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Abstract

Background

The International Health Regulations outline core requirements to ensure the detection of

public health threats of international concern. Assessing the capacity of surveillance sys-

tems to detect these threats is crucial for evaluating a country’s ability to meet these

requirements.

Methods and Findings

We propose a framework to evaluate the sensitivity and representativeness of hospital-based

surveillance and apply it to severe neurological infectious diseases and fatal respiratory infec-

tious diseases in Bangladesh. We identified cases in selected communities within surveillance

hospital catchment areas using key informant and house-to-house surveys and ascertained

where cases had sought care. We estimated the probability of surveillance detecting different

sized outbreaks by distance from the surveillance hospital and compared characteristics of

cases identified in the community and cases attending surveillance hospitals.

We estimated that surveillance detected 26% (95% CI 18%–33%) of severe neurological

disease cases and 18% (95% CI 16%–21%) of fatal respiratory disease cases residing at 10

km distance from a surveillance hospital. Detection probabilities decreased markedly with
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distance. The probability of detecting small outbreaks (three cases) dropped below 50% at

distances greater than 26 km for severe neurological disease and at distances greater than

7 km for fatal respiratory disease. Characteristics of cases attending surveillance hospitals

were largely representative of all cases; however, neurological disease cases aged <5 y or

from the lowest socioeconomic group and fatal respiratory disease cases aged�60 y were

underrepresented.

Our estimates of outbreak detection rely on suspected cases that attend a surveillance

hospital receiving laboratory confirmation of disease and being reported to the surveillance

system. The extent to which this occurs will depend on disease characteristics (e.g., severity

and symptom specificity) and surveillance resources.

Conclusion

We present a new approach to evaluating the sensitivity and representativeness of hospital-

based surveillance, making it possible to predict its ability to detect emerging threats.

Author Summary

Why Was This Study Done?

• Many countries rely on hospital-based surveillance for the detection of infectious dis-

eases of national and global public health relevance.

• It is often difficult to access suitable external reference data to assess the capacity of a

surveillance system to detect cases and outbreaks or to characterize cases.

What Did the Researchers Do and Find?

• We demonstrate a novel approach using healthcare utilization data to evaluate the sensi-

tivity and representativeness of severe infectious disease surveillance in Bangladesh.

• The capacity to detect cases and outbreaks decreased with distance from surveillance

hospitals.

• Cases captured by surveillance differed from cases in communities by age and socioeco-

nomic status.

• Geographic coverage of surveillance could be improved by including other hospitals in

the surveillance system.

What Do These Findings Mean?

• The presented approach is applicable for a wide range of infectious diseases in different

settings, taking some practical considerations into account.

• Hospital-based surveillance may have low sensitivity in rural areas at greater distances

from surveillance hospitals, suggesting a risk of unrecognized transmission of emerging

infectious diseases.
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• Alternative surveillance strategies, such as including additional hospitals in the surveil-

lance system or considering alternative data streams, may help to increase surveillance

performance in such remote regions.

Introduction

A well-functioning disease surveillance system is crucial for the identification and control of

outbreaks, and hence the prevention of national and global health emergencies [1]. The World

Health Organization (WHO) highlighted the value of national surveillance systems in the

International Health Regulations (2005), an agreement among all member states to develop

and maintain sufficient capacity for the detection, reporting, and control of public health

threats of international concern [2]. Infectious disease surveillance should enable (i) the timely

detection of outbreaks, (ii) the quantification of health problems, (iii) the identification of sub-

populations at risk, and (iv) the assessment of temporal trends including the impact of control

strategies [3,4].

National surveillance systems typically collect data from patients seeking care at sentinel

hospitals or other healthcare facilities and can provide useful information for public health

purposes. However, hospital-based surveillance generally underestimates disease burden since

only a proportion of cases visit a hospital for care [5]. Low case detection may also undermine

the value of hospital-based surveillance for outbreak detection. Moreover, if patients captured

by the surveillance system are not representative of all cases in the community, surveillance

statistics could lead to erroneous interpretations of disease patterns and misallocation of pre-

vention resources. In particular, sex, socioeconomic status, or distance can affect healthcare

seeking at hospitals, especially where access to care is limited [6–9]. Surveillance evaluation

guidelines, such as those established by the US Centers of Disease Control and Prevention, list

sensitivity and representativeness among the attributes that a public health surveillance system

should possess and that require assessment [10,11]. In order to follow these guidelines, we

need external reference data that are often unavailable in resource-poor settings [12].

