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Abstract  
The ever-increasing demand for novel therapeutics to treat life-threatening infections caused 

by the global spread of multidrug-resistant bacterial pathogens is in stark contrast to the largely 

insufficient investments in future antimicrobials, especially in the fields of synthetic and natural 

product-based small molecules. New agents displaying innovative chemistry and modes of 

action are desperately needed worldwide to tackle the public health menace imposed by 

antimicrobial resistance (AMR). Our consortium presents a strategic blueprint to substantially 

improve the current situation of antibiotic drug discovery and early development. We propose 

both short-term and long-term solutions to overcome the most urgent limitations in the various 

sectors of research and funding, aiming to bridge the gap between academic, industrial and 

political stakeholders, and to join interdisciplinary expertise for an efficient fueling of the 

translational pipeline in the interest of future generations. 

 
Introduction 

The present article is aimed as a general roadmap with the central aim to promote and 

accelerate translational science in the early stages of novel antibiotic discovery towards lead 

candidate development. Over- and mis-use of antibiotics in healthcare and agriculture, 

together with inappropriate waste management and environmental transmission, have 

substantially increased antimicrobial resistance (AMR)1–5 and associated bacterial 

persistence6,7. This is of major public concern, since most areas of modern medicine are not 

conceivable without effective antimicrobial treatment8. The estimated number of people dying 

from drug-resistant infections worldwide due to bacterial pathogens, HIV and malaria is at 
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least 700,000 per year, which will potentially rise to 10 million by 2050 if AMR is not 

controlled9,10.  

 

The anticipated death toll caused by drug-resistant infections over the next years and decades 

may be compared with the global fatality rate of the current SARS-CoV-2 (COVID-19) 

pandemic (https://coronavirus.jhu.edu/), which has already led to multi-billion dollar 

investments for vaccines, repurposing existing drugs and development of antivirals. Another 

concerning aspect of the COVID-19 pandemic is the observed high number of secondary 

infections, often with multidrug-resistant (MDR) bacteria, occurring especially in hospitalized 

patients and those with compromised immune system11,12. Associated with this problem is the 

massive use of antibiotics as a COVID-19 (co)-treatment worldwide13–24, which is predicted to 

add to the ongoing emergence of AMR25–29. This multiplying effect of COVID-19 on the spread 

of bacterial resistance will most likely have further negative clinical, economic, and societal 

consequences in the near future30,31. 

 

Unfortunately, the dramatic worldwide rise of bacterial pathogens resistant to agents 32 cannot 

be counteracted by the current low pace of developing novel therapeutics with new mode(s) 

of action [MoA(s)]. While there are nearly 4,000 immuno-oncology agents in development33, 

only about 30 - 40 new antibacterial compounds are currently in clinical trial phases, and 

notably those candidates targeting WHO priority pathogens are derivatives of existing 

classes34,35. Indeed, less than 25% of current drugs in the clinical development pipeline 

represent a novel class or act through a novel mechanism, and none of these are potentially 

active against Gram-negative ESKAPE or WHO critical threat pathogens34,36. In fact, only a 

small fraction of the antibiotics approved over the past forty years represents new compound 

classes, while the majority were derived from already known chemical structures, the “latest” 

new class of antibiotic was discovered during the 1980s37.  

 

Thus, strategic investment in new therapeutic options to fight AMR is required to urgently 

address unmet patient need and, additionally, to counterbalance the exponentially increasing 

financial burden on global health systems38. Consequently, the research field should aim to 

leverage hit identification and hit-to-lead optimization programs to ensure a sustainable flow 

of new antibacterial drug candidates into the development pipeline. For this purpose, the initial 

stages of drug discovery and development need to be strengthened, since they are essential 

to identify and validate novel therapeutic candidates effective to fight antibacterial resistance. 

However, for many years, such early-stage projects have been mainly conducted by academia 

and are generally underfunded, while increased allocation of funding into early- and mid-stage 

research and development (R&D) has been recommended to make the pipeline more robust39–
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42. Our network has identified major funding gaps especially for the academic sector as well 

as for small and medium-sized enterprises (SMEs), which are mainly associated with the early 

hit discovery and hit-to-lead phases as well as with late lead optimization prior to preclinical 

candidate nomination (FIG. 1). Large pharmaceutical companies across the globe are 

extremely hesitant to fund early antibiotic R&D, and particularly new classes of compounds, 

since the return on investment (ROI) in this area is generally low or even negative. Further, 

the costs of developing entirely new scaffolds are much higher than for derivatives of 

established compound classes, while the attrition rate in antibacterial drug discovery has been 

particularly high in the past decades, reflected by the fact that no new class of Gram-negative 

antibiotics has been launched for more than 50 years43,44. This leaves the field of innovation 

in the commercial sector basically to SMEs, which have to deal with high attrition mainly in the 

early phases of discovery and optimization39,43,45–48, and the associated huge capital risks49,50.  

Generally, new economic models particularly designed for this sector need to be applied to 

make future advancement51–54. A recent initiative that supports SMEs in the late-stage 

development of new antibiotics is the AMR Action Fund, which was launched by more than 20 

leading biopharmaceutical companies to push mainly phase II and III trials of advanced 

candidates55, unfortunately without funding the early research stages. In addition, several 

countries are implementing new pull incentive programs with different priorities. While the 

Swedish model aims at securing sustained access to relevant antibiotics that have already 

been approved56, plans in the UK57,58 as well as in the US (e.g. PASTEUR59 and DISARM60 

acts) strive to stimulate the development of new antibacterial products by using subscription 

or de-linkage models51. Such initiatives present a promising sign by introducing much needed 

market entry rewards; however, they might fall short on a global scale if they do not include 

“critical mass” of the world's largest economies. 

 

Innovation in the early stages of antibiotic drug discovery can also be driven by the academic 

sector. However, from the academic perspective, partnering with external funders such as the 

pharmaceutical industry is in many cases only realistic after the nomination of extensively 

validated preclinical candidates, and often even requires phase I clinical data. Typically, this 

cannot be achieved by research-driven funding and infrastructure alone. Several global health 

organizations and public-private partnerships (PPPs) including GARDP, CARB-X, IMI and 

others started to support, at least partially, the mid-to-late lead optimization through to clinical 

proof of concept61–63, possibly accompanied by stakeholders associated with the BEAM 

Alliance or the REPAIR Impact Fund64,65. However, even the growing diversity of such push 

incentives are in many cases insufficient and primarily focused on companies. In addition to 

these approaches, a strategy is required which helps academic researchers to advance their 

project portfolio to a level that facilitates early interaction and possibly partnering with 
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pharmaceutical companies in the interest of a successful, cross-sectoral development 

pipeline66. Hence, creating new incentive models in the field is an essential process that can 

only be moved forward if the public, academic and industrial sectors join forces39,67–69. 

 

In this respect, our position paper provides an overview of the early phases of antibacterial 

drug discovery, including hit and lead identification, optimization and development to the 

(pre)clinical stages by summarizing current limitations, relevant approaches and future 

perspectives, as well as by presenting selected case studies. In terms of a principal guidance 

for researchers in the field, we suggest possible solutions for a number of obstacles to improve 

both quality and quantity of antibacterial hits and leads. To strengthen and emphasize these 

early stages as a “sine qua non” for a sustained generation of novel antibiotics, we are 

recommending a new level of interaction between the various stakeholders and academic 

disciplines in the area of antibiotic drug research. The strengths and opportunities that small-

molecule therapeutics offer can help address antibiotic resistance more successfully during 

the coming years, both in the interest of patients and investors, provided that the multiplicity 

of hurdles along the translational path will be overcome (TABLE 1). Altogether, our aims are 

in line with the “One Health Action Plan against Antimicrobial Resistance” introduced by the 

European Commission70, as well as the WHO program to fight the rising number of bacterial 

priority pathogens with steadily growing impact on global public health71. 

 
1) Synthetic hit compounds 

This chapter addresses ideas to develop profitable strategies for identifying and prioritizing 

antibacterial hit compounds with a particular focus on synthetic small molecules. As a basis, 

we introduce three main pillars reflecting key aspects of general hit discovery programs on 

which novel strategies for fruitful hit identification should be implemented. 

  

1.1) Hit definition, chemical libraries and medicinal chemistry 
The concept of “hit compound”72 as it is widely accepted today needs to be expanded to 

address the needs imposed by the threat of antibacterial resistance. A hit compound is a 

molecule  with reproducible activity, which corresponds to a defined chemical structure (or set 

of structures), against one or more bacterial target(s). While selectivity and cytotoxicity of initial 

hits are seen as important characteristics, their improvement should remain tasks for the hit-

to-lead optimization phase (see chapter 3). Activity of hits against (selected) pathogens must 

be proven in relevant assays, initially in vitro (e.g. by using exposed/isolated targets or a 

whole-cell approach), which can be complemented by animal models of infection later on in 

the discovery process to evaluate pharmacokinetic and pharmacodynamic properties (see 
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chapter 3). In any event, the chemical identity and integrity of a hit must be demonstrated, 

whereas the actual target and the concise MoA may still be unknown and can be identified at 

a later stage, thus the initial activity read-out for a hit can be either on the molecular or cellular 

level (BOX 1). 

 

It is important to consider not only a single molecule addressing one particular target as a 

valuable hit, but also a compound hitting multiple defined targets (polypharmacology73, see 

section 3.1), or a combination of molecules as used in combination therapy74. Depending on 

the targets, such hit combinations may act synergistically, preferably with different MoAs, or 

in an additive fashion. Combinations can be valuable to: potentiate the activity (reflected by 

the main MoA) of existing antibiotic(s); slow down the onset of resistance; and restore the 

activity of antibiotics that have become inefficient through resistance.  

