population sizes using the UN
estimates from 2015 [25]. Migration between cities was
modelled assuming several scenarios, as follows: (1) a
simplified gravity model with one estimated parameter;
(2) a gravity model where the three exponential terms
were estimated; (3) a radiation model; (4) a data-driven
approach based on flight data; and (5) a model of local
radiation and flight movements. Gravity models assume
that movement between cities is highest when located
near each other and when both cities are large. Radi-
ation models assume that movement between cities are
affected by the size of the population in a circle be-
tween the cities (Additional file 1: S2).
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Within each city, individuals were classified by their
infection status as susceptible, pre-infectious, infectious
or recovered from ZIKV infection (Fig. 1). Upon infec-
tion, individuals were assumed to be pre-infectious for
an average of 5 days and then infectious for a subse-
quent 20 days [26, 27]. Immunity was assumed to be
life-long and no cross-protection against other flavi-
viruses was considered. We assumed that infectious in-
dividuals would not migrate between cities, owing to
possible ZIKV-related symptoms, but this assumption
was relaxed as part of the model sensitivity analysis. The
main vector for ZIKV in LAC is thought to be Aedes
aegypti, whilst Aedes albopictus and other species were
thought to play a minor role in transmission [28]. The
seasonality and scale of ZIKV transmission was as-
sumed to be specific to each city and dependent across
cities, using a vectorial capacity modelling approach.
To estimate vectorial capacity, we modelled the prob-
ability that ZIKV may transmit for each day of the year,
and fed this time-varying probability into the mathem-
atical model (Additional file 1: S3) [29-31]. We esti-
mated the time-varying reproduction number (Rg(t)),
defined as the average number of secondary infections
that result from one infected person within a totally
susceptible population, which varies in time due to the
seasonality in vectorial capacity within each city. The
seasonality curves were summarised by reporting the
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Fig. 1 Schematic of the meta-population model structure that focuses on the northern part of South America and the Caribbean islands. Each
city consists of individuals who are assumed to be susceptible (S), pre-infectious (E), infectious (I) or recovered (R) from ZIKV infection. Movement
of pre-infectious individuals between cities is modelled assuming different population flows, where a gravity model is illustrated. Movements to
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average number of days per year where Ry;(t) was greater
than 1, and the mean value of Ry(t) for a typical year.

Due to the difficulties in ZIKV disease surveillance
[23], the weekly incidence of reported cases was unlikely
to reflect the true incidence in each setting and we did not
fit the model to weekly incidence data. We instead used
summary statistics in the model fitting procedure, fo-
cussing on the timing of the peak in incidence and
whether the annual incidence was above 1 case per
100,000 in each country. The timing of the peak in out-
breaks has been previously shown to be a useful sum-
mary statistic for epidemic dynamics [32, 33], and
preliminary analysis illustrated that annual incidence
had a good discriminatory power for the estimating pa-
rameters of the model. Although surveillance quality
varies between settings, the timing of the reported peak
within countries is less sensitive to systematic error. A
sensitivity analysis confirmed that only a small number
of observations were susceptible to large changes in
surveillance prior to April 2016 and after January 2017,
making the reported timing of the peak robust to
changes in surveillance (Additional file 1: S4).

The model estimate of new infections within each city
was aggregated to the country or state level (for Brazil
and Mexico) and scaled to ZIKV cases, enabling compar-
isons with the available data. The maximal value of Ry(t)
and the best-fitting migration model (including the max-
imal leaving rate from cities) were estimated in the
model fitting procedure. Parameters were estimated
using approximate Bayesian computation (ABC)-se-
quential Monte Carlo methods [34]. ABC methods use
summary statistics to estimate model parameters from
qualitative epidemic characteristics. The sequential pro-
cedure of ABC—sequential Monte Carlo means that each
model of human mobility could be treated as a param-
eter. The prior and posterior distributions of selecting
each model was used to estimate Bayes factors to de-
termine the evidence in favour of one model over an-
other. Multiple parameter sets with equivalent fit were
produced during the model fitting, and were used to
provide the mean and 95% credible intervals (CI) of
parameter estimates, numbers infected between 2015
and 2017, timing of the peak in the epidemic, and pro-
jections of the numbers of ZIKV cases in 2018. The
distribution of the timing of the peak was compared to
the data using Bayesian posterior checks. The values
correspond to probability that the data take a value
less than or equal to the cumulative distribution func-
tion of the model, and values between 0.01 and 0.99
can be interpreted as evidence that the data and model
estimate come from the same distribution. For each
country the time-series of reported cases were com-
pared to the normalised model incidence. We compare
the total number of reported cases to the estimated
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cumulative median (and 95% CI) number of infections
to estimate the country-specific probability of report-
ing a case per infection.