Here, we present a new approach to evaluating the capacity of a surveillance system to

detect and characterize disease cases, with emphasis on outbreaks of emerging infections that

often occur as small case clusters in remote areas. We apply our methodology to assess hospi-

tal-based surveillance of severe neurological infectious disease and fatal respiratory infectious

disease in Bangladesh.

Methods

Ethics Statement

The field teams obtained written informed consent from participants or their guardians (if

<18 y of age) during community surveys. Healthcare utilization survey protocols were

reviewed and approved by the Ethical Review Committee of the International Centre for Diar-

rhoeal Disease Research, Bangladesh.

Protocol for Evaluating Sensitivity and Representativeness of

Surveillance Systems

Evaluating the sensitivity and representativeness of surveillance systems may be hampered by

difficulties in identifying and characterizing the underlying case population. Here we describe

Evaluating Hospital-Based Surveillance
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how epidemiological studies can be used to identify cases with severe symptoms in communi-

ties and capture their personal and healthcare utilization characteristics (data collection stage)

(Fig 1). In addition to detailing how we collected the data in this study, we provide information

about how the approach could be varied in other settings. We subsequently demonstrate how

such data can be used to evaluate the sensitivity and representativeness of surveillance systems

(evaluation stage). We then apply our approach to the detection of severe neurological infec-

tious diseases and fatal respiratory infectious diseases in Bangladesh as a case study.

Data Collection

Selecting study locations. The first step was to randomly select communities at differing

distances from the surveillance hospitals. We specified catchment areas of selected hospitals

based on hospital records and subsequently randomly selected small administrative units from

which all communities were surveyed. Selection of communities could also be done through

census data or using detailed population maps of the area.

Identifying people with diseases in the selected community. Study teams visited the

selected communities and identified cases that had had the disease of interest. The retrospec-

tive identification of severe disease cases in the community was based on syndromic criteria,

used as a proxy for clinical case definitions that would be applied in healthcare facilities. The

Fig 1. Key steps of the collection of healthcare utilization data to evaluate the sensitivity and representativeness of surveillance systems. In

the Bangladesh example, the catchment areas of surveillance hospitals were first defined based on hospital records (e.g., areas where >50% or >75%

of cases reside) [13,14]. Subsequently, small administrative units were chosen at random from within the catchment area, and all communities in the

selected areas were surveyed. Cases in the community were identified based on lists of deaths in addition to community networking strategies (rural

settings) or house-to-house surveys (urban settings). Information on symptoms (to establish case definitions), healthcare seeking behavior, and

characteristics of cases was collected. In other settings, the exact survey procedures may vary according to the context.

doi:10.1371/journal.pmed.1002218.g001
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identification of such cases in the community is often the most problematic step, and the opti-

mum strategy will depend on the local context, the severity of the disease, and the specificity of

disease symptoms.

Collecting information on healthcare seeking and personal case characteristics. To

estimate case detection probabilities, identify biases in case statistics, and characterize the

healthcare utilization behavior in the population, we needed information about the healthcare

seeking and personal characteristics of cases. In particular, we needed to identify whether the

cases attended a surveillance hospital. Such information was obtained during household visits

of identified cases. To understand the impact of distance from the hospital, we approximated

the locations of households by the central positions of the small administrative units. Alterna-

tively, household locations could be recorded precisely using GPS devices.

Evaluation of the Surveillance System

Quantifying the probability of detecting a case. We estimated the case detection proba-

bility as the proportion of cases who reportedly attended a surveillance hospital among all

cases identified in the community. We further assessed how this probability changed with dis-

tance from the surveillance hospital.

Quantifying the probability of detecting outbreaks. We subsequently used the estimated

case detection probabilities to quantify the capacity of the surveillance system to identify dis-

ease outbreaks. We estimated outbreak detection probabilities for varying outbreak sizes and

for outbreaks occurring at different distances from surveillance hospitals.

Assessing the representativeness of detected cases. We evaluated the representativeness

of detected cases by estimating the difference between case statistics (proportions of specific

case characteristics) based on all cases in the community and based on identified cases who

attended the surveillance hospital. The investigated characteristics included sex, age, and

socioeconomic status.

Assessing alternative surveillance strategies. To investigate how sensitivity and represen-

tativeness of the surveillance system could be improved by integrating other healthcare provid-

ers, we applied the evaluation procedures as described above to other healthcare provider types.