 

One major approach to identify novel hit compounds is by high-throughput screening of 

chemical libraries. It is important to select the correct set of compounds for each screen, e.g. 

a (large) diverse set, a target-focused set or a fragment library. The make up of a library should 

be based on specific characteristics or property space requirements including chemical, 

structural and physico-chemical aspects (BOX 2); these may be taylored to a particular 

disease area 75,76. We believe that carefully designed, and possibly even pre-selected 

(“biased”) chemical libraries, which shall allow to screen a suitable chemical space against the 

bacterial target(s) of interest, represent an important first step to start a reliable hit identification 

campaign towards treating a specific bacterial infection.The design, assembly, curation and 

constant updating or expansion of such libraries are skilled and very costly processes, outside 

the range of most academic groups, and indeed also for many small companies. Models need 

to be found to grant access to the correct libraries or compound collections for hit discovery, 

which should be facilitated at least for non-profit research entities (see section 2.2). 

 

Interaction between academia and pharmaceutical companies can accelerate hit discovery, 

e.g. by using the high-throughput infrastructure of companies for screening to interrogate novel 

academic targets or screens. Or the pharmaceutial partner might search for close analogs of 

hits identified initially in academia, possibly together with already available biological and 

chemical property profiles. Such analog series and accompanying data sets can be extremely 

valuable to allow for early improvement of antibacterial potency as well as hit series validation, 

and to start profiling the most promising hits in terms of absorption, distribution, metabolism, 

excretion and toxicity (ADMET) parameters, thus accelerating the early hit discovery and 

validation process. Sharing the relevant information will reinforce the efforts of medicinal 

chemistry and enhance its reliability and robustness. This in turn allows programs to reach 
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”Go”/ ”No-Go” decisions quicker and to enhance the chances for external funding or early 

partnering based on the medical need that can be addressed.  

 

Notably, medicinal chemistry is the key discipline for the subsequent optimization of hits (see 

case studies in BOX 1 - 4). Lack of sufficient funding and expertise to support medicinal 

chemistry at this early stage is highly detrimental for the whole translational process. 

Encouragingly, a larger number of AMR-related pharmaceutical companies signed the AMR 

Industry Declaration77 several years ago, in which they jointly committed to support antibiotic 

R&D processes at virtually all stages. This has led to the formation of the AMR Industry 

Alliance (https://www.amrindustryalliance.org/). Upon the recent implementation of new AMR-

specific capital resources, e.g. through the REPAIR Impact and AMR Action Funds, as well 

as involvement (not only commitment) of PPPs like CARB-X in hit-to-lead campaigns, an 

intensified collaboration between the industrial sector and academia is required to drive the 

chemical optimization of hits and leads through to new preclinical candidates. 

 

Those academic groups that have already built the capacity to carry out such optimization 

efforts including a broad know-how in medicinal chemistry, biological assays and ADMET 

studies would also benefit from early partnering with biopharmaceutical companies, 

particularly as their projects will stand a better chance of attracting external investment. Both, 

not-for-profit initiatives like the European Research Infrastructure Consortium for Chemical 

Biology and early Drug Discovery (EU-OPENSCREEN; https://www.eu-openscreen.eu/) and 

collaborative PPP models as implemented by the European Lead Factory (ELF)78,79, allowing 

for open drug discovery programs based on Europe-wide screening resources (e.g., the Joint 

European Compound Library, JECL) and infrastructure, could pave the way for such early 

cross-sectoral interactions and exchanges for the benefit of all involved partners80. 

 
1.2) Nature of the target 
We recommend that hit identification against bacteria follows two convergent approaches: (i) 

identification of molecules active against molecular targets that are vital for all stages of the 

bacterial life cycle (“essential targets”), hence directly promoting clearance of the bacteria from 

the host/patient; and (ii) searching for molecules that inhibit so-called “non-essential 

targets”53,81,82. Those can be defined as bacterial structures that are not vital under standard 

laboratory growth conditions, but become critical during processes of host colonization and 

infection, e.g., by regulating virulence development, by evading host immune response or by 

triggering bacterial defense mechanisms83. Molecules hitting such targets may have weak or 

even no activity toward bacterial cells under noninfectious (in vitro) screening conditions, but 

might display highly synergistic or additive effects when tested in relevant in vivo infection 
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models, either alone or in combination with antibacterial agents addressing essential targets. 

The latter molecules may belong to the current antibacterial arsenal or new chemical entities 

(NCEs), e.g., identified in regular screens as described above.  

 

According to the specific setting, compounds interacting with non-essential targets are defined 

as antibiotic “adjuvants”, “potentiators” or “resistance breakers”84,85. Examples of non-

essential target inhibitors are represented by: (i) inhibitors of virulence-conferring factors or 

pathways (also known as anti-virulence compounds or “pathoblockers”86 targeting e.g. quorum 

sensing mechanisms87, biofilm formation88, bacterial secretion systems89,90, enzymes for 

tissue penetration91 or intracellular survival92); (ii) efflux pump inhibitors93; (iii) suicide 

substrates such as β-lactamase inhibitors94,95; (iv) inhibitors of pathways serving as a 

mechanism of defense, e.g. glutathione biosynthesis96,97; (v) modulators and inhibitors of 

energy metabolism98,99; (vi) host/pathogen epigenetic modulators100,101. For some of the 

mentioned targets, such as efflux pumps, it has been demonstrated that their inhibition can 

reverse resistance to several antibacterials102. Therefore, an attractive therapeutic 

combination might be composed of a bactericidal agent and an adjuvant molecule, with the 

aim of potentiating the antibacterial effect(s) and significantly reducing resistance (intrinsic or 

evolved)103. Since the pathoblocker approach is anticipated to be less susceptible towards 

resistance development and, in addition, to preserve the commensal bacteria of the 

microbiome86, it represents a non-traditional strategy for a focused disarming of resistant high-

priority pathogens, most likely to be used as an adjunctive therapy in addition to antibiotic 

standard treatment81 (BOX 3). 

 
1.3) Advanced screening and profiling based on standardized assays 
There is a fundamental need for assays to identify hit compounds (either synthetic or natural 

product-based, see chapter 2) for specific and clinically most relevant indications. In addition 

to using focused libraries that may cover desirable chemical diversity and property space, 

innovative screens are essential to increase chances for identifying potent hits against most 

prevalent common infections associated with Gram-positive or Gram-negative pathogens 

such as hospital-acquired pneumonia (HAP), community-acquired pneumonia (CAP), 

complicated urinary tract infection (cUTI) or complicated intra-abdominal infection (cIAI)104. To 

set a reliable foundation for future development, library screening procedures must be state 

of the art in academia and industry by following generally accepted rules and basic concepts 

of standardization.  

 

It is important that a range of relevant assays is used to thoroughly select and profile novel hit 

compounds. These assays should have a high physiological significance (such as in 
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biomimetic assays)105, e.g. by using defined culture media such as artificial urine for activity 

screens with uropathogens106,107; iron-depleted media that simulate bacterial growth 

conditions during bloodstream or wound infections108,109; or assaying host-bacteria 

interactions110. Such schemes can further include the screening for new MoA(s), new drug 

sensitizing modes, non-killing mechanisms (e.g. anti-virulence factors like pathoblockers), 

compounds acting against biofilms and molecules acting synergistically even with existing 

antimicrobials to overcome drug resistance111–114. Likewise, as hits generated by conventional 

biochemical assays or screens often fail to become whole-cell active leads, alternative 

phenotypic assays such as novel target-based whole-cell screening115 are a more promising 

foundation for the release of useful hits. Even known chemical libraries (including proprietary 

compound archives of pharmaceutical companies), which have failed to deliver antibacterial 

hits by simple growth inhibition measurement, could be recovered and re-assayed by following 

these approaches. The way these innovative screens are envisaged could make them a more 

appropriate strategy to provide novel hits with a potential therapeutic impact compared to the 

molecular target-based drug design approach116.  
 
A further aim of the consortium is to design and develop informative assays, which can provide 

information about the desired antibacterial effect together with further characteristics such as 

target engagement, bacterial penetration characteristics (e.g. kinetics of compound 

permeation through Gram-negative cell envelope models117,118), and potential cytotoxicity (the 

IC50 of a hit compound toward eukaryotic cells should preferably not overlap with the range of 

its antibacterial potency, e.g. MIC, against a panel of relevant pathogens).  

 

In addition to devising standardized panels of assays according to contemporary technology, 

developing the respective standard operating procedures (SOPs) is mandatory to meet the 

requirements for Good Research Practices (GRP), which facilitate the transfer of compounds 

with potential to become new drugs from academia to non-profit or private organizations for 

continued development. By utilizing standardized proof-of-concept assays under predefined 

SOPs, more robust hit series will emerge, increasing their potential for late-stage development 

and decreasing reproducibility issues. For example, minimum inhibitory concentrations 

(MICs), and possibly also minimum bactericidal concentrations (MBCs), should always be 

evaluated in a screening campaign, e.g. by using the EUCAST (https://eucast.org/) or CLSI 

(https://clsi.org/meetings/ast/) guidelines. In addition, selected hits from standard screening 

panels should be consequently tested against contemporary clinical isolates, e.g. to prove if 

they may overcome existing resistance mechanisms. 
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Due to the high attrition rates from early hit discovery to advanced hits and leads, it is very 

important especially in the field of antibacterials to diversify and generate multiple hit series, 

and to characterize them thoroughly regarding all features that appear relevant to the intended 

therapeutic use. This includes explorations to expand scaffold diversity in the context of 

understanding the target-based chemical and physico-chemical requirements as well as 

potential liabilities like ADMET.  