To validate the parameter estimates and model output
a cross-validation approach was used. The data was split
into 10 randomly allocated groups by country, each group
was sequentially excluded from the parameter estimation
procedure and the peak timing of the out-of-sample par-
ameter estimates were compared to the data. The 95% CI
of the cross-validated estimates were compared to the
within-sample peak estimates. For the 2018 projections,
we use parameter values estimated from the data to pro-
ject forward the number of cases, accounting for the esti-
mated reporting rate and uncertainty in model output.
The 95% prediction interval had a variance equal to the
sum of the variance of the model prediction and the vari-
ance of the expected value assuming a Poisson distribu-
tion. Comparison of 2018 predictions to data were not
possible as data from affected countries have not been
made publicly available (as of 2 May 2018).

Although there have been numerous reports of sexual
transmission of ZIKV, especially within returning travel-
lers [35, 36], the evidence for sexual transmission of
ZIKV as an important route of transmission is debatable.
Several modelling studies suggest that sexual transmis-
sion may be an important transmission route [37, 38],
whilst other models have been used to argue that it is
not [39, 40]. Counotte et al. [41] provide a living sys-
tematic review of the evidence for sexual transmission
of ZIKV and conclude that modelling studies indicate
that the reproduction number for sexual transmission
of ZIKV is most likely to be below 1.00. To better under-
stand the importance of sexual transmission, surveillance
that distinguishes between vector and sexual transmission
is required and is currently lacking. Herein, we exclude
sexual transmission as a modelled route of transmission.
Due to current unexplained variability [42], we do not
project the expected numbers of neonatal malformations
or neurological disorders, such as microcephaly, associ-
ated with ZIKV infection.

Results

A gravity model, which assumes migration scales with
large populations that are closely located to one another,
provided the best fit for the data (Table 1). We identified
substantial spatial heterogeneity in transmission (country
summaries are provided in Table 2); the average estimated
value of Ry was 1.81 (95% CI 1.74-1.87) and the average
number of days per year where Ry(t) >1 was 253 days
(95% CI 250-256 days). The average number of days
where Ry(t) > 1 varied from 116 days days (Costa Rica) to
almost year-round transmission (several cities within
Brazil (Belem & Salvador), Colombia (Medellin & Cali),
and Aruba and Curacao Islands). The mean value of
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Table 1 Summary of the evidence for each population movement model tested on the Zika data. The prior and posterior
probabilities were estimated using the approximate Bayesian computation — sequential Monte Carlo procedure

(see Additional file 1 for further details)

Model of population movements  Gravity (simple) - M;  Gravity (exponential Radiation — M3 Flight data - M, Combination of flight
terms included) - M, and radiation — Ms

Prior probability (71(m,)) 0232 0.246 0224 0.052 0.092

Posterior probability 0.001 0.344 0.001 0.001 0.001

(P(my]x)

Bayes factor 0.003 1 0.002 0.001 0.001

Evidence for alternative model Model has best

(and against model m,)