Example Using Severe Neurological Infectious Diseases and Fatal

Respiratory Infectious Diseases in Bangladesh

We demonstrate the application of the proposed evaluation strategy by using it to assess the

capacity of hospital-based surveillance for severe infectious diseases in Bangladesh, which is

based on tertiary care hospitals located throughout the country. We used data from two sur-

veys carried out in catchment areas of some of these hospitals that investigated the healthcare

utilization behavior of individuals with severe neurological infectious disease or fatal respira-

tory infectious disease (Fig 2A) [14,15]. These disease types are of great public health relevance

in Bangladesh (e.g., Japanese encephalitis and influenza) but also represent symptoms typical

of other emerging infectious diseases (e.g., Nipah and severe acute respiratory syndrome). A

first survey collected data between 10 June 2008 and 30 March 2009 about cases with symp-

toms of severe neurological infection that occurred within the previous 12 mo in 60 small

administrative units (mean population size of 28,000 people) in the catchment areas of three

surveillance hospitals [14]. A second survey collected data between 3 April 2012 and 22 Febru-

ary 2013 about acute respiratory infection (ARI)–related deaths that occurred within the previ-

ous 24 mo in 22 administrative units in the catchment areas of 11 surveillance hospitals [15].

We considered ARI-related deaths as a proxy for respiratory disease of sufficient severity to

require medical attention. The surveillance hospital in Dhaka City was excluded from the

Evaluating Hospital-Based Surveillance

PLOS Medicine | DOI:10.1371/journal.pmed.1002218 January 17, 2017 5 / 18



original studies because of the difficulty of defining the catchment area (a step necessary for

the original study purpose), as people nationwide seek medical care in Dhaka. The surveys fol-

lowed procedures as previously described and summarized below [13,14]. Characteristics of

the study population are described in Fig. A in S1 Text.

Fig 2. Location of administrative units and case detection probabilities by distance. (A) Location of surveillance hospitals and

administrative units. The hospital in Dhaka City was excluded from the original studies. (B) Population density map of Bangladesh [16].

Sixty-eight percent of the population in Bangladesh lives >30 km from a surveillance hospital (including the Dhaka surveillance hospital), a

distance at which case and outbreak detection probabilities are low. (C) Probability of surveillance case detection by distance. The observed

probability was calculated as a moving average over a 25 km distance window. Case detection probabilities were estimated using log-

binomial regression models including distance as an explanatory variable.

doi:10.1371/journal.pmed.1002218.g002
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Community Healthcare Utilization Surveys

The catchment areas of selected hospitals were first specified based on hospital records (S1

Text). Small administrative units (mean population of 28,000 people) were subsequently

selected randomly within the catchment areas, and all communities in the selected areas sur-

veyed. The identification of cases in selected communities was based on social structures, i.e.,

cases were identified by visiting public meeting points, such as mosques, markets, or tea-stalls,

where health problems in the community are often publicly discussed. Cases were subse-

quently confirmed by household visits. In urban areas, house-to-house surveys were con-

ducted to compensate for less pronounced community structures. Additional fatal respiratory

infectious disease cases were identified through lists of deaths provided by administrative offi-

cers. For both disease types, the identification of cases was based on syndromic criteria. We

defined severe neurological infectious disease as fever with altered mental status for >6 h or

with unconsciousness for�1 h, or fever with altered mental status, unconsciousness, or a new

onset seizure that resulted in death. Fatal respiratory infectious disease (ARI-related death)

was defined as having any two of the following symptoms in the 30 d prior to death: sudden

onset of fever, cough, breathing difficulty, feeding difficulty, or runny nose. Deaths in children

aged<5 y were also classified as ARI-related deaths if there was a sudden onset of breathing

difficulty in the 30 d prior to death.

During surveys, information was collected on healthcare utilization behavior and personal

characteristics of identified severe neurological and fatal respiratory disease cases. Cases or

their household members were asked whether the case visited the surveillance hospital or any

other healthcare provider, including other nonlocal hospitals, during his/her illness. Further,

information on sex, age, socioeconomic status, and geographic location of households of cases

was collected.

Classification of Case Characteristics

We defined “community cases” as all severe neurological or fatal respiratory disease cases iden-

tified during community surveys (whether they attended a surveillance hospital or not) and

“surveillance cases” as the subset of community cases who reportedly attended a surveillance

hospital. For each case identified in community surveys, we identified whether they attended

their nearest surveillance hospital. We then estimated the distance to that surveillance hospital

as the distance between the residence administrative unit centroid and that specific surveil-

lance hospital using QGIS [17]. Age was categorized as<5, 5–14, 15–59, and�60 y. A socio-

economic status index was generated by principal component analysis based on household

assets (electricity, working television, bicycle, motorcycle, sewing machine, mobile phone) and

categorized into tertiles (lowest, middle, and highest) [18]. In sensitivity analyses, we explored

the use of continuous age and socioeconomic status classified into quintiles (S1 Text). Socio-

economic status was missing for 45 of 1,633 fatal respiratory disease cases, who were excluded

from the analysis where this information was required. Three fatal respiratory disease cases

were excluded from all analyses due to missing healthcare seeking information.