 

A summary of early target hit profiles is essential to nominate the most valuable hit series 

acting against the pathogen(s) or medical indication(s) of interest. The selection of hit series 

for lead generation follows the Target Candidate Profile (TCP), which is pre-defined at the 

outset of the development program according to the desired Target Product Profile (TPP) (see 

section 3.4 and FIG. 2). Thus, the optimization of hits should generally be driven by TCPs and 

compound progression criteria that, in turn, are driven by chosen TPPs. If several TPPs have 

been selected or outlined for a campaign, e.g. based on different indications, together with 

their corresponding TCPs, it has to be decided which TCP should be used as a base to aim 

at for a given chemical series or possibly natural-product-based hit that emerges from mining 

of biological sources (see chapter 2). 

 

Compound progression criteria consist of a standardized list of essential compound properties 

required for successful transfer of hits and early leads into the subsequent discovery and 

development stages. Depending on the defined TPP, such a dossier on physico-chemical and 

biological properties should comprise a set of minimal criteria (compound progression criteria, 

see section 3.4) based on selected, standardized assays or attributes with clear benchmarks 

for transit (i.e. within the program and/or to industrial partners) and for continued development 

according to ICH guidelines (https://www.ich.org/page/ich-guidelines). Such parameters of 

relevance may include: potency/cellular activity (e.g. based on MICs and MBCs), chemical 

and metabolic stability, solubility, permeability (e.g. based on logP or, for ionizable 

compounds, logD, or complex membrane partitioning), distribution, efflux avoidance, 

selectivity/ off-target avoidance (e.g. receptor panel, hERG, etc.), acid/base properties based 

on pKa, cytotoxicity (especially human cell lines), lack of reactive metabolites, phototoxicity, 

protein binding, in vivo efficacy and human dose prediction, (oral) bioavailability, genotoxicity 

(e.g. based on AMES or mouse micronucleus), drug-drug interactions, PK linearity, safety (in 

vivo toxicity), compound access (e.g. synthetic feasibility and scaling up to gram or kilogram), 

achievable degree of purity, formulation. 

 

Once the hit discovery transitions into the hit-to-lead and lead optimization phases (see 

chapter 3), it is necessary to enlarge the scope of studies including bacterial killing kinetics, 
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MoA, frequency of resistance (FoR), mechanism of resistance (MoR) and 

pharmacokinetic/pharmacodynamic (PK/PD) analyses, which will deliver valuable parameters 

to assess the compound’s in vivo efficacy, e.g. based on sufficient free drug exposure in a 

relevant animal model with acceptable tolerability, and to further guide its path to (pre)clinical 

candidates. At this level, it is once more important to acquire a substantial amount of 
structurally related analogs by extensive medicinal chemistry efforts (e.g. in collaboration with 

PPPs or the pharmaceutical industry as suggested above) in order to rapidly generate a solid 

body of structure-activity relationship (SAR) and structure-property relationship (SPR). These 

data are essential to consistently improve all the required parameters as a base for nomination 

of lead structures and their further development into (pre)clinical stages. Computational 

methods based on machine	 learning techniques like pQSAR can help to build predictive 

models regarding activity, selectivity, toxicity, MoA and further parameters for specific 

compound classes, hence providing valuable in silico input for advantageous hit discovery and 

lead design119,120. 

 

2) Natural product-based hit compounds 
Historically, microbial natural products are the most important source of antibiotic lead 

compounds; during the last forty years, about 60% of all new chemical entities in the field of 

antibacterials were based on or derived from natural products121. Hence, complementary to 

key aspects described above, major requirements are outlined here that need to be addressed 

specifically to make identification and prioritization of antibacterial natural product hits more 

efficient and, in particular for the academic sector, achievable in all technological and financial 

demands. 

 

2.1) Identification of new chemotypes from natural sources 
Most of the known natural products with antibiotic activity were identified in phenotypic 

screening campaigns by determining antibacterial activity against panels of test organisms in 

standardized assays. While these screens, which build the basis for bioactivity-guided 

isolation of natural products from complex mixtures, efficiently retrieve bioactive compounds 

when libraries of crude extracts are evaluated, a high rediscovery rate of already known 

molecules associated with pre-existing resistance mechanisms as well as a great proportion 

of hits that show significant cytotoxicity or poor ADMET properties severely limit novelty. 

 

We emphasize that there is a general lack of efficient tools and strategies to increase the 

number of new chemotypes and to reduce the rediscovery rates in antibacterial screening 

approaches. Even on a global scale, the number of newly discovered chemotypes, especially 
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novel scaffolds acting against Gram-negative bacteria, is consistently low. Several aspects 

can be relevant to improve this situation: 

 

(i) One main possibility to identify new antibacterial chemistry is to limit screening of broadly 

characterized groups of secondary metabolite producers like actinomycetes and to expand 

efforts on identifying new types of producers by extensive biodiversity mining. This can be 

achieved by moving the focus to the potentially 99.999% of microbial taxa of the earth 

microbiome that remain undiscovered122, including yet underexplored taxa of human or animal 

microbiomes123–126.  Emerging innovative isolation and cultivation techniques such as diffusion 

bioreactors (also on microscale like iChip), microfluidics, elicitors and various co-

cultivations127–135 will contribute to accessing rare and less-studied groups of microorganisms 

from diverse habitats136–138. Further, molecular (co-)evolution acting to generate novel 

metabolites for efficient microbial warfare could be exploited139,140, e.g. by sampling from 

environments heavily contaminated with antibiotics (like sewage in Southeast Asia or South 

America) known to contain highly resistant microbes141,142, as well as by laboratory exposure 

of potent producers to sub-inhibitory antibiotic concentrations143, or by co-culturing them 

together with drug resistant (pathogenic) strains144. Beyond microbial producers, a great 

variety of plants145,146, macroscopic filamentous fungi (e.g. Basidiomycota)147 and animals148 

bear the potential to deliver useful compounds as a base for novel antimicrobials. Altogether, 

the exploration of untapped biological resources representing a major reservoir for future 

therapeutics should be generally extended within the academic and industrial sector. 

 

(ii) Upon genome mining of novel microbial isolates or metagenome-driven discovery of novel 

natural products149–152, selected biosynthetic gene clusters (BGCs) that potentially produce 

unknown secondary metabolites should be systematically expressed in specialized host 

strains153–155 that allow a straightforward detection and isolation of the new compounds, 

particularly if their BGCs remain “silent” in the native host. Such host strains or “chassis” can 

be based on microbial species that commonly produce a large variety of natural products, but 

have been made devoid of their own secondary metabolite BGCs and/or have been further 

optimized to efficiently express BGCs originating from “non-common” sources (e.g. rare 

actinomycetes or fungi)153,156,157. However, only a limited set of such specialized host strains 

is available so far, and a much more diverse array of microbial chassis needs to be developed 

to fit the demands of a growing arsenal of BGCs that potentially produce novel chemistry. 

Since BGC expression is often most successful in strains closely related to the native 

producer, standardized heterologous expression of novel BGCs in selected host strains with 

desirable properties but not yet domesticated for the use as regular chassis could be an 

alternative strategy158. 
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(iii) Another way to enlarge the chemical space is to utilize emerging synthetic biology 

approaches for medium-to-high-throughput genome editing and pathway engineering (based 

on CRISPR/Cas9159,160 and diverse recombination, assembly and integrase systems161–163), 

followed by advanced analytics and screening of the potentially modified natural products, 

which may be produced only in trace amounts. This technology involves the extensive use of 

information on genome sequences, enzyme activities and compound structures collected by 

publications, databases and web tools (such as MIBiG164, antiSMASH165, PRISM166) over the 

last decades. In many cases, the modularity of the BGC composition, e.g. coding for polyketide 

synthases or non-ribosomal peptide synthetases can be used to implement a bioinformatics-

supported “plug and play” diversification strategy allowing to exchange and recombine core 

units as well as modifying enzymes167–170. A concomitant refactoring of BGCs, especially from 

rare microbial sources, often allows high-level heterologous production of the antibiotic 

compounds in suitable hosts171–174. However, these methods are still in their infancy and 

require wider testing with different classes of antimicrobials to define general principles of 

feasibility and scalability, which furthermore requires a better understanding of the complex 

biosynthetic machineries and their modular evolution.  

 

(iv) Advances in analytical chemistry techniques, e.g. regarding mass spectrometry-based 

metabolomics and its enhancement by molecular networking and a variety of machine learning 

applications, support the process of dereplication175 during (secondary) metabolome mining 

for novel antimicrobials176–180. Known compounds produced in reasonably high yields can be 

easily identified via their high-resolution mass, MS/MS fragmentation pattern or structural data 

(based on NMR, crystallography, etc.), e.g. from secondary metabolite databases137,181–186. 

However, the remaining bottleneck is to highlight and annotate novel antibiotic compounds, 

particularly those with low production titers, as soon as possible in the discovery process (i.e. 

directly from crude extracts, without small-scale fractionation and enrichment). This can be 

supported by innovative extraction methods prior to bioactivity-guided isolation of novel 

compounds187. 