Very weak evidence
of fitting data

evidence of fitting data  of fitting data

Very weak evidence Very weak evidence

of fitting data

Very weak evidence
of fitting data

Ry(t) was above 2.0 in many Caribbean islands (Aruba,
Bahamas, Barbados, Curacao, Guadeloupe) and was low
within Argentinian cities, Cost Rica and French Guiana.
The mean estimate of Ry(t) was often higher within cit-
ies and islands that also reported a longer window of
transmission with Ry(t) > 1. However, several cities (in-
cluding Boa Vista, Aracaju and Natal in Brazil) were es-
timated to have maximal Ry(t) values above 2.5 with a
relatively small window of transmission within the year.
Despite the emergence of the ZIKV epidemic in early
2015 in north-eastern Brazil, the incidence of cases
remained relatively low in 2015 (Fig. 2d and Additional
file 1: S6 for plots of Brazilian States and Additional file 1:
S7 for Mexican States). All countries that reported cases in
2015 (Brazil, Colombia, Guatemala, Honduras, Paraguay,
Suriname, Cuba, El Salvador, Mexico and Venezuela) con-
tinued to report cases in 2016 and 2017, except for Cuba.
For most countries, the largest number of cases were re-
ported in 2016. Belize, Colombia, French Guiana,
Honduras, Suriname and several Caribbean islands reported
more than 2 cases per 1000 population in 2016. For 28 of
the 35 countries in the analysis, the peak in reported disease
incidence occurred in 2016. Five countries reported a peak
in 2017 and Cuba reported a peak in July 2015 (Fig. 2¢).
The estimated incidence of ZIKV infections (median
and 95% CI) were compared to the reported data to esti-
mate the country-specific reporting rate. The average
probability of an infection being reported as a case was
3.9% (95% CI 2.3—8.1%) and this rate was lower within
countries that only reported confirmed cases (4 coun-
tries) than those who reported both confirmed and sus-
pected cases (22 countries) (Table 2). Costa Rica, French
Guiana and the US Virgin Islands were estimated to have a
reporting rate above 20%. A comparison of the time-series
of reported cases was compared to the model estimates of
incidence (Fig. 3). For all countries, an epidemic was likely
to have begun by December 2015 to March 2016 (other-
wise known as the first phase). The relative scale of the epi-
demic in the first phase compared to late 2016 (the second
phase) varied by country. For many countries, the epidemic
was estimated to be larger during the first phase (such as
Argentina, Bolivia, Ecuador, Paraguay). For simulations in

Antigua, Barbuda, Mexico and Venezuela, the epidemic
during the second phase had a higher incidence than the
first phase. A small number of countries (Belize, Honduras,
El Salvador and most Caribbean Islands) were estimated to
have experienced only one epidemic season. The difference
in the timing of the peak between the data and model was
measured using Bayesian posterior checks where there was
a non-significant difference between the model and data
for 11 countries (highlighted in dark red/dark blue), and
the distribution was over-dispersed (Fig. 4a, b). There was
a significant correlation (p =0.035) between the reported
and estimated peak in the country epidemics (Fig. 4c). The
locations where the model has a good fit to the data are
focussed within Brazilian states that reported a large
number of zika cases, and eastern Caribbean islands.
The estimated peak in cross-validated simulations were
correlated (p <0.001) with the model fit, although the
95% CI were wider (Fig. 4d).

Projections for 2018 suggest a low incidence of Zika
cases in most cities considered in the analysis (Fig. 5 and
Table 2). When accounting for the country-specific case
reporting rate, the median number of cases was typically
less than 20 in most settings. However, French Guiana
was predicted to have between 148 and 1773 cases,
owing to a larger pool of susceptible individuals than in
other settings. Populated states within Brazil, such as
Santa Carina and Sdo Paulo, were projected to have
more than 5 cases, and cases were predicted to occur
within Medellin (Colombia) and San Jose (Costa Rica).
The majority of Caribbean countries were predicted to
have few cases in 2018. For all cities, the incidence of
cases in 2018 will be lower than 2017. In Colombia, the
projected time-series of cases for specific cities illustrate a
negligible incidence in 2018, but Medellin was expected to
experience the end of the epidemic in 2018 (Fig. 5¢). The
projected low incidence of ZIKV was consistent in simula-
tions where infected individuals were also assumed to
move between cities (Additional file 1: S8).

Discussion
The spread of ZIKV across the LAC region in 2015-2017
has resulted in considerable disease burden, particularly in
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Table 2 Reported and estimated statistics for ZIKV in Latin America and the Caribbean. Reported timing of the peak of ZIKV cases;
the model estimate of the peak in ZIKV cases; the estimated number of days each year where Ry > 1; the average value of R,
throughout the year, the estimated reporting rate of ZIKV cases and the estimated number of ZIKV cases in 2018