Quantifying the Probability of Detecting Cases

We estimated the disease-specific case detection probability as the proportion of cases who

reportedly sought care at a surveillance hospital among all cases identified during commu-

nity surveys (number of surveillance cases/number of community cases) and computed 95%

confidence intervals (95% CIs) based on the Clopper-Pearson exact method [19]. We quan-

tified case detection probabilities by distance from a surveillance hospital using log-bino-

mial regression analysis separately for severe neurological and fatal respiratory disease

Evaluating Hospital-Based Surveillance
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cases. We further investigated more complex functional forms of distance in log-binomial

regression models. We fitted models with polynomial terms up to the fifth degree and mod-

els with basic splines with knots at various positions (between 20 and 50 km distance).

Model fit was compared based on the Akaike information criterion (AIC), and the models

with lowest AIC were selected. The fit of selected models was compared to the observed pro-

portion of cases who attended surveillance hospitals at different distances (moving average

over a distance window of 25 km). We estimated the proportion of the population living

>30 km and >50 km from a surveillance hospital using gridded population density esti-

mates of 100 × 100 m resolution [16].

Quantifying the Probability of Detecting Outbreaks

To quantify the capacity of the surveillance system to detect outbreaks of varying sizes, we cal-

culated the probability that at least one case was detected:

Proutbreak1 ¼ 1 � ð1 � PrÞs

Proutbreak1 is the outbreak detection probability based on a one-case threshold, Pr is the case

detection probability, and s is the outbreak size. This calculation assumes that the probability

of detecting a sentinel case is independent of other cases. We used distance-specific case detec-

tion probabilities estimated by log-binomial regression and obtained confidence intervals of

outbreak detection probabilities based on the 95% CI limits of case detection probabilities. We

further estimated the size of the smallest outbreak that would be detected with�90% probabil-

ity by distance from the surveillance hospital. For emerging infectious diseases of global health

importance, such as Nipah, severe acute respiratory syndrome, or avian influenza, a single

detected case may be considered an outbreak. For other disease systems (e.g., endemic diseases

or diseases for which differential diagnosis is difficult), an outbreak may be declared only after

more than a single case is detected over a specified period of time and within specified geo-

graphic boundaries [20]. We can extend the framework to estimate the probability of identify-

ing an outbreak with different outbreak thresholds applied, and we provide examples for

outbreaks defined as detection of at least two cases or at least five cases. We calculated the

probability of detecting at least two cases (Proutbreak2) as one minus the probability of detecting

no cases (Pr0) and exactly one case (Pr1):

Proutbreak2 ¼ 1 � ðPr0 þ Pr1Þ

Likewise, we estimated the probability of detecting at least five cases (Proutbreak5) as one

minus the probability of detecting no cases (Pr0) and exactly one (Pr1), two (Pr2), three (Pr3),

and four cases (Pr4):

Proutbreak5 ¼ 1 � ðPr0 þ Pr1 þ Pr2 þ Pr3 þ Pr4Þ

Assessing the Representativeness of Surveillance Cases

We investigated the representativeness of surveillance cases (sex, age, and socioeconomic

group) by comparing the proportion of cases with a specific characteristic (and exact bino-

mial confidence intervals) among community cases to the proportion of cases with that char-

acteristic among surveillance cases. We quantified the absolute difference in proportions

(proportion of cases with characteristic among surveillance cases minus proportion among

community cases) with 95% CIs and p-values using bootstrapping (2,000 bootstrap itera-

tions) [21].

Evaluating Hospital-Based Surveillance
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Evaluating Alternative Surveillance Strategies

Based on the collected healthcare utilization data, we evaluated how the sensitivity and repre-

sentativeness of a surveillance system may be improved by integrating other healthcare provid-

ers. We classified healthcare providers as (i) surveillance hospitals, (ii) other hospitals

(government and private clinics), (iii) qualified private practitioners, and (iv) the informal sec-

tor (unqualified practitioners such as traditional healers, village doctors, homeopaths, and

pharmacies). We estimated the proportion of cases attending each healthcare provider class,

with exact binomial confidence intervals, and estimated outbreak detection probabilities based

on proportions attending the surveillance hospital plus (i) other hospitals, (ii) qualified private

practitioners, or (iii) informal healthcare providers. Furthermore, we compared the proportion

of cases with each characteristic (sex, age, and socioeconomic group) among community cases

to the proportion among those attending each healthcare provider class and quantified abso-

lute differences in proportions with 95% CIs and p-values using bootstrapping (2,000 boot-

strap iterations).