 

(v) Additionally, the revisiting of known potent antibiotics, neglected due to previously 

unacceptable and non-addressable properties such as lack of stability, high FoR or 

cytotoxicity, can be a valuable strategy to provide novel leads and candidates. The 

reassessment of such scaffolds can be based on a variety of efforts including the improvement 

of production and purification188, reconsideration of application and effective dose for natural 

derivatives189, or advantageous scaffold modification by biosynthetic engineering and 

semisynthetic approaches190,191 (BOX 4). 
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(vi) Further opportunities remain to improve the discovery and development of agents for 

combination therapy as indicated above, i.e. synergistically acting compounds against MDR 

and/or high priority pathogens192,193, and to address the difficulty to discriminate them from 

non-specific antibiotic activities during the discovery process. 

 

(vii) Improving bacterial target access, enhancing potency and broadening the antimicrobial 

spectrum of known and novel antibiotic scaffolds by using drug-conjugate strategies, e.g. 

linking of pathogen-specific antibodies194,195, siderophore moieties196,197 or positively charged 

peptides198,199. Though these approaches have been proven effective in many ways, some of 

them may also bear the risk for undesired effects like spontaneous rise of FoR, which can be 

problematic, e.g. in the case of the “Trojan Horse” approach200. 

 

Altogether, a variety of innovative and complementary technologies is required to improve 

access to novel natural product scaffolds. Computational methods can provide powerful 

assistance at different levels in many of the areas indicated above, as recent efforts 

show201,202. In this context, artificial intelligence might play a game-changing role in the future. 

The general power of neural networks for detecting new antimicrobial candidates has already 

been demonstrated201. By using a computational model that screens over hundreds of millions 

of chemical compounds in a few days, potential antibiotics even with new MoA(s) could be 

proposed rapidly. Given the recent advances in artificial intelligence, these and other models 

will likely add to the future identification of new candidate drugs. 

 

Interestingly, when looking at compound properties, it appears that there is often more 

flexibility in the selection of “successful” natural product scaffolds compared to synthetics, e.g. 

regarding Lipinski’s Rule of Five (Ro5)203–205, which natural products frequently “disobey” (such 

as cyclosporine or macrolides like azithromycin). Thus, antimicrobial drug discovery in 

“beyond Rule of Five” (bRo5) chemical space is an opportunity when using natural compound 

collections or when assembling libraries of de novo designed compounds206–208, though the 

general need for optimizing key pharmacological properties of such hits remains beyond 

question.  

 

Another major challenge for natural products can be the generation of structurally diverse 

analogs (if they are not accessible through biosynthesis), since many scaffold positions are 

often hard to access by means of semisynthesis. Hence, broad derivatization of natural 

product-based hit and lead compounds is much more labor-intensive, and establishing 

synthetic access to these scaffolds with the perspective to systematically diversify their 



S 

16 

chemical space can require large amounts of resources209. Nevertheless, the modification of 

natural scaffolds with ligands that are often easier to incorporate by (semi)synthetic or 

chemoenzymatic approaches, such as halogens that allow the modulation of solubility, 

permeability, selectivity, target affinity etc.210,211, proves that a multitude of opportunities arises 

when combining synthetic and biological chemistry.  

 

2.2) Required access to biological and chemical material and data 
Many scientists regularly experience difficulty in accessing and sharing research material from 

third parties such as microbial strains, cultivation extracts, pure compounds, genome or gene 

cluster sequences and further background data (of published or even unpublished results). As 

an example, an interesting BGC is identified in the publicly accessible databases, but the strain 

is not specified or not available from the indicated source. Similarly, access to industrial 

antibiotic overproducers can be impossible, even when a company no longer has a 

commercial interest in the resulting molecule. This may have various reasons, including legal 

restraints (e.g. imposed by the Nagoya Protocol212) or IP claims on strains, compounds, 

biologics, (re)profiling data of already known structures, etc., either via involved third parties 

or by own IP shares of the material and data. 

  

In the public interest, standardized procedures are necessary to facilitate access to research 

materials and to solve IP conflicts, at least within the field of academia, which is supposed to 

share research materials with colleagues by negotiating appropriate cooperation agreements.  

Further, the access to in-house compound libraries of pharmaceutical companies (at least 

subsets of them and especially those that are not intended for antibiotic-related screening) 

could be very valuable for academic partners who are eager to identify novel antibacterial hits 

(see section 1.3), which could lead to joint drug development programs. Enabling access to 

materials can also be extended to strain collections, including clinical isolates representing the 

diversity of pathogens associated with a certain clinical indication, and advanced compound 

information based on pre-existing characterization and profiling campaigns. An increased 

availability of these resources will be of great benefit to the antimicrobial research community 

worldwide.  

 

Furthermore, comprehensive databases and data-sharing platforms can provide another 

valuable resource for present and future antibiotic R&D projects and, hence, should be 

implemented and maintained with care213. There is a growing body of recently initiated and 

publicly available web-based tools and archives that support accumulation and exchange of 

data regarding antibacterial compounds in different stages of discovery or therapeutic 

development, known or predicted antibiotic targets and the diversity of antimicrobial resistance 
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determinants (BOX 5). Further connection and integration of such databases is desirable to 

achieve an optimum of relevant output for a specific search request. In addition, initiatives 

comparable to the European Commission’s manifesto to maximize the public accessibility of 

research results in the fight against COVID-19214 are also highly recommended to support 

AMR-related scientific research at all levels, including facilitated access to online resources. 

 

2.3) Prediction of antimicrobial structure and function from genome sequence data of 
antibiotic producing microbes 
Driven by the breakthrough in sequencing technologies and genome mining, the identification 

of BGCs encoding the biosynthesis of natural products has matured to complement the 

chemistry- and bioactivity-driven screening processes for natural product hits. Computational 

methods are developed and continuously improved to identify novel biosynthetic pathways in 

(meta)genomic sequence data149,150. Recently, 3rd generation genome sequencing techniques 

such as PacBio and Oxford nanopore have been developed that provide high-quality full 

genome data even for complex microorganisms like filamentous fungi at reasonable cost, 

which is an ideal prerequisite for large-scale genome mining approaches215.  

 

However, linking obtained sequence information to possible structural or functional features 

of the encoded molecules certainly remains a great challenge. Prediction of chemical 

structures directly from genome data would help to sort out known scaffolds from potentially 

unknown ones during a very early stage of dereplication; the training of machine-learning 

algorithms with sufficient amount of genome data from microbial producers could ultimately 

lead to fairly accurate predictions of chemical structures linked to specific BGCs, and possibly 

even their biological activities166.  

 

Furthermore, a successful strategy to decipher antibacterial targets of new natural products, 

even without the necessity of initially isolating those, is a directed search for known resistance 

factors in the genomes of producer organisms216,217, e.g. coding for resistant variants of the 

molecular target(s) or conserved class-specific transporters, which recently led to the 

discovery of novel antibiotic scaffolds218. However, most BGCs do not contain apparent or 

specific drug-resistance genes that could straightforwardly indicate a compound’s function. In 

the majority of cases, very limited predictions based on genomic data concerning function and 

potential target(s) of a natural product are currently possible, although advanced automated 

tools for target-directed genome mining are available219. Thus, there is a high demand for 

innovative methods to predict the molecular function or target of a natural compound based 

on genomic data. Such data would be extremely valuable in order to prioritize biosynthetic 

gene clusters (BGCs) for experimental characterization. In the future, artificial intelligence-
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based approaches, either based on classical machine learning methods (extracting new 

knowledge from pre-processed data sets) or on deep learning (drawing conclusions from raw 

data such as representative examples, often by using multi-layer neural networks) may deliver 

such predictions with increasing accuracy220. However, existing algorithms still have to be 

improved and new ones have to be developed to specifically address the question of how to 

assign target-based functions to natural products during the early stages of discovery and 

prioritization, and they require a huge amount of validated training data221. 

 

3) Optimization of hits and leads to the (pre)clinical stages 
Regardless of whether antibacterial hits emerge from rationally designed synthetic molecules 

or from the pool of natural products, the subsequent hit-to-lead and lead-to-candidate 

optimization phases are very similar for compounds irrespective of origin (“Y-Model”, see FIG. 

2). In this chapter, we discuss the most critical obstacles and requirements for delivering those 

advanced leads that may eventually become the next generation of (pre)clinical candidates.  

 
3.1) Drug-target interaction studies as a base for hit development 
For hits arising from phenotypic assays, cellular MoA(s) or specific molecular target(s) may 

not be known at the hit-to-lead stage, and sometimes the precise MoA is elucidated years 

after the approval of a drug, as in the case of daptomycin222. However, detailed insight in the 

mechanism(s) by which compounds exert their pharmacological activity is highly desirable for 

further rational optimization of chemical scaffolds, particularly when structurally enabled 

approaches can be used, for a convincing presentation of preclinical candidate dossiers, and 

for regulatory requirements. Since universally applicable methods for characterizing the 

MoA(s) of antibiotics do not exist, a full suite of expertise in genetics, genomics, microbiology, 

chemical biology and biophysics is required. Identification of the molecular target can be 

achieved by targeted screens of indicator or mutant strains, whole-genome sequencing upon 

focused resistance development223,224, pattern recognition techniques based on 

transcriptomics225, imaging226,227, metabolomics228, macromolecular synthesis229,230 or mutant 

fitness profiles231,232, which can be coupled with machine-learning approaches for directed 

predictions224,232, or chemoproteomics233,234. The latter will be used especially in the case of 

non-essential target inhibitors like pathoblockers, since they may not generate resistant 

mutants (at least under standard laboratory conditions). Additional techniques for MoA studies 

may include crystallography, a diverse set of spectroscopic and calorimetric analyses235–239 as 

well as the use of functionalized derivatives (“tool compounds”)240,241, which can support both 

target identification and validation and may provide in-depth information of drug-target 

interaction to drive the rational hit-to-lead optimization process forward. Alternatively, 
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identification of drug-target (or ligand-protein) interactions formed under native (“unbiased”) 

conditions by using specialized proteomic approaches is becoming increasingly successful242–

245. Current bioinformatic tools can also combine genome-mining approaches with the 

prediction of potentially innovative MoA(s) based on the presence of resistant target genes in 

BGCs encoding novel antibiotics219, and a diverse set of emerging learning methods will 

steadily enhance the predictability of drug-target interactions246,247. 