Country Peak in data  Peakin  Days where Average Ry(t) Percentage of infections  Projected Bayesian
model Ro(t)> 1° during year® that result in a case cases in 2018° posterior check
(reporting rate)?
Antigua & Barbuda Sep-16 Dec-16 267 (265-269) 141 (136-146) 0.8 (0.6-1.5) 0 (0-1) <001
Argentina Mar-17 Jul-16 122 (121-123) 107 (1.04-1.11) 0 (0-0) 6 (2-15) >0.99
Aruba Feb-17 Feb-16 365 (365-365) 1(2.33-249) 3(0.8-2.7) 0 (0-0) >0.99
Bahamas Sep-16 Jan-16 254 (254-255) 1(2.32-248) 1(0.1-04) 0 (0-0) >0.99
Barbados Jan-16 Feb-16 269 (267-271) 213 (2.05-2.19) 4(0.2-0.8) 0 (0-0) 0.22
Belize Feb-17 Dec-16 238 (236-239) 136 (1.31-14) 7 (0.5-1.3) 3(0-13) >0.99
Bolivia Feb-17 May-16 256 (254-259)  1.99 (1.92-2.06) 1(0.1-03) 0 (0-0) >0.99
Brazil Feb-16 Apr-47 241 (239-243)  1.99 (1.92-2.05) 7 (0.5-1) 143 (29-360) 043
Colombia Dec-16 Jun-16 314 (311-315)  1.94 (1.87-2.01) 7 (1.3-2.5) 86 (5-294) <0.01
Costa Rica Sep-16 Jul-16 116 (97-139) 0.76 (0.74-0.79) 296 (12.5-55.8) 28 (14-48) >0.99
Cuba Jul-15 Jan-16 260 (259-261) 1(243-26) 0 (0-0) 0 (0-0) <001
Curacao Nov-16 Mar-16 365 (365-365) 222 (214-229) 47 (29-10) 0 (0-0) >0.99
Dominican Republic ~ May-16 Jun-16 329 (325-333) 1(213-228) 03 (02-0.5) 0 (0-0) 0.06
Ecuador Jun-16 May-16 130 (130-131)  1.86 (1.8-1.92) 2 (0.1 0 (0-1) >0.99
El Salvador Dec-16 Nov-16 207 (205-208) 36 (1.31-141) 1.6 (1.2-2.8) 3(0-9) <001
French Guiana Apr-16 Aug-16 230 (226-232) 6 (1.12-1.2) 36.9 (22.1-97.3) 694 (148-1773) 0.1
Grenada Jun-16 Jul-16 1(327-333) 196 (1.9-2.03) 6 (04-1.1) 0 (0-0) 042
Guadeloupe Jun-16 Jun-16 303 (301-305)  2.08 (2.01-2.15) 3 (6-16.9) 0 (0-0) 025
Guatemala Jan-16 Oct-16 208 (206-208)  1.59 (1.54-1.65) 5 (0.4-09) 0 (0-0) <001
Guyana Jan-16 Aug-16 1(307-313) 173 (1.67-1.79) 4(03-0.7) 0 (0-0) <001
Haiti Jan-16 Jun-16 295 (293-296) 2.3 (2.22-2.38) 0.2 (0.1-0.3) 0 (0-0) <001
Honduras Jan-16 Aug-16 222 (221-223) 185 (1.79-191) 37 (24-7.2) 0 (0-0) <001
Jamaica Jun-16 Aug-16 269 (268-271) 1.86 (1.8-1.92) 13 (0.8-2.5) 0 (0-0) <001
Martinique May-16 Aug-16 323 (320-325) 1.9 (1.83-1.96) 11.3 (7.3-20.9) 0 (0-0) <0.01
Mexico Sep-16 Jan-31 141 (139-142)  1.35(1.3-1.39) 0.1 (0.1-0.1) 502-9 0.99
Nicaragua Jul-16 Aug-16 216 (215-218) 182 (1.75-1.88) 0.6 (04-1.1) 0 (0-0) 0.13
Panama Jan-17 Sep-16 278 (277-279) 169 (1.63-1.75) 0.5 (0.3-0.9) 0 (0-0) >0.99
Paraguay Mar-16 Mar-16 295 (293-297) 2.3 (2.22-237) 0 (0-0.1) 0 (0-0) 041
Peru Mar-17 Jun-16 168 (168-169) 1.6 (1.55-1.65) 0.2 (0.1-0.3) 5(0-17) >0.99
Puerto Rico Aug-16 Jun-16 257 (256-258)  2.28 (2.2-2.36) 22 (15-37) 0 (0-0) >0.99
St. Vincent & Jul-16 Aug-16 322 (313-331) 187 (1.8-1.93) 0.7 (0.5-13) 0 (0-0) 036
Grenadines
Suriname Dec-16 Aug-16 277 (274-280) 1.6 (1.55-1.66) 24 (15-49) 0 (0-1) <001
Trinidad & Tobago Aug-16 Sep-16 267 (265-269) 1.8 (1.73-1.85) 0.5 (0.3-0.9) 0 (0-0) 024
US Virgin Islands Jul-16 Jan-17 251 (247-255)  1.34(1.29-138)  21.7 (14-40.6) 12 (0-45) <0.01
Venezuela Jan-16 Jun-16 271 (268-276)  2.01 (1.94-2.08) 0.8 (0.6-1.1) (0-2) <001