All statistical analyses and graphics were implemented in the R computing environment;

maps were created using QGIS software [17,22].

Results

The studied communities were located within 95 km (severe neurological infectious disease)

and 62 km (fatal respiratory infectious disease) of a surveillance hospital. In these communi-

ties, 76 of 426 severe neurological disease cases (18%, 95% CI 14%–22%) and 234 of 1,630 fatal

respiratory disease cases (14%, 95% CI 13%–16%) attended a surveillance hospital. Adjusting

for distance, the case detection probability was nearly twice as high among severe neurological

disease cases than among fatal respiratory disease cases (risk ratio 1.8, 95% CI 1.4–2.3; p<
0.001). At 10 km distance, an estimated 26% (95% CI 18%–33%) of severe neurological disease

cases and 18% (95% CI 16%–21%) of fatal respiratory disease cases were detected by the hospi-

tal-based surveillance. The detection probability decreased with distance from the surveillance

hospital, and the decline was faster for fatal respiratory disease than for severe neurological dis-

ease. A 10 km distance increase resulted in a 12% (95% CI 4%–19%; p = 0.003) relative reduc-

tion in case detection probability for severe neurological disease but a 36% (95% CI 29%–43%;

p< 0.001) relative reduction for fatal respiratory disease (Fig 2C). Including more complex

functional forms of distance in the log-binomial regression models did not improve model fit

based on AIC (Table A and Figs. B and C in S1 Text).

The probability of detecting an outbreak of exactly three cases (if a single detected case was

considered an outbreak) dropped below 50% at distances greater than 26 km for severe neuro-

logical disease and at distances greater than 7 km for fatal respiratory disease (Fig 3A). Fig 3B

and 3C show the minimum number of cases required for surveillance to detect outbreaks with

a probability of�90% if different outbreak thresholds are applied. For outbreaks defined as

detection of at least one case, we found that an outbreak of fatal respiratory disease required 12

cases (95% CI 11–13) to be detected with 90% probability at 10 km from a surveillance hospi-

tal, but 30 cases (95% CI 24–39) to be detected at 30 km. In contrast, the impact of distance on

the outbreak size requirement was much more limited for severe neurological disease: eight

cases (95% CI 6–12) at 10 km and 11 cases (95% CI 9–14) at 30 km. For outbreaks defined as

detection of at least two cases, 14 severe neurological disease cases (95% CI 11–20) and 20 fatal

respiratory disease cases (95% CI 18–23) would be necessary for an outbreak to be detected at

10 km distance, and 19 severe neurological disease cases (95% CI 15–24) and 51 fatal respira-

tory disease cases (95% CI 41–66) at 30 km. The necessary outbreak sizes increased further

when a five-case threshold was applied, so that 28 severe neurological disease cases (95% CI
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Fig 3. Outbreak detection capacity. (A) Probability of detecting outbreaks with exactly three cases of

severe neurological or fatal respiratory disease by distance from surveillance hospital if a single detected case

is considered an outbreak. (B) Smallest size of severe neurological disease outbreak that would be detected

with�90% probability by distance from surveillance hospital for outbreak thresholds of at least one, two, or

five detected cases. (C) Smallest size of fatal respiratory disease outbreak that would be detected with�90%

probability by distance from surveillance hospital for outbreak thresholds of at least one, two, or five detected

cases.

doi:10.1371/journal.pmed.1002218.g003
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21–39) and 39 fatal respiratory disease cases (95% CI 35–44) would need to occur for an out-

break to be detected at 10 km distance, and 36 (95% CI 30–46) and 97 (95% CI 79–128),

respectively, cases at 30 km.

Surveillance hospital attendance among community cases varied by case characteristics,

leading sometimes to biased disease statistics among surveillance cases (Table B in S1 Text).