 

In addition to the specific molecular target(s), it is important to understand the impact of the 

antibiotic compound on the general physiology of the bacterial cell. This includes the sequence 

of events leading to bacterial death, the time-point when killing occurs (based either on 

individual bacterial cells or their population/colonization level) and the conditions that might 

enhance or preclude it. Such characterizations may require the application or development of 

a range of secondary assays. For compounds acting on intracellular bacterial targets (i.e., 

targets located in the cytoplasm), the processes of compound influx and prevention of efflux 
(especially in Gram-negative bacteria due to their complex cell envelope and presence of 

numerous multi-drug efflux pumps) are both critical optimization parameters to ensure 

sufficient target engagement248–251. These can be addressed by suitable compound design, 

which is generally still rather empirical252–255. Other possibilities to address this key area would 

be to use these compounds in combination with outer membrane permeabilizing agents256,257 

or efflux inhibitors93,258. Alternative approaches addressing extracellular virulence factors, e.g. 

extracellular lectins required for attachment and biofilm formation or secreted proteolytic 

enzymes do not suffer from a possible lack of bacterial uptake259. Often antibiotics, and 

particularly natural products, have more than one target and disturb bacterial physiology in 

different ways, referred to as polypharmacology73,260,261, which is beneficial for inflicting severe 

damage on the bacterial cell and slowing down target-mediated resistance development. 

Information related to such effects should be acquired for all bacterial species within the 

spectrum of activity of the potential drug, and it may significantly deviate across 

phylogenetically distant species.  

 

Apart from the desired biological effects on bacterial pathogens, knowledge about undesired 

adverse effects on eukaryotic cells (“off-target effects”262–267) should be acquired early, since 

toxicity is a major issue for attrition in the drug development process. However, whilst in vitro 

cytotoxicity screens are useful during the early discovery process, they are often not predictive 

of toxicological effects that can become most significant during in vivo studies (see section 

3.4). Furthermore, “collateral damage” to the microbiome needs to be considered268–271, which 

can be modulated by selective drug design272. For compounds with a novel or particularly 

complex MoA, it often takes several years to achieve a detailed molecular understanding and 
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the cellular consequences of exposure. Therefore, acquiring this knowledge as early as 

possible is a key aspect for further rational drug optimization including SAR studies. We 

recommend investing resources into expanded MoA studies already during the initial stages 

of the drug development process and, furthermore, to build a network of experts who can 

provide MoA analyses that fulfill the requirements of a preclinical candidate dossier. While 

these aspects are standard for drug development projects in pharmaceutical industry, 

academia usually suffers from insufficient funding to appropriately address such requirements, 

hence acquisition of additional resources has to be secured. 

 

3.2) Limited resources to move from hit into lead stage  
Once a hit validation has been accomplished, the resources needed to advance the selected 

compound series into hit-to-lead and lead optimization greatly increase. These stages require 

a diverse scientific team covering analytical, computational and medicinal chemistry, 
biochemistry, microbiology, bioinformatics (ideally including machine learning and artificial 

intelligence methods), drug metabolism and pharmacokinetics as well as, specifically for 

natural product-based compounds, biotechnology and genetic engineering. In industrial 

projects, typically five to fifteen medicinal chemists work on the optimization of a hit (depending 

on how complex the chemistry of a certain compound is) to create promising leads or 

preclinical candidates, essentially by generating, testing and advancing SAR-based analog 

series in an iterative manner. The challenge is to simultaneously optimize all properties 

necessary for the drug to be most effective and least toxic. This includes potency, selectivity, 

physico-chemical parameters, cytotoxicity as well as pharmacokinetics and 

pharmacodynamics (see section 3.4, and FIG. 2). The multi-parameter optimization can 

usually be achieved within a timeframe of about two to four years, but remains dependent on 

the human, technological and financial capacities, as well as the particular challenges 

represented by the chemical series. Such resources are difficult to acquire through classical 

academic funding schemes, which usually reward new discoveries in fundamental science 

rather than subsequent steps of time- and resource-consuming optimization, where there is 

no guarantee of success.  

 

Therefore, academia must find new ways to provide suitable resources for early-stage 

translational research. Furthermore, few academic institutions possess the relevant expertise 

and facilities to carry out lead optimization. Therefore, in the majority of cases, they require 

access to high-quality expertise and/or capacities through partnering with pharmaceutical 

companies/SMEs or via contract research organizations (CROs), which can only be achieved 

through additional funding or partnerships, e.g. for improving a particular molecular scaffold 

over several years with the risk of limited outcome (see section 3.5). A possible strategy to 
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increase the opportunities for acquiring appropriate resources could be the endorsement of 

alternative reward schemes for evaluation of academic project funding, not only based on 

high-impact publications, but also on verifiable dedication to health research such as 

contribution to a global antibacterial portfolio. The emergence of centers for translational 

science in many countries (e.g. the German Center for Infection Research; 

https://www.dzif.de/en) could be an opportunity to develop and implement such measures, 

possibly at an international level. 

 

3.3) The bottleneck of compound supply 
The enhanced biological profiling that is mandatory in lead finding and optimization programs 

requires a considerable amount of sufficiently pure compounds to be tested. While this 

constitutes an issue for chemists in general even with respect to synthetic hits and leads 

(especially when considering massive scale-up of typical laboratory reactions)273,274, the 

problem of re-supplying increasing amounts of natural products originating from bacteria, fungi 

or plants is particularly challenging. Indeed, academic projects are often concluded when 

natural compounds or biotechnologically generated variants thereof are identified at small 

scale (often <10 mg), rudimentarily profiled and published. In many laboratories, there are no 

additional resources to increase the yields of natural product hits or initial leads, or to scale-

up production in a pre-pilot plant environment that is capable of carrying out the fermentation 

(possibly by using heterologous production hosts to achieve attractive yields275,276). In addition, 

downstream processing has to be established and optimized for every new compound to 

ensure sufficient supply and purity for the following stages including scaffold optimization by 

medicinal chemistry or extended biological profiling. The fact that sufficient amounts of 

compounds (multigram-to-kilogram scale) cannot be produced in many cases severely 

decreases the chances of developing novel therapeutics from natural products. This is 

particularly unfortunate in the antibiotics field, because about two-third of all antibiotic drugs 

in therapeutic use are derived from natural products (see chapter 2). Regrettably, 

fermentation-independent supply, e.g. via total synthesis of complex natural compounds, can 

only be achieved for a low percentage of novel hits and leads and requires tremendous 

additional capacities277–280. 

 

Thus, suitable funding instruments are important to cover the essential process of natural 

compound supply by biotechnological procedures including fermentation scale-up and 

efficient downstream processing281–283, allowing the provision of sufficient source material of 

high purity for semisynthesis and further studies. In addition, a robust method for large-scale 

production and downstream processing of the candidate molecule is a prerequisite for process 

transfer to GMP manufacturing before entering (pre)clinical stages. Generally, further scientific 
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and technological development is required to make the provision of compound material from 

various sources a more routine and affordable task, particularly in the non-industrial research 

environment. 

 

3.4) Requirements for in vivo studies and project transfer 
The primary assays in most programs usually address biochemical, biophysical and/or 

microbiological functionality of newly generated compounds. In order to convert a molecule 

with in vitro activity into a drug, sufficient exposure at the infection site in vivo must be 

achieved. To analyze this, a full suite of ADME(T) assays is required284,285, followed by 

pharmacokinetic (PK) experiments in animals (usually starting with rodent models)286,287, 

which could be combined with physiologically-based pharmacokinetic (PBPK) modeling to 

predict in vivo ADME and PK behavior in other animal species or in humans288,289. As stated 

above (see chapter 1), it is important to implement physico-chemical and in vitro ADME(T) 

profiling at the start of hit optimization, to make sure that any pharmacokinetic issues are 

identified early and can be addressed through the entire chemistry program. 

 

A sufficient correlation between in vitro and in vivo data, which is not always achievable for all 

antimicrobial compounds, e.g. LpxC inhibitors290,291, should generally be pursued as early as 

possible in the program, otherwise continued lead design might be based on irrelevant or 

misleading data points. Further, the availability of pharmacodynamic (PD) models292,293 of high 

translational relevance, i.e. reliably predicting a minimal efficacious dose in humans, is a 

critical factor of success in order to generate the optimal drug candidate during lead and lead-

to-candidate optimization. Particularly in the field of antibiotics, preclinical PK/PD relationships 

are generally predictive and have a high relevance for regulatory dossiers294,295, e.g. for human 

PK/PD target attainment (PTA) at therapeutic doses and drug formulation development; 

hence, they have to be evaluated carefully at the earliest possible stages296–298. Typically, 

PTAs for antibiotics require relatively high doses compared to other drug classes, limiting the 

successful application of existing formulation and delivery technologies. This is especially true 

for oral medications that may cause further challenges, e.g. regarding adequate bioavailability 

of the drug. Hence, a broader array of potential delivery systems should be tested 

systematically, which may include conventional permeation enhancers299 as well as 

sophisticated nanoformulations300,301. The latter, however, can only be produced based on 

expert knowledge and infrastructure, which is often not available in academia, thus specialized 

CROs or SMEs may be approached based on available funding. 