2Estimated median (95% credible intervals)

the children of mothers infected during pregnancy. Both
the reported incidence of cases and modelling results from
this study suggest that the transmission of ZIKV had
continued until herd immunity was reached, despite major
efforts to limit its spread through vector control. Whilst

the reported and projected reduction in ZIKV cases is
undoubtedly good news for affected communities, it is
only because substantial numbers of individuals have
already been infected. Therefore, it remains vital to
maintain surveillance for congenital and developmental
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abnormalities and provide long-term care for affected
people and families [43].

The aim of this analysis was to assess if cities in LAC
were likely to experience ZIKV cases in 2018 to support
resource planning and trials. Our modelling results sug-
gest a very low incidence in 2018. This analysis supports
the findings of previous mathematical models of ZIKV
[5, 11, 13, 14]. In addition, our study provides estimates
of incidence and risk for specific cities, estimates of case
reporting rates, incorporates parameter uncertainty, in-
cludes out-of-sample validation of the model estimates

and uses more data than other modelling studies as we
incorporate ZIKV case reports alongside ecological data
to determine city-specific epidemic trajectories and sea-
sonality curves.

We fitted the model to the timing of the peak in ZIKV
cases and then compare the time series of expected
cases to reported cases and found a good fit in many
countries. We assumed that large cities both drive the
spread of Zika and are responsible for the majority of
cases. Considering that Ae aegypti is a largely
urban-dwelling mosquito and that arboviral diseases
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c Suspected cases

have been observed to be spread by movement of in-
fected humans [44, 45], this assumption is likely to be
valid. However, whilst we predict the outbreak to be
mainly over in these large cities, smaller more remote
cities and peri-urban areas may still have susceptible in-

dividuals and experience cases.

Should

additional

sub-national data on the timing of the peak become
available, the model fitting and projections can easily be
updated. Case reporting rates indicate a lower rate
within countries that report only confirmed cases, and
the rates within Brazil, El Salvador, Martinique, Puerto
Rico, and Suriname align well with other estimates
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measured using alternative methods [21, 46, 47]. Whilst
the fit to the data was good in many countries, there
were a number of cases where the timing of the peak in
the epidemic did not fit the data, as shown by the Bayes-
ian posterior checks. These values were over-dispersed,
indicating that there was a large under- and
over-estimation in the peak timing (see Colombia and
Peru, for example). To overcome these poor fits, more
accurate approximations of population movements be-
tween locations within LAC are required, as well as,
ideally, surveillance data that are less likely to have sub-
stantial changes in quality during prolonged periods. A
recent comparison of microcephaly reported through
birth registrations and confirmed cases of ZIKV in
Mexico suggested substantial under-reporting in ZIKV
cases, even within pregnant women [48]. Should
under-reporting be this extensive, it will impact the

reported peaks in ZIKV that were used to estimate
model parameters. Modelling only large cities and
Caribbean islands may also be an over-simplification
of infectious disease spread across a large geograph-
ical area. This was a necessary compromise between
model complexity, parsimony and computational time.
Further model comparison exercises would help iden-
tify advantages and disadvantages between different
modelling approaches [11].

Despite the short-comings in the available data, we
present the most up-to-date and robust predictions of
Zika incidence in 2018. As the projected incidence is
consistently low across all model runs, this finding is
quite robust to the variability accounted for in the
model. Validation of these findings are necessary through
multi-site population representative seroprevalence sur-
veys across LAC to monitor seroconversion to ZIKV such
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as in Netto et al. [19]. Reporting of cases within LAC has
reduced markedly since the downgrading of ZIKV from a
Public Health Emergency of International Concern to an
Ongoing Public Health Challenge (in November 2017)
[49]. Consequently, it remains difficult to compare these
projections to incidence data for 2018.