For severe neurological disease, individuals aged<5 y represented 48% of community cases

but only 29% of surveillance cases (p< 0.001). Additionally, the proportion of cases in the low-

est socioeconomic group was lower among surveillance cases than among community cases

(43% versus 57%; p = 0.012), while the proportion of individuals aged 15–59 y was higher

(43% versus 29%; p = 0.005) (Fig 4A). For fatal respiratory disease, the proportion of individu-

als aged�60 y (47% versus 62%; p< 0.001) was lower among surveillance cases than among

community cases, while the proportion of individuals aged<5 y (24% versus 18%; p = 0.020),

individuals aged 15–59 y (27% versus 18%; p< 0.001), and cases in the highest socioeconomic

group (43% versus 37%; p = 0.022) was higher (Fig 4B). We observed a slight difference in the

proportion of females for fatal respiratory disease (34% among surveillance cases versus 38%

among community cases; p = 0.108), but not for severe neurological disease (39% versus 40%;

p = 0.861). Results were consistent in sensitivity analyses with age as a continuous variable and

socioeconomic status classified into quintiles (Figs. D and E in S1 Text).

A substantial proportion of cases (severe neurological disease 42% [95% CI 38%–47%]; fatal

respiratory disease 26% [95% CI 24%–28%]) visited multiple healthcare providers during their

illness. Forty-eight percent (95% CI 44%–53%) of severe neurological disease cases and 31%

(95% CI 29%–34%) of fatal respiratory disease cases attended any hospital, including surveil-

lance hospitals (Fig 5). Including other hospitals that were attended by cases in the surveillance

system could have increased the overall case detection probability by 31% (absolute increase)

for severe neurological disease cases and 17% for fatal respiratory disease cases. The capacity to

detect outbreaks would have increased, so that outbreaks containing four severe neurological

or eight fatal respiratory disease cases would have been detected with�90% probability for

any distance in the range 0–40 km from the original surveillance hospital, compared to 13 and

47 cases, respectively, with the current system (Fig. F in S1 Text). However, since individuals

who attended any hospital had similar characteristics in terms of sex, age, and socioeconomic

status as those attending surveillance hospitals (Fig. G in S1 Text), this expansion would not

have increased disease detection in key groups such as the lowest socioeconomic group. Only

with the informal sector incorporated in the surveillance system would cases in such groups be

detected.

Discussion

We described an analytic approach for evaluating the sensitivity and representativeness of hos-

pital-based surveillance systems and applied it to surveillance for severe neurological diseases

and fatal respiratory infectious diseases in Bangladesh. We quantified the proportion of cases

detected and the probability that the surveillance system would detect different sized outbreaks

by distance from the surveillance hospital. Finally, we characterized biases in surveillance sta-

tistics and identified potential improvements to the surveillance platform.

We estimated that approximately one-quarter of severe neurological disease cases and one-

fifth of fatal respiratory disease cases occurring 10 km from a surveillance hospital would be

detected with current surveillance. The proportion of cases attending a surveillance hospital

declined significantly with increasing distance between individuals’ residence and the surveil-

lance hospital, substantially faster for fatal respiratory disease than for severe neurological dis-

ease. These low detection probabilities mean that hospital-based surveillance in Bangladesh
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(like in most other resource-poor countries presumably) would likely miss a high proportion

of single-case public health events. Of greater relevance is that surveillance system capacity to

detect outbreaks and detection probabilities increased substantially with the number of cases.

The required number of cases to detect outbreaks with high probability varied with disease

type and distance from the surveillance hospital. It could be as low as about ten cases if the out-

break occurred <10 km from the surveillance hospital but increased quickly with distance for

Fig 4. Representativeness of surveillance cases. Comparison of case statistics (proportion of cases with a

characteristic) estimated for community cases to those estimated for surveillance cases for (A) severe

neurological infectious disease and (B) fatal respiratory infectious disease. Significant differences (bootstrap

p� 0.05) are indicated with an asterisk. SES, socioeconomic status.

doi:10.1371/journal.pmed.1002218.g004
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fatal respiratory disease. For outbreaks defined as a single detected case, we found that more

than half of outbreaks with ten cases of fatal respiratory disease would be missed if the out-

break occurred >32 km from the hospital. Such detailed quantification of outbreak detection

probability is essential to ascertain the likelihood that an emerging threat can be detected early

enough to be contained [23].

In some circumstances, authorities may have to wait until more than a single case is

detected to recognize that an outbreak is occurring. In particular, difficult differential diagno-

ses and lack of appropriate diagnostic tests mean that only when a number of cases are

detected from the same area and over a short time frame will an outbreak be identified and fur-

ther investigations conducted. In addition, where a low background level of transmission is

expected (such as with endemic diseases), public health authorities may wait until a particular

threshold is exceeded before declaring an outbreak. In both of these scenarios, where multiple

cases need to be detected by the hospital before an outbreak is recognized, the optimal number

of detected cases and their spatial and temporal separation will depend on the disease system.