 

Another obstacle is the need to perform (initially) rather extensive studies in laboratory animals 

to understand the PK/PD relationship of a novel compound, which at subsequent stages 
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allows the number of animal experiments to be minimized according to the “3Rs principle”302. 

However, these studies are generally associated with ethical concerns, high costs and 

administrative burden. Likewise, these matters are relevant for the in vivo evaluation of 

toxicology, toxicokinetics and safety pharmacology to cover safety aspects before entering 

clinical trials303,304. Here, exploratory or early-stage predictive assays using computational 

models as well as in vivo systems with minimal ethical concerns (e.g. in vertebrates like Danio 

rerio, insects like Galleria mellonella, or worms like Caenorhabditis elegans) are an opportunity 

to estimate both efficacy and potential toxicity risks before considering standard in vivo 

experiments in rodents and other mammals305–307. 

 

Ultimately, the demonstration of efficacy in a relevant animal model, associated with 

convincing exposure at the site of infection and a rough estimation of a reasonable safety 

margin is often a prerequisite to attract an investor’s interest; typical minimum requirements 

are a tolerance/ dose-range finding study in one or two animal species as well as human dose 

prediction based on a solid set of PK/PD data, e.g. by testing systemic efficacy in the 

neutropenic thigh infection model in mice308.  

 

Generally, TPPs and the corresponding TCPs should continue to be the base for all further 

optimization attempts, especially when including in vivo studies, and hence should be 

thoroughly compiled before the development program starts with the help of subject matter 

experts. It will guide the strategies and decisions for all chemical and biological development 

processes during the optimization phases, mainly with respect to one (or more) clinical 

indication(s). In order to specify robust finishing lines, it should define sets of minimum 

acceptable criteria for each phase, e.g. for biochemical assays during early stages and 

(pre)clinical endpoints at later stages. Such compound progression criteria (see also section 

1.3) should be defined for a validated hit, entry into lead optimization, a late lead and a 

preclinical candidate. There are different TPPs for different bacterial infections. As projects 

evolve, they may encounter serendipitous discoveries, unsurmountable hurdles, or important 

findings from other groups or competitors, which may affect the TPP that they target. 

Therefore, the TPP can be critically reviewed and possibly refined or adapted throughout the 

project, e.g. at each transition into the next development stage. Ideally, a pool of commonly 

accepted TPPs (i.e., approved by pharmaceutical industry as well as the public health sector) 

should be available for the multitude of clinical indications to serve as a base for each 

discovery and development program of novel therapeutics. These TPPs need to be regularly 

reviewed, and where necessary updated, to make sure that they reflect the current clinical 

situation; for example, TPPs addressing indications caused by bacterial infections may be 

affected by the latest emerging (or anticipated) drug-resistant pathogens of critical relevance. 
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It is important to note that only convincing TPPs together with comprehensive preclinical 

candidate dossiers (highly informative TCPs) and reliable SOPs for scalable compound supply 

will allow early partnering and a smooth transfer of the project to an industrial stakeholder to 

move into (pre)clinical development (BOX 6).  

 

3.5) The management challenge in hit and lead optimization programs 

As the development of antibacterials is a multidisciplinary approach, knowledge of a diverse 

set of techniques and domains (e.g. assay development, high-throughput screening, medicinal 

and computational chemistry, ADMET, PK/PD, drug delivery, clinical background of disease 

processes, etc.) is required in order to develop a compound to the level of a preclinical 

candidate. Single principal investigators (PIs) will usually not possess the broad base of 

expertise that is necessary, since academia largely focusses on early-stage discovery and 

compound optimization at laboratory scale. Hence, research groups that do not possess the 

extensive skill-set for drug development in its various stages should pursue a team approach 

by collaborating with organizations that have the relevant experience, be it within the academic 

or industrial sector. There is also the possibility of calling on specialized consultancy or 

outsourcing packages of work (for example ADMET) to CROs that possess relevant expertise 

and experimental capabilities. However, apart from the relatively high costs of such services, 

PIs often struggle with remaining questions once a CRO assignment ends, and sufficient 

resources for tailor-made optimizations are often lacking. Moreover, the need to interpret 

results and devise a clear path forward towards the TPP from multiple data packages remains 

with the project teams. Hence, partnerships and collaborations are essential if relevant in-

house expertise or infrastructure is missing. Therefore, we propose the following solutions for 

efficient translational project management:  

 

(i) Aligning and collaborating with suitable partners from various sectors or disciplines is crucial 

for groups with limited know-how in drug discovery and development. Generally, larger project 

teams can provide or identify expertise much faster to sufficiently resolve emerging knowledge 

gaps. Additionally, project consultants or CROs can be approached at different levels to fulfill 

remaining tasks, e.g. data evaluation or processing defined and highly specific work packages, 

e.g. in pharmacokinetic and toxicological studies.  

 

(ii) Databases of experts should be available for relevant research areas or services, and the 

various technical and IP-related aspects need to be elaborated on a case-by-case basis. 

Unbiased partners have to be identified to host and curate such databases on a regular basis, 

which could fall into the remit of non-profit health organizations such as JPIAMR or GARDP.  
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(iii) Training of PIs on a frequent basis is required to broaden their knowledge and to ensure 

a high-level understanding of potential barriers and pitfalls at least until projects reach the 

(pre)clinical stages. A number of renowned institutions already offer regular workshops and 

seminars (often as interactive webinars, e.g. GARDP REVIVE; https://revive.gardp.org/) as 

well as extended training programs (e.g. the International Course on Antibiotics and 

Resistance; https://www.icarecourse.org/; hosted by Institut Pasteur, France), and these are 

increasingly popular. In addition to PIs from academia, also non-academic experts from 

industry, different health sectors and politics should share their perspectives on current 

research and funding aspects more regularly within interdisciplinary settings. 

 

Overall, it is important that the necessary financial and legal frameworks for efficiency-oriented 

project management are established as early as possible to avoid loss of time and resources 

during the course of a development program. The required settings can be implemented either 

individually at a certain project level, or management models (e.g. available in the industrial 

sector or in translational research centers) could be used or adopted for the specific purpose. 

 

Conclusions and Outlook 
To ensure a healthy and vibrant antimicrobial pipeline, considerable efforts are needed not 

only to develop the next generation of antibacterial drugs but also to safeguard and foster 

profound expertise in antibiotic drug discovery and development. In short and medium terms, 

such capacity building must be performed as a collaborative and iterative process between 

academia and industry to ensure that the necessary skills are available to translate validated 

hits into potential drug products. The development of joint initiatives for education in 

translational sciences will require specific funding, as they are not part of most universities’ 

standard curricula. Many experienced scientists in the pharmaceutical industry are eager to 

share their translational and regulatory knowledge, often after retirement or due to change of 

operations. Thus, pharmaceutical companies could serve as a valuable “training ground” for 

acquiring and developing specific skills in the antimicrobial sector. However, limited funding 

(especially for SMEs) and economic uncertainties negatively affect this premise by a) leading 

to business closures; b) inducing high turnover rates of employees; c) preventing the 

recruitment and training of inexperienced staff; d) deterring scientists from starting a career in 

SMEs. In order to achieve transfer of vital expertise, “academia meets industry” workshops, 

symposiums and exchanges for students and advanced researchers are required and need 

financial support. However, there are hardly any market-driven initiatives for such events and 

therefore, a connection to already existing education and training programs, e.g. those 
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supported by IMI, ESCMID or BSAC, can be a valuable option as long as the transition into 

an era of mutually sustained knowledge transfer between industry and academia continues. 

 

Another critical aspect for all future antibiotic R&D projects is the implementation of a legal 

framework for IP ownership at project commencement. The multidisciplinary and collaborative 

nature of antibiotic drug discovery often results in collaborations between different institutions 

on a national or international level. This creates challenging ownership structures with 

increasing complexity of such consortia, especially when an antibacterial program is out-

licensed, for example, to an SME. Negotiating ownership agreements among inventor 

institutions can be lengthy and may discourage industry from in-licensing valuable assets for 

further development. The increased collaboration between academia and industry requires 

fair and justifiable guidelines for knowledge and compound transfer outlined in appropriate 

agreements. The creation of such guidelines should be supported, e.g. in form of templates to 

settle ownership agreements between project partners or third parties, to facilitate processes 

for the benefit of researchers with limited experience in these matters. Such a framework will 

accelerate potential technology and compound transfer towards industrial drug developers, 

will make the counterpart of the commitment for each participant clearer and their gains more 

attractive. 

 

Finally, we believe that AMR research requires diligent lobbying at the national and 

international level to create entry points for large funders. Many scientists working on 

antimicrobials in either academia or SMEs are outside the few existing networks that involve 

decision makers within commercial funding sources such as venture capitalists including the 

newly announced AMR Action Fund, philanthropic organizations, national or regional 

governments or international bodies. This leads to a continued situation in which the 

challenges of antimicrobial drug developers are either not heard or are even ignored, though 

public awareness of AMR steadily increases. It is evident that a strong lobbying position will 

lead to changes, which has recently been shown by the BEAM Alliance and their interaction 

and negotiations with diverse political bodies in Europe, leading to increased recognition of 

the challenges for antibacterial drug developers by the European Commission and Europe’s 

national governments309–311.  