This research has highlighted that, within LAC, the
spread of ZIKV was better represented by a gravity
model than flight movements. This may seem surpris-
ing as flight data are cited as a source of emerging
infections such as ZIKV [50]. However, cars and pub-
lic transportation are used for most journeys, and the
movement of people impacts the spatial spread of
vector-borne diseases [43, 51]. Perhaps for highly
transmissible infectious diseases, movements facili-
tated by flights are sufficient for predicting introduc-
tion of a pathogen in a new population, but this
analysis suggests that triggering of a ZIKV outbreak
may require more frequent exposure than air travel.
The migration patterns assumed within each model
are quite different in LAC (Additional file 1: S2), sug-
gesting that models which have not tested the relative
fit of each and use one alone could be prone to

errors in estimated spread of ZIKV. In comparison to
mobility modelling in North America, Europe and Af-
rica, the mobility patterns in LAC are not well quan-
tified and require further study.

Major questions on the epidemiology of ZIKV re-
main unanswered [7]. Whilst the impact of sexual
transmission on ZIKV emergence is likely to be min-
imal [39, 52], it may increase the magnitude of an
epidemic [40] and this would be difficult to test using
the available surveillance data. There are large differ-
ences in the incidence of congenital Zika syndrome
across LAC [43], with an epicentre reported within
northeast Brazil, that remain largely unexplained. In
particular, the analysis here suggests increased inci-
dence of ZIKV throughout Brazil in 2016, but the ex-
pected increase in congenital malformations within
newborns were not observed [53]. This and other
modelling studies suggest that ZIKV has been wide-
spread, and the finding of geographically variable
rates of congenital defects is discordant with the
more consistent rates of ZIKV infection predicted by
our model. Ferguson et al. [5] developed a model to
project when a sufficient number of susceptibles
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would become available to permit a resurgence of
ZIKV, estimating a 25-30 year period. We did not
make this type of projection as serological surveys
[19, 54] published since suggest considerable hetero-
geneity in exposure within cities and there are vari-
able birth rates across LAC. Both of these factors will
add considerable uncertainty to long-term projections
for resurgence of ZIKV and is consequently outside of
the scope of this analysis.

We have assumed that the time varying transmission
rate of ZIKV is a function of environmental and vector
suitability that has not been reduced by effective vector
control. The impact of vector control has been largely
unassessed or, where it has been assessed, it has been
found to be ineffective [55, 56]. Consequently, our find-
ings are likely to be unaffected by the impact of vector
control. Should effective wide-scale interventions be de-
veloped, the model can be used to assess the impact of
proposed interventions. The mathematical model was
deterministic in nature and, especially for projections, it
may under-estimate the variability in the number of
cases. Additionally, we do not include the impact of
inter-annual variation in Ae. aegypti vectorial capacity,
such as the 2015-2016 El Nino climate phenomenon,
which has previously been shown to be positively associ-
ated with an increased incidence in 2016 [18]. Instead,
we show that the peak incidence in 2016 was likely due
to a low incidence of infection in 2015, that then re-
sulted in optimal transmission in 2016, which led to de-
pletion of the susceptible population, thus limiting
incidence in 2017 and 2018. If inter-annual variation in
ZIKV transmission were incorporated into our model, it
is likely that our incidence estimates for 2016 would in-
crease, and the predicted incidence in subsequent years
would further decrease.

Conclusions

ZIKV has spread widely across LAC, affecting all cit-
ies during 2015-2017 and leading to high population
immunity against further infection, thereby limiting
capacity for sustained ZIKV transmission. The season-
ality in ZIKV transmission affected the rate of infec-
tion, but due to high connectivity between cities, this
had little impact on the eventual depletion of suscep-
tible populations. Looking forward, incidence is ex-
pected to be low in 2018. This provides optimistic
information for affected communities, but limits our
ability to use prospective studies to better characterise
the epidemiology of ZIKV. The continental-wide ana-
lysis illustrates much commonality between settings,
such as the relative annual incidence, and the con-
nectivity across LAC, but questions remain regarding
the interpretation of the varied data for ZIKV. Ultim-
ately, representative seroprevalence surveys will be
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most useful to understanding past spread and future
risk of ZIKV epidemics in LAC.
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