We can incorporate this information into our flexible framework and provide examples where

we calculate the size an outbreak needs to be for scenarios where at least two or five cases need

to be detected (Fig 3B and 3C). In particular, this demonstrates that if an outbreak is identified

only once five cases are detected at the surveillance hospital, the size of the outbreak would

have to be substantially larger (e.g., nearly 100 total cases of a fatal respiratory disease at 30 km

from a surveillance hospital) for there to be a 90% chance of an outbreak being identified. This

highlights the possibility that, by the time an outbreak reaches sufficient size to be detected by

the system, outbreak control measures may be much less effective at controlling spread.

Thresholds for case counts that trigger an outbreak response should be crafted taking this pos-

sibility into account.

Low detection probabilities for outbreaks that occur far from surveillance hospitals are an

important concern because pathogens with high case fatality such as Japanese encephalitis and

Nipah virus are nearly exclusively found in rural communities in Bangladesh [24,25], and

Fig 5. Attendance at surveillance hospitals and alternative healthcare providers. Proportion of (A) severe neurological and (B) fatal

respiratory disease cases attending surveillance hospitals and other healthcare providers. Cases may attend several different healthcare

providers during their sickness. Cases who attended a surveillance hospital at any time are indicated with diagonal hatching.

doi:10.1371/journal.pmed.1002218.g005
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these communities are usually located far from surveillance hospitals. Rural environments are

also considered to be at highest risk for the emergence of novel pathogens [26,27]. Population

distribution maps suggest that 68% of the population in Bangladesh live in communities >30

km from a surveillance hospital (representing 108 million individuals) and 40% live >50 km

from a surveillance hospital (representing 63 million people) (Fig 2B). Strengthening health-

care-based surveillance in these areas should be a priority, and cost-effective approaches to

achieving surveillance targets need to be identified. There is increasing recognition of the

value of novel data sources to improve the sensitivity of infectious disease surveillance, some of

which can provide crucial information in remote areas [20]. Novel approaches include surveil-

lance for media reports of disease clusters, as used for various infectious diseases in Bangladesh

[12,28], and training of local drug sellers to recognize and report disease symptoms, as rolled

out nationally to enhance tuberculosis surveillance in Ghana [29]. Other surveillance data

streams, such as monitoring over-the-counter medication sales, telephone triage, and web-

based queries, have been successfully integrated in surveillance systems in resource-rich set-

tings [30].

We found that cases attending surveillance hospitals were not necessarily representative of

all cases in the community. In particular, the youngest severe neurological disease cases and

the oldest fatal respiratory disease cases were less likely to attend surveillance hospitals, and

attendance was also lower among cases in the lowest socioeconomic group. Similar variation

in hospital attendance has been reported in other resource-poor settings [6,8,9], indicating

that hospital-based surveillance in these countries may have comparable limitations. Disease

statistics obtained through hospital-based surveillance have to be interpreted in the light of

detected biases, and correction factors may need to be applied. For example, underestimating

severe neurological disease among young children may mislead any future Japanese encephali-

tis vaccination strategy [31,32]. Differential surveillance hospital attendance may also influence

the capacity to detect emerging infections, such as the avian influenza A (H7N9) virus that

emerged in 2013 in China with observed cases mainly among elderly men [33].

Overall, access to appropriate care was poor—over 30% of community cases with severe dis-

ease or who died in our study never saw a qualified provider. Such low access is a common

problem in low-income settings and means that a large proportion of the population, and par-

ticularly subgroups that are potentially at highest need, do not receive the required medical

attention [6–9]. For example, difficulties accessing qualified healthcare providers for elderly

people, who are often at greatest risk of respiratory disease, can have severe consequences for

the outcome of disease. Previous studies have demonstrated that accessibility to healthcare is a

significant predictor of morbidity and mortality among elderly individuals with respiratory

disease [34].

The study showed that healthcare utilization behavior varied by disease type, which may be

due to different characteristics of cases such as their age, socioeconomic status, and geographic

location (Fig. A in S1 Text). The majority of fatal respiratory disease cases were�60 y old and

may have faced limitations in mobility; moreover, rapid progression of disease to death may

have prevented cases in this age group from seeking appropriate care. Cases and their family

members in general may have also perceived neurological symptoms as more severe, resulting

in higher motivation to attend a qualified healthcare provider [7].