 

For the above reasons, we recommend that an international group of experienced AMR 

lobbyists should be formed that together can campaign for funding of early antibacterial drug 

discovery research along the principles set out in this article. Such a group should include 

national, regional and global scientific and industry associations that have practice in 

interacting with relevant stakeholders connected to national parliaments, EC, G7, G20 and 
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further decision-making entities312. The Global AMR R&D Hub (https://globalamrhub.org/) 

could be a crystallization point to pioneer such developments, which can be supported by 

consortia such as presented by the authors of this white paper: The International Research 

Alliance for Antibiotic Discovery and Development (IRAADD; https://www.iraadd.eu/), which 

we have recently established with the support of the JPIAMR Virtual Research Institute 

(https://www.jpiamr.eu/jpiamr-vri/), identifies itself as a part of the mission that is addressed 

by the current roadmap. IRAADD aims to improve the situation of novel antibiotic discovery 

and development by joining together experts for early drug research from the academic and 

industrial sectors. Although IRAADD currently has only a short-term funding perspective, it is 

one of our main goals to help define and implement interdisciplinary innovative antibiotic 

development projects based on sustainable research funding, in order to refill the translational 

pipeline with new drug candidates in the foreseeable future. In this respect and as a possible 

long-term vision, the creation of internationally operating Antibiotic Research Hubs, which may 

emerge from already existing "pre-stage" platforms such as IRAADD, can be a major step 

forward to engage as many members as possible from academia, industry and public health 

organizations in antimicrobial R&D collaborations, and to create a strong and path-breaking 

position that cannot be overlooked. Only a responsible connection of thought leaders and 

dedicated experts from all relevant sectors of society, joining together now and for the future, 

will allow the facilitation of suitable rapid responses to globally emerging pathogens, or even 

future pandemics caused by multi-to-pan drug-resistant (“superbug”) bacteria. This aim 

deserves our undivided attention.  
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Fig. 1: Current situation of antimicrobial drug development with large funding gaps in the stages of 

discovery as well as hit and lead optimization associated mainly with academic research and SMEs. 

Indicated figures are representative numbers of typical broad-spectrum antibiotic development 

programs leading from several thousands of initial hits to the approval of at least one marketable 
candidate72,313–316. *Timelines (indicated with estimated sub-periods for the different stages) can vary 

largely based on all factors relevant for straightforwardness and success, assuming a minimum to 
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maximum span of 8 – 18 (on average 13 – 14) years for the complete development process until market 

entry. **Cost per molecule/candidate (in million EUROs, m€) does not include extended costs for 

attrition (failed programs) and lost opportunities associated with increased cycle time until reaching the 

next development phase; such extensions can increase the required budget for the early stages up to 
50 – 100 m€39,48,317. N (orange diamond), nomination of (pre)clinical candidate(s); ROI, return on 

investment; SME, small and medium-sized enterprises; PPPs, public-private partnerships. 

 

 

 
Fig. 2: Summary of major steps and processes in antibacterial drug discovery and development (details 

given in the text). Approaches marked with * can be linked with emerging artificial intelligence (AI)-



S 

61 

based technology, e.g. for advanced data mining, screening or property predictions, to increase 

efficiency and outcome. Phys-chem, Physico-chemical properties; MICs, minimal inhibitory 

concentrations; FoR, frequency of resistance; MoR, mechanism of resistance; SAR, structure-activity 

relationship; TPP, target product profile; GLP, Good Laboratory Practice; ADMET, absorption, 
distribution, metabolism, excretion, toxicity; PK/PD, pharmacokinetics/pharmacodynamics; PoC, proof 

of concept; DRF, dose-range finding; IND, investigational new drug; CTA, clinical trials application; ICH, 
International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use;  

FDA, U.S. Food and Drug Administration; EMA, European Medicines Agency. 

 

Table 1: SWOT analysis summarizing a path forward in the development of novel antibiotic 

(AB) drugs 

 

Strengths 
 

Weaknesses 
(current 

limitations) 
 

Opportunities 
(possible solutions) 

 

Threats 
 

● Successful clinical 
proof of concept for 
ABs since ~100 years  
 
● Critical need for 
intensive care units 
 
● Novel ABs are last 
resort against MDR 
pathogens 
 
● Knowledge and 
technologies for AB 
R&D established and 
steadily advancing 
 
● High chance of 
finding new AB classes 
due to largely under-
explored biodiversity 
 
● Large and 
increasingly diverse 
chemical libraries 
available for screening 
 
● Increasingly large 
and diverse online 
databases on antibiotic 
compounds, targets 
and resistance genes 
available 
 
● Predictive models 
available (via 
integrative chem-
bioinformatics, e.g. 
PBPK modeling) 

● Unavoidable 
resistance 
development 
with classic ABs 
(„vicious circle“) 
 
● Use of ABs in 
agri- and aqua-
culture not 
globally 
regulated 
 
● Paucity of 
novel AB 
classes against 
Gram-negative 
priority 
pathogens  
 
● Lack of 
innovative 
assays for hit 
discovery 
 
● Capacities in 
academia 
(MedChem, 
PK/PD etc.) 
insufficient for 
R&D project 
expansion 
 
● High attrition 
rates until 
market entry, 
especially in the 
early stages of 

● New incentives (push & pull factors) to     
   attract industrial stakeholders: 

! grants (from governments, health 
foundations etc.) for innovative 
programs, e.g. early R&D with 
academia (PPPs) 

! alliances of physicians, patients and 
politics (WHO, EU, etc.) advocating 
for novel ABs 

! market entry rewards like transferable 
exclusivity extensions/vouchers (e.g. 
prolonged IP protection of new AB 
classes or extended protection of 
other products) 

! Delinkage models for novel ABs 
(benchmark-based to insure 
innovation-driven development) 

! patent buyouts or payer licenses in 
return for public control over pricing 
and distribution 

! long-term benefits through public 
prestige, advertisement, etc. 

 
● Advancing cooperation between academia, 
health foundations and industry (sharing of 
libraries, data, discovery and translational 
know-how, IP, etc.) 
 
● Emerging national or international 
antibiotics research networks, virtual centers 
and innovation funds  
 
● Academic entrepreneurship (foundation of 
spin-outs, etc.) 
 
● Multiple innovative concepts for non-
traditional antibiotics (virulence inhibitors etc.) 
 

● Rising death 
toll per year due 
to AMR 
 
● Loss of 
expertise in AB 
R&D in both 
academia and 
industry 
 
● Disconnect 
between early 
R&D (left to 
academia) and 
clinical stages 
(industry-
dependent) 
 
● Disconnect 
between 
researchers and 
regulatory 
agencies 
 
● Low-cost 
structure of 
generic ABs 
impedes the 
development of 
novel classes 
 
● High cost to 
society (socio-
economic 
burden, 
increasing 
patient mortality, 
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● Loss of efficacy 
controllable by 
antibiotic stewardship 
 
● Increasing public 
awareness of AMR 
demands for and 
facilitates national and 
transnational solutions 

discovery and 
optimization 
 
● High capital 
risk and 
negative ROI 
mainly for 
industrial sector 

● Overcoming existing resistances and/or 
increase efficiency of ABs by using molecules 
with synergistic action or innovative 
conjugates 
 
● Hit discovery becoming more efficient by 
emerging artificial intelligence technologies 
 
● Innovative concepts can improve: (i) in vivo 
drug delivery, (ii) ABinflux in bacterial cells, 
(iii) AB efflux inhibition 
 
● Careful evaluation of regulatory guidelines 
based on regional discrepancies (high need 
vs. safety) 

etc.) over the 
next decades  
 
● Risk of empty 
development 
pipeline if 
problems (e.g. 
lack of R&D 
funding) are 
ignored 

 
 
BOX 1: Early stage development of a synthetic antibiotic against M. tuberculosis 

 
Historically, the whole-cell assay has fully outclassed target-based methods as the main approach to 

discover novel antimicrobial drugs. In particular, this applies to antitubercular drugs, where the peculiar 

cellular structure of Mycobacterium tuberculosis (Mtb) is responsible for the lack of correspondence 

between the biochemical and the phenotypic assays. In this case study, a small in-house chemical 

library was evaluated via a phenotypic screening against Mtb to identify novel antitubercular 

chemotypes. A few 2-aminothiazoles were found to be moderately active, and the initial hit series was 

expanded to investigate the SAR by iterative medicinal chemistry (MedChem) efforts318, leading to 

highly potent derivatives (MICs in the submicromolar range) toward susceptible Mtb. To further promote 
the advancement of these compounds, additional biological assays were carried out to investigate the 

activity against multidrug-resistant (MDR) and extensively drug-resistant (XDR) Mtb strains, the 

selectivity over other bacterial species and eukaryotic cells, and the susceptibility to the action of efflux 



S 

63 

pumps319. The next research step was focused on a hit-to-lead optimization based on the convergent 

analysis of the SAR and Structure-Metabolism Relationships (SMR). Two metabolic soft-spots were 

identified, and these findings were instrumental for the design of compounds that escaped rapid 

clearance by human liver microsomes and, at the same time, maintained good antitubercular activity 
against both drug-susceptible and drug-resistant strains. At this stage, determination of the mode of 

action at a molecular level and assays in animal model(s) of infection represent the next research 

progressions. Generally, academic drug discovery can suffer from long timescales and limited 

resources which, in turn, make the research process difficult to move forward. For instance, academic 

chemical libraries are unlikely to yield a significant number of hits from a whole-cell screening, despite 

the intrinsic chemical novelty that characterizes their creation. Partnership with industrial stakeholders 

should fill the funding gap and add further expertise, e.g. on advanced compound design and in vivo 

studies, to overcome the limitations mentioned above. 
 
BOX 2: Focused library design generating NCEs within a preferred property space 

 
 

 
The chemical drug space has been described as almost infinitely large with an estimated 1060 compounds320. 

To exemplify the ease of accessing novel chemical matter within a desired property space75,76, we designed 

a focused small library based on commercially available building blocks. The central building block was kept 

constant and two substituents were added by nucleophilic heteroaromatic substitution with the secondary 

amine321, followed by reductive amination on the primary amine322. The in silico design was driven by diversity, 
clogD (pH 7.4) between -2 and 2, molecular weight (Mw) below 450 Dalton, and increased sp3 content (i.e., 

level of heavy atom saturation)323. For this hypothetical pilot library we chose 15 aldehydes and 15 

N

HN

MeNH(O)C
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R2

1) Boc deprotection
2) SnAr (Heteroarylchlorides, R1)

3) Fmoc deprotection
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N

NHFmoc
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heteroarylchlorides to provide the 225 compound library shown in comparison to the Novartis (NVS) archive 

based on polarity (clogD7.4) and fraction of sp3 hybridized carbon atoms (fCsp3). All 225 compounds were 

unknown in the public domain (Reaxys, https://www.elsevier.com/solutions/reaxys; last accessed in April 

2021) and absent from the Novartis archive (April 2018). 
 
BOX 3: Development of an anti-virulence therapeutic (“pathoblocker”) against P. aeruginosa 
 

 
The concept of interfering with the Pseudomonas Quinolone Signal (PQS) quorum sensing (QS) system 

for the discovery of pathoblockers against Pseudomonas aeruginosa (PA) has been explored in detail 

by multiple research groups87. Target validation of the bacterial signal molecule receptor PqsR, which 

functions as a global virulence regulator, has been achieved using mainly acute murine infection 

models. A target-driven medicinal chemistry campaign tackling this transcriptional regulator has 

achieved pre-candidate status starting from a fragment-based approach324–326. After biophysical 

screening, initial hit selection was guided by selection of enthalpy-driven binders (as determined by 

isothermal titration calorimetry; ITC). Successful growth vector identification enabled the detection of 
qualified hits with cellular anti-virulence activity and potential for advancement to the lead generation 

and optimization stages325. Hit identification was achieved with institutional resources. However, cost-

intensive medicinal chemistry and compound profiling work towards a preclinical profiling candidate was 

only possible via a non-dilutive joint funding, which amounted to approx. 3.5 m€ (see 

Acknowledgements). The chosen TPP is defined as a pathogen-specific inhaled adjunctive treatment 

of chronic respiratory PA infections in combination with a standard-of-care (SoC) backbone antibiotic. 

Resulting pre-candidates have nanomolar on-target and cellular efficacy, potentiate tobramycin efficacy 

against PA biofilms, show high exposures in vivo (various routes i.t., i.v., s.c., p.o.) and no overt findings 
in safety pharmacology screens327. While demonstration of in vivo target engagement by means of 

signal molecule quantification was achieved swiftly in a mucoid acute murine lung infection model, 

assaying in vivo treatment efficacy related to the pathoblocker-specific activities remains a considerable 
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challenge. Candidate nomination is therefore pending on tedious and expansive exploration of suitable 

PD models. Currently, this milestone is pursued via further public funding. 

 

 
BOX 4: Reassessing chelocardin for improved lead development toward cUTI therapy 

 

 
The natural product chelocardin (CHD), a member of the atypical tetracyclines that was first described 

about 60 years ago328,329, has recently been recovered to generate a novel lead scaffold, 
amidochelocardin (2-carboxamido-2-deacetyl-chelocardin, CDCHD), by rational biosynthetic 

engineering330. For this purpose, the CHD biosynthetic gene cluster in Amycolatopsis sulphurea331 was 

combined with genes from the oxytetracycline biosynthesis pathway of Streptomyces rimosus, and 

production peak titers of the novel hybrid compound CDCHD up to 400 mg/L were achieved190. CDCHD 

represents a new broad-spectrum antibiotic active against pathogens of the ESKAPE panel (including 

a large number of clinical isolates)106, which can be routinely supplied at multi-gram scale with >95% 

purity by using large-scale in-house fermentation at HZI (~100 L batch cultures) and optimized 
downstream processing. Due to the lack of cross-resistance to known antibiotics (e.g., preserved 

activity against pathogens carrying multiple tetracycline [TET] resistance determinants), the good 

production yield and the fact that efficacy for CHD treatment was already shown in a small phase II 

study332, CDCHD was chosen to enter a lead optimization program (see Acknowledgements). 

Optimization of CDCHD includes further bioengineering and medicinal chemistry approaches for 

extensive SAR profiling, which is currently based on >70 generated analogs with modifications achieved 

at about ten different scaffold positions191,333. Extended CDCHD profiling by ADMET, PK/PD, toxicity 

studies and validation of therapeutic efficacy in an ascending kidney infection model indicated the use 
of CDCHD for treatment of complicated urinary tract infection (cUTI) caused by ESBL-producing 

Enterobacteriaceae according to the selected TPP334. However, further increase in potency is required 
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to achieve higher efficacy in kidneys against clinically most relevant uropathogens, which is essential 

for preclinical candidate nomination in this project. To achieve this goal, funding limitations in the 

academic sector shall be overcome by partnering with an industrial stakeholder. 

 
BOX 5: Examples of public databases and tools related to antimicrobial compounds, targets and 
resistance 
 

(i) Discovery of antibacterial compounds and development into (potential) therapeutics: 
https://db.co-add.org/downloads/ 

https://globalamrhub.org/dynamic-dashboard/ 

https://chemdb.niaid.nih.gov/DrugDevelopmentTB.aspx 

https://coconut.naturalproducts.net/ 
https://zinc.docking.org/ 

https://revive.gardp.org/resources/ 

https://go.drugbank.com/ 

https://www.antibioticdb.com/  

https://www.pewtrusts.org/en/research-and-analysis/articles/2018/09/21/the-shared-platform-for-

antibiotic-research-and-knowledge 

https://www.pewtrusts.org/en/research-and-analysis/data-visualizations/2014/antibiotics-currently-in-

clinical-development 
https://www.pewtrusts.org/en/research-and-analysis/data-visualizations/2017/nontraditional-products-

for-bacterial-infections-in-clinical-development 

https://www.who.int/research-observatory/monitoring/processes/antibacterial_products_preclinical/en/ 

https://www.who.int/research-observatory/monitoring/processes/antibacterial_products/en/ 

 

(ii) Antimicrobial target search and prediction: 
https://pypi.org/project/targetDB/ 
http://bioinf.uab.es/cgi-bin/apgnr-cgi/antibactr.pl 

https://arts.ziemertlab.com/  

 

(iii) Antimicrobial resistance: 
https://card.mcmaster.ca/ 

https://www.ncbi.nlm.nih.gov/pathogens/antimicrobial-resistance/ 

https://bench.cs.vt.edu/deeparg 

 
 



S 

67 

BOX 6: Late preclinical development of corallopyronin A to first-in-human trial 

 

The bacterial DNA-dependent RNA polymerase inhibitor corallopyronin A (CorA), produced by the soil-

dwelling myxobacterium Corallococcus coralloides, is active against Gram-negative and Gram-positive 

bacteria, including MRSA335,336, by targeting the hinge (switch) region of the holoenzyme337. Structure-
Activity-Relationships demonstrated that the initial natural product hit was the most effective 

compound338, allowing for its development without extensive medicinal chemistry. The essential 

intracellular Wolbachia symbionts (Gram-negative) of human filarial nematodes, which cause the 

neglected tropical diseases lymphatic filariasis and onchocerciasis (river blindness), are also targets of 

CorA339. Currently, the compound is being developed to clinical phase I to support elimination of these 

nematode infections340,341, an aim of the United Nations’ Sustainable Development Goal 3 (UN-SDG)342. 

CorA also has activity against the human pathogenic bacteria Chlamydia trachomatis, Neisseria 

gonorrhoeae, Rickettsia spp., and Orientia tsutsugamushi343–345, which are included in the UN-SDG or 
WHO/CDC lists for priority antibiotic discovery and development. Heterologous expression of the CorA 

biosynthetic cluster in Myxococcus xanthus, yielding >100 mg/L275,276,346, allow consistent multi-gram 

scale production with a purity of 90-95%. This preliminary product specification has been formally 

accepted by the German Federal Ministry for Drugs and Medical Devices (BfArM). Most standard in 

vitro and in vivo non-GLP ADMET studies have been successfully completed. Compared to rifampicin, 

the expression of CYP450s is not altered and CYP3A4 induction is eight-fold lower. CorA is stable in 

plasma >240 min. Its metabolism in human and dog microsomes is t1/2 >45 min, resulting in oxidation 

metabolites and minimal glucuronidation. Off-target profiling resulted in three hits (inhibition/activation), 

but the EC50 are 170-1500-fold higher than the in vitro EC50 against Wolbachia. CorA does not inhibit 

hERG, and no genotoxicity was observed. These results indicate that CorA is non-toxic and 

pharmacologically safe (awaiting further in vivo validation). The project is publicly funded to finalize 

preclinical studies including formulation development and in vivo toxicity in rodents and dogs (see 

Acknowledgements). In parallel, the manufacturing protocol for heterologous production and optimized, 

up-scalable DSP will be transferred to a GMP-certified CMO to produce cGMP-grade material for the 
GLP and phase I studies. Completing the clinical studies will require a Product Development 

Partnership. Provision of CorA to countries endemic for filarial infections is envisaged via PPP to 

achieve the UN-SDG. After regulatory approval, provision of CorA for treating sexually transmitted 

infections (STIs) and as a reserve antibiotic for MRSA shall be achieved through licensing. 