We evaluated potential improvements of surveillance by analyzing healthcare seeking

behavior among cases identified in communities. While the majority of individuals did seek

care, much of this was in the informal sector, which cannot easily be incorporated into surveil-

lance activity. Nevertheless, including other hospitals attended by cases in the surveillance sys-

tem (the exact location and number of these hospitals was unfortunately not identified during

surveys) would double case detection probabilities and allow detection of medium-sized
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outbreaks (<10 cases) in a wider geographic area. However, in the case of Bangladesh, such

extension is likely to be prohibitively expensive. Mapping other hospitals in Bangladesh that

may serve as surveillance sites would allow testing of various surveillance scenarios to identify

the optimal location of surveillance sites while keeping the same total number or to quantify

the number of sites needed to achieve a target surveillance coverage [35]. Many emerging

infectious diseases originate as spillover infections of zoonotic diseases into the human popula-

tion [36]. Therefore, mapping the occurrence of relevant zoonotic diseases (e.g., avian influ-

enza) and combining such maps with the estimated outbreak detection probabilities would

allow highlighting of surveillance gaps for particular types of emerging infectious diseases.

The capacity of surveillance systems to detect outbreaks will depend not only on the proba-

bility that a case attends a surveillance hospital, but also on whether the case undergoes confir-

matory laboratory testing and is subsequently reported through the surveillance system by the

hospital. Here we assumed a “best-case scenario” with a fully functional surveillance system at

the hospital level, where each case who attends the surveillance hospital is ultimately recog-

nized and confirmed as a case. Case detection at the hospital may however be incomplete,

since case definitions at hospitals may differ from syndromic definitions, a surveillance sam-

pling frame may be applied, or resources and trained personnel for the diagnosis and reporting

of cases may be limited [37]. The calculation of case and outbreak detection probabilities may

be adjusted for misdiagnosis and underreporting at hospitals if such information is available.

We further assumed complete detection of cases in communities during surveys. Although a

few cases may have been missed, this assumption is justified as we investigated severe disease

conditions that are easily remembered by family and community members. Moreover, survey

procedures combining interviews of key informants and house-to-house visits were specifically

designed to capture near-complete case information. Further, any missed cases are unlikely to

impact our estimates, as such impacts would occur only if there was differential healthcare

seeking between those detected and those missed. We investigated spatial differences in hospi-

tal attendance based on the straight-line distance of communities from the surveillance hospi-

tal. If available, other distance measures such as travel distance or travel time may provide a

more accurate indicator of distance from the surveillance hospital. In some cases, these mea-

sures may strongly vary with the season, and it would be interesting to explore how that may

impact the probability of detecting an outbreak. We assumed that cases did not visit other sur-

veillance hospitals than the catchment hospital. Given the poor road infrastructure in the

country, it would be very unusual to travel to a tertiary care hospital that was not the closest

one. It is possible that some individuals traveled to Dhaka; however, these are likely to be

wealthier individuals who would visit small private healthcare facilities that are not part of the

surveillance network. The surveillance hospital in Dhaka was not included in our study. This is

unlikely to have biased our assessment of the performance of the surveillance system outside

the capital. Indeed, this would introduce a bias only under the unlikely scenario that many

cases in our study who did not attend the nearest surveillance hospital (and were therefore not

captured there) instead attended the surveillance hospital in Dhaka (and were captured there).

Surveillance system performance in the capital city may however differ from elsewhere, and a

comprehensive assessment of the national surveillance system would therefore have to include

Dhaka. Moreover, hospital-based surveillance is only one surveillance type in Bangladesh, and

other data sources need to be considered to assess the country’s overall capacity to detect pub-

lic health events.

The described methodology is applicable to assessing surveillance for other severe diseases

in resource-poor settings, keeping in mind practical constraints. Conducting community sur-

veys may be labor intensive, time consuming, and expensive depending on the setting and

may be particularly challenging in densely populated areas such as Dhaka. Nonetheless, such
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surveys are valuable tools for obtaining external reference data and simultaneously assess het-

erogeneities in healthcare access. The effectiveness of community networking may depend on

the social structures in the study area; where social links are weaker (e.g., in urban areas),

house-to-house surveys, even though more labor intensive, may be more suitable for the iden-

tification of cases in the community. The proposed strategy is valid for diseases of sufficient

severity to require medical attention and to be remembered by cases and family members. The

approach is syndromic (i.e., disease types are classified based on a set of symptoms), and the

classification specificity may vary by disease.

In conclusion, this study allowed us to quantify the sensitivity and representativeness of

hospital-based surveillance and to identify weaknesses, particularly in detecting small- to

medium-sized outbreaks in remote areas. These findings highlight difficulties that low-mid-

dle-income countries may have in meeting International Health Regulations requirements,

despite considerable investment in hospital-based surveillance platforms.
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